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Abstract

The automatic speaker recognition technologies have developed into more and more important

modern technologies required by many speech-aided applications. The main challenge for au-

tomatic speaker recognition is to deal with the variabilityof the environments and channels

from where the speech was obtained. In previous work, good results have been achieved for

clean high-quality speech with matched training and test acoustic conditions, such as high accu-

racy of speaker identification and verification using clean wideband speech and Gaussian Mix-

ture Models (GMM). However, under mismatched conditions and noisy environments, often

expected in real-world conditions, the performance of GMM-based systems degrades signifi-

cantly, far away from the satisfactory level. Therefore, robustness becomes a crucial research

issue in speaker recognition field.

In this thesis, our main focus is to improve the robustness ofspeaker recognition systems on

far-field distant microphones. We investigate approaches to improve robustness from two direc-

tions. First, we investigate approaches to improve robustness for traditional speaker recognition

system which is based on low-level spectral information. Weintroduce a new reverberation

compensation approach which, along with feature warping inthe feature processing procedure,

improves the system performance significantly. We propose four multiple channel combina-

tion approaches, which utilize information from multiple far-field microphones, to improve

robustness under mismatched training-testing conditions. Secondly, we investigate approaches

to use high-level speaker information to improve robustness. We propose new techniques to
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model speaker pronunciation idiosyncrasy from two dimensions: the cross-stream dimension

and the time dimension. Such high-level information is expected to be robust under different

mismatched conditions. We also built systems that support robust speaker recognition. We

implemented a speaker segmentation and clustering system aiming at improving the robustness

of speaker recognition as well as automatic speech recognition performance in the multiple-

speaker scenarios such as telephony conversations and meetings. We also integrate speaker

identification modality with face recognition modality to build a robust person identification

system.
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Chapter 1

Introduction

Spoken language is the most natural way used by humans to communicate information. The

speech signal conveys several types of information. From the speech production point of view,

the speech signal conveys linguistic information (e.g., message and language) and speaker in-

formation (e.g., emotional, regional, and physiological characteristics). From the speech per-

ception point of view, it also conveys information about theenvironment in which the speech

was produced and transmitted. Even though this wide range ofinformation is encoded in a

complex form into the speech signal, humans can easily decode most of the information. Such

human ability has inspired many researchers to understand speech production and perception

for developing systems that automatically extract and process the richness of information in

speech. This speech technology has found wide applicationssuch as automatic dictation, voice

command control, audio archive indexing and retrieval etc.

The application defines which information in the speech signal is relevant. For example, the

linguistic information will be relevant if the goal is to recognize the sequence of words that

the speaker is producing. The presence of irrelevant information (like speaker or environment

information) may actually degrade the system accuracy. In this thesis, we deal with automatic

systems that recognize who is speaking (the speaker’s identity) [35] [13].

1



Chapter 1 Introduction

It was Lawrence Kersta who made the first major step from speaker identification by hu-

mans towards speaker identification by computers when he developed spectrographic voice

identification at Bell Labs in the early 1960s. His identification procedure was based on visual

comparison of the spectrogram, which was generated by a complicated electro-mechanical de-

vice [58]. Although the visual comparison method cannot cope with the physical and linguistic

variation in speech, his work encouraged the introduction of automatic speaker recognition. In

the following four decades, speaker recognition research has advanced a lot. Some commer-

cial systems have been applied in certain domains. Speaker Recognition technology makes it

possible to use a person’s voice to control the access to restricted services (automatic banking

services), information (telephone access to financial transactions), or area (government or re-

search facilities). It also allows detection of speakers, for example, voice-based information

retrieval, recognition of perpetrator on a telephone tap, and detection of a speaker in a multi-

party dialog.

Although the rapid development of speaker recognition technology is happening, there are

still many problems to be solved. One problem is to understand what characteristics in the

speech signal convey the representation of a speakers. Thisrelates to understanding how hu-

mans listen to the speech signal and recognize the speaker. The other problem is to make

automatic speaker recognition systems robust under different conditions.

1.1 Speaker Recognition Principles

Depending on the application, the general area of speaker recognition can be divided into three

specific tasks: identification, detection/verification, and segmentation and clustering [35][13][91][92].

The goal of thespeaker identificationtask is to determine which speaker out of a group of

known speakers produces the input voice sample. There are two modes of operation that are

related to the set of known voices. In the closed-set mode, the system assumes that the to-be-
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determined voice must come from the set of known voices. Otherwise, the system is in open-set

mode. The closed-set speaker identification can be considered as a multiple-class classification

problem. In open-set mode, the speakers that do not belong tothe set of known voices are

referred to as impostors. This task can be used for forensic applications, e.g., speech evidence

can be used to recognize the perpetrator’s identity among several known suspects.

In speaker verification, the goal is to determine whether a person is who he or she claims to

be according to his/her voice sample. This task is also knownas voice verification or authen-

tication, speaker authentication, talker verification or authentication, and speaker detection. It

can be considered as a true-or-false binary decision problem. It is sometimes referred to as the

open-set problem, because this task requires distinguishing a claimed speaker’s voice known to

the system from a potentially large group of voices unknown to the system. Today verification

is the basis for most speaker recognition applications and the most commercially viable task.

The open-set speaker identification task can be considered as the merger of the closed-set iden-

tification and open-set verification tasks. It performs likeclosed-set identification for known

speakers but must also be able to classify speakers unknown to the system into an ”unregistered

speaker” category. Speaker verification can be used for security applications, such as, to control

telephone access to banking services.

Speaker segmentation and clusteringtechniques are used in multiple-speaker scenarios. In

many speech recognition and speaker recognition applications, it is often assumed that the

speech from a particular individual is available for processing. When this is not the case, and

the speech from the desired speaker is intermixed with otherspeakers, it is desired to segregate

the speech into segments from the individuals before the recognition process commences. So

the goal of this task is to divide the input audio into homogeneous segments and then label them

via speaker identity. Recently, this task has received moreattention due to increased inclusion

of multiple-speaker audio such as recorded news show or meetings in commonly used web

searches and consumer electronic devices. Speaker segmentation and clustering is one way to
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index audio archives so that to make the retrieval easier.

According to the constraints placed on the speech used to train and test the system, Automatic

speaker recognition can be further classified into text-dependent or text-independent tasks. In

text-dependent recognition, the user must speak a given phrase known to the system, which

can be fixed or prompted. The knowledge of a spoken phrase can provide better recognition

results. In text-independent recognition, the system doesnot know the phrase spoken by the

user. Although this adds flexability to an application, it can have redcued accuracy for a fixed

amount of speech.

Running a speaker recognition system typically involves two phases.In the first phase, a

user enrolls by providing voice samples to the system. The system extracts speaker-specific

information from the voice samples to build a voice model of the enrolling speaker. In the

second phase, a user provides a voice sample (also referred to as test sample) that is used

by the system to measure the similarity of the user’s voice tothe model(s) of the previously

enrolled user(s) and, subsequently, to make a decision. Thespeaker associated with the model

that is being tested is referred to as target speaker or claimant.In a speaker identification task,

the system measures the similarity of the test sample to all stored voice models. In speaker

verification task, the similarity is measured only to the model of the claimed identity. The

decision also differs across systems. For example, a closed-set identification task outputs the

identity of the recognized user; besides the identity, an open-set identification task can also

choose to reject the user in case the test sample do not belongto any of the stored voice models;

a verification task chooses to accept or reject the identity claim.

1.2 Basic Structure of a Speaker Recognition System

Like most pattern recognition problems, a speaker recognition system can be partitioned into

two modules: feature extraction and classification. The classification module has two compo-
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Figure 1.1:Generic speaker recognition system

nents: pattern matching and decision. Figure 1.1 depicts a generic speaker recognition system.

The feature extraction module estimates a set of features from the speech signal that represent

some speaker-specific information. The speaker-specific information is the result of complex

transformations occurring at different levels of the speech production: semantic, phonologic,

phonetic, and acoustic [6], [13]. The semantic level deals with transformation caused on the

speech signal according to the communicative intent and dialog interaction of the speaker. For

example, the vocabulary choice and the sentence formulation can be used to identify the socio-

economic status and/or education background of the speaker[81]. The phonological level deals

with the phonetic representation of the communicative intent. For example, duration and se-

lection of phonemes, intonation of the sentence can be used to identify the native language and

regional information. The phonetic level deals with the realization of the phonetic representa-

tion by the vibration of the vocal cords and the movements of articulators (lips, jaw, tongue,

and velum) of the vocal tract [88]. For example, speaker can use a different set of articula-

tor movements to produce the same phoneme [81]. The acousticlevel deals with the spectral

properties of the speech signal. For example, the dimensions of the vocal tract, or length and

mass of vocal folds will define in some sense the fundamental and resonant frequencies, re-

spectively. Despite the variety of speaker-specific information, the set of features should have

the following characteristics [81], [122]:

• occur naturally and frequently in normal speech

5



Chapter 1 Introduction

• be easily measurable

• have high variability between speakers

• be consistent for each speaker

• not change over time or be affected by the speaker’s health

• not be affected by reasonable background noise nor depend onspecific transmission char-

acteristics

• show resistance to disguise or mimicry

In practice, not all of these criteria can be applied to the parameters used by the current systems.

The pattern matching module is responsible for comparing the estimated features to the

speaker models. There are many types of pattern matching methods and corresponding models

used in speaker recognition [13]. Some of the methods include hidden Markov models (HMM),

dynamic time warping (DTW), and vector quantization (VQ). Inopen-set applications (speaker

verification and open-set speaker identification), the estimated features can also be compared

to a model that represents the unknown speakers. In a verification task, this module outputs a

similarity score between the test sample and the claimed identity. In an identification task, it

outputs similarity scores for all stored voice models. The decision module analyzes the simi-

larity score(s) (statistical or deterministic) to make a decision. The decision process depends

on the system task. For closed-set identification task, the decision can just select the identity

associated with the model that is the most similar to the testsample. In open-set applications,

the systems can also require a threshold to verify whether the similarity is valid. Since open-set

application can also reject speakers, the cost of making an error need to be considered in the

decision process. For example, it is more costly for a bank toallow an impostor to withdraw

money, than to reject a true bank customer.
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The effectiveness of a speaker recognition system is measured differently for different tasks.

Since the output of a closed-set speaker identification system is a speaker identity from a set of

known speakers, the identification accuracy is used to measure the performance. For the speaker

detection/verification systems, there are two types of error: false acceptance of an impostor and

false rejection of a target speaker. The performance measure can also incorporate the cost

associated with each error, which depends on the application. For example, in a telephone

credit card purchase system, a false acceptance is very costly; in a toll fraud prevention system,

false rejection can alienate customers.

1.2.1 Acoustic Features

All audio processing techniques start by converting the rawspeech signal into a sequence of

acoustic feature vectors carrying characteristic information about the signal. This preprocess-

ing module (feature extraction) is also referred to as “front-end” in the literature. The most

commonly used acoustic vectors are Mel Frequency Cepstral Coefficients (MFCC) [22], Lin-

ear Prediction Cepstral Coefficients (LPCC) [70], and Perceptual Linear Prediction Cepstral

(PLPC) Coefficients [45]. All these features are based on the spectral information derived

from a short time windowed segment of speech. They differ mainly in the detail of the power

spectrum representation. MFCC features are derived directly from the FFT power spectrum

as shown in figure 1.2, whereas the LPCC and PLPC use an all-polemodel to represent the

smoothed spectrum. The mel-scale filterbank centers and bandwidths are fixed to follow the

mel-frequency scale, giving more detail to the low frequencies. LPCC features can be consid-

ered as having adaptive detail in that the model poles move tofit the spectral peaks wherever

they occur. The detail is limited mostly by the number of poles available. PLPC features are

a hybrid between filterbank and all-pole model spectral representation. The spectrum is first

passed through a bark-spaced trapezoidal-shaped filterbank and then fit with an all-pole model.

The details of the PLPC representation is determined by boththe filterbank and the all-pole
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Figure 1.2:Block-Diagram of Extracting MFCC

model order. The spectral representation is transformed tocepstral coefficients as a final step.

This is done because of the (near) orthogonalizing propertyof the cepstral transformation. The

filterbank representations are transformed directly by a Discrete Cosine Transform (DCT). The

all-pole representations are transformed using the recursive formula between prediction coef-

ficients and cepstral coefficients [88]. In all cases, discarding the zeroth cepstral coefficient

results in energy normalization. PLPC and MFCC features are used in most state-of-the-art

automatic speech recognition systems [72] [123]. The effectiveness of LPCC features for auto-

matic speaker recognition was shown in [5] [6]. However, MFCCfeatures are used in more and

more speaker recognition applications. For example, most of the participating systems in NIST

speaker recognition evaluations in 1998 used MFCC features and some systems used LPCC

features [27]. Following the trends in many state-of-the-art speaker recognition systems (e.g.

[94]), MFCC coefficients (without energy term (C0) and with derivatives) are used as acoustic

feature vectors in this thesis, unless otherwise mentioned.

1.2.2 Gaussian Mixture Model (GMM)

A GMM is a mixture of several Gaussian distributions and is used to estimate the Probability

Density Function (PDF) of a sequence of feature vectors. Thelikelihood of a model (GMM)

given observation is then estimated as:

p(xn|N(xn,µi,Σi)) =
M

∑
i=1

wi
√

2π|Σi|
exp{−(xn−µi)

TΣ−1
i (xn−µi)

2
} (1.1)
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whereM is the number of Gaussian distributions in the GMM. The parameters of these

distributions,wi, µi, andΣi , are respectively the weight, mean, and diagonal covariance matrix

of theith distribution in the GMM. Given a sequence of obeservation vectors, the parameters of

a GMM can be trained via EM algorithm to maximize the likelihood of the data.

The observations inX are assumed to be independent and identically distributed (i.i.d.).

Accordingly, the likelihood of a model (e.g. a GMM or an HMM) parameteried byθ given

obeservation sequenceX is estimated as:

p(X|θ) =
N

∏
n=1

p(xn|θ) (1.2)

Although the strong assumption that the observations are independent conceals the tempo-

ral aspects of the speech signal, GMM has been extensively used for speaker modeling in

text-independent speaker recognition applications [91].The GMM has several properties that

motivate their use for representing a speaker:

• One of the powerful properties of the GMM is its ability to form smooth approximations

to arbitrarily shaped density. The GMM can be viewed as a parametric pdf based on a

linear combination of Gaussian basis functions capable of representing a large class of

arbitrary densities

• GMM can be considered as an implicit realization of probabilistic modeling of speaker

dependent acoustic classes with each Gaussian component corresponding to a broad

acoustic class such as vowels, nasals and fricatives etc.

1.2.3 Speaker Detection Framework

The goal of the speaker detection task is to determine whether a specified speaker is speaking

during a speech segment. Since it is assumed that the speech segment has only speech from
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Figure 1.3:Speaker detection system framework

one speaker, this task is also known as single-speaker detection [94]. The problem of speaker

detection can be formulated as a hypothesis testing of two mutually-exclusive hypotheses:

• H0: target speaker is present,

• H1: target speaker is not present.

Since there are only two hypotheses, the likelihood ratio test is used to make a decision. The

likelihood ratio test is a comparison of the likelihood ratio between the two hypotheses and a

threshold. A wrong decision can cause two types of errors. Type I error (miss) happens when

the null hypothesis (H0) is rejected when it is true. Type II (false alarm) error happens when

the null hypothesis is accepted when the alternative hypothesis (H1) is true. Furthermore, the

application can determine a cost for every decision. For example, the cost of false acceptance

decision has a more damaging effect than a false rejection decision in a telephone credit card

purchase system. Therefore, the probability and costs associated with the errors have to be

considered when making a decision rule (i.e., selecting thedecision threshold).

Figure 1.3 shows the main components of a speaker detection system based on the likelihood

ratio test. The features extracted from the test segment areused to compute the likelihoods of
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the hypotheses. The null hypothesis is represented by the target-speaker model. The alternative

hypothesis is represented by the impostor model that characterizes all the unknown speakers.

The estimation of the likelihoods depends on specific modelsused to represent the target and

imposter hypothesis. For example, a system can assume that the feature space can be repre-

sented by a Gaussian distribution, so that the models are themean and variance parameters.

The target-speaker and impostor models are estimated a priori. The target-speaker models are

estimated using training data from the respective speaker.The estimation of the impostor model

poses a more complex task because it must represent the speaker space that is complementary

to the target speaker. The method to define a speaker set that represents the speaker space is still

under investigation [94], [100]. Typically, the set of unknown speakers can be a large number

of speakers [95] or a collection of “cohort” speakers [99]. The impostor model is also know as

universal background model (UBM) [94].

1.2.4 Speaker Segmentation and Clustering Framework

The goal of a speaker segmentation and clustering system is to divide a speech signal into a

sequence of speaker-homogeneous regions. Thus, the outputof such a system provides the an-

swer to the question, “Who spoke when?”. Knowing when each speaker is speaking is useful

as a pre-processing step in automatic speech recognition(ASR) systems to improve the qual-

ity of the output. Such pre-processing may include vocal tract length normalization (VTLN)

and speaker adaptation. Automatic speaker segmentation and clustering may also be useful in

information retrieval and as part of the indexing information of audio archives.

Dividing an audio recording into speaker-homogeneous regions presents many challenges.

One challenge is to identify the locations of the boundariesbetween speakers - the “speaker

segmentation” problem. Another challenge is to identify which portions of the recording be-

long to which speakers - the “speaker clustering” problem. Additionally, the speaker clustering
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Figure 1.4:Speaker Segmentation and Clustering System Flow

problem requires that we correctly identify how many uniquespeakers occur in the record-

ing. Speech researchers have proposed many techniques for solving the “Who spoke when?”

problem. Most of these methods first segment and then clusterthe data. The segmentation is

either assumed to be known [17][109][113] or is performed automatically prior to clustering

[108][42]. However, approaches such as these, in which the segmentation and clustering are

performed sequentially, have limitations. In the former case, the correct segmentation is rarely

known a priori for practical applications. In the latter case, the errors made in the segmentation

step can degrade the performance of the subsequent clustering step.

Figure 1.4 shows a typical speaker segmentation and clustering system work flow. It usu-

ally contains two key steps: Speaker Segmentation and Speaker Clustering. After the feature

vectors are extracted from the audio stream, the audio stream is divided into homogeneous seg-

ments according to speaker identity, environmental condition and channel condition, and then

the speech segments are clustered into homogeneous clusters ideally according to speaker iden-

tity. Normally segmentation and clustering are conducted sequentially. However, segmentation
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and clustering operations can also be conducted interactively, which means the segmentation

process can use the clustering feedback and these two steps can iterate multiple times.

1.3 Robust Speaker Recognition Applications

Speaker recognition technologies have wide application areas. Here we list some example

applications of speaker recognition technologies.

• Security: speaker recognition technologies can provide transaction authentication, fa-

cility or computer access control, monitoring, telephone voice authentication for long-

distance calling or banking access etc.

• Personalisation: with speaker recognition technologies,we can implement intelligent

answering machines with personalized caller greetings, wecan build personlizied dialog

systems: a dialog system can recognize the user, greet to theuser directly, and direct

the user through the system to destination successfully viashorter path according to the

user’s profile.

• Audio Indexing: speaker recognition technologies can provide automatic speaker label-

ing of recorded meetings for speaker-dependent audio indexing.

• Information Retrieval: speaker recognition can provide a way to manage and access the

multimedia databases, which is to retrieve information according to interested speakers.

• Speaker Tracking: it is desired to know who is speaking in a tele-conference especially

when there are many attandants in the tele-conference and the attendants are not very

familiar with each other.

All these applications require robust speaker recognitiontechniques. For example in the

telephone-aided services, users may call in under all kindsof acoustic conditions (in the office,
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on the street etc.) and use different telephone networks (land-line or cellular). In the meet-

ing scenarios, participants may talk while moving around facing the microphone in different

directions and different distances. Mismatched conditions may be encountered at any time in

these cases. Therefore robustness is one of the critical factors that decide the success of speaker

recognition in these applications.

1.4 The Goal of the Thesis

The most significant factor affecting automatic speaker recognition performance is the variation

in the signal characteristics (intersession variability and variability over time). Variations arise

from the speakers themselves as well as from the recording and transmission channels, such as:

• Short-term variation due to the speaker’s health and emotions

• Long-term changes due to aging

• Different microphones

• Different background noises (closed environment vs. open environment etc.)

It is well known that samples of the same utterance recorded within session are much more

highly correlated than samples recorded in separate sessions. This is due to the fact that the

speaker and channel effects are bound together in spectrum and hence speaker and channel

characteristics are both involved in the features that are used in speaker recognition systems.

Therefore anything that affects the spectrum can cause problems in speaker recognition. Unlike

speech recognition systems, which may average out these effects using large amounts of speech,

speaker recognition systems cannot do this since there is usually limited amount of enrolled

speech. So it is important for speaker recognition systems to accommodate to these variations.
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A majority of the speaker models, including the Gaussian mixture models, are based on

modeling the underlying distribution of feature vectors from a speaker. When the speech is

corrupted, the spectral based features are also corrupted and so their distributions are modi-

fied. Thus, a speaker model trained using speech from one typeof corrupt environment will

generally perform poorly in recognizing the same speaker using speech collected under dif-

ferent conditions since the feature distributions are now different. Various studies of speaker

recognition systems using degraded or distorted speech have shown a dramatic decrease in per-

formance [47] [38]. Current speaker recognition researchesmainly focus on recognition under

controlled conditions such as Switchboard telephone speech, which is close-talking speech. A

large amount of effort is still needed in research about speaker recognition robustness under

unlimited conditions in open environment with distant microphones.

In this thesis, we carry out research to improve the robustness for speaker recognition on

distant microphones from two levels: to improve robustnessfor the traditional system based

on low-level acoutstic features and to improve robustness using high-level features.From the

low-level, we introduced a reverberation compensation approach and applied feature warping

in the feature processing of the distant signals. We proposed multiple channel combination ap-

proaches to alleviate the issues of acoustic mismatches on far-field speaker recognition. From

the high-level, we explored phonetic speaker recognition,in which we try to capture high-level

phonetic speaker information and model speaker pronunciation dynamics using such informa-

tion.

We also implement systems that support robust speaker recognition. We studied speaker seg-

mentation and clustering and implemented a system aiming atgood performance in multiple-

speaker scenarios and to be portable across domains. We investigate its impact on automatic

speech recognition as well. We also integrate the audio and modio person identification modali-

ties (speaker idenitification and face recognition) to build a robust person identification system.
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1.5 Contributions

In this thesis, we conduct research to improve speaker recognition robustness on far-field mi-

crophones from two levels with following contributions:

• We investigated far-field speaker recognition on multiple distant microphones, which is

a research area has not received much attention. We introduced a reverberation compen-

sation approach and applied feature warping in the feature processing. These approaches

bring significant gain. We proposed four multiple channel combination approaches to uti-

lize information from multiple sources to alleviate the channel mismatch effects. These

approaches achieve significant improvement over baseline performance, especially in the

case that test condition can not be covered in the training.

• We introduced a new approach to model a speaker’s pronunciation idiosyncrasy from two

complementary dimensions: time dimension and cross-stream dimension. Each dimen-

sion contains useful information for distinguishing speakers pronunciation characteris-

tics. Combining both dimensions achieves significant betterperformance than that of

each single dimension. The experimental results sugguest that the proposed approach is

language independent. This research along with other research in phonetic speaker recog-

nition has inspired ongoing research by others in using high-level features for speaker

recognition. In addition, the proposed approach was applied to other classification tasks,

such as language identification and accent identification, and achieved good performance

as well.

• We studied speaker segmentation and clustering across domains such as telephone con-

versations and meetings. We implemented a speaker segmentation and clustering system

which was tested within the NIST Rich Transcription evaluations. It is also a very impor-

tant module in a complete ASR system, such as BN system, meeting system, and lecture

recognition system etc. It provides crucial information for speaker adaptation.
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• We integrated speaker recognition modality with face recognition modality and built a

robust person identification system which was tested in the NIST CLEAR06 evaluation.

1.6 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 describes far-field speaker recognition on distance microphones. Reverberation

compensation, feature warping and four multiple channel combination approaches are intro-

duced. We will show that all of them bring significant improvement for speaker identification

on distant microphones. We also evaluate how our system perform under open-set mode.

Chapter 3 presents phonetic speaker recognition. It explains how we capture phonetic infor-

mation to model speaker pronunciation dynamics in the time dimension and the cross-stream

dimension. We will show that both dimensions contain usefulinformation for distinguishing

speakers and combining both dimensions can perform much better than using only one of the

dimensions. We will also show its application on far-field speaker recognition.

Chapter 4 discusses speaker segmentation and clustering. Wewill show the system perfor-

mance in different domains and discuss its impact on speech recognition.

Chapter 5 presents the person identification system which integrates speaker recognition and

face recognition modalities. The system performance in theNIST CLEAR06 evaluation is

presented.

Chapter 6 concludes the thesis and discusses some future directions.

Appendix A shows the performance of our speaker identification system under open-set

mode and Appendix B presents some extra efforts of applying phonetic speaker recognition

approaches on other tasks such as language identification and accent identification.
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Chapter 2

Far-Field Speaker Recognition

2.1 Motivation

As discussed in previous chapter speaker recognition technology has a wide range of applica-

tions and many potential applications require hands-free sound capture, such as automatic teller

machine authentication, the production of video conference transcripts, and security access to

buildings or vehicles etc. In such applications, hands-free operation is preferable.

Speaker recognition has achieved fairly good performance under controlled conditions as

reported in the NIST annual speaker recognition evaluation[80]. However, real world condi-

tions differ from laboratory conditions. Mismatches existbetween training and testing phases,

such as wide band vs. narrow band, quite room environment vs.noisy street environment, and

land-line channel vs. cell phone channel etc. These factorsconsequently induce performance

degradation in automatic speaker recognition systems. Thedegradation becomes more promi-

nent as the microphone is positioned more distant from the speaker [53], for instance, in a

teleconferencing application. While the topic of far-field speech recognition has been investi-

gated for some time, to date, speaker recognition has not received the same attention.

In this chapter we investigate techniques to improve the robustness of far-field speaker recog-
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nition in the meeting scenarios with a multiple hands-free distant microphone setup. We intro-

duce a new reverberation compensation approach, which usesa different noise estimation com-

pared to the standard spectrum subtraction approach. We apply feature warping in the acoustic

feature processing in our system. The experimental resultsshow that significant improvements

were achieved over the baseline system. Furthermore, multiple hands-free microphones are

easy to setup and are realistic in many real scenarios. Therefore, we studied possible gains by

using information from more than one far-field microphone. Four multiple channel combination

approaches are investigated to capture useful informationfrom multiple distant microphones.

These approaches give additional large improvement over the baseline system.

2.2 Related Work

Accurate hands-free far-field speaker recognition is difficult due to a number of factors. Chan-

nel mismatch as well as environmental noise and reverberation are the two most prominent

ones. During the past years, much research has been conducted towards reducing the effect of

channel mismatch. Generally, robustness of a recognizer can be accomplished at three different

levels:

• The acoustical level, giving rise to speech enhancement techniques that may improve the

SNR of the input signal

• The parametric level, by means of parametric representations of speech characteristics

which may show immunity to the noise process

• The modeling stage, combining adequate models of noise and clean signal in order to

recognize noisy speech

To provide robustness to additive acoustic noise, for single channel condition, the well-

known approach is the spectral subtraction procedure [9]. When the noise process is stationary
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and speech activity can be detected, spectral subtraction is a direct way to enhance the noisy

speech. For multi-sensor array condition, performing delay-and-sum beam-forming is the most

direct approach [67] [41] [83]. The underlying idea of this scheme is based on the assumption

that the contribution of the reflections is small, and that weknow the direction of arrival of

the desired signal. Then, through a correct alignment of thephase function in each sensor, the

desired signal can be enhanced, rejecting all the noisy components not aligned in phase. Al-

though microphone arrays have the benefit of providing a highlevel of enhancement, they need

specific equipment and setup as well as knowledge of room acoustics or speaker’s location to

perform enhancement.

At the parametric level, the most well-known approaches to reduce mismatch are Cepstral

Mean Subtraction (CMS) [33] and RASTA [46]. CMS and RASTA attempt to remove con-

volotional channel effects. In CMS the mean of the cepstral vectors is subtracted in order to

high-pass filter the original cepstral coefficients:

y[n] = x[n]− 1
N

N

∑
i=1

xi[n]

RASTA processing of speech again high-pass filter the cepstral coefficients with the following

different equation:

y[n] = x[n]−x[n−1]+0.97∗y[n−1]

However, channel mismatch and environmental noise can still cause lots of errors after CMS

and RASTA. To deal with additive noise, a feature warping technique had been proposed that

transforms the distribution of cepstral features to a standard distribution [83]. This technique

was reported to give more improvement than standard techniques.

To provide robustness at the modeling level, one common approach is to assume an explicit

model for representing environmental effects on speech features [36] [126] and use this model

to construct a transformation which is applied either to themodel space or to the feature space

to decrease the mismatch. Though this model-based approachshows significant improvement,
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it requires prior knowledge of noise statistics and extensive computation to adapt the models of

clean speech to a new environment.

Our multiple channel combination approaches are implicitly related to the ensemble meth-

ods in machine learning. Ensemble methods are learning algorithms that construct a set of

classifiers, then combine their individual decisions in some fashion, in order to classify new

examples. It has been shown that even a combination of “weak”classifiers can result in a

“strong” composite classifier, whose classification performance is much better than that of any

single classifier. The ensemble approach is also known as theFusion of Models, Mixture of

Experts, Committee of Learners, Multiple Classifier System, Consensus Theory, as well as

by other names. In [25], Dietterich gives a deeper analysis for when ensembles can improve

performance, or why it is not possible to find a single classifier that works as well as an ensem-

ble. He shows that the strength of ensembles lies in its competence and flexibility in dealing

with the following three situations: the training data may not provide sufficient information

to choose a single best classifier; the learning algorithm may not be able to solve the difficult

search problem; and the hypothesis space may not contain thetrue function. The key issue of

constructing a successful ensemble is that the individual classifiers need to perform better than

random guessing and be diverse. Although we do not provide strict proof of whether these two

factors hold for our combination approaches, the experimental results match our expectations.

2.3 Databases and Experimental Setup

2.3.1 3D Distant Microphone Database (3D DMD)

To investigate robust speaker recognition with distant microphones, a speaker database was

collected at the Interactive Systems Laboratories (ISL) ina meeting room using multiple distant

microphones. The left hand-side of Figure 2.1 illustrates the distant microphone setup. Five
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Figure 2.1:Microphone setup in 3D DMD collection

microphones (labeled as 1 to 5) are hanging from the ceiling,while three microphones (6, 7,

and 8) are set up on the meeting table. We used miniature cardioid condenser microphones that

are very similar to omni-directional microphones. The right hand-side of Figure 2.1 illustrates

the positioning of these 8 microphones with respect to the speaker. The cubical grid indicates

the distance defined by the grid, where each unit correspondsto 0.5 meters. The vertical grid

is set to 4. Since the microphones are distributed in the 3D spaces we call this database 3D

Distant Microphone Database in order to distinguish it withanother database collected at ISL

where the microphones are distributed in a 2D space as described in 2.3.2.

Since the speaker (sound source) is not opmi-directional, the microphones which have the

same Euclidean distance to the speaker do not receive the same signal. Therefore, the distance

of a speaker to a microphone is defined to be the Euclidean griddistance (horizontally and

vertically) penalized by both the horizontal and vertical angles between the speaker (sound

source) and the microphone (the receiver). For example, thedistance of channel 6 is computed

as follows:

D(6) =

√
22 +32

cos(arctan(2
3))

= 4.3 (2.1)

which is the Euclidean distance in horizontal plane dividedby the cosine of the angle between

the sound source and receiver - microphone 6 - in horizontal plane. There is no vertical distance

and no vertical angle penalty for this channel because the speaker sits at the table in the same
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horizontal plane as the table microphone 6. For example, thedistance of channel 2 is computed

as follows

D(2) =

√
32 +52 +42

cos(arctan( 4√
34

))cos(arctan(3
5))

= 10 (2.2)

which is the Euclidean distance in both horizontal and vertical planes divided by the cosine

values of the angle in horizontal plane and vertical plane respectively. The distance of other

channels is computed similarly.

D(7) =
2

cos(0)
= 2 (2.3)

D(8) =

√
1+32

cos(arctan(3)
= 10 (2.4)

D(3) =

√
22 +42

cos(arctan(2)
= 10 (2.5)

D(5) =

√
42 +52 +42

cos(arctan(4
5))cos(arctan( 4√

42+52))
= 11.4 (2.6)

D(4) =

√
1+42 +42

[1−cos(arctan(4))]cos(arctan( 4√
1+42))

= 12 (2.7)

D(1) =

√
1+32 +42

[1−cos(arctan(3))]cos(arctan( 4√
1+32))

= 14.5 (2.8)

There are 24 speakers (4 female, 20 male) in total in the 3D Distant Microphone Database.

Each speaker has one session recording, in which the speakerwas required to talk about a

selection of 10 given topics of personal interest in a spontaneous free speaking style. The

speech duration varies from 8 minutes to 20 minutes depending on the subjects’ verbosity. Two

minutes of speech was randomly chosen from the first 80% of a speaker’s entire recording as

training data for that speaker. The remaining 20% of speech was split into 20 seconds segments,

each of which is used as one test trial. Although using a single session for training and test will

produce optimistic results, the degradation due to using microphones at varying locations is

captured with this experimental design. There are in total 183 test trials. We assume that the

test speaker is one of the enrolled speakers, which means closed-set speaker recognition is
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evaluated in this chapter.

2.3.2 2D Distant Microphone Database (2D DMD)

A second database containing speech recorded from microphones at various distances was also

collected at the Interactive Systems Laboratories in 2000.The room was different than that

used for the 3D DMD. It was larger and more noisy. The databasecontains 30 speakers (16

female, 14 male) in total. From each speaker five sessions hadbeen recorded where the speaker

sits at a table in an office environment, reading an article. The articles are different for each

session. Each session is recorded using eight microphones in parallel: one close-talking micro-

phone (Sennheizer headset), one Lapel microphone worn by the speaker, and six other Lapel

microphones. The latter six are attached to microphone stands sitting on the table or beyond the

table, at distances of 1 foot, 2 feet, 4 feet, 5 feet, 6 feet and8 feet to the speaker, respectively.

Tables and graphs shown in this chapter use “Dis0” to represent close-talking microphone chan-

nel, “DisL” to represent speaker-worn microphone channel,and “DisN” (N > 0) to refer to the

n-feet distance microphone channel. The upper part in Figure 2.2 gives an illustration of the

overlook of the microphone arrangement with respect to the speaker. Different from the 3D

Distant Microphone Database where the microphones are distributed in different horizontal

and vertical planes, the microphones in this database are set in the same vertical plane, there-

fore we call it 2D Distance Microphone Database. The lower part in Figure 2.2 illustrates the

microphone position in the same vertical space. MicrophoneDis6 and Dis8, which stand on

the floor beyond the table, are higher than the other six microphones.

For each speaker, we randomly select 60 seconds from the firstsession as training data. The

remaining data was split into 20-seconds segments and used as test trials. There are in total 60

test trials.

25



Chapter 2 Far-Field Speaker Recognition

Dis2

DisL

Dis0
Dis1 Dis4 Dis5

Dis6 Dis8

Dis4Dis1 Dis2 Dis5 Dis6 Dis8
DisL

Dis0

(a)

(b)

Figure 2.2:Microphone setup in 2D DMD collection

2.3.3 ICSI Meeting Database

The ICSI Meeting Database [50] is a collection of 75 meetings with simultaneous multi-channel

audio recordings collected at the International Computer Science Institute (ICSI) in Berkeley.

There are a total of 53 unique speakers in this corpus. We selected 24 speakers for training

and testing based on their positions and whether they have enough total speaking time, Figure

2.3 is a simple diagram of the distant table microphone arrangement in the ICSI meeting room

and the speaker position we selected. The table microphonesare desktop omni-directional

Pressure Zone Microphones (PZM). They were arranged in a staggered line along the center

of the conference table. Ninety seconds of speech was randomly selected from meetings for

each speaker as training data. The remainder speech was usedfor testing. We use the manual

transcription to keep the test segments as they are if they were not longer than 20 seconds.

Otherwise the segment is split into several 20 seconds chunks. There are 397 test trials in total.
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ChE Ch7Ch6ChF

Figure 2.3:Distant table microphone setup in ICSI meetings

2.3.4 Speaker Modeling and Performance Measure

In our system a GMM with 128 mixtures was trained for each speaker using the EM algorithm.

The identification decision is made as follows

s= argmax
k

(

L(X|Θk)
)

,k = 1,2, · · · ,S (2.9)

wheres is the recognized speaker identity,S is the total number of speakers, andL(X|Θk) is the

likelihood that the feature setX was generated by the GMMΘk of speakerk, which contains

M weighted mixtures of Gaussian distributions

Θk = (λm,N(µm,Σm)) ,m= 1,2, · · · ,M (2.10)

whereM is the number of Gaussians andλm, µm, andΣm, are respectively the weight, mean,

and diagonal covariance matrix of themth distribution in the GMM.

The system performance is measured using recognition accuracy, which is the percentage of

correctly recognized test trials over all test trials.
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2.4 Feature Processing to Far-Field Effects

2.4.1 Reverberation Compensation

A speech signal recorded with a distant microphone is more prone to be degraded by additive

background noise and reverberation. Considering room acoustics as a linear shift-invariant

system, the receiving signaly(t) can be written as,

y[t] = x[t]∗h[t]+n[t] (2.11)

where the source signalx[t] is the clean speech,h[t] is the impulse response of room rever-

beration, andn[t] is room noise. Cepstrum Mean Subtraction has been used successfully to

compensate the convolution distortion. In order for CMS to beeffective, the length of the chan-

nel impulse response has to be shorter than the short-time spectral analysis window which is

usually 16ms-32ms. Unfortunately, the duration of impulseresponse of reverberation usually

has a much longer tail, more than 50ms. Therefore traditional CMS will not be as effective

under these conditions.

Following the work of Pan [82], we separate the impulse responseh[t] into two partsh1[t]

andh2[t], where,

h[t] = h1[t]+δ(t −T)h2[t]

h1[t] =







h[t] t < T

0 otherwise

h2[t] =







h[t +T] t ≥ 0

0 otherwise

and rewrite formula (2.11) as

y[t] = x[t]∗h1[t]+x[t −T]∗h2[t]+n[t]

28



Section 2.4 Feature Processing to Far-Field Effects

h1[t] is a much shorter impulse response whose length is smaller than the DFT analysis window,

thus it can be compensated by the conventional CMS. Forx[t −T] ∗h2[t], we treat it the same

as additive noisen[t], and apply the noise reduction technique based on spectrum subtraction.

Assuming the noisex[t −T] ∗h2[t]+ n[t] could be estimated fromy[t −T], then the spectrum

subtraction is performed as,

X̂[t,ω] = max(Y[t,ω]−a·g(ω)Y[t −T,ω],b·Y[t,ω])

wherea is the noise overestimation factor,b is the spectral floor parameter to avoid negative or

underflow values. We can empirically estimate the optimuma, b andg(ω) on a development

dataset. We found that the system performance is not sensitive toT. Within the range of 20-40

ms there is no significant difference on the effect of the spectra subtraction. However outside

that range, there is obvious performance degradation. For the recording setup in this thesis, we

founda = 1.0, b = 0.1 andg(ω) = |1−0.9ejω| optimal in most changing conditions based on

development data as described in [82]. Standard CMS is applied after spectrum subtraction to

eliminate the effect ofh1[t].

2.4.2 Feature Warping

The feature warping method applied here was proposed in [83]. It warps the distribution of a

cepstral feature stream to a standardized distribution over a specified time interval. The warping

is implemented via CDF matching as described in [125]. The warping can be considered as a

nonlinear transformationT , which transforms the original featureX to a warped featurêX, i.e.,

X̂ = T (X ) (2.12)

This can be done by CDF matching, which warps a given feature sothat its CDF matches a

desired distribution, such as normal distribution. The method assumes that the dimensions of

the MFCC vector are independent. So each dimension is processed as a separate stream. The
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CDF matching is performed over short time intervals by shifting a window. Only the central

frame of the window is warped every time. The warping executes as follows:

• for i = 1, · · · ,d, whered is the number of feature dimensions

• sorting features in dimensioni in ascending order in a given window

• warping raw feature valuex in dimensioni of the central frame to its warped value ˆx,

which satisfies

φ =
Z x̂

−∞
f (y)dy (2.13)

where f (y) is the probability density function (PDF) of standard normal distribution, i.e.

f (y) =
1√
2π

exp(−y2

2
) (2.14)

andφ is its corresponding CDF value. Supposex has a rankr and the window size isN.

Then the CDF value can be approximated as

φ =
(r − 1

2)

N
(2.15)

• x̂ can be quickly found by lookup in a standard normal CDF table.

In our experiments, the window size is 300 frames and the window shift is one frame. Zeros

are padded at the beginning and at the end of the raw feature stream.

2.4.3 Experimental Results for Noise Compensation

The front-end processing of the baseline system relies on MFCC analysis. The signal is charac-

terized by 13-dimensional MFCC every 10ms. A speech detection process based on normalized

energy is used in order to remove non-informative frames. The energy threshold is set empir-

ically. The same threshold is applied on all microphone channels. The mean feature vector
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Table 2.1:Detailed baseline system performance (in %) on 3D DMD

Test Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8

Train

Ch1 95.6 94.0 76.0 83.6 72.7 77.6 71.6 83.1

Ch2 61.2 100.0 86.3 70.0 84.2 94.0 89.1 88.0

Ch3 38.3 63.4 98.4 49.2 59.0 71.6 78.7 78.7

Ch4 71.0 83.1 70.5 87.4 59.6 83.1 77.6 84.2

Ch5 54.1 86.9 76.0 59.6 91.8 85.3 84.7 84.7

Ch6 49.2 77.1 78.1 47.0 76.5 90.7 90.7 76.0

Ch7 38.8 68.9 75.4 52.5 72.1 86.3 92.9 80.9

Ch8 62.8 85.3 78.1 65.0 86.9 85.3 89.6 95.1

is computed on the informative frames only. The non-informative frames are discarded during

training speaker models as well as in testing, which means only the informative frames are used

to compute likelihood scores against speaker models. The baseline system consists of following

components:

• speech detection: energy based

• front-end processing: 13-dimensional MFCC

• speaker models: GMM with 128 gaussian mixtures

The improved baseline system adds reverberation compensation (RC) and feature warping

(Warp) in the front-end processing while keeping other system components the same as in

the baseline system.

Table 2.1 presents the detailed speaker recognition accuracy of the baseline system when

trained on different channels and tested on different channels using the 3D DMD. The rows
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refer to different training channels and the columns refer to different test channels. For exam-

ple, the number in row Ch1 and column Ch5 presents the recognition accuracy when test data

is from channel 5 and speaker models are trained on data from channel 1. The table shows

that accuracies under matched conditions (numbers in bold)are much better than under the

mismatched conditions (off the diagonal). Again, by “matched condition” we mean that the

training and test data are from the same channel, for example: both training and test are on

channel 1 (microphone 1 in 3D DMD) and so on. By “mismatched condition” we mean that

the training channel is different from the test channel, forexample, test data is from channel 1

but the speaker models are trained on channel 2 etc.

Ch7 Ch6 Ch8 Ch3 Ch2 Ch5 Ch4 Ch1
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baseline, mismatched
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Figure 2.4:Relationship between performance and distance on the 3D DMD

Figure 2.4 shows the relationship between recognition accuracy and channel distance on the

3D Distant Microphone database. The distance is defined as insection 2.3.1. Apparently the

performance is a function of the distance value: after surpassing a critical distance between

speaker and microphone (mic 5,4,1) the performance decreases significantly. Please notice that

microphone 1 and 4 are the two ceiling microphones behine thespeaker.
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Figure 2.5:Baseline performance under matched vs. mismatched conditions on 3D DMD

Figure 2.5 summarizes the baseline system performance on different test channels under

matched and mismatched conditions. The curve for the matched condition corresponds to those

bolded numbers on the diagonal lines in table 2.1. The curve under mismatched conditions cor-

responds to the numbers computed by averaging the numbers ineach column excluding the

diagonal number in Table 2.1. For example, based on the 3D Distant Microphone Database,

if we name the recognition accuracy asAcc(Te2Tr1) for the case that test data is from chan-

nel 2 but the speaker models are trained on channel 1, then theaverage recognition accuracy

(Acc(Te2)) on test channel 2 under mismatched conditions is computed as:

Acc(Te2) =
1
7

8

∑
j=1, j 6=2

Acc(Te2Tr j)

So the bars in figure 2.5 refer to the range of the performance under different mismatched

conditions for each test microphone channel. The average accuracies under matched and mis-

matched conditions are 94.0% and 74.2% respectively. We cansee that the system performance

degrades a lot under mismatched conditions. Also, the performance on one test channel under

mismatched conditions varies when evaluated on speaker models trained on different channels.
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Table 2.2:RC and Warp impact on 3D DMD

System Matched Mismatched

baseline 94.0 74.2

RC 94.8 78.1

relative improvement (13.3%) (15.1%)

Warp 96.4 79.1

relative improvement (40.0%) (19.0%)

RC+Warp 96.7 84.9

relative improvement (45.5%) (41.6%)

Table 2.2 shows the performance improvement by reverberation compensation alone, fea-

ture warping alone and reverberation compensation plus feature warping on the 3D Distant

Microphone Database. Each of the two approaches improves performance under both matched

and mismatched conditions. Combining both approaches provide more improvement, which

indicates that both techniques take care of different aspects of degraded signal.

Figure 2.6 shows the reverberation compensation plus feature warping (RC+Warp) impact

on system performances on all three data sets. We can see thatsignificant improvements were

achieved under both matched and mismatched conditions on all three data sets. On average,

45.5% and 41.6% relative improvements are achieved under matched and mismatched con-

ditions respectively on the 3D Distant Microphone Database, 20.0% and 17.7% on the 2D

Distant Microphone Database, and 31.9% and 34.1% on the ICSI Meeting Database, demon-

strating that the applied methods are robust for different channel distances and under different

recording conditions. Therefore, reverberation compensation and feature warping are used in

the feature processing step in all the following experiments and we will refer to the perfor-

mance with these two approaches applied over the baseline as“improved baseline”. Table 2.3

shows the detailed performance of the “improved baseline” system under both matched and
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Figure 2.6:Performance improvement by RC+Warp;

upper: on 3D DMD, middle: on 2D DMD, lower: on ICSI Meeting Database

mismatched conditions. In the following sections we will show multiple channel combination

approaches’ improvement over this “improved baseline”.
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Table 2.3:Improved baseline performance (in %) on 3D DMD

Test Channel Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Avg

Matched 100.0 100.0 98.9 91.3 96.7 92.9 95.6 98.4 96.7

Mismatched 67.2 89.0 86.1 73.5 87.7 91.4 92.7 91.6 84.9

2.5 Multiple Channel Combination

Hands-free multiple distant microphones are easy to set up and quite common in applications

such as meetings and lectures. In order to benefit from the multiple channel setup, four multi-

channel combination approaches are investigated which are: “Data Combination”, “Frame

based Score Competition”, “Segment based Score Fusion”, and“Segment based Decision Vot-

ing”.

2.5.1 Data Combination (DC)
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Figure 2.7:Illustration of Data Combination on 3D DMD
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In “Data Combination” approach, the speaker models are trained using data from multiple

mismatched channels. For example, on the 3D Distant Microphone Database, for test on chan-

nel 1, the speaker models are trained using data from all mismatched channels (channel 2 to

channel 8) except the matched channel (channel 1). Consequently, the training data does not

cover the test channel, so that the tests are performed undermismatched condition. In order to

discriminate gains achieved by more data from those achieved by a larger variety of data, we

keep the size of the training data the same as in the baseline system. As illustrated in figure

2.7, based on the 3D Distant Microphone Database, the training data for a speaker on channel

1 (CH1) is formed by randomly selecting17 data from the original training data on each of the

mismatched channels (CH2 to CH8).

2.5.2 Frame based Score Competition (FSC)

Let us first review how a GMM system calculates likelihood scores and makes decisions based

on the scores. The identification decision is made as follows

s∗ = argmax
k

(

LL(X|Θk)
)

,k = 1,2, · · · ,S (2.16)

wheres∗ is the recognized speaker identity,S is the total number of enrolled speakers, and

LL(X|Θk) is the log likelihood score that the entire test feature setX was generated by the

GMM Θk of speakerk, which containsM weighted mixtures of Gaussian distributions as in

2.10.

The likelihood of an observation (for example one feature vector xn) given a GMM model

Θk (2.10) of speakerk is estimated as

p(xn|Θk) =
M

∑
i=1

λi
√

2π|Σi|
exp{−(xn−µi)

TΣ−1
i (xn−µi)

2
} (2.17)

Also, the entire set of feature vectorsX are assumed to be independent and identically dis-

tributed (i.i.d.). Accordingly, the likelihood of observation sequenceX given Θk is estimated
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Figure 2.8:Standard speaker recognition procedure

as

p(X|Θk) =
N

∏
n=1

p(xn|Θk) (2.18)

LL(X|Θk) = logp(X|Θk) =
N

∑
n=1

logp(xn|Θk) =
N

∑
n=1

LL(xn|Θk) (2.19)

Figure 2.8 explains the standard GMM-based speaker recognition procedure. We call the log

likelihood value as “score” in the following sections.

In the multiple microphone setup, if we have speech samples from different channels, we

can build multiple models for each speaker with one for each channel. Let us name it as

Θk,Chi for the GMM model of speakerk on channeli. So the model set for speakerk is Θk =

{Θk,Ch1 · · ·Θk,ChC}, whereC is total number of channels. We propose this “Frame based Score

Competition (FSC)” approach to compute the likelihood of an observation given a set of GMM

models for each speaker. In this approach we compare a feature vector of each frame to all the

GMMs {Θk,Ch1 · · ·Θk,ChC} of speakerk excluding the one GMM which is trained on the same
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channel as that of test samples. The highest log likelihood score is chosen as the score for this

frame. So the log likelihood score of the entire set of test feature vectorsX from channelh is

estimated as

LL(X|Θk) =
N

∑
n=1

LL(xn|Θk) =
N

∑
n=1

max{LL(xn|Θk,Chj )}C
j=1, j 6=h (2.20)

This competition process differs from the standard scoringprocess with only one microphone

in that per-frame log likelihood scores for different speakers are not necessarily derived based

on the same microphone. The FSC approach can be considered asthe model version of the DC

approach with increasing amount of training data.

Figure 2.9 illustrates the speaker recognition procedure with “Frame based Score Competi-

tion”. Basically, the part that is circled in the standard procedure is replaced by the part that the

arrow points to. The difference from the standard procedurelies in the score computation per

frame.

2.5.3 Segment based Score Fusion (SSF)

By “segment” we refer to the entire test utterances or the entire set of test feature vectorsX. The

“Segment based Score Fusion” approach computes the score oftest data given a set of models

Θk = {Θk,Ch1 · · ·Θk,ChC} for speakerk by combining the scores from all the mismatched GMM

models, each of which is trained on one of the mismatched channels.

LL(X|Θk) =
C

∑
j=1, j 6=h

w j ∗LL(X|Θk,Chj ) (2.21)

whereC is the total number of channels,h is the test channel andw j is the fusion weight.

Figure 2.10 illustrates the speaker recognition procedurewith “Segment based Score Fu-

sion”. Again, the part that is circled in the standard procedure is replaced by the part that the

arrow points to. The difference between this approach and the standard procedure lies in the

score computation per segment.
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Figure 2.9:Speaker recognition procedure with FSC

2.5.4 Segment based Decision Voting (SDV)

Figure 2.11 illustrates the speaker recognition procedurewith the approach “Segment based

Decision Voting”. In this approach, the entire set of feature vectorsX extracted from the test

trial goes through recognition part circled in the standardprocedure multiple times. Each time

the speaker models are trained on one of the mismatched channels. Therefore, the speaker

identity decision is made multiple times (C−1) with one on each mismatched channel. The

identity which appears most times among theseC−1 decisions is picked as the final decision.
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Figure 2.10:Speaker recognition procedure with SSF

If there is a tie, the one has the highest log likelihood scorewill be the winner.

2.5.5 Experimental Results for Multiple Channel Combination

Figure 2.12 presents improvements achieved by the four multi-channel combination approaches

under mismatched conditions on the 3D Distant Microphone Database. Significant improve-

ments are achieved by all combination approaches. On average, “Data Combination” brings
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Figure 2.11:Speaker recognition procedure with SDV

72.8% relative improvement over the improved baseline and 84.1% relative improvement over

the baseline under the mismatched condition, which means this combination approach achieves

significant additional gain in addition to the reverberation compensation and feature warping

approaches to the baseline. We will show the improvement over the improved baseline only in

the following results since reverberation compensation and feature warping are always applied
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in the feature processing. We want to point out that in “Data Combination” approach, we con-

trol the amount of training data to be the same as in the baseline system by randomly choosing

1
7 data from each of the original mismatched channel. So the improvement indicates that seeing

more variability in training improves the recognition robustness. 77.8% relative improvement

was achieved over the improved baseline by “Frame based Score Competition” and 62.4% rel-

ative improvement over the improved baseline was achieved by “Segment based Score Fusion”

and 57.9% relative improvement over the improved baseline was achieved by “Segment based

Decision Voting”. This indicates that it is beneficial to useinformation from multiple sources

even though each of them is not very powerful. On the 2D Distant Microphone Database,

81.9%, 91.0%, 77.4%, and 64.7% relative improvement is achieved over the improved baseline

under mismatched condition by respectively “Data Combination”, “Frame based Score Com-

petition”, “Segment based Score Fusion”, and “Segment based Decision Voting” approaches.

On the ICSI Meeting Database, 9.7%, 11.4%, 6.8%, 3.5% relative improvement is achieved by

respectively “Data Combination”, “Frame based Score Competition”, “Segment based Score

Fusion”, and “Segment based Decision Voting” approaches over the improved baseline under

mismatched conditions.

Table 2.4 summarizes the relative improvements the four multiple channel combination ap-

proaches gained on the three databases. We can see that “Frame based Score Competition”

approach achieves highest improvement among the four approaches while “Segment based De-

cision Voting” achieves lowest improvement among the four approaches.

2.5.6 Discussions

We have shown the impact of the four combination approaches’on the system performance

under mismatched conditions. Note that this does not mean that we need to have the prior

knowledge about which channel the test speech comes from. The whole purpose is to show that

even if you have no samples of the test condition in your training, with the multiple channel
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Figure 2.12:Performance improvement by combination approaches;

upper: on 3D DMD, middle: on 2D DMD, lower: on ICSI Meeting Database

combination approaches you still can get very good performance. The next question is then if

you combine all the channels including the matched channel,will the performance get better?

Our expectation is that it will be better than the performance of combining only mismatched

channels. But will the performance beat the one under the matched conditions?
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Table 2.4:Relative improvement by multiple channel combination approaches

Database 3D DMD 2D DMD ICSI

Approach

Data Combination 72.8% 81.9% 9.7%

Frame based Score Competition 77.8% 91.0% 11.4%

Segment based Score Fusion 62.4% 77.4% 6.8%

Segment based Decision Voting 57.9% 64.7% 3.5%
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Figure 2.13:Impact of combination approaches when applied on all channels on the 3D DMD

Figure 2.13 compares the performance when combining all channels with the four combina-

tion approaches with that of the improved baseline under matched conditions. We can see that

“Frame based Score Competition” approach and “Data Combination” approach beat the im-

proved baseline performance under matched conditions. Although the other two combination

approaches can not beat the improved baseline under matchedconditions, the performance are

compatible.

When less training data are available, the combination approaches become more important.
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Figure 2.14:Impact of FSC when applied on all channels with different training durations on

3D DMD

Table 2.5:Relative improvement by FSC with different training durations

Training Duration Baseline, matched FSC Relative Improvement

120s 96.7% 97.5% 24.2%

90s 94.1% 94.5% 8.0%

60s 89.1% 92.7% 33.1%

30s 73.2% 89.8% 62.0%

Figure 2.14 compares improved baseline under matched conditions vs. “Frame based Score

Competition” performance when training durations per speaker vary. We see that the perfor-

mance difference between improved baseline under matched conditions and FSC gets larger

when less training data is available. Table 2.5 summarizes the average performance of im-

proved baseline under matched conditions, FSC, and the relative improvement that FSC gains
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over the improved baseline. More relative improvement is achieved by FSC when training

duration gets shorter.

2.6 Chapter Summary

In this chapter we presented our robust speaker recognitionsystem in a meeting scenario with

multiple distant microphones. We applied a new reverberation compensation approach plus fea-

ture warping in the feature processing step. These two approaches significantly improved the

system robustness under both matched and mismatched training-testing conditions. A 41.6%

relative improvement is achieved on the 3D Distant Microphone Database, a 17.1% relative

improvement is achieved on the 2D Distant Microphone Database, and a 34.1% relative im-

provement is achieved on the ICSI Meeting Database under mismatched conditions. Four

multi-channel combination approaches are investigated inorder to capture useful information

from multiple channel sources including “Data Combination (DC)”, “Frame based Score Com-

petition (FSC)”, “Segment based Score Fusion (SSF)”, and “Segment based Decision Voting

(SDV)”. All these four approaches bring additional gains tothe system performance under mis-

matched conditions. We observed 72.8.1%, 77.8%, 62.4%, and57.9% relative improvements

over the improved baseline on the 3D Distant Microphone Microphone Database by DC, FSC,

SSF, and SDV respectively. The improvement carries over to the other two databases. We

observed 81.9%, 91.0%, 77.4%, and 64.7% relative improvements on the 2D Distant Micro-

phone Database. We observed 9.7%, 11.4%, 6.8%, and 3.5% relative improvements on the

ICSI Meeting Database. The experimental results show that seeing more variability in training

and combining supplementary information from multiple sources improves the system robust-

ness. These approaches are effective across data set with different multiple distant microphone

settings.

Table 2.6 shows the improvements over the baseline under mismatched conditions by all the
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Table 2.6:Relative improvement by reverberation compensation, feature warping, and multiple

channel combination approaches

Database 3D DMD 2D DMD ICSI

Approach

RC+Warp+Data Combination 84.1% 85.1% 40.5%

RC+Warp+Frame based Score Competition87.1% 92.6% 41.6%

RC+Warp+Segment based Score Fusion 78.1% 81.4% 38.6%

RC+Warp+Segment based Decision Voting 75.4% 71.0% 36.4%

approaches together including reverberation compensation and feature warping in the feature

processing step and four multiple channel combination approaches.
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Chapter 3

Phonetic Speaker Recognition

3.1 Motivation

What do we rely on in the speech signal to recognize a speaker’sidentity? This is one of

the central questions addressed by automatic speaker recognition research. Generally, humans

often have the ability of recognizing speakers from the speech signal using multiple levels

of speaker information conveyed in the speech signal [101].This even works under various

conditions and contexts. At the lowest level, we recognize aperson based on sounds patterns

in his/her voice (e.g., low/high pitch, bass/tenor, nasality, etc.). But we also use other types

of information in the speech signal to recognize a speaker, such as a unique laugh, particular

phrase usage, or speed of speech, among other things. The human performance seems to be a

result of the robust and adaptive method of exploiting several levels of information [62] [63]

[66].

Roughly we can categorize these information sources into a hierarchy running from low-

level perceptual cues, related to physical traits of the vocal apparatus, to high-level perceptual

cues, related to learned habits and style. Figure 3.1 shows the hierarchy of the perceptual cues

[44] [92].
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Figure 3.1:Hierarchy of Perceptual Cues

The high-level cues include such as word usage (idiolect), pronunciation, prosody, laughter,

and other idiosyncratic supra-segmental information. These cues may be decided by a person’s

life situation such as socio-economic status, personality, education, etc.. Thus these cues are

also termed as “learned traits”. The low-level cues, on the other hand, are more directly related

to the actual sound of a person’s voice decided by the physical traits of a speaker’s vocal appa-

ratus. Although all levels of cues carry speaker information and are used by humans to identify

speakers, automatic speaker recognition systems have relied almost exclusively on low-level

information via short-term features related to the speech spectrum [95]. Traditional systems

have several drawbacks. First, robustness is an issue because channel effects can dramatically

change the measured acoustics of a particular individual. For instance, a system relying only on

acoustics might have difficulty confirming that an individual speaking on a land-line telephone

is the the same as an individual speaking on a cell phone [87].Second, traditional systems also

rely upon different methods than human listeners [102]. Human listeners are aware of prosody,

word choice, pronunciation, accent, and other speech habits (laughs etc.) when recognizing

speakers, while traditional systems only rely on seeminglyone source of information. Due to

the use of multiple high-level cues, human listeners are less affected by various conditions and
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context than traditional automatic algorithms.

Observing the human speech processing model, we can improvethe reliability and accuracy

of speaker recognition systems by exploiting other sourcesof information in the speech signal.

Not only the addition of information can improve the system accuracy by providing extra levels

of discriminative information, but also it can increase therobustness by providing information

that is less susceptible to degradation under varying condition and contexts. Furthermore, the

published research in [28] and [60], before we started this piece of thesis research, tried to

use n-grams counts on word and phone sequences for speaker verification and provided strong

indications that potential gains are possible by the inclusion of higher levels of information

available in the speech signal.

In this thesis, we propose approaches to capture the high-level phonetic information and to

model a speaker’s pronunciation idiosyncrasy based on thishigh-level information. We enrich

the existing phonetic speaker recognition algorithms, which are based on ngram counts on

phone sequences independently in multiple languages, by proposing new approaches to model

dependencies across multiple phone streams.

3.2 Related Work

Most conventional speaker recognition systems use Gaussian mixture models (GMMs) to cap-

ture frame-level characteristics of a person’s voice, where the speech frames are assumed to

be independent of one another. Because of this independenceassumption, GMMs often fail

to capture certain types of speaker-specific information that evolve over time scales of more

than one frame. For example, since words usually span many frames, GMMs tend to be poorly

suited for modeling differences in word usage (idiolect) between speakers. In recent times,

automatic speaker recognition research has expanded from utilizing only the acoustic content

of speech to examining the use of higher levels of speech information, commonly referred to as
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“high-level features.” A promising direction in high-level feature research has been the use of

n-gram based models to capture speaker specific patterns in the phonetic and lexical content of

speech. In [28], Doddington performed an important initialstudy about using the lexical content

of speech for speaker recognition, and introduced an n-grambased technique for modeling a

speaker’s idiolect. This direction in research was continued by Andrews, Kohler, and Campbell

among others [60] [4], who used similar n-gram based models to capture speaker pronuncia-

tion idiosyncrasies through analysis of automatically recognized phonetic events. This line of

research is generally referred to as “Phonetic Speaker Recognition.” The research of Andrews

et al. and Doddington showed word and phone n-gram based models to be quite promising

for speaker recognition. There have been myriad attempts, especially since the Johns Hopkins

2002 Workshop [93] [52] [77] [59] [1] to harness the power of all kinds of high-level features.

The current “state-of-the-art” in phonetic speaker recognition uses relative frequencies of

phone n-grams as features for training speaker models and for scoring test-target pairs [60] [4].

Typically, these relative frequencies are computed from a simple 1-best phone decoding of the

input speech. This line of phonetic speaker recognition research work has been extended in

various ways by introducing different modeling strategiesand different methods of utilizing

the source information such as described in [77] [59] [14] [43].

Navratil [77] proposed a method involving binary-tree-structured statistical models for ex-

tending the phonetic context beyond that of standard n-gram(particularly bigrams) by exploit-

ing statistical dependencies within a longer sequence window without exponentially increasing

the model complexity, as is the case with n-grams. The described approach confirms the rele-

vance of long phonetic context in phonetic speaker recognition and represents an intermediate

stage between short phone context and word-level modeling without the need for any lexical

knowledge. Binary-tree models represent a step towards flexible context structuring and exten-

sion in phonetic speaker recognition, consistently outperforming standard smoothed bigrams

as well as trigrams.
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Klusacek [59] proposed a conditional pronunciation modeling method. It uses time-aligned

streams of phones and phonemes to model a speaker’s specific pronunciation. The system

uses phonemes drawn from a lexicon of pronunciations of words recognized by an automatic

speech recognition system to generate the phoneme stream and an open-loop phone recognizer

to generate a phone stream. The phoneme and phone streams arealigned at the frame level

and conditional probabilities of a phone, given a phoneme, are estimated using co-occurrence

counts. A likelihood detector is then applied to these probabilities for the speaker detection

task. This approach achieves a relatively high accuracy in comparison with other phonetic

methods in the SuperSID project at the Johns Hopkins 2002 Workshop [114] [90].

Campbell [14] performed phonetic speaker recognition with support vector machines (SVM).

By computing frequencies of phones in conversations, speaker characterization was performed.

A new kernel was introduced based on the standard method of log likelihood ratio scoring. The

resulting SVM method reduced error rates dramatically overstandard techniques.

Hatch [43] compared 1-best phone decodings vs. lattice phone decodings for the purposes

of performing phonetic speaker recognition. The results indicate that lattice decodings provide

a much richer sampling of phonetic patterns than 1-best decodings.

All the state-of-the-art phonetic speaker recognition approaches try to model phonetic depen-

dencies along the time scale, or in time dimension. In the following sections, we will present

our contributions in the phonetic speaker recognition research. We introduce a phonetic speaker

recognition approach that aims at modeling the statisticalpronunciation patterns based on the

phonetic information from two ”orthogonal” dimensions: time dimension and cross-stream

dimension. It will be shown that comparable or better results are achieved by the proposed

approach.
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3.3 Phone Sequence Extraction

Phone sequence extraction for the speaker recognition process is performed using the Global-

Phone Phone Recognizers. We have phone recognizers built intwelve languages available:

Arabic (AR), Mandarin Chinese (CH), German (DE), French (FR),Japanese (JA), Korean

(KO), Croatian (KR), Portuguese (PO), Russian (RU), Spanish(SP), Swedish (SW), and Turk-

ish (TU). All the phone recognizers are trained and evaluated in the framework of the Glob-

alPhone project [105]. Phone recognition is performed witha Viterbi search using a fully

connected null-grammar network of mono-phones; note that equal-probable language model is

used in the decoding process, which means no prior knowledgeabout phone statistics is used.

Figure 3.2 shows phone error rates per language in relation to the number of modeled phones
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(in 8 languages). See [104] for further details.

After a “raw” phone stream was obtained from the phone recognizer, additional processing

was performed to increase robustness. First, speech activity detection marks were used to

eliminate phone segments where no speech was present. Second, silence labels of duration

greater than 0.5 seconds were wrapped together as an end of anutterance. The idea in this case

is to capture some information about how a speaker interactswith others, for example, does the

speaker pause frequently, etc. Finally, extraneous silence was removed at the beginning and

end of the resulting segments.

3.4 Language-dependent Speaker Phonetic Model

A Language-dependent Speaker Phonetic Model (LSPM) is generated using the n-grams mod-

eling technique. The LSPMs used in this thesis are bi-gram models created using the CMU-

Cambridge Statistical Language Modeling Toolkit (CMU-SLM) [19]. Unlike typical Gaussian

Mixture Model-Universal Background Model (GMM-UBM) systems [94], the n-gram speaker

phonetic models are not adapted from the universal background phonetic model, but instead

are estimated directly from the speaker’s available training data. Recent work also tried to train

speaker phonetic models by adapting on the universal background model as described in [43].

In following sections, we useLSPMk
i to represent the phonetic model for speakerk in language

i. Figure 3.3 shows the procedure of training LSPMs for speaker k. Each of theM phone recog-

nizers (PR1, · · · ,PRM) decodes the training data of speakerk to produceM phonetic sequences.

Based on theseM phonetic sequences,M LSPMs are created for speakerk, one in each lan-

guage.This procedure does not require transcription at anylevel. All the phone recognizers are

open-loop recognizers. This means that during the decoding, the language model assigns same

probabilities for all phones.
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Figure 3.3:Training Speaker Phonetic Model

3.5 Phonetic Speaker Recognition in Time Dimension

The basic idea of phonetic speaker recognition is to identify a speaker via the statistical pronun-

ciation model trained using phonetic sequences derived from that speaker’s utterance. Although

the phonetic sequences are produced using acoustic features, the identification decision is made

based solely on the phonetic sequences. The assumption behind the phonetic approach is that

phonetic sequences can cover a speaker’s idiosyncratic pronunciation.

Generally, phonetic speaker identification in the time dimension using a single-language

phone recognizer is performed in three steps: Firstly, the phone recognizer processes the test

speech utterance to produce a test phone sequence. Secondly, the test phone sequence is com-

pared to all previously trained LSPMs to compute decision scores. Finally, the speaker identity

is decided based on the decision scores. Since the phone sequences are decoded from the speech

which is a time series and the LSPMs are trained based on phonesequences along the temporal

direction, we call it phonetic speaker identification in Time Dimension.

This process can be expanded to use multiple phone sequencesfrom a parallel bank of phone

recognizers trained on different languages. In this case, each phone stream is independently

scored and the scores are fused together to form a single decision score.
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Figure 3.4:Phonetic Speaker Detection in Time Dimension

Figure 3.4 illustrates the work-flow of phonetic speaker detection/verification in time dimen-

sion. Generally, phonetic speaker detection in time dimension using a single-language phone

recognizer is performed in three steps: Firstly, the phone recognizer decodes the test speech to

produce a phonetic sequence. Secondly, the phonetic sequence is compared to the LSPM of

the target speaker and a Universal Background Phonetic Model (UBPM) to compute likelihood

scores. Finally, the Log of the Likelihood Ratio (LLR) is computed as the detection score. This

process can be expanded to use multiple phone sequences decoded by a parallel bank of phone

recognizers in different languages. In this case, each phone stream is independently scored and
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the scores are combined together to form a single detection score.

Formula 3.1 defines the LLR detector for a phonetic speaker detection system with single

language, whereLLk is the log likelihood score of the test sequenceX against speakerk’s

phonetic modelLSPMk andLLU is the log likelihood score of the test sequenceX against the

universal background phonetic modelUBPM. The detection score is the log of the ratio of

these two likelihood scores.

Scorek = log
P(X|LSPMk)

P(X|UBPM)
= log(P(X|LSPMk))− log(P(X|UBPM)) = LLk−LLU (3.1)

For a multilingual phonetic speaker detection system, the scores from each of the languages are

fused together such as:

Scorek =
M

∑
i=1

wi ∗Scoreki

wherei is used to index multiple languages,wi is the fusion weight, andScoreki = LLk
i −LLU

i

is the detection score against speakerk in languagei.

3.5.1 Database Description and Experimental Setup

The speaker detection experiments are conducted within theframework of the SuperSID project

[114]. The text-independent speaker detection using the extended data task from the 2001 NIST

Speaker Recognition Evaluation [86] was selected as our testbed. This task was introduced to

allow exploration and development of techniques that can exploit significantly more training

data than is traditionally used in NIST evaluations. The extended data task uses the complete

Switchboard-I corpus of conversational telephone speech for training and test material. The

corpus includes roughly 500 speakers and 2,500 conversations, each conversation involving a

different speaker pairing. In order to use the full collection of speakers as target talkers, NIST

defined an elaborate jack-knifed test design, splitting thecorpus into 6 partitions (or splits).

Speakers within each split are used as target or impostor talkers for that split, and speakers in the
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other 5 splits may be used for training and normalization without fear of speaker contamination.

Cycling through all 6 splits effectively uses the complete Switchboard-I corpus.

There are several different training conditions specified:using 1, 2, 4, 8, or 16 conversation

sides for training the target talker models. All test segments use one entire conversation side.

Since Switchboard conversations generally run about 5 minutes (for about 2.5 min of speech

per conversation side) and sometimes as high as 10 minutes, this provides considerably more

data than has been available in past evaluations, both for training and for testing, especially for

the larger training conditions. Consequently, the ExtendedData Task finally provided a testbed

well-suited to the exploration of higher-level features such as word usage, speaker-characteristic

expressions or events, and other features that can exploit significantly more training data than

traditionally used in NIST evaluations. In following sections, we will use the 8-conversation

training condition as our main reference point, though we will show performance across the

range of training conditions for several of the experiments. We are most interested in perfor-

mance when the systems have “sufficient” training material.We focus on 8- rather than 16-side

training because relatively few speakers in Switchboard-Iparticipated in 16 calls, so the speaker

population is too small to provide robust statistics in thatcase.

We use the detection error trade-off (DET) [71] curve to plotthe systems performance. The

DET curve uses the false alarm and the miss probabilities as the x- and y-axes in normal deviate

scale.

3.5.2 Phonetic Speaker Detection Results in the Time Dimension

Figure 3.5 shows the phonetic speaker detection performance in the time dimension for differ-

ent training conditions (1, 2, 4, 8, or 16 training conversations). The Equal Error Rate (EER)

is 8.4% for the 8-conversation training condition. The 8-conversation training condition is the

most representative and statically significant condition in the extended task [93]. The compar-
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Figure 3.5:Phonetic Speaker Detection in the Time Dimension

ison of performance from different approaches will mainly focus on this training condition in

following sections.

3.6 Phonetic Speaker Recognition in the Cross-Stream Di-

mension

The assumption behind the approach of phonetic speaker recognition in time dimension is that

phonetic sequences can cover a speaker’s idiosyncratic pronunciation by modeling the phonetic

dependencies along the phone sequence in each language. Fora speaker-specific pronunciation,

ideally there should be some fixed set of phones from each of the multiple languages to rep-
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resent it. For example, speakerA always pronounces “Hi” as “h ai”, while speakerB likes to

pronounce it as “h ei”. Therefore, through phonetic dependencies captured by bigrams, the pro-

nunciation idiosyncrasies will be distinguished between speakerA andB. In phonetic speaker

recognition in time dimension, we use multiple phone recognizers to decode speech utterances

and then model the phonetic dependencies in each language independently of other languages.

However, if the phone recognizers decode the speaker-specific speech consistently, then there

would be some fixed phones across multiple languages to represent speaker-specific pronunci-

ation. Again, let’s take the above example, speakerA always pronounces “Hi” as “h ai”, while

speakerB likes to pronounce it as “h ei”. Then the English phone recognizer decodes speaker

A’s “Hi” as “h/EN ai/EN”, the Chinese phone recognizer decodesspeakerA’s “Hi” as “h/CH

ah/CH”. While the English phone recognizer decodes speakerB’s “Hi” as “h/EN ei/EN”, the

Chinese phone recognizer decodes speakerA’s “Hi” as “h/CH eh/CH”. Therefore, we can code

speaker-dependent pronunciation dynamics across multiple-language phone sequences. For ex-

ample, “ai/EN ah/CH” will represent speakerA while “ei/EN eh/CH” will represent speakerB.

We call this approach “phonetic speaker recognition in cross-stream dimension.” Similar to the

time dimension, the LSPM and the UBPM are created in the cross-stream dimension and detec-

tion is done based on the log likelihood ratio. The detailed procedure of how we process phone

sequences in multiple languages in phonetic speaker recognition in cross-stream dimension is

described in the following subsections.

3.6.1 Cross-Stream Alignment

To discover the underlying dependencies of phones across multiple languages, we need first

to align the multiple phone sequences. This alignment is done simply by aggregating all time

boundaries from all phone sequences. As illustrated in Figure 3.6, the phones are duplicated

to the their smallest unified time slots in each language in order to unify the boundaries across

languages. According to the smallest time overlap across the three languages, the English
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Figure 3.6:Temporal Alignment and Permutation of Multiple Phone Sequences

phone S/EN originally in the time slot[t1, t3] is duplicated two times into time slots[t1, t2]

and[t2, t3] and the Japanese phone B/JA originally in the time slot [t1, t4] is duplicated three

times into time slots[t1, t2], [t2, t3] and[t3, t4]. Similarly, other phones are duplicated into their

smallest time slots across the three languages.

3.6.2 Cross-Stream Permutation

A straight forward way to model the pronunciation dynamics in the cross-stream dimension is

to model the statistical dependencies across streams. For this, as in the time dimension, we use

n-grams by treating the aligned phones at each time slot as one input ”sentence” for the n-gram

modeling. In the above example, we will have five ”sentences”to train the n-gram model:

”S/EN B/JA P/SP”, ”S/EN B/JA Q/SP”, ”A/EN B/JA Q/SP”, ”A/EN D/JA Q/SP”, and ”A/EN

D/JA M/SP”. Since we want to model the bigram dependencies across all streams, it would be

62



Section 3.6 Phonetic Speaker Recognition in the Cross-Stream Dimension

0.1

0.5

2

5

10

20

30

40
50

0.1 0.5 2 5 10 20 30 40 50

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarm probability (in %)

1-conversation
2-conversation
4-conversation
8-conversation

16-conversation

Figure 3.7:Phonetic Speaker Detection in Cross-Stream Dimension

better to model all possible pair dependencies. From the above alignment, however, bigrams

can only model the dependencies of EN-JA pairs and of JA-SP pairs, but not of EN-SP pairs.

Therefore, we simply permute the aligned phones at each timeslot as shown in Figure 3.6, thus

modeling all possible pairs from all languages at a given time. A bigram phonetic model is

built for each speaker based on the aligned and permuted phone streams.

3.6.3 Phonetic Speaker Detection Results in Cross-Stream Dimension

Figure 3.7 shows the phonetic speaker detection performance in the cross-stream dimension

with different training conditions. Figure 3.8 compares the performance in the cross-stream

vs. time dimension under the 8-conversation training condition. In the cross-stream dimen-
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Figure 3.8:Performance Comparison in Time Dimension vs. Cross-Stream Dimension

sion, experimental results with and without permutation after alignment are shown. Under the

8-conversation training condition, the cross-stream system achieves 4.0% EER with permuta-

tion and 5.1% EER without permutation; both significantly outperformed the time dimension

system, where the EER was 8.4%.

3.6.4 Combination of Time and Cross-Stream Dimensions

Modeling pronunciation dynamics in the cross-stream dimension is expected to carry comple-

mentary information to that in the time dimension and, hence, potentially can improve perfor-

mance when combined. As mentioned in the relative work, Navratil [77] proposed maximum-

likelihood binary-decision tree methods for phonetic speaker recognition in the time dimension,
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Figure 3.9:Combination of Cross-Stream Dimension and Time Dimension: (upper) LSPMs are

bigrams in both dimensions; (lower) LSPMs are bigrams in timedimension and binary trees in

cross-stream dimension

which aim to capture phonetic dependencies across longer time scales. We proposed n-gram

based phonetic speaker recognition in the cross-stream dimension and we have the n-gram

based system in the time dimension. Therefore, given the pallet of approaches outlined above,

we next set out to examine fusion of the different dimensionsof information to see if they
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are indeed providing complementary information to improvespeaker recognition accuracy. A

simple linear combination with equal weights was used to fuse the detection scores from both

systems. The upper part in Figure 3.9 shows the performance of combining both dimensions.

Bigrams were used in both dimensions. The EER of the combination is reduced to 3.6%, com-

pared to 8.4% in the time dimension alone and 4.0% in the cross-stream dimension alone. The

lower part in figure 3.9 shows the performance of the system using the Binary decision Tree

(BT) models in the time dimension alone [77], the performance of the system using bigrams

in cross-stream dimension alone, and the performance of combining both systems under the

8-conversation training condition. The EER of the combination is further reduced to 3.0%,

compared to 3.4% in the time dimension and 4.0% in the cross-stream dimension. Both exper-

imental results indicate that the two dimensions do containcomplementary information

3.7 PSR for Far-field Speaker Recognition

In this section, we apply phonetic speaker recognition approaches in time on the far-field

speaker recognition task. We proposed two phonetic speakeridentification approaches which

we call LSPM-pp and LSPM-ds. These two approaches have the same phonetic language

model training step as shown in 3.3. The difference between LSPM-pp and LSPM-ds is how

the LSPMs of each speaker are applied during the identification.

3.7.1 LSPM-pp Speaker Identification

Figure 3.10 illustrates how the identification decision score (IDS) is computed for the test

speech against one enrolled speaker. First, each of theM phone recognizersPRi (in the fig-

ure, we use 5 phone recognizers as example), decodes the testspeech and produces a phonetic

sequence in each language. Secondly, each phonetic sequence is scored against the LSPM in

the matched language for speakerk and the perplexity scorePPk
i is produced. Finally, the per-
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Figure 3.10:Decision score computation against one enrolled speaker with LSPM-pp

plexity scores from all theM languages are fused together as the final identification decision

scoreIDSk for speakerk.

IDSk =
M

∑
i=1

wi ∗PPk
i

whereM is the total number of languages,PPk
i is the perplexity score against speakerk in

languagei, andwi is the fusion weight for each language. Our decision rule is to identify an

unknown speaker as speakers∗ given by

s∗ = arg
S

min
k=1

{IDSk}
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whereS is the total number of enrolled speakers.

3.7.2 LSPM-ds Speaker Identification

In the LSPM-pp approach, the test speech is decoded byM phone recognizers (PRi) using

equal-probable language models. In contrast, for the LSPM-ds approach, we replace the equal-

probable language model with the LSPMs in matched language.Figure 3.11 illustrates the

procedure of computing the identification decision score for the test speech against one enrolled
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speaker. The key idea of the LSPM-ds approach is to use the speaker-dependent LSPMs directly

to decode the test speech. The underlying assumption is thata lower decoding distance score is

produced on a matched speaker’s LSPM than on a mismatched speaker’s LSPM. The decoding

score (DS) (including both acoustic and language model score) from all the M languages are

fused together to form the final identification decision score IDSk for speakerk.

IDSk =
M

∑
i=1

wi ∗DSk
i

whereM is the total number of languages,DSk
i is the decoding score against speakerk in

languagei, andwi is the fusion weight for each language. Our decision rule is to identify an

unknown speaker as speakers∗ given by

s∗ = arg
S

min
k=1

{IDSk}

whereS is the total number of enrolled speakers.

As illustrated in the Figure 3.11, the test utterance is decodedM times against each of the

enrolled speakers. Therefore, it leads to the disadvantageof the LSPM-ds approach in which

the test utterance will be decodedM ∗S times as opposed toM times for LSPM-pp approach.

Furthermore, the success of this approach relies more on theability to produce reliable speaker

phonetic models from the training data.

3.7.3 Data Description and Experimental Setup

We test phonetic speaker recognition approaches in time dimension on the 2D Distant Micor-

phone Database. The reason we evaluate on this database is because that there is more data

for each speaker in this database which is the requirement for the success of phonetic speaker

recognition. This database, collected at ISL in 2000, contains 30 speakers in total. From each

speaker five sessions had been recorded where the speaker sits at a table in an office environ-

ment, reading an article. The articles are different for each session. Each session is recorded
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using eight microphones in parallel: one closed-talking microphone (Sennheizer headset), one

Lapel microphone worn by the speaker, and six other Lapel microphones. The latter six are

attached to microphone stands sitting on the table or beyondthe table, at distances of 1 foot,

2 feet, 4 feet, 5 feet, 6 feet and 8 feet to the speaker, respectively. Tables and graphs shown

in this chapter use “Dis0” to represent closed-talking microphone channel, “DisL” to represent

speaker-wearing microphone channel, and “DisN” (N > 0) to refer to the n-feet distance micro-

phone channel. We call this dataset “2D Distance MicrophoneDatabase”. The data of the first

four sessions, together 7 minutes of spoken speech (about 5000 phones) are used for training

the LSPMs. Testing is carried out on the remaining fifth session adding up to one minute of

spoken speech (about 1000 phones).

We first developed a speaker identification system using phonetic sequences from phone rec-

ognizers trained on multiple languages. We call this our multilingual system. This system

uses phonetic sequences produced by context-independent phone recognizers from multiple

languages instead of traditional short-term acoustic vectors [54], [103]. Since this informa-

tion comes from complementary phone recognizers, we anticipate greater robustness. Further-

more, this approach is somewhat language independent sincethe recognizers are trained on

data from different languages. We also developed a speaker identification system using pho-

netic sequences produced by single language phone recognizers trained on multiple conditions,

which we call our multi-engine system. This system uses phonetic sequences produced by three

different context-independent English phone recognizers. The system performance is measured

using identification accuracy, which is the percentage of correctly recognized test trials over all

test trials.

3.7.4 Multilingual LSPM-pp Speaker Identification Results

Table 3.1 shows the detailed language-dependent identification accuracy of LSPM-pp approach

at different test utterance length under the matched condition, where both testing and training
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Table 3.1:Detailed performance in each language on Dis0 under matched condition (in %)

Test Duration 60s 40s 10s 5s

Language

CH 100 100 56.7 40

DE 80 76.7 50 33.3

FR 70 56.7 46.7 16.7

JA 30 30 36.7 26.7

KR 40 33.3 30 26.7

PO 76.7 66.7 33.3 20

SP 70 56.7 30 20

TU 53.3 50 30 16.7

fusion of all languages 96.7 96.7 96.7 93.3

are recorded at distanceDis0. We can see from the table that with decreasing test duration, the

performance based on single language gets very low, howeverthis is overcame by fusing the

multilingual information derived from all eight languages. After a fusion with equal weights of

all languages the SID performance clearly outperforms the one on single language.

Table 3.2 compares the multilingual LSPM-pp identificationresults for all distances on dif-

ferent test durations under matched and mismatched conditions respectively. Under matched

conditions, training and testing data are from the same distance. Under mismatched condi-

tions, without knowing the test speech distance; we make useof all D∗M language-dependent

and channel-dependent phonetic models (LSPMk
i,d) for speakerk, whereD is the total number

of distant channels andM is total number of languages. In this case, the final identification

decision score of the test speech against theD∗M LSPMs for speakerk is computed as:

IDSk =
M

∑
i=1

wi ∗
D

min
d=1

{Scoreki,d}
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Table 3.2:LSPM-pp performance under matched and mismatched condition (in %)

Test Length
Matched Mismatched

Test Channel 60s 40s 10s 5s 60s 40s 10s 5s

Dist 0 96.7 96.7 96.7 93.3 96.7 96.7 96.7 90

Dist L 96.7 96.7 86.7 70.0 96.7 100 90.0 66.7

Dist 1 90.0 90.0 76.7 70.0 93.3 93.3 80.0 70.0

Dist 2 96.7 96.7 93.3 83.3 96.7 96.7 86.7 80.0

Dist 4 96.7 93.3 80.0 76.7 96.7 96.7 93.3 80.0

Dist 5 93.3 93.3 90.0 76.7 93.3 93.3 86.7 70.0

Dist 6 83.3 86.7 83.3 80.0 93.3 86.7 83.3 60.0

Dist 8 93.3 93.3 86.7 66.7 93.3 93.3 86.7 70.0

whereScoreki,d is the decision score in languagei on thed distant channel. Here theScorewill

be PP in the LSPM-pp approach andDS in the LSPM-ds approach. The decision rule is as

follows:

s∗ = arg
S

min
k=1

{IDSk}

wherek is the index of enrolled speakers andS is the total number of enrolled speakers.

Figure 3.12 summarizes the average performance on different test durations under matched

and mismatched conditions. We see that the performance under matched and mismatched con-

ditions are comparable, with better performance under mismatched conditions when test dura-

tion is longer than 5 seconds.
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Figure 3.12:Average SID performance under matched vs. mismatched conditions

3.7.5 Comparison of LSPM-pp vs. LSPM-ds

Table 3.3 compares the performance of the LSPM-ds approach at Dis0 under matched con-

ditions with that of LSPM-pp approach when test duration is 60-sec. Even though LSPM-ds

is far more expensive than LSPM-pp, its performance (60%) ismuch worse than LSPM-pp

(96.7%). The poor performance of LSPM-ds seems to support the assumption made earlier that

the speaker phonetic models we produced, which perform wellwithin the LSPM-pp framework,

are not sufficiently reliable to be used during decoding as required by LSPM-ds. Therefore in

the rest phonetic speaker identification experiments, LSPM-pp is the approach we applied.

In order to test the performance of the LSPM-ds approach whenenough data is available

for training a reliable LSPM, we conducted the following gender identification experiment.

We used the NIST 1999 speaker recognition evaluation dataset [79] with a total of 309 female

and 230 male speakers. For each speaker there are two minutesof training speech with each

minute from one telephone channel type and one-minute test speech of unknown channel type.

We group the training speech from speakers in same gender to train phonetic models of each
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Table 3.3:Performance Comparison of LSPM-pp and LSPM-ds on distant data (in %)

Approach LSPM-pp LSPM-ds

Language

CH 100 53.3

DE 80 40

FR 70 23.3

JA 30 26.7

KR 40 26.7

PO 76.7 30

SP 70 26.7

TU 53.3 26.7

Fusion of of all Languages 96.7 60

gender. We conducted gender identification using both the LSPM-pp and LSPM-ds approaches.

We randomly choose 200 test trials containing 100 females and 100 males. The results in Table

3.4 indicate that given enough training data from which we can get a reliable speaker phonetic

model, the LSPM-pp and LSPM-ds produce comparable results.

3.7.6 Multi-Engine LSPM-pp Speaker Identification Results

To investigate whether the reason for the success of the multilingual LSPM-pp approach is re-

lated to the fact that different languages contribute useful information or that it simply lies in

the fact that different recognizers provide complementaryinformation, we conducted the fol-

lowing set of experiments. We replaced the eight multilingual phone recognizers with three

English phone recognizers which were trained on very different conditions, namely: Switch-

board (telephony, highly conversational), Broadcast News(various channel conditions, planed
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Table 3.4:Performance Comparison of LSPM-pp and LSPM-ds on gender ID (in %)

Approach LSPM-pp LSPM-ds

Language

CH 88.5 89.5

DE 89.5 88.5

FR 89 91

JA 86.5 89

KR 87.5 88

PO 89 91.5

SP 92 92

TU 90 89

Fusion of all Languages 94 94

speech), and Verbmobil English (high quality, spontaneous). For a fair comparison between the

three English engines and the eight multilingual engines, we generated all possible language

triples out of the set of eight languages (56 triples) and calculated the average, minimum and

maximum performance for each. Table 3.5 compares the results of the multilingual system to

the multi-engine system. The results show that the best performance of the multilingual triples

always outperforms the performance of the multi-engine triple. From these results we draw

the conclusion that multiple English phone recognizers provide less useful information for the

classification task than do multiple language phone recognizers. This is at least true for our

given choice of multiple English engines in the context of speaker identification. The multiple

languages have the additional benefit of being language independent. This results from the fact

that the actual spoken language is not covered by the used multiple language phone recognizers.

For example, in our experiments, the test language is English, which is not covered by the mul-

tilingual languages. The multi-engine system, which has the matched language “English” with
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Table 3.5:Performance comparison of LSPM-pp multilingual vs multi-engine (in %)

System Multilingual Multi-Engine

Test Channel Avg (Min - Max)

Dist 0 87.92 (66.7 - 100) 93.3

Dist L 88.21 (63.3 - 96.7) 86.7

Dist 1 83.57 (66.7 - 93.3) 86.7

Dist 2 93.63 (86.7 - 96.7) 76.7

Dist 4 81.43 (56.7 - 96.7) 86.7

Dist 5 86.07 (66.7 - 96.7) 83.3

Dist 6 81.96 (66.7 - 93.3) 63.3

Dist 8 87.14 (63.3 - 93.3) 63.3

the test language, does not outperform the multi-lingual system. This indicates the potential of

language independence.

3.7.7 Combination of Multilingual and Multi-Engine Systems

In order to investigate whether combining the multilingualsystem and the multi-engine sys-

tem can provide more improvement for the speaker identification task, we conducted a second

set of experiments. Table 3.6 compares the speaker identification performance of using the

multilingual system alone with those of combining the multilingual system with the three mul-

tiple English phone recognizers. The combination is realized as adding more languages to the

multiple languages. In Table 3.6, we use ML to represent the multilingual system and ME

to represent the multi-engine system. SWB, BN and VE are used to represent single English

phone recognizer trained on Switchboard, Broadcast News and Verbmobil English respectively.

The results indicate that the interpolation of multilingual and multi-engine could not give any
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Table 3.6:Combination of Multilingual and Multi-Engine systems (in %)

System ML ML+ME ML+SWB ML+BN ML+VE

Test Channel

Dist 0 96.7 93.3 93.3 93.3 93.3

Dist L 96.7 96.7 96.7 93.3 96.7

Dist 1 93.3 90.0 90.0 90.0 90.0

Dist 2 96.7 96.7 96.7 96.7 96.7

Dist 4 96.7 93.3 93.3 93.3 93.3

Dist 5 93.3 93.3 93.3 93.3 93.3

Dist 6 93.3 80.0 80.0 83.3 83.3

Dist 8 93.3 90.0 90.0 93.3 93.3

further improvement. But we cannot conclude from these results that adding English language

can not provide more complimentary information for speakeridentification, since the three En-

glish phone recognizers are trained differently from those8 language phone recognizers. To

clarify this question, we further investigate the relationship between number of languages and

identification performance as described in the following section.

3.7.8 Number of Languages vs. Identification Performance

In this set of experiments, we investigated the influence of the number of phone recognizers in

different languages on speaker identification performance. These experiments were performed

on an improved version of our phone recognizers in 12 languages trained on the GlobalPhone

data. AR, KO, RU and SW are available in this version in addition to the 8 languages (CH,

DE, FR, JA, KR, PO, SP, TU). Figure 3.13 plots the speaker identification rate over the number

m of languages used in the identification process under matched conditions on 60-second test
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Figure 3.13:Speaker Identification Performance vs. number of phone recognizers

duration for all distant channels. The performance is givenin average and range over the
(12

m

)

(m out of 12) languagem-tuples. Figure 3.13 indicates that the average speaker identification

rate increases with the number of involved phone recognizers. It also shows that the maximum

performance of 96.7% can already be achieved using only two languages; in fact, among the

total
(12

2

)

= 66 language pairs, two pairs achieved best results: CH-KO, and CH-SP. However,

the lack of a strategy for finding the best suitable language pair does not make this very helpful.

On the other hand, the increasing average indicates that theprobability of finding a suitable

language-tuple that optimizes performance increases withthe number of available languages.

While only 4.5% of all 2-tuples achieved best performance, asmany as 35% of all 4-tuples, 60%

of all 6-tuples, 76% of all 8-tuples and 88% of all 10-tuples were likewise found to perform

optimally in this sense.
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3.8 Chapter Summary

Despite the qualities of the human speech process and richness of information in speech, most

speaker recognition systems rely only on one source of information, acoustic features extracted

from short segments of speech [95]. Other high-level information, such as particular word

usage (idiolect), related to learned habits and style, are ignored by such systems. This excit-

ing research area, speaker recognition using high-level information, pioneered by Doddington

[28], has attracted a lot of research effort. Although we don’t have a quantitative measurement

of what level is more important among the different levels ofinformation, we know that for

automatic speaker recognition systems, it is not what you say but how you say it that is impor-

tant. The particular content being conveyed is not as important as how the words sound (i.e.

pronunciations).

In this chapter, we proposed a phonetic speaker recognitionapproach that aims at modeling

the statistical pronunciation patterns based on the phonetic information from two ”orthogonal”

dimensions: time dimension and cross-stream dimension. The basic idea of phonetic speaker

recognition is to identify a speaker via the statistical pronunciation model trained using pho-

netic sequences derived from that speaker’s utterance. Although the phonetic sequences are

produced using acoustic features, the identification decision is made based solely on the pho-

netic sequences. The assumption behind the phonetic approach is that phonetic sequences

can cover a speaker’s idiosyncratic pronunciation. Bigrammodeling of the phone dependen-

cies across tokenizers in multiple languages achieves 4% EER, a significant improvement over

8.4% EER in the time dimension on the NIST 2001 Speaker Recognition Evaluation Extended

Data Task. A linear combination of systems in both dimensions at the score level reduces the

EER to 3%, which indicates that the information captured in the cross-stream dimension is

complementary to that in the time dimension. Also, the proposed approach works without the

need for any lexical knowledge, which suggests its languageindependence.
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Chapter 4

Speaker Segmentation and Clustering

4.1 Motivation

The rapid advance in speed and capacity of computers and networks have allowed the inclu-

sion of audio as a data type in many modern computer applications. Multimedia databases or

file systems can easily have thousands of audio recordings, including broadcasts, voice mails,

meetings or other “spoken documents.” However, an audio fileis usually treated as an opaque

collection of bytes with only the most primitive information tags: name, file format, sampling

rate, etc. In order to make the audio data more accessible, new technologies that enable the ef-

ficient retrieval of desired information from speech archives are of increasing interest. Speaker

segmentation and clustering consists of identifying who isspeaking and when, in an audio

stream. Ideally, a speaker segmentation and clustering system will discover how many people

are involved in the audio stream, and output clusters corresponding to each speaker. There-

fore, speaker segmentation and clustering technique can provide valuable inputs for automatic

indexing of speech data. Speaker segmentation and clustering can also significantly improve

speech recognition performance via enabling unsupervisedadaptation on each cluster. In 2002,

NIST started an evaluation paradigm, called Rich Transcription evaluation, which seeks to en-

81



Chapter 4 Speaker Segmentation and Clustering

rich speech-to-text (STT) transcription with Metadata Extraction (MDE). ”Who Spoke When”

speaker segmentation and clustering for English broadcastnews and conversational telephony

speech is one of the tasks in MDE. However, it is even more challenging to segment and cluster

speakers involved in meetings. This is due to the occurance of speaking overlap and the use of

distant microphones in meetings. Therefore, NIST initiated a similar evaluation on meetings in

the spring of 2004 [96].

4.2 Background Knowledge

In this section, we briefly present some of the state-of-the-art statistical tools used in most

speaker segmentation and clustering techniques, mainly todefine notations and abbreviations.

4.2.1 Hypothesis Testing

Setting up and testing hypotheses is an essential part of statistical inference and is used in this

thesis. In each problem considered, the question of interest is simplified into two competing

claims/hypotheses between which we have to choose: the nullhypothesis, denotedH0, against

the alternative hypothesis, denotedH1. The null hypothesisH0 represents a theory that has

been put forward, either because it is believed to be true or because it is to be used as a basis

for argument, but has not been proved. The alternative hypothesisH1 is contrary to the null

hypothesis

In the case of pattern recognition, the goal is to determine to which category or class a given

observation (or sequence of observations)X belongs. If the probability density function (PDF)

of each class is known, this becomes a problem in statisticalhypothesis testing whereH0 and

H1 are defined as:

H0: X is from classC1
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and

H1: X is from classC2

The optimum test according to the Bayes decision rule for minimum error to decide “not to

reject” H0 is a likelihood ratio test [29] given by:

p(X|H0)

p(X|H1)
≥ P(H1)

P(H0)
(4.1)

wherep(X|Hi), i = 0,1, is the likelihood of the data X under the hypothesisHi andP(Hi) is

the prior probability of hypothesisHi. If we assume the prior probability of the two classes

to be equal, the term on the right hand side of 4.1 is equal to one. The term of the left hand

side of 4.1 is referred to as a likelihood ratio. Strictly speaking, the likelihood ratio test is only

optimal when the likelihood functions are known exactly. Inpractice this is rarely the case and

the likelihood ratio test usually involves a threshold value. A decision to “rejectH0 in favor of

H1” is made only if the likelihood ratio is less than threshold.

When the PDFs of two classes (hypotheses) are Gaussian densities or Gaussian mixture

densities (which is always the case in this thesis), it is more convenient to compute and write

the Log Likelihood Ratio (LLR) rather than writing the likelihood ratio itself. The LLR is

computed by taking the logarithm of the likelihood ratio andnow the decision rule becomes:

logp(X|H0)− logp(X|H1) ≶ threshold (4.2)

In many situations, the problem is first formulated as a hypothesis testing problem and LLR

is then used to make a decision. LLR is widely used in speaker recognition research [39] [94].

Sometimes, it is also referred to as Generalized LikelihoodRatio (GLR) [39]. LLR is used in

this chapter calculate a similarity measure between two PDFs.
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4.2.2 Model Selection

In many situations, we are forced to choose among nested classes of parametric models, e.g.

models with different number of parameters. The Maximum Likelihood (ML) principle [30]

(i.e. maximizing the likelihood of available training data) was developed only for a single

parametric family, and hence it is not guaranteed to yield a sensible selection criterion in such

situations. Schwarz [106] proposed a Bayesian approach to the model selection problem known

as Bayesian Information Criterion (BIC). BIC is an approximation to the posterior distribution

on model classes. While based on the assumption that proper priors have been assigned to

each model, this approximation effectively eliminates anyexplicit dependence on prior choice.

The resulting solution takes the form of a penalized log likelihood. The Bayesian Information

Criterion states that the quality of model M to represent data{x1, . . . ,xN} is given by:

BIC(M) = logP(X|M)− λ
2

V(M) logN = logP(x1, . . . ,xN|M)− λ
2

V(M) logN (4.3)

where p(x1, . . . ,xN|M) denotes the maximum log likelihood of dataX = {x1, · · · ,xN} given

modelM, V(M) denotes the number of free parameters inM andN denotes the number of

observations inX. In theoryλ should equal to 1, but it is a tunable parameter in practice. It

was shown in [106] that maximizing the BIC value also resultsin maximizing the integrated

likelihood which is the expected value of the likelihood over the set of parameters ofM. A

model having maximum BIC value is selected using this theory.

BIC was introduced for the case of speech and specifically foracoustic change detection and

clustering by Chen and Gopalakrishnan in [17], where the problem was formulated as that of

model selection. Since then, BIC has been used in many speechapplications and is a state-of-

the-art approach for acoustic change detection and clustering.

The problem of determining if there is a speaker change at point i in dataX = {x1, . . . ,xN}
can be converted into a model selection problem. The two alternative models are: (1) model

M1 assumes thatX is generated by a multi-Gaussian process, that is{x1, . . . ,xN} ∼ N(µ,Σ), or
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(2) modelM2 assumes thatX is generated by two multi-Gaussian processes, that is

{x1, . . . ,xi} ∼ N(µ1,Σ1)

{xi+1, . . . ,xN} ∼ N(µ2,Σ2)

The BIC values for the two models are

BIC(M1) = logP(x1, . . . ,xN|µ,Σ)− λ
2

V(M1) logN

BIC(M2) = logP(x1, . . . ,xi|µ1,Σ1)+ logP(xi+1, . . . ,xN|µ2,Σ2)−
λ
2

V(M2) logN

The difference between the two BIC values is

∆BIC = BIC(M1)−BIC(M2)

= log
P(x1, . . . ,xN|µ,Σ)

P(x1, . . . ,xi|µ1,Σ1)P(xi+1, . . . ,xN|µ2,Σ2)
+

λ
2
[V(M2)−V(M1)] logN

A negative value of∆BIC means that modelM2 provides a better fit to the data, that is there is

a speaker change at pointi. Therefore, we continue merging segments until the value of∆BIC

for the two closest segments (candidates for merging) is negative.

It is also interesting to note that BIC formally coincides with other information theoretic cri-

teria like Minimum Description Length (MDL) [97] and AkaikeInformation Criterion (AIC)

[2]. These information theoretic measures have a completely different motivation and deriva-

tion to BIC. The motivation for MDL, for example, is to select amodel that provides the shortest

description of the data, where describing data can be regarded as coding. The term depending

on the number of free parameters in BIC (right hand side of 4.3) is explained in the MDL

framework as the extra cost incurred by transmitting the parameters of the model. Rissanen

[97] demonstrates that for a regular parametric family of dimensiond, this amounts to trans-

mitting at leastd2 logN bits, whereN is the length of the data.
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4.2.3 Performance Measurement

A good speaker segmentation algorithm should provide only the correct speaker changes. So

each segment should contain exactly one speaker. There are two types of errors related to

speaker change detection: insertion errors (when a speakerchange is detected but it does not

exist in reference) and deletion errors (an existing speaker change is not detected). These two

types of errors have a different impact depending upon the application. In our system, the

segmentation stage is followed by a clustering stage. Therefore, insertion errors (resulting in

over segmentation) are less critical than deletion errors,since the clustering procedure has the

opportunity to correct the insertion errors by grouping thesegments related to the same speaker.

On the other hand, deletion errors cannot be corrected in theclustering stage.

For evaluation, the reference was generated from a manual transcription. However, the exact

speaker change point is not very accurate in the reference, since the perception of speaker

change is very subjective. Therefore, we define an accuracy window around the reference

speaker change point; following [118], it is set to one second. For example, ifNr andNh are

sample indexes of reference and hypothesized speaker change points respectively. We call the

hypothesisNh a hit if

• Nh is the hypothesized change point closest toNr , and

• Nr is the reference change point closest toNh, and

• the distance betweenNr andNh is less than one second.

From the alignment between reference and hypothesis, we candetermine the precision (percent-

age of correct hypothesized speaker change points among allthe hypothesized change points)

and recall (percentage of correct hypothesized speaker change points among all the true change

points). Deletion errors will directly lower the recall. Insertion errors will reduce the precision.

Generally we seek systems that exhibit both high recall and high precision. However, as men-
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tioned before, insertion errors can be overcome by following clustering procedure, therefore

deletion errors are more critical than insertion errors; weare more concerned about the recall

value.

Speaker diarization error is the standard measurement of the overall performance for speaker

segmentation and clustering used in the NIST evaluations [115]. The overall speaker segmenta-

tion and clustering performance can be expressed in terms ofthe miss rate (speaker in reference

but not in system hypothesis), false alarm rate (speaker in system hypothesis but not in refer-

ence), and speaker error rate (mapped reference speaker is not the same as the hypothesized

speaker). The speaker diarization score is the sum of these three components and can be calcu-

lated using

DiaErr =
∑allS{dur(S)∗ (max(Nre f(S),Nsys(S))−Ncorrect(S))}

∑allS{dur(S)∗Nre f(S)} (4.4)

whereDiaErr is the overall speaker diarization error,dur(S) is the duration of the segment,

Nref(S) is number of reference speakers in the segment,Nsys(S) is the number of system speak-

ers in the segment, andNcorrect(S) is the number of reference speakers in the segment which are

also hypothesized by the system. This formula allows the entire audio to be evaluated, includ-

ing regions of overlapping speech. In tables in this chapter, we use abbreviations “Miss”, “False

Alarm”, “Spkr Err”, and “Diarization Err” to represent missrate, false alarm rate, speaker error

rate, and diarization error rate, respectively.

4.3 Related Work

This section presents a literature review of most of the significant work that addressed the issues

related to speaker segmentation and clustering.
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4.3.1 Speaker Segmentation

Speaker segmentation is also called ”speaker change detection” in the literature. Although

speaker change detection also belongs to the family of pattern classification problems, and

thus has a feature extraction module followed by classification/segmentation framework, no

significant work has been reported on the feature extractionmodule. Traditionally, MFCC

features are extracted every 10ms and fed to the segmentation algorithm. Various segmentation

algorithms have been proposed in the literature, which can be categorized as follows:

• Decoder-guided segmentation:The input stream is first decoded; then the desired seg-

ments are produced by cutting the input at the silence locations generated from the de-

coder ([61] [124]). Other information from the decoder, such as gender information could

also be utilized in the segmentation.

• Model-based segmentation:This involves making different models e.g. GMMs, for a

fixed set of acoustic classes, such as telephone speech, puremusic, etc. from a training

corpus (e.g. [7] [57]); the incoming audio stream is classified by ML selection over a

sliding window; segmentation is made at the locations wherethere is a change in the

acoustic class.

• Metric-based segmentation:A distance-like metric is calculated between two neighbor-

ing windows placed at each sample; metrics such as Kullback-Liebler (KL) divergence

([108]), LLR ([10] [24] [23] [76]) or BIC ([16] [24] [23] [76] [68] [128] [117] [118]) can

be used. The local maxima or minima of these metrics are considered to be the change

points.

All of these methods have limitations. The decoder guided segmentation only places bound-

aries at silence locations, which in general has no connection with the acoustic changes in the

data. The model based segmentation approaches may not generalize to unseen data conditions

88



Section 4.3 Related Work

as the models are no longer compatible with the new data conditions. The metric based ap-

proaches generally require a threshold/penalty term to make decisions. These thresholds are set

empirically and require additional development data.

4.3.2 Speaker Clustering

Most of the state-of-the-art solutions to the speaker clustering problem use a bottom-up hierar-

chical clustering approach i.e. starting from a large number of segments (clusters), some of the

clusters are sequentially merged following a “suitable” strategy. This strategy mostly consists

of computing a distance metric between any two clusters and then merging the two clusters

with the smallest distance. Since most of the popular distance metrics are monotonic functions

of the number of clusters, an external method of controllingthe number of clusters (or merg-

ing process) is a necessary part of the problem. Thus, most ofthe previous work on this topic

revolves around employing a suitable distance metric and corresponding stopping criterion.

One of the earliest pieces of work on speaker clustering fromthe point of view of speaker

adaptation in ASR systems was proposed in [51]. In this work,the Gish-distance proposed

in [40] was used as a distance metric, which is based on Gaussian models of the acoustic

segments. Hierarchical clustering was performed based on this distance metric through select-

ing the best clustering solution automatically by minimizing the within-cluster dispersion with

some penalty against too many clusters. The penalty term is needed because the within-cluster

dispersion will keep monotonically decreasing, which willlead to the unwanted clustering of

one segment per cluster. Although, a study of the number of clusters obtained with different

penalty terms was done, no systematic way was proposed to deduce the optimal value of this

term. It was also shown in this work that the automatic speaker clustering contributed signifi-

cantly to reduction of Word Error Rate (WER).

Siegler et al. in [108] used Kullback-Leibler (KL) divergence (relative cross entropy) as
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the distance metric for speaker clustering. The KL distancebetween the distributions of two

random variablesA andB is an information theoretic measure equal to the additionalbit rate

accrued by encoding random variableB with a code that was designed for optimal encoding of

A [21]. In an agglomerative clustering approach, the KL distance was also compared with the

Mahalanobis distance. In this framework, an utterance was clustered with an existing cluster if

it was within a threshold distance, otherwise it was used as the seed of a new cluster. Different

threshold values were tried in this work but no systematic way of finding this threshold was

proposed.

Solomonoff et al. in [109] used LLR and KL distance metrics for speaker clustering. An

agglomerative dendogram clustering framework was proposed in this work. Thus, a closest

pair of clusters was picked using these distance matrices and merged until there was only one

cluster. In order to obtain the appropriate number of clusters, dendogram cutting was used.

This was done using “cluster purity” as a measure, which was also proposed in this work.

A top-down split-and-merge clustering framework was proposed in [55] [56]. This work was

based upon the idea that the output of this clustering was to be used for Maximum Likelihood

Linear Regression (MLLR) adaptation, and so a natural evaluation metric for clustering is the

increase in the data likelihood from adaptation. The distance metrics used for splitting and

merging were Arithmetic Harmonic Sphericity (AHS) [8] and Gaussian Divergence. The clus-

tering scheme works top-down with each node being split intoup to four child nodes at each

stage. The splitting was done until no more segments could bemoved or the maximum number

of iterations was reached. At each stage of splitting, some of the nodes were merged. The

merging criterion was based on simple distance from the center of the node to its segments.

The decisions were made by comparing this distance against athreshold value. It was also

found to be necessary to define when a split is allowable to prevent data being split back into

its constituent segments. Thus, a heuristic based on minimum occupancy count was used to

ensure robust speaker adaptation. This clustering algorithm was applied to the HTK broadcast
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news transcription system [124] [42].

The most commonly used distance metric for speaker clustering is BIC [16]. In this work,

starting from each segment (hand segmented) as a cluster, hierarchical bottom-up clustering

was performed by calculating the BIC measure for every pair of clusters and merging the two

clusters with the highest BIC measure (see equation 4.3). The clustering was stopped when the

merging of two clusters resulted into no increase in BIC measure. Although, in this work the

authors used a theoretically motivated penalty value, subsequent work on speaker clustering

using BIC ([117] [118] [64]) found that adjusting this penalty on the training data not only

produces better results, but is also necessary for the system to run on unseen data.

Recently, in the framework of the DARPA-EARS program, NIST started the speaker diariza-

tion evaluation. This task is very similar to speaker clustering, except that the motivation is a

little different. Speaker diarization is intended to make the transcription of ASR systems richer

by determining who said what. Whereas, the motivation of speaker clustering work for speech

recognition is to create speaker clusters from the point of view of speaker adaptation. Thus,

in the later case, it is possible to make a single cluster for two speakers if the two individual

clusters do not have enough data and the two speakers are acoustically very similar. Most of the

approaches presented in this evaluation used BIC as the distance metric ([78] [3] [74]). Another

penalized LLR distance metric was proposed by Gauvain and Barras [37], where the penalty

parameters were tuned to get the best performance. The Cambridge diarization system [116]

used the framework defined in [55]. It is clear that BIC is the state-of-the-art approach toward

speaker clustering.

4.4 Speaker Segmentation and Clustering Scenarios

There are mainly three scenarios in speaker segmentation and clustering evaluations, Broadcast

News (BN), Conversational Telephone Speech (CTS), and Meetings (MT). These three types
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of scenarios show different characteristics in terms of number of speakers and number of turn

changes. Generally, there are a large number of speakers in broadcast news shows (average 14),

fewer number of speakers in meetings (average 6), and usually only two speakers in conversa-

tional telephone speech. The speaker’s talking style is different for these three scenarios. The

talking style is very spontaneous for conversational telephone speech and meetings, while for

broadcast news the talking style is relative formal and similar to read speech. The different talk-

ing style results in different number of turn changes for different scenarios. As shown in Figure

4.1, conversational telephone speech and meetings have much faster speaker turn changes. The

fast turn change is particularly crucial as reported in [24][98]. The very spontaneous speaker’s

talking style also results in the presence of many short and non-verbal sounds (e.g. huh, laugh-

ter etc.), and the existence of cross talking (speech conveys multiple speakers speaking at the

same time). The factors including fast speaker turn changes, spontaneous talking style, and

relative large amount of speakers make the speaker segmentation and clustering in meetings

the most challenge task. In the rest of this chapter, we present our speaker segmentation and

clustering systems for conversational telephone speech and meetings.
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Figure 4.1:CDF of Speaker Segment Length
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Figure 4.1 compares the cumulative density function (CDF) ofsegment length for Broadcast

News (BN), conversational telephony speech (CTS) and Meetings (MT). We can see that the

speaker segment durations are much shorter in conversations and meetings than in broadcast

news, which also indicates that speaker-changing rate is much higher in conversations and

meetings. The median and mean segment lengths measured in seconds are 1.63 and 2.80 in

conversations, 2.36 and 1.93 in meetings, while in broadcast news they are 6.19 and 11.27.

4.5 Speaker Segmentation and Clustering on CTS

This section presents our speaker segmentation and clustering system on the conversation tele-

phone speech, which is one of the evaluation tasks in the NIST2003 Spring Rich Transcription

evaluation (RT-03S).

4.5.1 Data Description

The English Conversational Telephone Speech (CTS) set was used for the NIST RT-03S evalu-

ation [115]. The CTS set was selected from the Switchboard database, a corpus of spontaneous

telephony conversations. It is a standard publicly available database that is suitable for speaker

identification, verification and segmentation evaluations. Each call is about 5-6 minutes in

duration and contains English conversations between two speakers via landline or cellular tele-

phone. The participants speak in a spontaneous and unscripted way, with frequent pauses and

spontaneous effects such as non-verbal sounds. Originallyeach side (speaker) in a call has

a separate channel, which is the condition used in RT-03S evaluation. We also mix the two

channels to form a single channel two-speaker conversation. We used both the dry run and

evaluation test set from RT-03S evaluation. The dry run testset contains 12 calls and the eval-

uation test set contains 36 calls, about 4 hours total. The whole data set is well diversified in

speaker genders and telephony networks (landline and cellular).

93



Chapter 4 Speaker Segmentation and Clustering

4.5.2 System Overview

For the CTS data, it is very unusual to find more than one speakeron the same conversational

side. When the data for the channels is provided separately, the speaker segmentation and

clustering task reduces to a speech activity detection problem, that is to detect whether the

(single) speaker is talking or not.

We use a hybrid segmentation approach, which consists of four steps. This approach utilizes

the advantages of metric-based and model-based approaches. It does not need any prior train-

ing. Therefore it has the potential of portability across different do-mains. The four steps in the

implementation of this algorithm are:

• Initial segmentation

• GMMs generation

• Segmentation with GMMs

• Resegmentation with Tied GMM

Operations of each step are described in detail in the following subsections.

Initial Segmentation

In this step, each frame of the audio stream is first classifiedinto one of the three classes:

highly confident speech, highly confident non-speech, unsure. The frame window size is 30ms

(240 samples) and it shifts every 10ms along the audio stream. The classification decision is

based on the features of energy, zero-crossing rate and FFT magnitude variance. The feature

of FFT magnitude variance is chosen based on the statistics that a speech frame has higher

FFT magnitude variance than a non-speech frame. The goal of the initial segmentation is to
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gather as many highly accurate speech and non-speech segments as possible to bootstrap the

generation of GMM models for speech and non-speech events.

GMMs Generation

Based on the highly confident speech and non-speech segmentsfound in the initial segmenta-

tion step, we build two GMMs,θsp andθnsp , for speech and non-speech respectively. Feature

vectors use 13-dimensional Mel-frequency cepstral coefficients extracted with the same frame

and window size as in the initial segmentation. 32 Gaussian mixture components and diagonal

variance matrices are used.

Segmentation with GMMs

After building the GMMs (θsp and θnsp) for speech and non-speech, we use these models

to classify the unsure parts in the audio produced by the initial segmentation. A three-way

classification is done according to formula 4.5.θspandθnspare updated after each classification

step by adding the new speech and non-speech data. The classification step iterates with the

model-updating step (in our experiments, these two steps usually iterate 3-5 times) until all the

unsure parts are labeled as either speech or non-speech. Theconstant TH in formula 4.5 is

set to 0.5 in our experiments. Our goal in this step is to produce as pure speech segments as

possible while not missing too many short speech segments atthe same time.

P(x|θsp) > P(x|θnsp) and
P(x|θsp)−P(x|θnsp)

P(x|θnsp)
> TH speech

P(x|θnsp) > P(x|θsp) and
P(x|θnsp)−P(x|θsp)

P(x|θsp)
> TH nonspeech

otherwise unsure

(4.5)
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Figure 4.2:Speaker Change Detection

Resegmentation with Tied GMMs

If there is a clear pause between a speaker turn-change, it will be detected by the previous three

steps via non-speech segment. However, if no pause occurs between a speaker turn-change,

the previous three steps will fail to detect it. Therefore, in this step, we aim at detecting those

seamless speaker turn-changes by the metric-based BIC segmentation. We suspect such speaker

turn-changes only happen in long segments. So for segments obtained from the previous three

steps that are longer than a certain length (5 seconds is usedin our implementation since the

majority of segments is shorter than 5 seconds as shown in Figure 4.1), we use the metric-based

BIC segmentation approach to find out whether there still exist speaker turns. This may cause

over segmentation, but the following clustering procedurecan recover from this by merging

homogeneous segments. However, if a speaker turn is missed,which means that a segment

contains speech from more than one speaker, it can never be recovered by clustering. The

procedure is shown in Figure 4.2.

We first compute the distance between two neighboring windows. The window duration is

one second and windows are shifted by 10ms. The distance betweenWin1 andWin2 is defined
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as

D(Win1,Win2) = − log
P(XC|θC)

P(XA|θA) P(XB|θB)
(4.6)

whereXA, XB, andXC are feature vectors inWin1, in Win2, and in the concatenation ofWin1

andWin2, respectively.θA, θB, andθC are GMM models built onXA, XB, andXC, respectively.

We can see from (4.6) that the larger the distance, the more likely a speaker turn change exists

at the boundary betweenWin1 andWin2.

We assume a speaker turn change exists if the local maximum ofdistances satisfies

Dmax−DL
min > α

Dmax−DR
min > α

min{(Imax− IL
min)(I

R
min− Imax)} > β

(4.7)

whereDmax refers to the local maximum distance value andDL
min andDR

min refer to the left

and right local minimum distance values around the local maximum. Imax refers to the index

of the local minimum. The third inequality in (4.7) considers not only the value of the local

maximum but also its shape.α and β are constant thresholds, for which we found optimal

values via cross-validation on the development set.α is equal to the variance of all the distance

values times a factor of 0.5.β is set to 5. Our approach differs from other approaches, such

as [17][24], because in our implementation we build a Tied GMM (TGMM) using all speech

segments and generate a GMM for each segment by adapting the TGMM. The advantage is

that a more reliable model can be estimated with a TGMM.

Speaker Clustering

Originally each side (speaker) in a telephone conversationhas a separate channel. On the sepa-

rate channel, no speaker clustering is needed since only onespeaker talks on this channel most

of the time. We also mix the two channels to form a single mixedchannel two-speaker conver-

sation. In this case, speaker clustering is required. For speaker clustering, we use a hierarchical,
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agglomerative clustering technique called TGMM-GLR. We first train a TGMM,θ, based on

all speech segments. Adaptingθ to each segment generates a GMM for that segment. The defi-

nition of the GLR distance between two segments is the same asin (4.6). A symmetric distance

matrix is built by computing the pairwise distances betweenall segments. At each clustering

step, the two segments which have the smallest distance are merged, and the distance matrix is

updated. We use the Bayesian Information Criterion as a stopping criterion.

After clustering we merge any two segments that belong to thesame speaker and have less

than a 0.3 second gap between them.

4.5.3 Experimental Results

We use ”Purity” to measure the performance of speech and non-speech classification in the

initial segmentation and model-based resegmentation. Purity of a speech segment is defined as

the percentage of the frames in the segment that are true speech frames. Purity of non-speech

is defined similarly.

We use the standard diarization error to measure the overallspeaker segmentation and clus-

tering performance. For the CTS data, since the data for the channels is provided separately,

Therefore the performance under the separate channel condition can be explained by a sim-

ple graphical representation to allow a quick visual inspection of the entire side in question,

which can not be provided by the numerical diarization scores. Figure 4.3 gives an example

of such graphical representation. For the example illustrated in Figure 4.3, the two hypotheses

get the same overall diarization errors, but the graph clearly shows the differences between the

systems.

In initial segmentation, 42% of the entire conversation stream is labeled as unsure. Table 4.1

shows the speech and non-speech purity after the initial segmentation step and GMM-based

resegmentation step. The results show that initial segmentation is very effective and has the po-
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Figure 4.3: Graphical representation of system performance for the separate channel CTS

diarization problem

tential of domain independence since it does not need any prior domain-dependent information.

Table 4.2 shows the decomposed diarization errors on separate channels and single mixed chan-

nel respectively. The single mixed channel task is more challenging than the separate channel

task, since there are more severe cross talkings and seamless speaker turn changes. While in the

separate channel task, it is always true that each channel contains only one speaker. Therefore,

speaker diarization task on separate channels is simplifiedas a speech activity detection task.

In our current implementation, we did not specifically deal with cross talkings, just label them

as one speaker by clustering.
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Table 4.1:Purity performance on dry run set

Purity Initial segmentation Segmentation with GMM

(58% of the data) (100% of the data)

Speech 99.5% 95.3%

Non-Speech 97.2% 95.5%

Table 4.2:Diarization error on separate vs. single mixed channel on dry set

Diarization Err Miss False Alarm Spkr Err

separate channel
Dry run 4.5% 4.7% 0.0%

Evaluation 6.5% 4.0% 0.0%

Single channel
Dry run 10.8% 7.0% 0.9%

Evaluation 15.5% 8.4% 1.4%

We also found that there is no significant difference in the performance for seperate channel

speech activity detection on landline telephony speech andcellular telephony speech, as shown

in table 4.3, which indicates that the techniques are robustto different background noises and

telephony networks.

Table 4.3:Diarization error for landline vs. cellular on dry run set

Tele Network Miss False Alarm Diarization Err

Landline 4.8% 4.4% 9.22%

Cellular 4.0% 5.3% 9.29%

Table 4.4 compares the performance across different participant systems in the RT03s eval-

uation for this seperate channel activity detection task including Cambridge University system
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Table 4.4:Performance comparison for seperate channel speec activity detection across sys-

tems in RT03s evaluation

System CU ISL LL

Diarization Err 11.63% 11.41% 11.52%

(CU), our system (ISL) and Lincoln Laboratory system (LL). There is no significant difference

in performance across systems. Our results can represent the state-of-the-art performance in

the NIST RT-03S evaluation for seperate channel speech activity detection.

4.6 Speaker Segmentation and Clustering on Meetings

The full automatic transcription of meetings is consideredan AI-complete, as well as an ASR-

complete, problem [75]. It includes transcription, meta-data extraction, summarization, etc.

In recent years, the study of multi-speaker meeting audio has seen a surge of activity at many

levels of speech processing, as exemplified by the appearance of large meeting speech corpora

from several groups, important observations available in the literature [11][107], and the new

evaluation paradigm launched by NIST, the Rich Transcription Evaluation on Meetings.

4.6.1 Data Description

The experiments throughout this section were conducted on the RT-04S meeting data. Each

meeting was recorded with personal microphones for each participant (close-talking micro-

phones), as well as multiple room microphones (distant microphones) placed on the conference

table. In this section we focus on the task of automatic speaker segmentation and clustering

based on multiple distant microphone (MDM) channels.

Both the development and the evaluation datasets from the NIST RT-04S evaluation were
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Table 4.5:RT04s Development dataset

MeetingID (abbreviation) #Spkrs cMic #dMic

CMU 20020319-1400 (CMU1) 6 L 1

CMU 20020320-1500 (CMU2) 4 L 1

ICSI 20010208-1430 (ICSI1) 7 H 4

ICSI 20010322-1450 (ICSI2) 7 H 4

LDC 20011116-1400 (LDC1) 3 L 8

LDC 20011116-1500 (LDC2) 3 L 8

NIST 20020214-1148 (NIST1) 6 H 7

NIST 20020305-1007 (NIST2) 7 H 6

used. The data were collected at four different sites, including CMU, ICSI, LDC, and NIST

[12][49][111][110]. The development dataset consists of 8meetings, two per site. Ten minute

excerpts of each meeting were transcribed. The evaluation dataset also consists of 8 meetings,

two per site. Eleven minute excerpts of each meeting were selected for testing. All of the

acoustic data used in this work is of 16kHz, 16-bit quality. Table 4.5 gives a detailed description

of the RT-04S development dataset, on which we subsequentlyreport detailed performance

numbers. “cMic” refers to close-talking microphone used. “L” stands for lapel and “H” stands

for headset. “#dMic” is the number of distant microphones provided for each meeting.

4.6.2 System Overview

The MDM system consists of following steps:

• initial speech/non-speech segmentation for each channel

• unification of the initial segmentations across multiple channels
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• best channel selection for each segments

• speaker change detection in long segments

• speaker clustering on all segments

• smoothing.

Initial speech/non-speech segmentationis generated using the acoustic segmentation soft-

ware CMUseg0.5. We removed the classification and clustering components and used it as a

segmenter. A detailed description of the algorithms used inthis software can be found in [108].

t1 t2 t3 t5 t6 t7t4 t8 time

channelB

channelA

Figure 4.4:Multiple Channel Unification

In themultiple channel unification step, the segment boundaries are unified across multiple

channels. Figure 4.4 shows an example for two distant microphone channels. The initial seg-

mentation produces two speech segments on channel A, (t2, t3) and (t5, t7); and two segments,

(t1, t4) and (t6, t8), on channel B. After unification, the segments across the two channels are

(t1, t2), (t2, t3), (t3, t4), (t5, t6), (t6, t7) and (t7, t8).

We then conduct abest channel selectionfor each of the segments produced during the

unification step. We compute the minimum energy (MinEi), maximum energy (MaxEi), and

the signal-to-noise ratio (SNRi) within each segment on all channels. We select the best channel

for each segment according to following criterion,

i⋆ = argmini

(

MinEi

MaxEi
× 1

SNRi

)

(4.8)
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Speaker change detectionis applied to any segment that is longer than 5 seconds to check

whether there exist speaker turn changes within such long segments. We choose 5 seconds

because the majority of segments in meeting is shorter than 5seconds as shown in figure 4.1 and

this was found to give optimal segmentation accuracy via cross-validation on the development

set. The procedure is the same as shown in Figure 4.2.Speaker clusteringis then performed

on all segments. The same hierarchical, agglomerative clustering technique as described in

section 4.5 is applied here.

In the finalsmoothingstep, we merge any two segments that belong to the same speaker and

have less than a 0.3 second gap between them. This is based on our experience in the RT-03S

evaluation.

4.6.3 Experimental Results

Speaker Segmentation Performance

Table 4.6:Speaker Segmentation Performance (in %) on dev set

System Stage Precision Recall

Initial 86.83 11.60

Unification 87.74 19.00

Change Detection 85.17 76.41

Table 4.6 shows the speaker segmentation performance at different system stages. Not sur-

prisingly, the low recall of the initial segmentation indicates high deletion errors, which means

that a lot of speaker changes are missed. Multiple channel unification compensates a little

for the deletion errors. Speaker change detection leads to abig improvement in recall while

suffering only a small decrease in precision.
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Speaker Diarization Performance

Table 4.7:Speaker Diarization Performance (in %)

Error Development Set Evaluation Set

Include Exclude Include Exclude

Miss 8.7 0.0 19.8 0.4

False Alarm 3.3 2.9 2.6 4.1

Spkr Err 25.1 26.7 17.8 23.4

Diarization Err 37.11 29.59 40.19 28.17

Table 4.7 shows the overall speaker diarization performance on the development set and on

the evaluation set, both when including regions of overlapping speech and when excluding the

regions of overlapping speech. Comparable results are achieved on both datasets. The dominant

error among the three error components is speaker error.

In Table 4.8 we show the speaker diarization performance on individual meetings of the de-

velopment set. The results exhibit large variability over meetings collected at different sites.

We think that this variability may be due to unquantified meeting characteristics such as over-

all degree of crosstalk, general meeting geometry including room acoustics and microphone

variability within a meeting. However, we noticed that our system often underestimates the

number of speakers involved in a meeting. Although on meetings CMU2 and NIST1 the sys-

tem underestimates the number of speakers, it still achieves better performance compared to

most other meetings. This is due to the fact that both these two meetings have a dominant

speaker who talks for more than 70% of the time. We compute thespeaker speaking time
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Table 4.8:Speaker Diarization Performance on individual meeting in dev set including over-

lapping speech (in %)

Meeting Miss False Alarm Spkr Err Diarization Err #ref #sys

CMU1 12.6 4.3 30.3 47.12 6 4

CMU2 3.4 5.0 16.3 24.72 4 2

ICSI1 4.7 2.9 35.0 42.62 7 4

ICSI2 9.8 1.1 37.0 47.92 7 3

LDC1 6.2 2.6 9.0 17.78 3 3

LDC2 17.3 1.1 11.0 29.41 3 3

NIST1 7.2 7.1 11.7 26.01 6 2

NIST2 6.5 3.1 49.5 59.04 7 2

entropyH(Meeting) for each meeting,

H(Meeting) = −
M

∑
i=1

P(Si)∗ logP(Si)

P(Si) =
T(Si)

∑M
i=1T(Si)

whereM is the number speakers involved in the meeting.T(Si) is the total time that speaker

Si speaks.P(Si) is the percentage of time (ie. probability) that speakerSi speaks. The lower

the entropy, the more biased is the distribution of the speaker speaking time in the meeting.

As H(Meeting) → 0, it becomes more likely that there is only one dominant speaker in the

meeting.

Figure 4.5 shows the speaker diarization error on each individual meeting in the development

set versus its speaker speaking time entropy. We can see fromthe figure that our system tends

to produce lower speaker diarization error on meetings thathave lower speaker speaking time

entropy. We think the reason that the two CMU meetings do not follow this trend is that there is
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only one distant microphone channel provided. This makes itharder in general to segment and

cluster relative to other meetings, for which multiple distant microphone channels are provided.
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Figure 4.5:Speaker speaking time entropy vs. diarization error.

We also conducted an experiment as follows. We assume a one-to-one mapping between

channel and speaker. We use the best channel information only, which was provided in the

channel selection step described in section 4.6.2. We do notperform speaker clustering. For

any two segments, if the channel selection process producesthe same best channel for them,

we assume these two segments belong to the same speaker. Thisyields 55.45% and 52.23%

speaker diarization error when including and excluding overlapping speech, respectively. It

indicates that there is rich information that can be used to aid in speaker segmentation and

clustering from the multi-channel recordings. Our currentsystem utilizes such information

implicitly by doing best channel selection.

Table 4.9 compares the performance across different participant systems in the RT04s meet-

ing evaluation including joint systems from CLIPS and LIA laboratories (LIA+CLIPS), our

system (ISL) and Macquarie University system (Macquarie).Our system was ranked number

2 among the three systems.
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Table 4.9:Performance comparison across systems in RT04s evaluation

System LIA+CLIPS ISL Macquarie

Diarization Err exclude overlapping 23.54% 28.17% 62.0%

Diarization Err include overlapping 37.53% 40.19% 69.1%

4.7 Impact on Speech Recognition

Speaker Change Detection

Speaker Clustering

Automatic Speech Recognition (ASR)

Speech/Non−Speech Segmentation

Incoming Audio Stream

Rich Transcription

Speech Only

Homegenous Speaker Segments

Speaker Adaptation

Figure 4.6:Speaker Segmentation and Clustering impact on Speech Recognition

Figure 4.6 shows a typical ASR system work-flow for Rich Transcription task and how

components in the speaker segmentation and clustering system impact on ASR system. The

speech/non-speech segmentation allows only speech segments to be passed to the recognizer,

saving computation time as well as improving recognition accuracy. The speech segments

are further segmented in terms of speakers, which is useful for ASR as decoding of well seg-

mented and manageable speech chunks is always more easier and accurate. These homoge-

neous speaker segments can be clustered together in terms ofspeakers to facilitate speaker
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adaptation of an ASR system, which has been shown to significantly improve ASR accuracy

[16] [55] [89]. Finally, the output of all these modules can also be combined with the output of

the ASR system, resulting in Rich Transcription.

Table 4.10:Word error rate on RT04s dev set

Acoustic Models Manual SegmentationMDM Segmentation

PLAIN 53.4% 54.4%

SAT/CAT 46.6% 48.5%

SAT/CAT-VTLN 43.3% 45.5%

Multi-pass CNC 42.8% 45.0%

Table 4.10 compares the automatic speech recognition performance in word error rate based

on manual segmentation vs. on segmentation provided by our MDM speaker segmentation and

clustering system [73]. The first column refers to differentacoustic models in the ASR system:

• PLAIN Merge-and-Split training followed by Viterbi (2 iteration) on the close-talking

data only, no VTLN

• SAT/CAT Extra 4 iteration Viterbi training on the distant data, no VTLN (speaker adap-

tive training (SAT); cluster adaptive training (CAT))

• SAT/CAT-VTLN ≡ SAT/CAT, but trained with VTLN

• Multi-pass CNC confusion network combination

We lose 1% to 2.2% absolute in word error rate based on automatic segmentation compared

to manual segmentation. It is clear that speaker segmentation and clustering plays a vital role

in improving the performance of adaptation. We have noticedthat speech recognition has a

different requirement for speaker segmentation and clustering. In speech recognition, the goal
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of speaker segmentation and clustering is to provide clean single speaker segments for speaker

adaptation. Speaker adaptation is concerned more with the regression of speakers, than with

the strict classification of speakers. So if two speakers sound similar, they can be considered as

equal and grouped into one cluster. It actually would be rather desirable for speech recognition

to group similar speakers together, so that more data is available for adaptation. Therefore, a

specific speaker segmentation and clustering system tuned for speech recognition may achieve

better word error rate even if speaker diarization performance is worse.

Our system has been used widely in many other evaluations, such as in the TC-STAR Eval-

uation [112], in the NIST RT04 Mandarin Broadcast News Evaluation [127] and in the GALE

Evaluations (2006).

4.8 Chapter Summary

In this chapter we presented techniques for speaker segmentation and clustering (TGMM-GLR)

that do not require a prior training. These techniques are evaluated in the NIST RT-03S evalu-

ation on the conversational telephony speech. We achieve state-of-the-art performance with a

diarization error of 11.4%. The performance analysis also shows that these techniques are ef-

fective and robust against different background noises andtelephony networks. They show the

potential of domain independence. We also presented our automatic speaker segmentation and

clustering system for natural, multi-speaker meeting conversations based on multiple distant

microphones. The performed experiments show that the system is capable of providing use-

ful speaker information on a wide range of meetings. The system achieved a 28.17% speaker

diarization error in the NIST RT-04S evaluation. The speaker segmentation and clustering tech-

niques also play significant roles in our automatic speech recognition systems, which break the

continuous audio stream into manageable chunks applicableto the configuration of the ASR

system and provide speaker information that is used for efficient speaker adaptation.
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Person Identification System

5.1 Introduction

Person identification consists of determining the identityof a person from a data segment,

such as a speech, video segment, etc. Currently, there is a high interest in developing person

identification applications in the framework of smart room environments. Person identification

in smart environments is very important in many aspects. Forinstance, customization of the

environment according to the person’s identity is one of themost useful applications. In a smart

room, the typical situation is to have one or more cameras andseveral microphones as shown in

figure 5.1. Perceptually aware interfaces can gather relevant information to model and interpret

human activity, behavior and actions. Such applications face an assortment of problems such a

mismatched training and testing conditions or the limited amount of training data.

The objective of the CHIL (Computers in Human Interaction Loop) project [20] is to create

environments in which computers serve humans who focus on interacting with other humans

as opposed to having to attend to and being preoccupied with the machines themselves. Instead

of computers operating in an isolated manner, and humans thrust in the loop of computers,

we put computers in the human interaction loop (CHIL) and design computer services that
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Cam1

Cam2 Cam4

Cam3

Speaker area

White Board

Mark III−Array

Figure 5.1:Audio and Video sensors setup in a typical smart-room environment

model humans and the state of their activities and intentions. Based on the understanding of the

human perceptual context, CHIL computers are enabled to provide helpful assistance implicitly,

requiring a minimum of human attention or interruptions

A data corpus and evaluation procedure has been provided in the CHIL project to encourage

the research efforts for person identification in smart environments. Following the two suc-

cessful uni-modal identification (audio-only and video-only) evaluations, this year multi-modal

identification is also included to the person identificationtask.
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5.2 Multimodal Person Identification

Multimodal recognition involves the combination of two or more human traits like voice, face,

fingerprints, iris, hand geometry, etc. to achieve better performance than using unimodal recog-

nition. In our Person ID system, audio-based identification(speaker identification) and video-

based identification (face recognition) are combined.

5.2.1 Audio-based Identification

Our audio-based identification (speaker identification) system is a GMM based system. Rever-

beration compensation and feature warping as described in detail in Chapter 2 are applied in

the feature processing stage. In our system, we use 13-dimensional MFCC as speaker features

and 128 Gaussians and 32 Gaussians as speaker models under the 30-second training condition

and 15-second training condition respectively. We will show why we choose these numbers of

Gaussians in the experimental results section.

5.2.2 Video-based Identification

Our video-based identification system is a face recognitionsystem [31]. The face recognition

system processes multi-view, multi-frame visual information to obtain an identity estimate. The

system consists of the following building blocks:

• Image alignment

• Feature Extraction

• Camera-wise classification

• Score normalization
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• Fusion over camera-views

• Fusion over image sequence

The system receives an input image and the eye-coordinates of the face in the input image.

The face image is cropped and aligned according to the eye coordinates. If in the image only

one eye is visible, it is not processed. The aligned image is then divided into non-overlapping

8x8 pixels resolution image blocks. Discrete cosine transform (DCT) is applied on each local

block. The obtained DCT coefficients are ordered using zig-zag scan pattern. From the ordered

coefficients, the first one is removed since it only represents the average value of the image

block. The firstM coefficients are selected from the remaining ones [120]. To remove the effect

of intensity level variations among the corresponding blocks of the face images, the extracted

coefficients are normalized to unit norm.

Classification is performed by comparing the extracted feature vectors of the test image,

with the ones in the database. Each camera-view is handled separately. That is, the feature

vectors that are extracted from the face images acquired by Camera 1 are compared with the

ones that are also extracted from the face images acquired byCamera 1 during training. This

approach speeds up the system significantly. That is, if we have N images from each camera

for training, and if we haveR images from each camera for testing, and we haveC cameras,

it requires(C ∗N) ∗ (C ∗R) similarity calculations between the training and testing images.

However, when we do camera-wise image comparison, then we only need to doC∗ (N ∗R)

comparisons between the training and testing images. Apparently, this reduces the amount of

required computation by a factor ofC. In addition to the improvement in system’s speed, it also

provides a kind of view-based approach that separates the comparison of different views, which

was shown to perform better than doing matching between all the face images without taking

into consideration their view angles [84]. Distance valuesobtained from each camera-view are
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normalized using Min-Max rule, which is defined as:

ns= 1− s−min(S)

max(S)−min(S)

where,s corresponds to a distance value of the test image to one of thetraining images in the

database, andScorresponds to a vector that contains the distance values ofthe test image to all

of the training images. The division is subtracted from one,since the lower the distance is, the

higher the probability that the test image belongs to that identity class. This way, the score is

normalized to the value range of [0,1], best match having thescore “1”, and the worst match

having the score “0”. These scores are then normalized by dividing them to the sum of the

confidence scores. The obtained confidence scores are summedover camera-views and over

image-sequence. The identity of the face image is assigned as the person who has the highest

accumulated score. This face recognition system is developed by our colleague Hazim Ekenel

[31].

5.2.3 Multimodal Person Identification

Multimodal identification is performed by fusing the match scores of both modalities (audio and

video). In a multimodal biometric system that uses several characteristics, fusion is possible at

three different levels: feature extraction level, matching score level or decision level. Fusion

at the feature extraction level combines different biometric features in the recognition process,

while decision level fusion performs logical operations upon the unimodal system decisions to

reach a final resolution. Score level fusion matches the individual scores of different recognition

systems to obtain a multimodal score. Fusion at the matchingscore level is usually preferred

by most of the systems. Matching score level fusion is a two-step process: normalization and

fusion itself [32] [48] [69] [121]. Since unimodal scores are usually non-homogeneous, the

normalization process transforms the different scores of each unimodal system into a compara-

ble range of values. One of the most conventional normalization methods is z-score (ZS) [69]
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[121], which normalizes the global mean and variance of the scores of a unimodal biometric.

Denoting a raw matching score asa from the setA of all the original unimodal biometric scores,

the z-score normalized biometricx is calculated according to the formula as follows:

xzs=
a−mean(A)

std(A)
(5.1)

wheremean(A) is the statistical mean ofA andstd(A) is the standard deviation. After nor-

malization, the converted scores are combined in the fusionprocess in order to obtain a single

multimodal score. Product and sum are the most straightforward fusion methods. Other fusion

methods are min-score and max-score that choose the minimumand the maximum of the uni-

modal scores as the multimodal score. “Matcher Weighting” is a fusion method where each

biometric is weighted by a different factor proportional tothe recognition result of the bio-

metric, and in the user weighting method different weighting methods are applied for every

user.

In our person identification system, the scores from each of the two unimodal systems

(speaker identification and face recognition) are normalized using z-score techniques, then they

are fused via sum rule.
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5.3 Data Setup and Experimental Results

5.3.1 Experimental Setup

Table 5.1:CLEAR 2006 Evaluation Test Dataset (%)

Segment Duration Num of segments

1 613

5 411

10 289

20 178

Classification of Events, Activities and Relationships (CLEAR) is a international technology

evaluation supported by CHIL, NIST and the US ARDA VACE program. A set of audiovi-

sual recordings of seminars and of highly-interactive small working groups seminars have been

used. These recordings were collected by the CHIL consortiumfor the CLEAR 06 Evaluation.

The recordings were done according to the “CHIL Room Setup” specification [15]. Data seg-

ments are short video sequences and matching far-field audiorecordings taken from the above

seminars.

To evaluate how the duration of the training signals impactsthe performance of the system,

two training durations have been considered: 15 and 30 seconds. Test segments of different

durations (1, 5, 10 and 20 seconds) have been used during the algorithm development and

testing phases. A total of 26 personal identities have been used in the recognition experiments.

Each seminar has one audio signal from the microphone number4 of the Mark III array. Each

audio signal has been divided into segments which contain information of a unique speaker.

These segments have been merged to form the final testing segments of 1, 5, 10 and 20 seconds

(see Table 5.1) and training segments of 15 and 30 seconds. Video is recorded in compressed
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JPEG format, with different frame-rates and resolutions for the various recordings.

Far-field conditions have been used for both modalities, i.e. corner cameras for video and

Mark III microphone array for audio as shown in Figure 5.1. Inthe audio task only one array

microphone has been considered for both development and testing phases. In the video task, we

have four fixed position cameras that are continuously monitoring the scene. All frames in the

1, 5, 10, 20 sec segments and all synchronous camera views canbe used and the information

can be fused to find the identity of the concerned person. To find the faces to be identified, a set

of labels is available with the position of the bounding box for each person’s face in the scene.

These labels are provided each one second. The face boundingboxes are linearly interpolated

to estimate their position in intermediate frames. To help this process, an extra set of labels is

provided, giving the position of both eyes of each individual every 200 ms.

The metric used to benchmark the quality of the algorithms inthe CLEAR evaluation is the

Miss Classification Rate (MCR) in percentage.

5.3.2 Experimental Results

Audio-based Identification Results

To find an optimal number of Gaussians for a speaker model, we conducted several speaker

identification experiments with different number of Gaussians in a speaker model. We use

the evaluation data in CHIL 2005 Spring Evaluation [18] to decide the number of Gaussians

for speaker models. This data set has been carried out on the union of the UKA-ISL Semi-

nar 2003 and UKA-ISLSeminar2004 databases. Non-speech segments have been manually

removed both from the training and the testing segments. There are two microphone conditions:

Closed-Talking-Microphone (CTM) and Microphone Array (ARR). The duration and number

of segments selected for the training and testing as improving our system is described in Table

5.2

118



Section 5.3 Data Setup and Experimental Results

Table 5.2:CHIL 2005 Spring Evaluation Dataset (%)

Segment ID Duration Num of CTM segments Num of ARR segments

Train A (15 sec) 30 11 11

Train B (30 sec) 15 11 11

Test 5 1100 682

Table 5.3 and 5.4 show that speaker identification error ratechanges while the number of

Gaussians changes in a speaker model. According Table 5.3 and 5.4, we choose to use 128

Gaussians for the 30-second training condition and 32 Gaussians for the 15-second training

condition.

Table 5.3:Performance with different number of Gaussians for Train B (30-sec) training dura-

tion (%)

Num Gaussians 64 128 256

MCR 0.36 0.27 0.36

Table 5.4:Performance with different number of Gaussians for Train A (15-sec) training dura-

tion (%)

Num Gaussians 16 32 64

MCR 2.82 2.00 2.23

The final results of audio identification on the CLEAR 2006 evaluation dataset are shown in

Table 5.5. We can see from the table that more training data and longer test gets help to reduce

the false identification rate.
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Table 5.5:CLEAR 2006 Audio Person ID in Error Rate (%)

Duration Segments Train A (15-sec) Train B (30-sec)

1 613 23.7 14.4

5 411 7.8 2.2

10 289 7.3 1.4

20 178 3.9 0.0

Video-based Identification Results

In face recognition experiments, face images are aligned according to eye-center coordinates

and scaled to 40x32 pixels resolution. Only every five frame that has the eye coordinate labels

is used for training and testing. The aligned image is then divided into 8x8 pixels resolution

non-overlapping blocks making 20 local image blocks. From each image block 10 unit norm

DCT-0 coefficients are extracted and they are concatenated toconstruct the 200-dimensional

final feature vector. The classification is performed using nearest neighbor classifier. L1 norm

is selected as the distance metric, since it has been observed that, it consistently gives the best

correct recognition rates when unit norm DCT-0 coefficients are used. The distance values are

converted to the matching scores by using the Min-Max rule. The normalized matching scores

are accumulated over different camera views and over image sequence. The identity candidate

that has the highest score is assigned as the identity of the person.

The miss classification rates for different training and testing durations can be seen in Table

5.6. As can be observed from the table, the increase in the training segments’ duration or in the

testing segments’ duration decreases the miss classification rate.
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Table 5.6:CLEAR 2006 Video Person ID in Error Rate (%)

Duration Segments Train A (15-sec) Train B (30-sec)

1 613 46.8 40.1

5 411 33.6 23.1

10 289 28.0 20.4

20 178 23.0 16.3

Multimodal Person Identification Results

In this section we summarize the results for the evaluation of different modalities and the result

improvement with the multimodal technique. In the following tables, we show the identifica-

tion error rate for both audio and video unimodal modalitiesand multimodal fusion. The first

column shows the duration of test segments in seconds. The second column shows the number

of tested segments. Train A and B are the training sets of 15 seconds and 30 seconds.

Table 5.7:Multimodal Person ID in Error Rate (%) with Equal Fusion Weights

Duration Segments
Train A (15-sec) Train B (30-sec)

Audio Video Fusion Audio Video Fusion

1 613 23.7 46.8 29.2 14.4 40.1 19.3

5 411 7.8 33.6 17.7 2.2 23.1 10.0

10 289 7.3 28.0 17.5 1.4 20.4 10.5

20 178 3.9 23.0 13.5 0.0 16.3 7.3
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Table 5.8:Multimodal Person ID in Error Rate (%) with Unequal Fusion Weights

Duration Segments
Train A (15-sec) Train B (30-sec)

Audio Video Fusion Audio Video Fusion

1 613 23.7 46.8 19.4 14.4 40.1 12.9

5 411 7.8 33.6 7.6 2.2 23.1 1.7

10 289 7.3 28.0 6.8 1.4 20.4 2.9

20 178 3.9 23.0 4.5 0.0 16.3 1.1

All 1491 13.8 36.7 11.9 6.8 28.8 6.5

Table 5.7 summarizes the person ID results when audio ID system and video ID system are

fused together using equal weights. Again, it can be observed that the increasing in training

segments’ duration or in test segments’ duration decreasesthe false identification rate. Due

to equal weighting of each modality, the multimodal identification results are better than the

video-only results and worse than the audio-only results. To better combine the audio and video

modalities, we weight the two modalities differently according to the identification performance

of the uni-modality, which means we gave higher weights to audio-only scores for fusion. Table

5.8 shows the performance improvement of the multimodal system by fusion over the audio-

only and video-only systems. From the results we see that fusion of multi modalities can

significantly improve the performance over each of the uni-modalities. Although there is other

sophisticated fusion logic, in this thesis we used simply linear fusion strategy.

Table 5.9 compares the performance of uni-modal and multimodal systems from different

participants. Our audio-based and video-based unimodal systems achieved the best perfor-

mance among three participants. However, notice that although UPC system had worse audio-

based performance and much worse video-based performance,it achieved fusion performance

close to our performance. This indicates fusion strategiesis very crucial in a multimodal sys-

tem.
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Table 5.9:Multimodal Person ID in Error Rate (%) accross different systems

Duration Segments
Train A Train B

Audio Video Fusion Audio Video Fusion

UPC

1 613 25.0 79.8 23.2 16.0 80.4 13.8

5 411 10.7 78.6 8.0 2.9 77.1 2.9

10 289 10.7 77.5 5.9 3.8 74.4 2.0

20 178 11.8 76.4 4.0 2.8 73.0 1.1

All 1491 16.7 78.7 13.3 8.4 77.5 6.8

ISL

1 613 23.7 46.8 19.4 14.4 40.1 12.9

5 411 7.8 33.6 7.6 2.2 23.1 1.7

10 289 7.3 28.0 6.8 1.4 20.4 2.9

20 178 3.9 23.0 4.5 0.0 16.3 1.1

All 1491 13.8 36.7 11.9 6.8 28.8 6.5

AIT

1 613 26.9 50.6 23.7 15.2 47.3 13.7

5 411 9.7 29.7 6.8 2.9 31.1 2.2

10 289 8.0 23.2 6.6 1.7 26.6 1.7

20 178 4.5 20.2 2.8 0.6 24.7 0.6

All 1491 15.8 35.9 13.2 7.4 36.1 6.6

5.4 Chapter Summary

In this chapter, we presented our multimodal person identification system, which combines

speaker identification modality and face recognition modality. We show the evaluation results

of our multimodal person identification results in the CLEAR 2006 evaluation. We achieved

best performance for both unimodal systems. Although the results of the person identification
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system at the CLEAR evaluation are far superior for audio thanvideo recognition, fusion the

two systems brings additional gains. Although the results show that video only provides minor

improvement of the audio recognition, this is not generallytrue. One obvious reason is that

speech is usually much sparser than face images in a multi-camera setup. In the CLEAR evalu-

ations, care has been taken to have segments with speech available. More balanced contribution

from both modalities is expected in real unsupervised scenarios. Also more sophisticated fusion

strategies may be deployed to more efficiently fuse multi modalities.
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Conclusion

6.1 Summary of Results and Thesis Contributions

In this thesis, we conducted research work to improve speaker recognition robustness on far-

field microphones from two directions: to improve robustness of traditional speaker recognition

system based on low-level features and to improve robustness by using high-level features. We

also implemented sytems that support robust speaker recognition, including a speaker segmen-

tation and clustering system aiming at robust speaker recognition in multi-speaker scenarios

and a person identification system by integrating audio and visual modalities.

• We first investigated approaches to improve speaker recognition robustness on far-field

distant microphones, which is a research area has not received much attention. We intro-

duced a reverberation compensation approach and applied feature warping in the feature

processing. These approaches bring significant gain. We proposed four multiple channel

combination approaches to utilize information from multiple sources. These approaches

achieve significant improvement over baseline performance, especially in the case that

test condition can not be covered in the training.
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• We introduced a new approach to model a speaker’s pronunciation idiosyncrasy from

two complementary dimensions: time dimension and cross-stream dimension. Each di-

mension contains useful information for distinguishing speakers pronunciation charac-

teristics. Combining both dimensions achieves significant better performance than that

of each single dimension. The proposed approach has the potential of language inde-

pendence. This research along with work from other researchers in phonetic speaker

recognition inspires other researchers to exploit high-level features for speaker recogni-

tion. In addition, the proposed approach was applied to other classification tasks, such

as language identification and accent identification, and achieved good performance as

well.

• We studied speaker segmentation and clustering across domains such as telephone con-

versations and meetings. We implemented a speaker segmentation and clustering system

which was tested within the NIST Rich Transcription evaluations. It is also a very impor-

tant module in a complete ASR system, such as BN system, meeting system, and lecture

recognition system etc. It provides crucial information for speaker adaptation.

• We integrated speaker recognition modality with face recognition modality and built a

robust person identification system which was tested in the NIST CLEAR06 evaluation.

6.2 Future Research Directions

The speaker recognition problem can be formulated mathematically as follows [44]:

S∗ = argmax
S

P(S|O) O = {X,W,F,C, · · ·} (6.1)

whereS is speaker identity andO is the observation. Observation can take many forms in-

cluding low-level features such as Mel-cepstrumX, word or phone or phrase informationW,

prosodic informationF , and channel informationC (including handheld/handsfree landline,
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wireless, PC microphones, conference room microphones etc) and so on. We can factorize the

problem formula 6.1 into speaker knowledge components withthe assumption thatW andF

are both independent ofC:

S∗ =argmax
S

P(S|O)

=argmax
S

P(S|X,W,F,C)

=argmax
S

P(X|S,W,F,C)

P(X|W,F,C)
∗ P(F |W,S)

P(F |W)
∗ P(W|S)

P(W)
∗ P(C|S)

P(C)
∗P(S)

(6.2)

P(X|S,W,F,C)
P(X|W,F,C) can be considered as text-dependent speaker recognition;P(F |W,S)

P(F |W) can be the ex-

pression of speaker-dependent prosodic modeling;P(W|S)
P(W) can be explained as speaker depen-

dent word/phonetic modeling;P(C|S)
P(C) can be described as speaker’s channel profile; andP(S)

can be considered as a speaker’s profile (prior).

As mentioned before, human listeners are aware of multiple information such as prosody,

word choice, pronunciation, accent, and other speech habits (for example laughs). when recog-

nizing speakers, while traditional systems only rely on seemingly one source of information. As

seen in the high-level speaker recognition research area highlighted by the SuperSID project,

researchers have already started to exploit different types of high-level information for speaker

recognition. However it is still an unfinished research, there are still more high-level features

that have not been investigated such as how a person interactin a multi-party conversations and

a person’s emotion status etc. On the other hand, humans relyon different level of information

under different contexts. Current systems do not aware the contexts and use the different levels

of information equally. More research effort is needed to explore how to use different levels of

information more efficiently.

As shown in Chapter 4, multiple channel information is usefulfor speaker segmentation

and clustering in the meeting scenarios with multiple microphone setups. It is beneficial to

investigate this issue. We have studied how to use information from multiple close-talking

microphones in meeting scenarios for speaker segmentationand clustering as shown in [65].
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Other researchers studied this topic too as shown in [85] [26] [119]. However, only the multiple

close-talking microphone conditions are studied. There has been limited effort in studying the

multiple distant microphone condition.

To solve the sparse data problem for new speakers is important because we will face such

problem in real applications. Approaches are desired to incrementally learn and adapt speaker

models. Other modalities are helpful if available to reliably detect new speakers and identify

previously enrolled speakers.
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Appendix A

Open-Set Speaker Identification

A.1 Introduction

In this section we present how our system performs in the open-set stituation. As mentioned in

the first chapter, speaker identification can be divided intotwo categories: closed-set speaker

identification and open-set speaker identification [34] [35]. Given a set of enrolled speakers

and a test utterance, open-set speaker identification is defined as a twofold problem. Firstly,

it is required to identify the speaker model in the set, whichbest matches the test utterance.

Secondly, it must be determined whether the test utterance has actually been produced by the

speaker associated with the best-matched model, or by some unknown speaker outside the

enrolled set. As shown in figure A.1, the open-set speaker identification can be considered as

closed-set speaker identification plus speaker verification.

The potential errors and difficulties in open-set speaker identification can be analysed as

follows. Suppose thatM speakers are enrolled in the system and their statistical model de-

scriptions areΘ1,Θ2, . . . ,ΘM. If O denotes the feature vector sequence extracted from the test
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Figure A.1:Block diagram of open-set speaker identification system

utterance, then the open-set identification can be stated as:

max
1≤i≤M

{p(O|Θi)} ≷ ζ → O∈











Θk, k = arg max
1≤i≤M

{p(O|Θi)}

unknown speaker model

(A.1)

whereζ is a pre-determined threshold. In other words,O is assigned to the speaker model that

yields the maximum likelihood over all other speaker modelsin the system, if this maximum

likelihood score itself is greater than the thresholdζ. Otherwise, it is declared as originated

from an unknown speaker. It is evident from the above description that, for a givenO, three

types of error are possible:

• False Acceptance(FA):the system accepts an impostor speaker as one of the enrolled

speakers.

• False Rejection(FR):the system rejects a true speaker.

• Speaker Confusion(SC):the system correctly accepts a true speaker but confuses him/her

with another enrolled speaker.

These types of errors are referred to as FA, FR, and SC respectively. Open-set identification

is a two-stage process. For a givenO, the first stage determines the speaker model that yields
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the maximum likelihood, and the second stage makes the decision to assignO to the speaker

model determined in the first stage or to declare it as originated from an unknown speaker. The

first stage is responsible for generating SC error whereas, both FA and FR are the consequences

of the decision made in the second stage.

An important point to note about this two-stage process is that the latter stage is far more

susceptible to distortions in the characteristics of the test utterance than is the former stage.

This is because, in the former stage, since the same test utterance is used to compute all the

likelihood scores, the distortions in the test utterance are likely to be similarly reflected in all

the likelihood scores. As a consequence, the selection of the model that yields the maximum

likelihood is likely to be unaffected. On the other hand, in the second stage, the absolute

maximum likelihood score is compared against a threshold determined a priori and without any

knowledge about the characteristics of the distortion in the test utterance.

It should be pointed out that a task similar to that describedabove (in the second stage

of open-set identification) is also encountered in speaker verification. However, in speaker

verification, the problem is not as challenging. To be more specific, the challenge in open-set

identification can be viewed as a special (but unlikely) scenario in speaker verification in which

each impostor targets the speaker model in the system for which he/she can achieve the highest

score.

Although more sophisticated decision logic may be deployed, our focus is not on this issue.

Our goal is simply to evaluate how our system works under the open-set situation.

A.1.1 Data Description and Experimental Setup

For the set of open-set speaker identification experiments,we use both 3D Distant Microphone

Database and 2D Distant Microphone Database. Each of these databases have 8 microphone

channels recording. There are in total 24 speakers in 3D Distant Microphone Database and 30
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speakers in 2D Distant Microphone Database. We randomly select 27 speakers out of the total

54 speakers as target speakers. The female and male speakersare balanced in the selection.

In the following experimental results report, we use CH1 to CH8to refer to the 8 microphone

channels. The naming keeps the same as for the 3D Distant Microphone Database, while for the

2D Distant Microphone Database, CH1 corresponds to Dis0, CH2 corresponds to Dis1, CH3

corresponds to Dis2, CH4 corresponds to Dis4, CH5 correspondsto Dis5, CH6 corresponds

to Dis6, CH7 corresponds to Dis8, CH8 corresponds to DisL. For each of the target speakers,

we randomly select 60 seconds from his/her training speech to train a 256-mixture GMMs as

the target speaker model. For the impostor model training, we use leave one out strategy. We

exclude one impostor speaker from the entire impostor group. We randomly select 60 seconds

training speech from each of the impostor speakers’ training data in the group and pool them

together to train one 512-mixture GMMs as the impostor model. The remaining speech for

each of the target and impostor speakers are divided into 20 seconds segments and are used

as test trials. There are in total 964 test trials, 451 targetspeaker test trials and 513 impostor

speaker test trials.

A.1.2 Experimental Results

We plot the tradeoff between the three types of errors as a function of a decision threshold.

Figure A.2 shows such tradeoff for the average performance under mismatched conditions as a

function of threshold values. The equal error rate is about 3%.

Figure A.3 summarizes the system performance in total errors with different threshold value

setup under mismatched conditions. Among the three threshold values, 0.8 achieves the best

performance under both matched and mismatched conditions on all the channels. Although we

see different performance on different test channel, our focus is not to discover the reason for

this matter. Our expect is to see the same trend for one threshold setting on all the channels.

Table A.1 shows the detailed average performance under mismatched conditions with threshold
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Figure A.2:Tradeoff of FA, FR and SC errors with different threshold values

equals to 0.8 on all the test channels. This will be our baseline to be compared with later after

multi channel combination approaches are applied.
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Figure A.3:Total errors with different threshold under mismatched condition
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Table A.1:Average performance under mismatched condition with threshold=0.8

Test Channel CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8

FA 0.63 0.19 0.06 0.43 0.00 0.03 0.00 0.06

FR 9.41 12.34 10.67 11.94 16.95 12.07 9.35 9.83

SC 2.09 0.30 0.97 1.52 0.62 2.61 1.16 0.20

Total Error 12.13 12.83 11.70 13.89 17.57 14.71 10.51 10.09

A.1.3 Multiple Channel Combination

We applied the multiple channel combination approaches “Segment based Score Fusion” and

“Frame based Score Competition” as described in chapter 2 in our open-set speaker identifica-

tion experiment under mismatched conditions with our best threshold value, which equals to

0.8. Table A.2 and A.3 present the detailed open-set speakeridentification performance with

“Segment based Score Fusion” and “Frame based Score Competition” approaches applied on

the baseline system respectively. Figure A.4 compares the total errors of the baseline system

with the systems where each of the two multiple channel combination approaches is applied.

No significant improvement is seen on most of the channels by the “Segment based Score

Fusion” approach. On average “Frame based Score Competition” approach gains although it

loses on one of the channels. We can see both approaches significantly reduces the SC er-

ror. This matches our expectation because we already see significant improvement by these

approaches for closed-set speaker identification as presented in chapter 2, while the first stage

of our open-set speaker identification, which can be considered as closed-set speaker identifi-

cation, is responsible for generating the SC errors.

134



Section A.2 Summary

Table A.2:Open-set speaker identification performance with Segment based Score Fusion

Test Channel CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8

FA 7.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FR 3.01 4.02 4.60 2.37 7.48 8.03 2.55 2.85

SC 6.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total Error 17.08 4.02 4.60 2.37 7.48 8.03 2.55 2.85

Table A.3:Open-set speaker identification performance with Frame based Score Competition

Test Channel CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8

FA 9.24 4.51 5.63 7.35 0.37 2.34 2.70 6.91

FR 0.00 0.00 0.00 1.24 0.76 0.00 0.00 0.00

SC 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00

Total Error 9.24 4.51 5.63 8.59 1.51 2.34 2.70 6.91

A.2 Summary

In this section, we show how our system performs in the open-set scenario. Our focus is not to

explore new strategies for open-set speaker recognition, but to test our system in the open-set

situation. We observe that there is trade off between the three types of errors in the open-set

speaker identification. The equal error rate for our system is about 3%. “Segment based Score

Fusion” and “Frame based Score Competition” multi channel combination approaches help the

performance differently. They both reduce the “Speaker Confusion (SC)” error significantly,

the former increases the “False Rejection (FR)” error rate and the later increases the “False
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Figure A.4:Performance comparison of multi channel combination vs baseline

Alarm (FA)” error rate. The “Frame based Score Competition” approach reduce the total error

rate on most of the channels.
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Appendix B

Application of PSR to Other Tasks

We apply the phonetic speaker identification approaches on other classification tasks as well.

In this section, we present the work of accent identificationand language identification with

phonetic speaker recognition approaches.

B.1 Accent Identification

In this section we apply our LSPM-pp approach to accent identification. In the first experi-

ment, we use the LSPM-pp approach to differentiate between native and non-native speakers

of English. The non-native English speaker set contains native speakers of Japanese with vary-

ing English proficiency levels. Each speaker was recorded reading several news articles aloud.

Training and test sets are disjoint with respect to articlesas well as speakers. The data used for

this experiment is shown in B.1

We used 6 of the GlobalPhone phone recognizers in language{CH,DE,FR,JA,KR,PO,SP}.

On the test set of 303 utterances, this approach achieves an accuracy of 97.7%.

In the second experiment, we attempt to further classify non-native utterances according to
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Table B.1:Number of speakers, total number of utterances, total length of audio for native and

non-native classes
native non-native

nspk training 3 7

testing 2 5

∑nutt training 318 680

testing 93 210

∑τutt training 23.1 min 83.9 min

testing 7.1 min 33.8 min

proficiency level. The original non-native data was labeledwith the proficiency of each speaker

on the basis of a standardized evaluation procedure conducted by trained proficiency raters [2].

All speakers received a floating point grade between 0 and 3, with a grade of 4 reserved for na-

tive speakers. The distribution of non-native training speaker proficiencies shows that they fall

into roughly three groups and we create three correspondingclasses for our new discrimination

task. Class 1 represents the lowest proficiency speakers, class 2 contains intermediate speakers,

and class 3 contains the high proficiency speakers. Table B.2shows our division of data.

With the LSPM-pp approach, we achieve accuracy of 61% for this 3-way proficiency clas-

sification task. This result indicates that discriminatingamong proficiency levels is a more

difficult problem than discriminating between native and non-native speakers. The proficiency

classification task attempts to determine the class of an utterance in a space that varies contin-

uously according to the English proficiency of its speaker. While classification of native and

non-native speakers can be described as identifying speakers who are clustered at the far ends

of this proficiency axis.

Overall, the phonetic approach worked well for classifyingutterances from speaker profi-

ciency classes that were sufficiently separable. Like the other applications of this approach,
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Section B.2 Language Identification

Table B.2:Number of speakers, total number of utterances, total length of audio and average

speaker proficiency score per proficiency class

class 1 class 2 class 3

nspk training 3 12 4

testing 1 5 1

∑nutt training 146 564 373

testing 78 477 124

∑τutt training 23.9 min 82.5 min 40.4 min

testing 13.8 min 59.0 min 13.5 min

ave. prof training 1.33 2.00 2.89

testing 1.33 2.00 2.89

accent identification requires no hand-transcription and could easily be ported to test languages

other than English/Japanese.

B.2 Language Identification

In this section, we apply the LSPM-pp approach to the problemof classification of four lan-

guages: Japanese (JA), Russian (RU), Spanish (SP) and Turkish (TU).

We employed a small number of phone recognizers in languagesother than the four classi-

fication languages to demonstrate a degree of language independence which holds even in the

language identification domain. Phone recognizers in Chinese (CH), German (DE) and French

(FR), with phone vocabulary sizes of 145, 47 and 42 respectively, were borrowed from the

GlobalPhone project as discussed in [104].

The data for this classification experiment, also borrowed from the GlobalPhone project but
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not used in training the phone recognizers, was divided up asshown in Table B.3. Data set

1 was used for training the phonetic models, while data set 4 was completely held-out during

training and used to evaluate the end-to-end performance ofthe complete classifier. Data sets 2

and 3 were used as development sets while experimenting withdifferent decision strategies.

Table B.3: Number of speakers per data set, total number of utterances and total length of

audio per language

Set JA RU SP TU

nspk 1 20 20 20 20

2 5 10 9 10

3 3 5 5 5

4 3 5 4 5

∑nutt all 2294 4923 2724 2924

∑τutt all 6 hrs 9 hrs 8 hrs 7 hrs

We achieve 94.01%, 97.57%, 98.96% and 99.31% accuracy on 5s,10s, 20s and 30s test

durations respectively.

The phonetic language identification technique was also applied in our Mandarin Broadcast

News system for the RT-04f (Rich Transcription) evaluation[127]. We have observed a number

of foreign language segments, mostly English, in several Chinese news shows. As they cause

high insertion errors for our Mandarin ASR system, it is beneficial to detect and discard them.

The phonetic language identification technique is used to classify English from Chinese.

Table B.4 shows the effect of language identification on speech recognition performance on

the RT04 evaluation development data set. We can clearly seebig gains by rejecting English

segments from the ASR output.
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Section B.3 Summary

Table B.4:Character Error Rate (CER) on development data set

RT03 Dev04

before Language Identification 5.9% 18.4%

after Language Identification 5.2% 16.6%

B.3 Summary

We applied the same techniques used in phonetic speaker recognition to other non-verbal cues

recognition tasks including accent identification and language identification. Our classification

framework performed equally well in the domains of accent and language identification. We

achieved 97.7% discrimination accuracy between native andnon-native English speakers. For

language identification, we obtained 95.5% classification accuracy for utterances 5 seconds in

length and up to 99.89% on longer utterances. The phonetic language identification technique

was one component in our Mandarin Broadcast News system for the RT-04f Rich Transcription

evaluation. It brought significant gains to the over all system performance.
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