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Abstract

The automatic speaker recognition technologies have degdlinto more and more important
modern technologies required by many speech-aided apiphsa The main challenge for au-
tomatic speaker recognition is to deal with the variabibfythe environments and channels
from where the speech was obtained. In previous work, gosdltehave been achieved for
clean high-quality speech with matched training and testisiic conditions, such as high accu-
racy of speaker identification and verification using cleasgelvand speech and Gaussian Mix-
ture Models (GMM). However, under mismatched conditiond anisy environments, often
expected in real-world conditions, the performance of GNMd&ed systems degrades signifi-
cantly, far away from the satisfactory level. Therefordyustness becomes a crucial research

issue in speaker recognition field.

In this thesis, our main focus is to improve the robustnespetker recognition systems on
far-field distant microphones. We investigate approaach@sprove robustness from two direc-
tions. First, we investigate approaches to improve rolasstifior traditional speaker recognition
system which is based on low-level spectral information. iffeoduce a new reverberation
compensation approach which, along with feature warpirtgerfeature processing procedure,
improves the system performance significantly. We propose multiple channel combina-
tion approaches, which utilize information from multiplar{ffield microphones, to improve
robustness under mismatched training-testing conditiSesondly, we investigate approaches

to use high-level speaker information to improve robusined/e propose new technigues to



model speaker pronunciation idiosyncrasy from two dimemsi the cross-stream dimension
and the time dimension. Such high-level information is etpeé to be robust under different
mismatched conditions. We also built systems that supdast speaker recognition. We
implemented a speaker segmentation and clustering systemgaat improving the robustness
of speaker recognition as well as automatic speech regogrperformance in the multiple-

speaker scenarios such as telephony conversations anthgsee¥We also integrate speaker
identification modality with face recognition modality taild a robust person identification

system.

Vi
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Chapter 1

Introduction

Spoken language is the most natural way used by humans to goitee information. The
speech signal conveys several types of information. Fraspeech production point of view,
the speech signal conveys linguistic information (e.g.ssage and language) and speaker in-
formation (e.g., emotional, regional, and physiologidahm@cteristics). From the speech per-
ception point of view, it also conveys information about gxironment in which the speech
was produced and transmitted. Even though this wide rangefafmation is encoded in a
complex form into the speech signal, humans can easily @eems$t of the information. Such
human ability has inspired many researchers to undersfa@ect production and perception
for developing systems that automatically extract and ggedhe richness of information in
speech. This speech technology has found wide applicadimisas automatic dictation, voice

command control, audio archive indexing and retrieval etc.

The application defines which information in the speechaigarelevant. For example, the
linguistic information will be relevant if the goal is to regnize the sequence of words that
the speaker is producing. The presence of irrelevant indtion (like speaker or environment
information) may actually degrade the system accuracyhiBithesis, we deal with automatic

systems that recognize who is speaking (the speaker'stgei@5] [13].
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It was Lawrence Kersta who made the first major step from sgreiaentification by hu-
mans towards speaker identification by computers when helag2d spectrographic voice
identification at Bell Labs in the early 1960s. His identifioa procedure was based on visual
comparison of the spectrogram, which was generated by alaaten electro-mechanical de-
vice [58]. Although the visual comparison method cannotecagih the physical and linguistic
variation in speech, his work encouraged the introducticsutomatic speaker recognition. In
the following four decades, speaker recognition reseaashduvanced a lot. Some commer-
cial systems have been applied in certain domains. Speaardrition technology makes it
possible to use a person’s voice to control the access tactest services (automatic banking
services), information (telephone access to financiaktations), or area (government or re-
search facilities). It also allows detection of speakens,eixample, voice-based information
retrieval, recognition of perpetrator on a telephone tay detection of a speaker in a multi-

party dialog.

Although the rapid development of speaker recognitiontetdgy is happening, there are
still many problems to be solved. One problem is to undedstahat characteristics in the
speech signal convey the representation of a speakers.rélates to understanding how hu-
mans listen to the speech signal and recognize the speaker.ofher problem is to make

automatic speaker recognition systems robust under diftexonditions.

1.1 Speaker Recognition Principles

Depending on the application, the general area of speag&egnéion can be divided into three

specific tasks: identification, detection/verificationgd @egmentation and clustering ‘[35]‘[13]‘[91]‘[92].

The goal of thespeaker identificatiomask is to determine which speaker out of a group of
known speakers produces the input voice sample. There arentvdes of operation that are

related to the set of known voices. In the closed-set modesystem assumes that the to-be-
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determined voice must come from the set of known voices. @ike, the system is in open-set
mode. The closed-set speaker identification can be comsidera multiple-class classification
problem. In open-set mode, the speakers that do not belotigeteet of known voices are

referred to as impostors. This task can be used for foremgbaations, e.g., speech evidence

can be used to recognize the perpetrator’s identity amoveyakknown suspects.

In speaker verificationthe goal is to determine whether a person is who he or she gl
be according to his/her voice sample. This task is also knasvwoice verification or authen-
tication, speaker authentication, talker verification othentication, and speaker detection. It
can be considered as a true-or-false binary decision prodies sometimes referred to as the
open-set problem, because this task requires distingigshclaimed speaker’s voice known to
the system from a potentially large group of voices unknowthe system. Today verification
is the basis for most speaker recognition applications badrtost commercially viable task.
The open-set speaker identification task can be considsrédanerger of the closed-set iden-
tification and open-set verification tasks. It performs Ildtesed-set identification for known
speakers but must also be able to classify speakers unkiodive system into an "unregistered
speaker” category. Speaker verification can be used foriggapplications, such as, to control

telephone access to banking services.

Speaker segmentation and clusterteghniques are used in multiple-speaker scenarios. In
many speech recognition and speaker recognition apmitstiit is often assumed that the
speech from a particular individual is available for prairg. When this is not the case, and
the speech from the desired speaker is intermixed with gbpeakers, it is desired to segregate
the speech into segments from the individuals before thegréton process commences. So
the goal of this task is to divide the input audio into homaggms segments and then label them
via speaker identity. Recently, this task has received ratiention due to increased inclusion
of multiple-speaker audio such as recorded news show orimgsein commonly used web

searches and consumer electronic devices. Speaker segimerind clustering is one way to
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index audio archives so that to make the retrieval easier.

According to the constraints placed on the speech usedmcatna test the system, Automatic
speaker recognition can be further classified into textedeent or text-independent tasks. In
text-dependent recognition, the user must speak a giveasphtnown to the system, which
can be fixed or prompted. The knowledge of a spoken phraseroaide better recognition
results. In text-independent recognition, the system da¢know the phrase spoken by the
user. Although this adds flexability to an application, ihdeave redcued accuracy for a fixed

amount of speech.

Running a speaker recognition system typically involves phases.In the first phase, a
user enrolls by providing voice samples to the system. Tls¢esy extracts speaker-specific
information from the voice samples to build a voice modellw# enrolling speaker. In the
second phase, a user provides a voice sample (also referrasl test sample) that is used
by the system to measure the similarity of the user’s voicthéomodel(s) of the previously
enrolled user(s) and, subsequently, to make a decisionspé@ker associated with the model
that is being tested is referred to as target speaker or al#itm a speaker identification task,
the system measures the similarity of the test sample ta@kd voice models. In speaker
verification task, the similarity is measured only to the mlodf the claimed identity. The
decision also differs across systems. For example, a clesed entification task outputs the
identity of the recognized user; besides the identity, agneget identification task can also
choose to reject the user in case the test sample do not belang of the stored voice models;

a verification task chooses to accept or reject the ideniitiync

1.2 Basic Structure of a Speaker Recognition System

Like most pattern recognition problems, a speaker recayngystem can be partitioned into

two modules: feature extraction and classification. Thesifecation module has two compo-
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Speaker Models

________________________________________

W Feature | | Pattern ) ;
| Extraction| . Matching [ ] Decision |——>

Classification

Figure 1.1:Generic speaker recognition system

nents: pattern matching and decision. Figure 1.1 depicenang speaker recognition system.

The feature extraction module estimates a set of featuvestie speech signal that represent
some speaker-specific information. The speaker-specificnmation is the result of complex
transformations occurring at different levels of the spepmduction: semantic, phonologic,
phonetic, and acoustic [6], [13]. The semantic level death wansformation caused on the
speech signal according to the communicative intent aridgliateraction of the speaker. For
example, the vocabulary choice and the sentence formnla#in be used to identify the socio-
economic status and/or education background of the sp@@eﬂ'he phonological level deals
with the phonetic representation of the communicativenttéor example, duration and se-
lection of phonemes, intonation of the sentence can be osdéntify the native language and
regional information. The phonetic level deals with thelirsion of the phonetic representa-
tion by the vibration of the vocal cords and the movementsrti€dators (lips, jaw, tongue,
and velum) of the vocal tracJESS]. For example, speaker camaidifferent set of articula-
tor movements to produce the same phoneme [81]. The acdesticdeals with the spectral
properties of the speech signal. For example, the dimessbthe vocal tract, or length and
mass of vocal folds will define in some sense the fundamenthlrasonant frequencies, re-
spectively. Despite the variety of speaker-specific infation, the set of features should have
the following characteristics [81], [122]:

e occur naturally and frequently in normal speech
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be easily measurable

have high variability between speakers

be consistent for each speaker

not change over time or be affected by the speaker’s health

not be affected by reasonable background noise nor depesykaific transmission char-

acteristics

show resistance to disguise or mimicry

In practice, not all of these criteria can be applied to thapeeters used by the current systems.

The pattern matching module is responsible for comparimgdstimated features to the
speaker models. There are many types of pattern matchirgpeietnd corresponding models
used in speaker recognition [13]. Some of the methods irdidden Markov models (HMM),
dynamic time warping (DTW), and vector quantization (VQ)olren-set applications (speaker
verification and open-set speaker identification), thenestied features can also be compared
to a model that represents the unknown speakers. In a véioficiask, this module outputs a
similarity score between the test sample and the claimedtitgte In an identification task, it
outputs similarity scores for all stored voice models. Tleeision module analyzes the simi-
larity score(s) (statistical or deterministic) to make &id®n. The decision process depends
on the system task. For closed-set identification task, gogstbn can just select the identity
associated with the model that is the most similar to thegastple. In open-set applications,
the systems can also require a threshold to verify whetleesithilarity is valid. Since open-set
application can also reject speakers, the cost of makingran ieeed to be considered in the
decision process. For example, it is more costly for a bardltav an impostor to withdraw

money, than to reject a true bank customer.
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The effectiveness of a speaker recognition system is medslifferently for different tasks.
Since the output of a closed-set speaker identificatioresyst a speaker identity from a set of
known speakers, the identification accuracy is used to med#se performance. For the speaker
detection/verification systems, there are two types ofrefatse acceptance of an impostor and
false rejection of a target speaker. The performance measam also incorporate the cost
associated with each error, which depends on the applicati@r example, in a telephone
credit card purchase system, a false acceptance is vety;dos toll fraud prevention system,

false rejection can alienate customers.

1.2.1 Acoustic Features

All audio processing techniques start by converting the saeech signal into a sequence of
acoustic feature vectors carrying characteristic infdramaabout the signal. This preprocess-
ing module (feature extraction) is also referred to as “frend” in the literature. The most
commonly used acoustic vectors are Mel Frequency Cepstrdfi€iests (MFCC) [22], Lin-
ear Prediction Cepstral Coefficients (LPCC) [70], and Percéptim@ar Prediction Cepstral
(PLPC) Coefficients@S]. All these features are based on tleetsgd information derived
from a short time windowed segment of speech. They diffemigan the detail of the power
spectrum representation. MFCC features are derived dirércin the FFT power spectrum
as shown in figure 12, whereas the LPCC and PLPC use an alhpmiel to represent the
smoothed spectrum. The mel-scale filterbank centers andwWidtins are fixed to follow the
mel-frequency scale, giving more detail to the low frequescLPCC features can be consid-
ered as having adaptive detail in that the model poles mofié ttee spectral peaks wherever
they occur. The detail is limited mostly by the number of godeailable. PLPC features are
a hybrid between filterbank and all-pole model spectralesgntation. The spectrum is first
passed through a bark-spaced trapezoidal-shaped filtedvahthen fit with an all-pole model.
The details of the PLPC representation is determined by thaHilterbank and the all-pole
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Figure 1.2:Block-Diagram of Extracting MFCC

model order. The spectral representation is transformegpstral coefficients as a final step.
This is done because of the (near) orthogonalizing propdrtiye cepstral transformation. The
filterbank representations are transformed directly byscigite Cosine Transform (DCT). The
all-pole representations are transformed using the re®ufsrmula between prediction coef-
ficients and cepstral coefficients [88]. In all cases, dicay the zeroth cepstral coefficient
results in energy normalization. PLPC and MFCC features aegl in most state-of-the-art
automatic speech recognition systems [%{123]. The giffecess of LPCC features for auto-
matic speaker recognition was shown in [5] [6]. However, MHE&tures are used in more and
more speaker recognition applications. For example, midbegparticipating systems in NIST
speaker recognition evaluations in 1998 used MFCC featurdssame systems used LPCC
features@]. Following the trends in many state-of-thtespeaker recognition systems (e.g.
94]), MFCC coefficients (without energy terr@{) and with derivatives) are used as acoustic

feature vectors in this thesis, unless otherwise mentioned

1.2.2 Gaussian Mixture Model (GMM)

A GMM is a mixture of several Gaussian distributions and isdug estimate the Probability
Density Function (PDF) of a sequence of feature vectors. likkBhood of a model (GMM)

given observation is then estimated as:

M
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whereM is the number of Gaussian distributions in the GMM. The paians of these
distributions,w;, 1, andZ;, are respectively the weight, mean, and diagonal covagiamatrix
of theith distribution in the GMM. Given a sequence of obeservatiarimes, the parameters of

a GMM can be trained via EM algorithm to maximize the likelilooof the data.

The observations ilX are assumed to be independent and identically distributed. )
Accordingly, the likelihood of a model (e.g. a GMM or an HMMagameteried by given

obeservation sequengeis estimated as:
N
P(X|6) =[] P(*n[6) (1.2)
n=1

Although the strong assumption that the observations atep@ndent conceals the tempo-
ral aspects of the speech signal, GMM has been extensively s speaker modeling in
text-independent speaker recognition applicatil?ns [9he GMM has several properties that

motivate their use for representing a speaker:

e One of the powerful properties of the GMM is its ability to fiosismooth approximations
to arbitrarily shaped density. The GMM can be viewed as arpatac pdf based on a
linear combination of Gaussian basis functions capablepfesenting a large class of

arbitrary densities

e GMM can be considered as an implicit realization of probatid modeling of speaker
dependent acoustic classes with each Gaussian componeasponding to a broad

acoustic class such as vowels, nasals and fricatives etc.

1.2.3 Speaker Detection Framework

The goal of the speaker detection task is to determine whatBpecified speaker is speaking

during a speech segment. Since it is assumed that the spegciest has only speech from
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Figure 1.3:Speaker detection system framework

one speaker, this task is also known as single-speakerthhet&]. The problem of speaker

detection can be formulated as a hypothesis testing of twaay-exclusive hypotheses:

e Ho: target speaker is present,

e Hj: target speaker is not present.

Since there are only two hypotheses, the likelihood rats ileused to make a decision. The
likelihood ratio test is a comparison of the likelihood calietween the two hypotheses and a
threshold. A wrong decision can cause two types of errorpeTyerror (miss) happens when
the null hypothesisHj) is rejected when it is true. Type Il (false alarm) error happ when
the null hypothesis is accepted when the alternative hygsithH;) is true. Furthermore, the
application can determine a cost for every decision. Fomgte, the cost of false acceptance
decision has a more damaging effect than a false rejectioisida in a telephone credit card
purchase system. Therefore, the probability and costsceged with the errors have to be

considered when making a decision rule (i.e., selectingldugsion threshold).

Figure 1.3 shows the main components of a speaker detegttens based on the likelihood

ratio test. The features extracted from the test segmenisse to compute the likelihoods of

10



Section 1.2 Basic Structure of a Speaker Recognition System

the hypotheses. The null hypothesis is represented by ipetispeaker model. The alternative
hypothesis is represented by the impostor model that ctaearaes all the unknown speakers.
The estimation of the likelihoods depends on specific modstsl to represent the target and
imposter hypothesis. For example, a system can assumehth&tdture space can be repre-

sented by a Gaussian distribution, so that the models amadla@ and variance parameters.

The target-speaker and impostor models are estimatedra i@ target-speaker models are
estimated using training data from the respective spedkerestimation of the impostor model
poses a more complex task because it must represent theesggake that is complementary
to the target speaker. The method to define a speaker se¢fitasents the speaker space is still
under invesgqatiorlEM]H)O]. Typically, the set of urdam speakers can be a large number
of speakers [95] or a collection of “cohort” speakers [99heTimpostor model is also know as

universal background model (UBM) [94].

1.2.4 Speaker Segmentation and Clustering Framework

The goal of a speaker segmentation and clustering systemdiwitle a speech signal into a
sequence of speaker-homogeneous regions. Thus, the ofigugh a system provides the an-
swer to the question, “Who spoke when?”. Knowing when eachlksrds speaking is useful
as a pre-processing step in automatic speech recognit8R)Aystems to improve the qual-
ity of the output. Such pre-processing may include vocalttiangth normalization (VTLN)
and speaker adaptation. Automatic speaker segmentatebal@astering may also be useful in

information retrieval and as part of the indexing infornoatof audio archives.

Dividing an audio recording into speaker-homogeneousoregpresents many challenges.
One challenge is to identify the locations of the boundabieisveen speakers - the “speaker
segmentation” problem. Another challenge is to identifyichhportions of the recording be-

long to which speakers - the “speaker clustering” problemdifionally, the speaker clustering

11
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Figure 1.4:Speaker Segmentation and Clustering System Flow

problem requires that we correctly identify how many unicpeakers occur in the record-
ing. Speech researchers have proposed many techniquesvimgsthe “Who spoke when?”
problem. Most of these methods first segment and then cltistedtata. The segmentation is
either assumed to be known 17][1&9][113] or is performetbmatically prior to clustering
108]%472]. However, approaches such as these, in whichegenentation and clustering are
performed sequentially, have limitations. In the formeseahe correct segmentation is rarely
known a priori for practical applications. In the latter eathe errors made in the segmentation

step can degrade the performance of the subsequent ahgsseep.

Figurel 1.4 shows a typical speaker segmentation and diugtsystem work flow. It usu-
ally contains two key steps: Speaker Segmentation and 8p€adlstering. After the feature
vectors are extracted from the audio stream, the audiorsti®divided into homogeneous seg-
ments according to speaker identity, environmental caondénd channel condition, and then
the speech segments are clustered into homogeneous slidet@lty according to speaker iden-

tity. Normally segmentation and clustering are conductsgguientially. However, segmentation

12
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and clustering operations can also be conducted inteedgtiwhich means the segmentation

process can use the clustering feedback and these two steftei@te multiple times.

1.3 Robust Speaker Recognition Applications

Speaker recognition technologies have wide applicati@asar Here we list some example

applications of speaker recognition technologies.

e Security: speaker recognition technologies can providasaction authentication, fa-
cility or computer access control, monitoring, telephowécg authentication for long-

distance calling or banking access etc.

e Personalisation: with speaker recognition technologms,can implement intelligent
answering machines with personalized caller greetingszamebuild personlizied dialog
systems: a dialog system can recognize the user, greet tostredirectly, and direct
the user through the system to destination successfullghaater path according to the

user’s profile.

e Audio Indexing: speaker recognition technologies can ®automatic speaker label-

ing of recorded meetings for speaker-dependent audio ingex

¢ Information Retrieval: speaker recognition can provideaywo manage and access the

multimedia databases, which is to retrieve informatioroadinig to interested speakers.

e Speaker Tracking: it is desired to know who is speaking ine¢tenference especially
when there are many attandants in the tele-conference andtténdants are not very

familiar with each other.

All these applications require robust speaker recognitemhniques. For example in the

telephone-aided services, users may call in under all kihdsoustic conditions (in the office,

13
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on the street etc.) and use different telephone networksl{liae or cellular). In the meet-
ing scenarios, participants may talk while moving arounzirfg the microphone in different
directions and different distances. Mismatched condstioray be encountered at any time in
these cases. Therefore robustness is one of the critidarédbat decide the success of speaker

recognition in these applications.

1.4 The Goal of the Thesis

The most significant factor affecting automatic speakesgedion performance is the variation
in the signal characteristics (intersession variabilitg &ariability over time). Variations arise

from the speakers themselves as well as from the recordishi¢ransmission channels, such as:

Short-term variation due to the speaker’s health and emstio

e Long-term changes due to aging
¢ Different microphones

Different background noises (closed environment vs. opeir@nment etc.)

It is well known that samples of the same utterance recordéunsession are much more
highly correlated than samples recorded in separate sessithis is due to the fact that the
speaker and channel effects are bound together in spectndnhence speaker and channel
characteristics are both involved in the features that aszlun speaker recognition systems.
Therefore anything that affects the spectrum can causdgunatin speaker recognition. Unlike
speech recognition systems, which may average out thesgsifsing large amounts of speech,
speaker recognition systems cannot do this since thereualydimited amount of enrolled

speech. So it is important for speaker recognition systenastommodate to these variations.

14
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A majority of the speaker models, including the Gaussiantunéx models, are based on
modeling the underlying distribution of feature vectorsnir a speaker. When the speech is
corrupted, the spectral based features are also corrupigda@their distributions are modi-
fied. Thus, a speaker model trained using speech from oneofyperrupt environment will
generally perform poorly in recognizing the same speakerguspeech collected under dif-
ferent conditions since the feature distributions are ndfermnt. Various studies of speaker
recognition systems using degraded or distorted spee@hdimwn a dramatic decrease in per-
formance{AH@S]. Current speaker recognition researchaislly focus on recognition under
controlled conditions such as Switchboard telephone $peeuich is close-talking speech. A
large amount of effort is still needed in research about lspeegecognition robustness under

unlimited conditions in open environment with distant mjginones.

In this thesis, we carry out research to improve the robstrfier speaker recognition on
distant microphones from two levels: to improve robustrfesghe traditional system based
on low-level acoutstic features and to improve robustnessguhigh-level features.From the
low-level, we introduced a reverberation compensatiornr@ggh and applied feature warping
in the feature processing of the distant signals. We praposdtiple channel combination ap-
proaches to alleviate the issues of acoustic mismatcheardield speaker recognition. From
the high-level, we explored phonetic speaker recogniiiomhich we try to capture high-level
phonetic speaker information and model speaker pronuanidiynamics using such informa-

tion.

We also implement systems that support robust speakermémoy We studied speaker seg-
mentation and clustering and implemented a system aimigg@d performance in multiple-
speaker scenarios and to be portable across domains. W&igate its impact on automatic
speech recognition as well. We also integrate the audio attiomperson identification modali-

ties (speaker idenitification and face recognition) todbairobust person identification system.
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1.5 Contributions

In this thesis, we conduct research to improve speaker retog robustness on far-field mi-

crophones from two levels with following contributions:

e We investigated far-field speaker recognition on multigktaht microphones, which is
a research area has not received much attention. We inedduoeverberation compen-
sation approach and applied feature warping in the featta®ggsing. These approaches
bring significant gain. We proposed four multiple channehbmation approaches to uti-
lize information from multiple sources to alleviate the nhal mismatch effects. These
approaches achieve significant improvement over basedirferpnance, especially in the

case that test condition can not be covered in the training.

e We introduced a new approach to model a speaker’s pronumeidiosyncrasy from two
complementary dimensions: time dimension and cross+stdimension. Each dimen-
sion contains useful information for distinguishing spe@kpronunciation characteris-
tics. Combining both dimensions achieves significant bgteformance than that of
each single dimension. The experimental results sugghasthe proposed approach is
language independent. This research along with othern&saephonetic speaker recog-
nition has inspired ongoing research by others in using-teghl features for speaker
recognition. In addition, the proposed approach was agpiether classification tasks,
such as language identification and accent identificatioh aghieved good performance

as well.

¢ We studied speaker segmentation and clustering acrossin®swch as telephone con-
versations and meetings. We implemented a speaker segrmopraad clustering system
which was tested within the NIST Rich Transcription evaluas. It is also a very impor-
tant module in a complete ASR system, such as BN system, myeststem, and lecture

recognition system etc. It provides crucial information $peaker adaptation.
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¢ We integrated speaker recognition modality with face redtogn modality and built a

robust person identification system which was tested in t8INCLEAROG evaluation.

1.6 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 describes far-field speaker recognition on distanicrophones. Reverberation
compensation, feature warping and four multiple channetlwoation approaches are intro-
duced. We will show that all of them bring significant impravent for speaker identification

on distant microphones. We also evaluate how our systeronperinder open-set mode.

Chapter 3 presents phonetic speaker recognition. It exglaw we capture phonetic infor-
mation to model speaker pronunciation dynamics in the timesdsion and the cross-stream
dimension. We will show that both dimensions contain usefidrmation for distinguishing
speakers and combining both dimensions can perform mudértieén using only one of the

dimensions. We will also show its application on far-fieléaker recognition.

Chapter 4 discusses speaker segmentation and clusteringuilVgaow the system perfor-

mance in different domains and discuss its impact on spesdynition.

Chapter 5 presents the person identification system whielyiiates speaker recognition and
face recognition modalities. The system performance inNH&T CLEAROG6 evaluation is

presented.
Chapter 6 concludes the thesis and discusses some futucgatse

Appendix A shows the performance of our speaker identificaBystem under open-set
mode and Appendix B presents some extra efforts of applyhmanetic speaker recognition

approaches on other tasks such as language identificatibacaent identification.
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Chapter 2

Far-Field Speaker Recognition

2.1 Motivation

As discussed in previous chapter speaker recognition oy has a wide range of applica-
tions and many potential applications require hands-foe@d capture, such as automatic teller
machine authentication, the production of video confesemnanscripts, and security access to

buildings or vehicles etc. In such applications, hands-bperation is preferable.

Speaker recognition has achieved fairly good performammeucontrolled conditions as
reported in the NIST annual speaker recognition evalug However, real world condi-
tions differ from laboratory conditions. Mismatches eXistween training and testing phases,
such as wide band vs. narrow band, quite room environmemtoisy street environment, and
land-line channel vs. cell phone channel etc. These factmmsequently induce performance
degradation in automatic speaker recognition systems.dégeadation becomes more promi-
nent as the microphone is positioned more distant from tlealsgr [53], for instance, in a
teleconferencing application. While the topic of far-fiefgeech recognition has been investi-

gated for some time, to date, speaker recognition has netvextthe same attention.

In this chapter we investigate techniques to improve thasbiess of far-field speaker recog-
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nition in the meeting scenarios with a multiple hands-frestasht microphone setup. We intro-
duce a new reverberation compensation approach, whichaudiéferent noise estimation com-
pared to the standard spectrum subtraction approach. W f@apure warping in the acoustic
feature processing in our system. The experimental resht® that significant improvements
were achieved over the baseline system. Furthermore, pfeuliands-free microphones are
easy to setup and are realistic in many real scenarios. fdrereve studied possible gains by
using information from more than one far-field microphoneuFmultiple channel combination
approaches are investigated to capture useful informdteon multiple distant microphones.

These approaches give additional large improvement oedodiseline system.

2.2 Related Work

Accurate hands-free far-field speaker recognition is diffidue to a number of factors. Chan-
nel mismatch as well as environmental noise and reverloeraie the two most prominent
ones. During the past years, much research has been coddowtrds reducing the effect of
channel mismatch. Generally, robustness of a recognirebeaccomplished at three different

levels:

e The acoustical level, giving rise to speech enhancemehhigges that may improve the

SNR of the input signal

e The parametric level, by means of parametric represemistid speech characteristics

which may show immunity to the noise process

e The modeling stage, combining adequate models of noise lead signal in order to

recognize noisy speech

To provide robustness to additive acoustic noise, for sirgdlannel condition, the well-

known approach is the spectral subtraction procedlre [9]eMIhe noise process is stationary
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and speech activity can be detected, spectral subtraciardirect way to enhance the noisy
speech. For multi-sensor array condition, performing glelad-sum beam-forming is the most
direct approac%?ﬁl] [83]. The underlying idea of theheme is based on the assumption
that the contribution of the reflections is small, and thatkmew the direction of arrival of
the desired signal. Then, through a correct alignment optrase function in each sensor, the
desired signal can be enhanced, rejecting all the noisy oosmis not aligned in phase. Al-
though microphone arrays have the benefit of providing a legél of enhancement, they need
specific equipment and setup as well as knowledge of rooms#icewor speaker’s location to

perform enhancement.

At the parametric level, the most well-known approachestiuce mismatch are Cepstral
Mean Subtraction (CMSﬂBB] and RASTJ;[46]. CMS and RASTA afpério remove con-
volotional channel effects. In CMS the mean of the cepstrators is subtracted in order to
high-pass filter the original cepstral coefficients:

1 N
Yin =X = 3 i
RASTA processing of speech again high-pass filter the calpstefficients with the following
different equation:

y[n] =x[n] —x[n— 1] +0.97xy[n—1]

However, channel mismatch and environmental noise cdrcatike lots of errors after CMS
and RASTA. To deal with additive noise, a feature warpinditegue had been proposed that
transforms the distribution of cepstral features to a saamshdlistribution [83]. This technique

was reported to give more improvement than standard teaksiq

To provide robustness at the modeling level, one commonoagpris to assume an explicit
model for representing environmental effects on speedhlrfea‘[%] ‘[126] and use this model
to construct a transformation which is applied either tortiael space or to the feature space

to decrease the mismatch. Though this model-based appsbaas significant improvement,
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it requires prior knowledge of noise statistics and extesomputation to adapt the models of

clean speech to a new environment.

Our multiple channel combination approaches are impyiclated to the ensemble meth-
ods in machine learning. Ensemble methods are learningitilges that construct a set of
classifiers, then combine their individual decisions in sdashion, in order to classify new
examples. It has been shown that even a combination of “welassifiers can result in a
“strong” composite classifier, whose classification perfance is much better than that of any
single classifier. The ensemble approach is also known aBukien of Models, Mixture of
Experts, Committee of Learners, Multiple Classifier Systemngeosus Theory, as well as
by other names. IAT[ZS], Dietterich gives a deeper analysisvhen ensembles can improve
performance, or why it is not possible to find a single classtfiat works as well as an ensem-
ble. He shows that the strength of ensembles lies in its ctanpe and flexibility in dealing
with the following three situations: the training data mayt provide sufficient information
to choose a single best classifier; the learning algorithp nwd be able to solve the difficult
search problem; and the hypothesis space may not contatruthé&nction. The key issue of
constructing a successful ensemble is that the individaakdiers need to perform better than
random guessing and be diverse. Although we do not providg ptoof of whether these two

factors hold for our combination approaches, the expertaieasults match our expectations.

2.3 Databases and Experimental Setup

2.3.1 3D Distant Microphone Database (3D DMD)

To investigate robust speaker recognition with distantrapbones, a speaker database was
collected at the Interactive Systems Laboratories (ISla)immeeting room using multiple distant

microphones. The left hand-side of Figure|2.1 illustrates distant microphone setup. Five
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(@

Figure 2.1:Microphone setup in 3D DMD collection

microphones (labeled as 1 to 5) are hanging from the ceiiiigle three microphones (6, 7,

and 8) are set up on the meeting table. We used miniatureodduabindenser microphones that
are very similar to omni-directional microphones. The tighnd-side of Figure 2.1 illustrates
the positioning of these 8 microphones with respect to tleakpr. The cubical grid indicates
the distance defined by the grid, where each unit correspand$ meters. The vertical grid

is set to 4. Since the microphones are distributed in the 3i2espwe call this database 3D
Distant Microphone Database in order to distinguish it vaittother database collected at ISL

where the microphones are distributed in a 2D space as Heddan 2.3.2.

Since the speaker (sound source) is not opmi-directiohalicrophones which have the
same Euclidean distance to the speaker do not receive tresignal. Therefore, the distance
of a speaker to a microphone is defined to be the Euclideandigtdnce (horizontally and
vertically) penalized by both the horizontal and verticagkes between the speaker (sound
source) and the microphone (the receiver). For examplegjitance of channel 6 is computed

as follows:
V22432

B cogarctar())

D(6) —43 (2.1)

which is the Euclidean distance in horizontal plane dividgdhe cosine of the angle between
the sound source and receiver - microphone 6 - in horizottaakp There is no vertical distance

and no vertical angle penalty for this channel because teakgp sits at the table in the same
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horizontal plane as the table microphone 6. For examplajigtance of channel 2 is computed

as follows

- VR R

- cog(arctar( 7)) cogarctar(3))
which is the Euclidean distance in both horizontal and geltplanes divided by the cosine

D(2) =10 (2.2)

values of the angle in horizontal plane and vertical plarspeetively. The distance of other

channels is computed similarly.

D(7) ZCOE(O) =2 (2.3)
Vi3
V2242
D(5) VIS 44 _114 (2.6)
cogarctar(g)) cogarctar —)) '
D(4) — Vit 4 +4° — 12 2.7)
[1— codarctar{4))] cos(arctar(ﬁ)) '
D(1) = V14344 _ 145 2.8)

[1— codarctar(3))] cos(arctar(ﬁ))

There are 24 speakers (4 female, 20 male) in total in the 3faBisMicrophone Database.
Each speaker has one session recording, in which the spealserequired to talk about a
selection of 10 given topics of personal interest in a spwnas free speaking style. The
speech duration varies from 8 minutes to 20 minutes depgradirthe subjects’ verbosity. Two
minutes of speech was randomly chosen from the first 80% o&akgy’s entire recording as
training data for that speaker. The remaining 20% of speexhsplit into 20 seconds segments,
each of which is used as one test trial. Although using a sisgésion for training and test will
produce optimistic results, the degradation due to usingrophones at varying locations is
captured with this experimental design. There are in to8 test trials. We assume that the

test speaker is one of the enrolled speakers, which meassd:ket speaker recognition is
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evaluated in this chapter.

2.3.2 2D Distant Microphone Database (2D DMD)

A second database containing speech recorded from micneshet various distances was also
collected at the Interactive Systems Laboratories in 200@e room was different than that
used for the 3D DMD. It was larger and more noisy. The datalbas¢ains 30 speakers (16
female, 14 male) in total. From each speaker five sessionbémmrecorded where the speaker
sits at a table in an office environment, reading an articlee @rticles are different for each
session. Each session is recorded using eight microphomesallel: one close-talking micro-
phone (Sennheizer headset), one Lapel microphone wornebgpbaker, and six other Lapel
microphones. The latter six are attached to microphonelstsitting on the table or beyond the
table, at distances of 1 foot, 2 feet, 4 feet, 5 feet, 6 feet&afekt to the speaker, respectively.
Tables and graphs shown in this chapter use “Dis0” to reptesese-talking microphone chan-
nel, “DisL” to represent speaker-worn microphone chanaed] “DisN” (N > 0) to refer to the
n-feet distance microphone channel. The upper part in Eig2 gives an illustration of the
overlook of the microphone arrangement with respect to geaker. Different from the 3D
Distant Microphone Database where the microphones arghditgd in different horizontal
and vertical planes, the microphones in this database are 8& same vertical plane, there-
fore we call it 2D Distance Microphone Database. The lowet ipaFigure 2.2 illustrates the
microphone position in the same vertical space. Microphdis® and Dis8, which stand on

the floor beyond the table, are higher than the other six mluoes.

For each speaker, we randomly select 60 seconds from thedssion as training data. The
remaining data was split into 20-seconds segments and gdedtdrials. There are in total 60

test trials.
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Figure 2.2:Microphone setup in 2D DMD collection

2.3.3 ICSI Meeting Database

The ICSI Meeting Database [50] is a collection of 75 meetinigils 8imultaneous multi-channel
audio recordings collected at the International Computére Institute (ICSI) in Berkeley.

There are a total of 53 unique speakers in this corpus. Wetsel@4 speakers for training
and testing based on their positions and whether they hamggérnotal speaking time, Figure
2.3 is a simple diagram of the distant table microphone gearent in the ICSI meeting room
and the speaker position we selected. The table microphamedesktop omni-directional

Pressure Zone Microphones (PZM). They were arranged inggstad line along the center
of the conference table. Ninety seconds of speech was rdgydmiected from meetings for

each speaker as training data. The remainder speech wasousesting. We use the manual
transcription to keep the test segments as they are if theg wat longer than 20 seconds.

Otherwise the segment is split into several 20 seconds chdrilere are 397 test trials in total.
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Figure 2.3:Distant table microphone setup in ICSI meetings

2.3.4 Speaker Modeling and Performance Measure

In our system a GMM with 128 mixtures was trained for each kpeasing the EM algorithm.

The identification decision is made as follows
f— k f— .o e
s=arg nE(ax(L(X]O )) k=12.--'S (2.9)

wheresis the recognized speaker identiBjis the total number of speakers, dnk|0) is the
likelihood that the feature sét was generated by the GM®@* of speakek, which contains

M weighted mixtures of Gaussian distributions
0 = (Am,N(tm, Zm)) ,m=1,2,-- | M (2.10)

whereM is the number of Gaussians aNg, un, andZ,, are respectively the weight, mean,

and diagonal covariance matrix of thé” distribution in the GMM.

The system performance is measured using recognition acguhich is the percentage of

correctly recognized test trials over all test trials.
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Chapter 2 Far-Field Speaker Recognition

2.4 Feature Processing to Far-Field Effects

2.4.1 Reverberation Compensation

A speech signal recorded with a distant microphone is mavagto be degraded by additive
background noise and reverberation. Considering room &icsuas a linear shift-invariant

system, the receiving signg(t) can be written as,
y[t] = X[t] « h[t] + n[t] (2.11)

where the source signalt] is the clean speecHt] is the impulse response of room rever-
beration, andhft] is room noise. Cepstrum Mean Subtraction has been used stidbeto
compensate the convolution distortion. In order for CMS tetbective, the length of the chan-
nel impulse response has to be shorter than the short-tieerapanalysis window which is
usually 16ms-32ms. Unfortunately, the duration of impuksgponse of reverberation usually
has a much longer tail, more than 50ms. Therefore traditiGhS will not be as effective

under these conditions.

Following the work of PanLLSZ], we separate the impulse raspalt] into two partshy|t]
andhy|t], where,
h[t] = ha[t] +8(t — T)ha|t]

halt { hit] t<T

0 otherwise

0 otherwise

{ hit+T] t>0

and rewrite formula (2.11) as

y[t] = X[t] « hq[t] + X[t — T] % ha[t] 4 nlt]
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Section 2.4 Feature Processing to Far-Field Effects

hy[t] is a much shorter impulse response whose length is smadleittie DFT analysis window,
thus it can be compensated by the conventional CMSx[Eer T« hy[t], we treat it the same
as additive noisa(t], and apply the noise reduction technique based on spectrbtrastion.

Assuming the nois&[t — T] « hy[t] + n[t] could be estimated fromjt — T], then the spectrum

subtraction is performed as,

X[t,w] = maxY[t,w] —a-g(w)Y[t—T,w],b-Y[t,w])

wherea is the noise overestimation factdwijs the spectral floor parameter to avoid negative or
underflow values. We can empirically estimate the optimayrn andg(w) on a development
dataset. We found that the system performance is not sengifi . Within the range of 20-40
ms there is no significant difference on the effect of the spesubtraction. However outside
that range, there is obvious performance degradation.Heareicording setup in this thesis, we
founda=1.0,b= 0.1 andg(w) = |1 — 0.9e/| optimal in most changing conditions based on
development data as describedﬂrLl [82]. Standard CMS is apatter spectrum subtraction to

eliminate the effect offiy [t].

2.4.2 Feature Warping

The feature warping method applied here was proposed in [88larps the distribution of a
cepstral feature stream to a standardized distributionagpecified time interval. The warping
is implemented via CDF matching as described in [125]. Thepimgrcan be considered as a

nonlinear transformatioff, which transforms the original featubeto a warped featurX, i.e.,
X =T(X) (2.12)

This can be done by CDF matching, which warps a given featutbatats CDF matches a
desired distribution, such as normal distribution. Thehndtassumes that the dimensions of

the MFCC vector are independent. So each dimension is petessa separate stream. The

29



Chapter 2 Far-Field Speaker Recognition

CDF matching is performed over short time intervals by shifta window. Only the central

frame of the window is warped every time. The warping exezakefollows:

e fori=1,--- d, whered is the number of feature dimensions
e sorting features in dimensiann ascending order in a given window

e warping raw feature valug in dimensioni of the central frame to its warped value ~

which satisfies

%

<p=/_mf(y)dy (2.13)

wheref (y) is the probability density function (PDF) of standard norutiatribution, i.e.
1 a

f(y) = —exp—= 2.14

(V) = —=exH~%) (2.14)

andqis its corresponding CDF value. Supposkas a rank and the window size ibl.

Then the CDF value can be approximated as

(2.15)

e X can be quickly found by lookup in a standard normal CDF table.

In our experiments, the window size is 300 frames and the evinghift is one frame. Zeros

are padded at the beginning and at the end of the raw featesnst

2.4.3 Experimental Results for Noise Compensation

The front-end processing of the baseline system relies o@®&nalysis. The signal is charac-
terized by 13-dimensional MFCC every 10ms. A speech deteptiocess based on normalized
energy is used in order to remove non-informative framese &ihergy threshold is set empir-

ically. The same threshold is applied on all microphone ae# The mean feature vector
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Section 2.4 Feature Processing to Far-Field Effects

Table 2.1:Detailed baseline system performance (in %) on 3D DMD

Test|| Chl| Ch2 | Ch3 | Ch4 | Ch5| Ch6 | Ch7 | Ch8
Train
Chl 95.6| 94.0 | 76.0| 83.6| 72.7| 77.6| 71.6| 83.1
Ch2 61.2| 100.0| 86.3| 70.0| 84.2| 94.0| 89.1| 88.0
Ch3 38.3| 63.4|98.4|49.2|59.0| 71.6| 78.7| 78.7
Ch4 71.0] 83.1|70.5|87.4|59.6| 83.1| 77.6| 84.2
Ch5 54.1| 86.9 | 76.0| 59.6| 91.8| 85.3| 84.7| 84.7
Ch6 492 771 | 78.1|47.0| 76.5| 90.7| 90.7 | 76.0
Ch7 38.8| 68.9 | 75.4|525|72.1|86.3|92.9| 80.9
Ch8 62.8| 85.3 | 78.1|65.0| 86.9| 85.3| 89.6| 95.1

is computed on the informative frames only. The non-infdimeaframes are discarded during
training speaker models as well as in testing, which mealystba informative frames are used
to compute likelihood scores against speaker models. T$adiha system consists of following

components:

e speech detection: energy based
¢ front-end processing: 13-dimensional MFCC

e speaker models: GMM with 128 gaussian mixtures

The improved baseline system adds reverberation compens@®C) and feature warping
(Warp) in the front-end processing while keeping other eystomponents the same as in

the baseline system.

Table[ 2.1 presents the detailed speaker recognition ancwfathe baseline system when

trained on different channels and tested on different canasing the 3D DMD. The rows
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Chapter 2 Far-Field Speaker Recognition

refer to different training channels and the columns rebedifferent test channels. For exam-
ple, the number in row Ch1 and column Ch5 presents the recograticuracy when test data
is from channel 5 and speaker models are trained on data framnel 1. The table shows
that accuracies under matched conditions (numbers in laok&much better than under the
mismatched conditions (off the diagonal). Again, by “madicondition” we mean that the
training and test data are from the same channel, for exanhgleh training and test are on
channel 1 (microphone 1 in 3D DMD) and so on. By “mismatcheddaton” we mean that

the training channel is different from the test channel,éample, test data is from channel 1

but the speaker models are trained on channel 2 etc.

Accuracy (%)

- + - baseline, mismatched N
601 —%—RC+Warp, mismatched N N

5C(Z)h7 Ché Ch8 Ch3 Ch2 Chbs Ch4 Chl

Dist 2.0 43 100 10.0 100 114 120 145
Test Channel and Distance Value

Figure 2.4:Relationship between performance and distance on the 3D DMD

Figure 2.4 shows the relationship between recognitionacyuand channel distance on the
3D Distant Microphone database. The distance is defined seciion 2.3.1. Apparently the
performance is a function of the distance value: after sssipg a critical distance between
speaker and microphone (mic 5,4,1) the performance dexseggnificantly. Please notice that

microphone 1 and 4 are the two ceiling microphones behinspkeaker.
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- 1 ..... [

- -Mismatched baseline| |
— Matched baseline

60-

Accuracy (%)

50

40

30

Chl Ch2 cCch3 Ch4 Ch5 Che Ch7 Chs
Test Channel

Figure 2.5:Baseline performance under matched vs. mismatched conslitin 3D DMD

Figure/ 2.5 summarizes the baseline system performanceffamedit test channels under
matched and mismatched conditions. The curve for the mdtotedition corresponds to those
bolded numbers on the diagonal lines in table 2.1. The curdeumismatched conditions cor-
responds to the numbers computed by averaging the numbeischn column excluding the
diagonal number in Table 2.1. For example, based on the 3ERmi#licrophone Database,
if we name the recognition accuracy Asq TexTrq) for the case that test data is from chan-
nel 2 but the speaker models are trained on channel 1, thesw#rage recognition accuracy

(AcqTe)) on test channel 2 under mismatched conditions is compusted a

8

I =

AcdTe) = co(TezTr i

[y

So the bars in figure 2.5 refer to the range of the performamzieudifferent mismatched

conditions for each test microphone channel. The averaggraces under matched and mis-
matched conditions are 94.0% and 74.2% respectively. We@athat the system performance
degrades a lot under mismatched conditions. Also, the pagnce on one test channel under

mismatched conditions varies when evaluated on speakeglstrdined on different channels.
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Chapter 2 Far-Field Speaker Recognition

Table 2.2:RC and Warp impact on 3D DMD

System Matched| Mismatched
baseline 94.0 74.2
RC 94.8 78.1
relative improvement (13.3%) (15.1%)
Warp 96.4 79.1
relative improvement| (40.0%) | (19.0%)
RC+Warp 96.7 84.9
relative improvement| (45.5%) | (41.6%)

Table 2.2 shows the performance improvement by reverloeratbmpensation alone, fea-
ture warping alone and reverberation compensation plusifeavarping on the 3D Distant
Microphone Database. Each of the two approaches improvéspance under both matched
and mismatched conditions. Combining both approaches geaviore improvement, which

indicates that both techniques take care of different dspdaegraded signal.

Figure 2.6 shows the reverberation compensation plusreatarping (RC+Warp) impact
on system performances on all three data sets. We can sesghdicant improvements were
achieved under both matched and mismatched conditions| dmre¢ data sets. On average,
45.5% and 41.6% relative improvements are achieved unde&rh@ and mismatched con-
ditions respectively on the 3D Distant Microphone Datab&§e0% and 17.7% on the 2D
Distant Microphone Database, and 31.9% and 34.1% on the |@&stiMy Database, demon-
strating that the applied methods are robust for differésainmel distances and under different
recording conditions. Therefore, reverberation compeosand feature warping are used in
the feature processing step in all the following experirmearid we will refer to the perfor-
mance with these two approaches applied over the baselifimpoved baseline”. Table 2.3

shows the detailed performance of the “improved baseliystesn under both matched and
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Avg
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Figure 2.6:Performance improvement by RC+Warp;

upper: on 3D DMD, middle: on 2D DMD, lower: on ICSI Meeting Datele

mismatched conditions. In the following sections we wilbshmultiple channel combination

approaches’ improvement over this “improved baseline”.
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Table 2.3:Improved baseline performance (in %) on 3D DMD

Test Channel|| Chl | Ch2 | Ch3 | Ch4 | Ch5| Ch6 | Ch7 | Ch8 | Avg
Matched 100.0| 100.0| 98.9| 91.3| 96.7 | 92.9| 95.6 | 98.4| 96.7
Mismatched | 67.2 | 89.0 | 86.1| 73.5| 87.7| 91.4| 92.7| 91.6| 84.9

2.5

Multiple Channel Combination

Hands-free multiple distant microphones are easy to sehdmaite common in applications

such as meetings and lectures. In order to benefit from thépteuthannel setup, four multi-

channel combination approaches are investigated which ‘@ata Combination”, “Frame

based Score Competition”, “Segment based Score Fusion™3egiment based Decision Vot-

ing”.

2.5.1 Data Combination (DC)

[ W
CH1 Training Data

I
CH2 Training Data

L B [ | [ [ |
CH3 Training Data

L [ T [ 1 |
CH4 Training Data

L[| [ ]

CHS5 Training Data

L[ [ B ] ]
CH6 Training Data

C &Y [ [ [ T ]
CHY Training Data
I

CHS8 Training Data

Figure 2.7:lllustration of Data Combination on 3D DMD
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In “Data Combination” approach, the speaker models areddaursing data from multiple
mismatched channels. For example, on the 3D Distant Mi@oelDatabase, for test on chan-
nel 1, the speaker models are trained using data from all atgmed channels (channel 2 to
channel 8) except the matched channel (channel 1). Consgqubka training data does not
cover the test channel, so that the tests are performed amderatched condition. In order to
discriminate gains achieved by more data from those actiibyea larger variety of data, we
keep the size of the training data the same as in the basetatens. As illustrated in figure
2.7, based on the 3D Distant Microphone Database, theripafata for a speaker on channel
1 (CH1) is formed by randomly selectirﬁgdata from the original training data on each of the
mismatched channels (CH2 to CH8).

2.5.2 Frame based Score Competition (FSC)

Let us first review how a GMM system calculates likelihoodrescand makes decisions based

on the scores. The identification decision is made as follows
s :argmkax<LL(X|G)k)> k=12-.-.S (2.16)

wheres" is the recognized speaker identify,is the total number of enrolled speakers, and
LL(X|©X) is the log likelihood score that the entire test featureXsetas generated by the
GMM ©K of speaketk, which containgV weighted mixtures of Gaussian distributions as in
2.10.

The likelihood of an observation (for example one featuretaex,) given a GMM model
oK (2.10) of speakek is estimated as

B M Ai _(Xn—Ui)Tzi_l(Xn—M')
=& ez 2

Also, the entire set of feature vectoXsare assumed to be independent and identically dis-

p(xn|OK

} (2.17)

tributed (i.i.d.). Accordingly, the likelihood of obserian sequenc& given @K is estimated
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LL(x|OY)
et LL.(XN|91) f'\ (x‘el) iLL(Xn|91)
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LL(X]_|@S)
LI®%) o9 |
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Figure 2.8:Standard speaker recognition procedure

as \
P(X|©%) = [ PO|©) (2.18)
n=1
N N
LL(X|©%) =logp(X|©¥) = $ logp(xa|©¥) = § LL(xn©¥) (2.19)
n=1 n=1

Figure 2.8 explains the standard GMM-based speaker retimgprocedure. We call the log

likelihood value as “score” in the following sections.

In the multiple microphone setup, if we have speech samptas tlifferent channels, we
can build multiple models for each speaker with one for edwdnoel. Let us name it as
oK for the GMM model of speaket on channel. So the model set for speakeis O =
{ekCh ... @kCrey whereC is total number of channels. We propose this “Frame basereSco
Competition (FSC)” approach to compute the likelihood of asastation given a set of GMM
models for each speaker. In this approach we compare a éeatator of each frame to all the
GMMs {@kCh...@kCrey of speakek excluding the one GMM which is trained on the same
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channel as that of test samples. The highest log likelihgodesis chosen as the score for this
frame. So the log likelihood score of the entire set of teatuee vectorsK from channeh is

estimated as
k k k k k.Ch;
LL(X|©) = § LL(x[©") = § max{LL (%[0 ™)} i (2.20)
n=1 n=1

This competition process differs from the standard scopragess with only one microphone
in that per-frame log likelihood scores for different speekare not necessarily derived based
on the same microphone. The FSC approach can be considdrezirasdel version of the DC

approach with increasing amount of training data.

Figure 2.9 illustrates the speaker recognition procediitie YFrame based Score Competi-
tion”. Basically, the part that is circled in the standardgedure is replaced by the part that the
arrow points to. The difference from the standard procediesein the score computation per

frame.

2.5.3 Segment based Score Fusion (SSF)

By “segment” we refer to the entire test utterances or thieeeset of test feature vectoxs The
“Segment based Score Fusion” approach computes the sctastafata given a set of models
Ok = {ekCh...@kCrel for speakek by combining the scores from all the mismatched GMM
models, each of which is trained on one of the mismatchedretian
LL(X|©%) = % w; * LL(X|@Ch) (2.21)
j=Lj#h

whereC is the total number of channelsjs the test channel ang; is the fusion weight.

Figure 2.10 illustrates the speaker recognition procedite “Segment based Score Fu-
sion”. Again, the part that is circled in the standard prageds replaced by the part that the
arrow points to. The difference between this approach aadtandard procedure lies in the

score computation per segment.
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o! LL(x|®Y) LL(X|®) = iLL(xnlel)

X = {1 . LL(>§1\O")
— {Xg- Xy
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Extraction ‘ﬁ_ f\\‘k > '

A

LL(x1|©%) = max{LL(x1|(:;)kahj)}?: Lizh

Figure 2.9:Speaker recognition procedure with FSC

2.5.4 Segment based Decision Voting (SDV)

Figure| 2.11 illustrates the speaker recognition proceditie the approach “Segment based
Decision Voting”. In this approach, the entire set of featuectorsX extracted from the test
trial goes through recognition part circled in the standanecedure multiple times. Each time
the speaker models are trained on one of the mismatched elsanhherefore, the speaker
identity decision is made multiple time€ ¢ 1) with one on each mismatched channel. The

identity which appears most times among thé€se1 decisions is picked as the final decision.
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Figure 2.10:Speaker recognition procedure with SSF

If there is a tie, the one has the highest log likelihood sedliebe the winner.

2.5.5 Experimental Results for Multiple Channel Combination

Figure 2.12 presents improvements achieved by the fouii4théinnel combination approaches
under mismatched conditions on the 3D Distant Microphon&abase. Significant improve-

ments are achieved by all combination approaches. On awetBagta Combination” brings

41



Chapter 2 Far-Field Speaker Recognition

o ealey
: T
Tt LL(x|®Y) LL(X|O% = 3 LL(x:/0%)
// m N
T Al N> 2
LL(x|0%)
X = {x-x} . (X|ek |
o s LL(X|®
et 00000000 LL(kn[0K) 3
Extrelijction ' m @ Deci
' LL(x,/©5)
on Channel 1 oo LLwI®Y)  Li(x(ed) -
A?\ —=
el Voting — s
s
et LL{xu®Y) LL\(;(\\Gll =
S — fan
AN N, s
-— LL(xa|©)
on Channel C ; o LL()EN\O") LL(X|e
' Al D Decisi !
' LL(x1|©5)
©° LLonl®S) 1L(x|es)

Figure 2.11:Speaker recognition procedure with SDV

72.8% relative improvement over the improved baseline ahd% relative improvement over
the baseline under the mismatched condition, which meamsambination approach achieves
significant additional gain in addition to the reverberat@mmpensation and feature warping
approaches to the baseline. We will show the improvementttreeimproved baseline only in

the following results since reverberation compensatiahfeature warping are always applied
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in the feature processing. We want to point out that in “Datan@Gimation” approach, we con-
trol the amount of training data to be the same as in the lessjistem by randomly choosing
% data from each of the original mismatched channel. So theawgment indicates that seeing
more variability in training improves the recognition ratness. 77.8% relative improvement
was achieved over the improved baseline by “Frame basece &mmpetition” and 62.4% rel-
ative improvement over the improved baseline was achieyeé@bégment based Score Fusion”
and 57.9% relative improvement over the improved baseliag achieved by “Segment based
Decision Voting”. This indicates that it is beneficial to usormation from multiple sources
even though each of them is not very powerful. On the 2D Diskdicrophone Database,
81.9%, 91.0%, 77.4%, and 64.7% relative improvement iseelii over the improved baseline
under mismatched condition by respectively “Data Combamdti“Frame based Score Com-
petition”, “Segment based Score Fusion”, and “Segmentd&sxision Voting” approaches.
On the ICSI Meeting Database, 9.7%, 11.4%, 6.8%, 3.5% relatiprovement is achieved by
respectively “Data Combination”, “Frame based Score Cortipet] “Segment based Score
Fusion”, and “Segment based Decision Voting” approaches the improved baseline under

mismatched conditions.

Table 2.4 summarizes the relative improvements the foutipdelchannel combination ap-
proaches gained on the three databases. We can see thake“Bem®d Score Competition”
approach achieves highest improvement among the four apipes while “Segment based De-

cision Voting” achieves lowest improvement among the fqpraaches.

2.5.6 Discussions

We have shown the impact of the four combination approacbeshe system performance
under mismatched conditions. Note that this does not meanvib need to have the prior
knowledge about which channel the test speech comes fromwiible purpose is to show that

even if you have no samples of the test condition in your inginwith the multiple channel
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Accuracy (%)

,¢ |-~ Baseline, Mismatched

—%— Improved baseline, Mismatched
-4 -Data Combination H
—6— Segment based Score Fusion
- # - Segment based Decision Voting|
—8—Frame based Score Competitiof|

.
Ch3

Ch4 chs Ché ch7 chs Avg
Test Channel

g
g T T )
I
8 70.(7 . =+ Baseline, Mismatched ,;*
<L(> —v—Improved baseline, Mismatched
- & - Data Combination
—6— Segment based Score Fusiol .
60- Segment based Decision Votjng * - )
—&— Frame based Score Competition Pt
56). - - " - " " "
IsO DisL Dis1 Dis2 Dis4 Dis5 Dis6 Dis8 Avg
Test Channel
10
90r

©
=]

Accuracy (%)
=2

60

T TIPS S

e

T e i

=+ Baseline, Mismatched

—— Improved baseline, Mismatched

- &~ Data Combination

—e— Segment based Score Fusio
Segment based Decision Votjng

—&— Frame based Score Competition

e

Figure 2.12:Performance improvement by combination approaches;
upper: on 3D DMD, middle: on 2D DMD, lower: on ICSI Meeting Dateste

combination approaches you still can get very good perfaseaThe next question is then if
you combine all the channels including the matched chamviklhe performance get better?
Our expectation is that it will be better than the performant combining only mismatched

channels. But will the performance beat the one under thehmadtconditions?

.
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ChE
Test Channel

.
ChF Avg
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Table 2.4:Relative improvement by multiple channel combination apphes
Database 3D DMD | 2D DMD | ICSI

Approach
Data Combination 72.8% 81.9% | 9.7%
Frame based Score Competition 77.8% 91.0% | 11.4%
Segment based Score Fusion || 62.4% 77.4% | 6.8%
Segment based Decision Voting 57.9% 64.7% | 3.5%

— 94

L ¢

~ 92

>

o

T 90

=} .

8 88" \/ - + - Baseline, matched

< -# Improved baseline, matched
86 Data Combination )
84 —v— Segment based Score Fusio

Y —8— Segment based Decision Votjing

82 —6— Frame based Score Competitior

L L L L L L L
ch2 ch3 Cha chs Ché ch7 ch8 Avg
Test Channel

Figure 2.13:Impact of combination approaches when applied on all chaaelthe 3D DMD

Figure 2.13 compares the performance when combining afireéla with the four combina-
tion approaches with that of the improved baseline undecheat conditions. We can see that
“Frame based Score Competition” approach and “Data Combimfatipproach beat the im-
proved baseline performance under matched conditionfioAgh the other two combination
approaches can not beat the improved baseline under matohddions, the performance are

compatible.

When less training data are available, the combination @ghes become more important.
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Figure 2.14:lmpact of FSC when applied on all channels with different tragndurations on

3D DMD

Table 2.5:Relative improvement by FSC with different training duraio

Training Duration|| Baseline, matched FSC | Relative Improvement
120s 96.7% 97.5% 24.2%
90s 94.1% 94.5% 8.0%
60s 89.1% 92.7% 33.1%
30s 73.2% 89.8% 62.0%

Figure 2.14 compares improved baseline under matched wamslivs. “Frame based Score
Competition” performance when training durations per speafary. We see that the perfor-
mance difference between improved baseline under matobreditons and FSC gets larger
when less training data is available. Table 2.5 summarizesaverage performance of im-

proved baseline under matched conditions, FSC, and théveelatprovement that FSC gains
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over the improved baseline. More relative improvement isieecd by FSC when training

duration gets shorter.

2.6 Chapter Summary

In this chapter we presented our robust speaker recogrsjistem in a meeting scenario with
multiple distant microphones. We applied a new reverbenatompensation approach plus fea-
ture warping in the feature processing step. These two appes significantly improved the
system robustness under both matched and mismatchedgdesting conditions. A 41.6%
relative improvement is achieved on the 3D Distant Micraph®atabase, a 17.1% relative
improvement is achieved on the 2D Distant Microphone Daapand a 34.1% relative im-
provement is achieved on the ICSI Meeting Database under atchi@d conditions. Four
multi-channel combination approaches are investigatestder to capture useful information
from multiple channel sources including “Data CombinatiDi€]”, “Frame based Score Com-
petition (FSC)”, “Segment based Score Fusion (SSF)”, angrifamt based Decision Voting
(SDV)". All these four approaches bring additional gaingite system performance under mis-
matched conditions. We observed 72.8.1%, 77.8%, 62.4%5@r8% relative improvements
over the improved baseline on the 3D Distant Microphone bhbtione Database by DC, FSC,
SSF, and SDV respectively. The improvement carries ovehé¢oadther two databases. We
observed 81.9%, 91.0%, 77.4%, and 64.7% relative impronésnan the 2D Distant Micro-
phone Database. We observed 9.7%, 11.4%, 6.8%, and 3.5%veataprovements on the
ICSI Meeting Database. The experimental results show tleégenore variability in training
and combining supplementary information from multiple @s improves the system robust-
ness. These approaches are effective across data set fietlerali multiple distant microphone

settings.

Table 2.6 shows the improvements over the baseline undenaiitied conditions by all the
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Chapter 2 Far-Field Speaker Recognition

Table 2.6:Relative improvement by reverberation compensationyfeatarping, and multiple

channel combination approaches

Database 3D DMD | 2D DMD | ICSI
Approach
RC+Warp+Data Combination 84.1% 85.1% | 40.5%

RC+Warp+Frame based Score Competitjon87.1% 92.6% | 41.6%

RC+Warp+Segment based Score Fusion| 78.1% 81.4% | 38.6%

RC+Warp+Segment based Decision Voting 75.4% 71.0% | 36.4%

approaches together including reverberation compensatial feature warping in the feature

processing step and four multiple channel combination@gugres.
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Chapter 3

Phonetic Speaker Recognition

3.1 Motivation

What do we rely on in the speech signal to recognize a speakiergity? This is one of
the central questions addressed by automatic speakemiéioogesearch. Generally, humans
often have the ability of recognizing speakers from the spesgnal using multiple levels
of speaker information conveyed in the speech signal [10hjs even works under various
conditions and contexts. At the lowest level, we recognipe@on based on sounds patterns
in his/her voice (e.g., low/high pitch, bass/tenor, nagaétc.). But we also use other types
of information in the speech signal to recognize a speakeh ss a unique laugh, particular
phrase usage, or speed of speech, among other things. Trenlperformance seems to be a
result of the robust and adaptive method of exploiting savewrels of information@Z]EB]
66].

Roughly we can categorize these information sources intemichy running from low-
level perceptual cues, related to physical traits of theavapparatus, to high-level perceptual
cues, related to learned habits and style. Figure 3.1 shHmwsierarchy of the perceptual cues
441 92).
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Figure 3.1:Hierarchy of Perceptual Cues

The high-level cues include such as word usage (idioleobyynciation, prosody, laughter,
and other idiosyncratic supra-segmental information.selmies may be decided by a person’s
life situation such as socio-economic status, personadycation, etc.. Thus these cues are
also termed as “learned traits”. The low-level cues, on therhand, are more directly related
to the actual sound of a person’s voice decided by the phytséges of a speaker’s vocal appa-
ratus. Although all levels of cues carry speaker informatad are used by humans to identify
speakers, automatic speaker recognition systems haeel r@inost exclusively on low-level
information via short-term features related to the spegetsum [@5]. Traditional systems
have several drawbacks. First, robustness is an issue $®channel effects can dramatically
change the measured acoustics of a particular individwalinStance, a system relying only on
acoustics might have difficulty confirming that an indivitlspeaking on a land-line telephone

is the the same as an individual speaking on a cell phone §&ond, traditional systems also

rely upon different methods than human listeners [102]. Hnifisteners are aware of prosody,
word choice, pronunciation, accent, and other speechs@hiighs etc.) when recognizing
speakers, while traditional systems only rely on seemiogly source of information. Due to

the use of multiple high-level cues, human listeners areadéfected by various conditions and
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context than traditional automatic algorithms.

Observing the human speech processing model, we can imgireveliability and accuracy
of speaker recognition systems by exploiting other souot@sformation in the speech signal.
Not only the addition of information can improve the systezawacy by providing extra levels
of discriminative information, but also it can increase tbbustness by providing information
that is less susceptible to degradation under varying tiomdand contexts. Furthermore, the
published research irHZS] and [60], before we started tiesgof thesis research, tried to
use n-grams counts on word and phone sequences for speakieatien and provided strong
indications that potential gains are possible by the inclusf higher levels of information

available in the speech signal.

In this thesis, we propose approaches to capture the high&onetic information and to
model a speaker’s pronunciation idiosyncrasy based orhipislevel information. We enrich
the existing phonetic speaker recognition algorithms,civhare based on ngram counts on
phone sequences independently in multiple languages,dpoping new approaches to model

dependencies across multiple phone streams.

3.2 Related Work

Most conventional speaker recognition systems use Gaussiure models (GMMs) to cap-
ture frame-level characteristics of a person’s voice, whee speech frames are assumed to
be independent of one another. Because of this indepen@desscenption, GMMs often falil
to capture certain types of speaker-specific informatiat gvolve over time scales of more
than one frame. For example, since words usually span mamefs, GMMs tend to be poorly
suited for modeling differences in word usage (idiolectiwmen speakers. In recent times,
automatic speaker recognition research has expanded fiibning only the acoustic content

of speech to examining the use of higher levels of speecinrgton, commonly referred to as
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“high-level features.” A promising direction in high-leMeature research has been the use of
n-gram based models to capture speaker specific patterne phbnetic and lexical content of
speech. In[28], Doddington performed an important ingtaldy about using the lexical content
of speech for speaker recognition, and introduced an n-grased technique for modeling a
speaker’s idiolect. This direction in research was cormgthly Andrews, Kohler, and Campbell
among otherJT60f[4], who used similar n-gram based modaetapture speaker pronuncia-
tion idiosyncrasies through analysis of automaticallyogguzed phonetic events. This line of
research is generally referred to as “Phonetic Speakerd®#oan.” The research of Andrews
et al. and Doddington showed word and phone n-gram basedIsntmdbe quite promising
for speaker recognition. There have been myriad attemppeaally since the Johns Hopkins
2002 Worksho£3£2]E7£9]El] to harness the power tfkinds of high-level features.

The current “state-of-the-art” in phonetic speaker redtgm uses relative frequencies of
phone n-grams as features for training speaker models aisddoing test-target pairE[GJ] [4].
Typically, these relative frequencies are computed fronmgke 1-best phone decoding of the
input speech. This line of phonetic speaker recognitioeassh work has been extended in
various ways by introducing different modeling strategaesl different methods of utilizing
the source information such as described;L [77][59] [ﬁ]i

Navratil [77] proposed a method involving binary-treedstured statistical models for ex-
tending the phonetic context beyond that of standard n-gpamiicularly bigrams) by exploit-
ing statistical dependencies within a longer sequenceavwinaithout exponentially increasing
the model complexity, as is the case with n-grams. The desg@pproach confirms the rele-
vance of long phonetic context in phonetic speaker recmgménd represents an intermediate
stage between short phone context and word-level modelitigput the need for any lexical
knowledge. Binary-tree models represent a step towardbRegontext structuring and exten-
sion in phonetic speaker recognition, consistently otgpering standard smoothed bigrams

as well as trigrams.
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Klusacekﬁg] proposed a conditional pronunciation modgeethod. It uses time-aligned
streams of phones and phonemes to model a speaker’s speoifighgiation. The system
uses phonemes drawn from a lexicon of pronunciations of svoedognized by an automatic
speech recognition system to generate the phoneme strehamapen-loop phone recognizer
to generate a phone stream. The phoneme and phone streaalgaeel at the frame level
and conditional probabilities of a phone, given a phonemegatimated using co-occurrence
counts. A likelihood detector is then applied to these phodiges for the speaker detection
task. This approach achieves a relatively high accuracyomparison with other phonetic

methods in the SuperSID project at the Johns Hopkins 200&k3kop [1i4] [90].

Campbell[E4] performed phonetic speaker recognition wighpert vector machines (SVM).
By computing frequencies of phones in conversations, syediaracterization was performed.
A new kernel was introduced based on the standard method ¢ikkdihood ratio scoring. The

resulting SVM method reduced error rates dramatically @t@ndard techniques.

Hatch [43] compared 1-best phone decodings vs. lattice @lkecodings for the purposes
of performing phonetic speaker recognition. The resuldscate that lattice decodings provide

a much richer sampling of phonetic patterns than 1-bestdiegs.

All the state-of-the-art phonetic speaker recognitionrapphes try to model phonetic depen-
dencies along the time scale, or in time dimension. In thieviehg sections, we will present
our contributions in the phonetic speaker recognitionaies® We introduce a phonetic speaker
recognition approach that aims at modeling the statispoahunciation patterns based on the
phonetic information from two "orthogonal” dimensionsme dimension and cross-stream
dimension. It will be shown that comparable or better resatle achieved by the proposed

approach.
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3.3 Phone Sequence Extraction

Phone sequence extraction

Phone Phone Recognizers.
Arabic (AR), Mandarin Chinese (CH), German (DE), French (FR)panese (JA), Korean
(KO), Croatian (KR), Portuguese (PO), Russian (RU), Spaig#t), Swedish (SW), and Turk-
ish (TU). All the phone recognizers are trained and evatlatehe framework of the Glob-

alPhone project [105]. Phone recognition is performed witkiterbi search using a fully

connected null-grammar network of mono-phones; note tipadleprobable language model is
used in the decoding process, which means no prior knowlatdgat phone statistics is used.

Figure 3.2 shows phone error rates per language in reladidimet number of modeled phones

for the speaker recognitiorepsas performed using the Global-

We have phone recognizers btwelwe languages available:
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(in 8 languages). Se@M] for further details.

After a “raw” phone stream was obtained from the phone remsgnadditional processing
was performed to increase robustness. First, speechtgatigtection marks were used to
eliminate phone segments where no speech was present. dSeilence labels of duration
greater than 0.5 seconds were wrapped together as an enditéeance. The idea in this case
is to capture some information about how a speaker intevathsothers, for example, does the
speaker pause frequently, etc. Finally, extraneous slevas removed at the beginning and

end of the resulting segments.

3.4 Language-dependent Speaker Phonetic Model

A Language-dependent Speaker Phonetic Model (LSPM) isrgetkusing the n-grams mod-
eling technique. The LSPMs used in this thesis are bi-gramefsocreated using the CMU-
Cambridge Statistical Language Modeling Toolkit (CMU-SLJ\]T})I. Unlike typical Gaussian
Mixture Model-Universal Background Model (GMM-UBM) systs [94], the n-gram speaker
phonetic models are not adapted from the universal backgr@nonetic model, but instead
are estimated directly from the speaker’s available trgjrdata. Recent work also tried to train
speaker phonetic models by adapting on the universal baokgrmodel as described Jn7[43].
In following sections, we usbSPl\/r to represent the phonetic model for spedkar language

i. Figure 3.3 shows the procedure of training LSPMs for spelakiEach of theM phone recog-
nizers PRy, - ,PRy) decodes the training data of speakén produceM phonetic sequences.
Based on thes® phonetic sequenced LSPMs are created for speakerone in each lan-
guage.This procedure does not require transcription atemey. All the phone recognizers are
open-loop recognizers. This means that during the decpthedanguage model assigns same

probabilities for all phones.
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h/DE 0.015
eh/DE 0.055
Spk > . I/DE 0.005
- . . LSPM for speakek in German
Hello : . LSPM

h/EN e/EN I/EN I/EN o/EN .

LSPM for speakek in English

Figure 3.3:Training Speaker Phonetic Model
3.5 Phonetic Speaker Recognition in Time Dimension

The basic idea of phonetic speaker recognition is to idgatgpeaker via the statistical pronun-
ciation model trained using phonetic sequences derived that speaker’s utterance. Although
the phonetic sequences are produced using acoustic featueadentification decision is made
based solely on the phonetic sequences. The assumptiamdlt@ki phonetic approach is that

phonetic sequences can cover a speaker’s idiosyncratitipotation.

Generally, phonetic speaker identification in the time disien using a single-language
phone recognizer is performed in three steps: Firstly, thenp recognizer processes the test
speech utterance to produce a test phone sequence. Setbadgst phone sequence is com-
pared to all previously trained LSPMs to compute decisianesx. Finally, the speaker identity
is decided based on the decision scores. Since the phonemsegare decoded from the speech
which is a time series and the LSPMs are trained based on geguences along the temporal

direction, we call it phonetic speaker identification in Bi@dimension.

This process can be expanded to use multiple phone sequemoes parallel bank of phone
recognizers trained on different languages. In this cagelh @hone stream is independently

scored and the scores are fused together to form a singlsidiesicore.
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Figure 3.4:Phonetic Speaker Detection in Time Dimension

Figure 3.4 illustrates the work-flow of phonetic speakeedgon/verification in time dimen-

sion. Generally, phonetic speaker detection in time dinmgngsing a single-language phone

recognizer is performed in three steps: Firstly, the ph@wegnizer decodes the test speech to

produce a phonetic sequence. Secondly, the phonetic segjienompared to the LSPM of

the target speaker and a Universal Background Phonetic Mo@# M) to compute likelihood

scores. Finally, the Log of the Likelihood Ratio (LLR) is cpuated as the detection score. This

process can be expanded to use multiple phone sequencekeddxyoa parallel bank of phone

recognizers in different languages. In this case, eachg@btvaam is independently scored and
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the scores are combined together to form a single deteatiane s

Formula 3.1 defines the LLR detector for a phonetic speakirctien system with single
language, wheré&LX is the log likelihood score of the test sequentegainst speakek’s
phonetic modeLSPM andLLY is the log likelihood score of the test sequeticagainst the
universal background phonetic mod¢éBPM. The detection score is the log of the ratio of
these two likelihood scores.

Scoré = log i(X‘LSPM()

P(X|UBPM) ~ log(P(X|LSPM)) — log(P(X|UBPM)) = LLK— LLY  (3.1)

For a multilingual phonetic speaker detection system, tloees from each of the languages are

fused together such as:

M
Scord = Z\Wi « Scord
i=

wherei is used to index multiple languages, is the fusion weight, an&coré = LL}‘ —LY

is the detection score against spedkarlanguaga.

3.5.1 Database Description and Experimental Setup

The speaker detection experiments are conducted withiinahreework of the SuperSID project
114]. The text-independent speaker detection using ttenebed data task from the 2001 NIST
Speaker Recognition Evaluaticlni [86] was selected as otbyads This task was introduced to
allow exploration and development of techniques that caoxsignificantly more training
data than is traditionally used in NIST evaluations. Thespged data task uses the complete
Switchboard-I corpus of conversational telephone speeclrdining and test material. The
corpus includes roughly 500 speakers and 2,500 convensatach conversation involving a
different speaker pairing. In order to use the full collentof speakers as target talkers, NIST
defined an elaborate jack-knifed test design, splittingdbigus into 6 partitions (or splits).

Speakers within each split are used as target or impostartaior that split, and speakers in the
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other 5 splits may be used for training and normalizatiomouwit fear of speaker contamination.

Cycling through all 6 splits effectively uses the completdtSmboard-I corpus.

There are several different training conditions specifieggsing 1, 2, 4, 8, or 16 conversation
sides for training the target talker models. All test segteerse one entire conversation side.
Since Switchboard conversations generally run about 5 e (for about 2.5 min of speech
per conversation side) and sometimes as high as 10 minbtegrovides considerably more
data than has been available in past evaluations, bothdioirtg and for testing, especially for
the larger training conditions. Consequently, the Exteridlath Task finally provided a testbed
well-suited to the exploration of higher-level featurestsas word usage, speaker-characteristic
expressions or events, and other features that can exjguoitisantly more training data than
traditionally used in NIST evaluations. In following sewis, we will use the 8-conversation
training condition as our main reference point, though wi stiow performance across the
range of training conditions for several of the experimeM#é are most interested in perfor-
mance when the systems have “sufficient” training matevid.focus on 8- rather than 16-side
training because relatively few speakers in SwitchbogrdHicipated in 16 calls, so the speaker

population is too small to provide robust statistics in texde.

We use the detection error trade-off (DET) [71] curve to phat systems performance. The
DET curve uses the false alarm and the miss probabilitidseas-tand y-axes in normal deviate

scale.

3.5.2 Phonetic Speaker Detection Results in the Time Dimension

Figure 3.5 shows the phonetic speaker detection perforenanihie time dimension for differ-

ent training conditions (1, 2, 4, 8, or 16 training conveimat). The Equal Error Rate (EER)

is 8.4% for the 8-conversation training condition. The 8ncersation trainifg condition is the
[

most representative and statically significant conditiothie extended task [93]. The compar-
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Figure 3.5:Phonetic Speaker Detection in the Time Dimension

ison of performance from different approaches will mairdgdis on this training condition in
following sections.

3.6 Phonetic Speaker Recognition in the Cross-Stream Di-

mension

The assumption behind the approach of phonetic speakegméimm in time dimension is that
phonetic sequences can cover a speaker’s idiosyncratcipoiation by modeling the phonetic
dependencies along the phone sequence in each languagesgeaker-specific pronunciation,

ideally there should be some fixed set of phones from eacheoimihitiple languages to rep-
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resent it. For example, speak&rmlways pronounces “Hi” as “h ai”, while speakBilikes to
pronounce it as “h ei”. Therefore, through phonetic depenss captured by bigrams, the pro-
nunciation idiosyncrasies will be distinguished betwepsakerA andB. In phonetic speaker
recognition in time dimension, we use multiple phone red@gns to decode speech utterances
and then model the phonetic dependencies in each langudgeeindently of other languages.
However, if the phone recognizers decode the speakerfgpspgeech consistently, then there
would be some fixed phones across multiple languages tosemrspeaker-specific pronunci-
ation. Again, let's take the above example, spe#@kalways pronounces “Hi” as “h ai”, while
speake likes to pronounce it as “h ei”. Then the English phone recmgndecodes speaker
A's “Hi” as “h/EN ai/EN”, the Chinese phone recognizer decodpsakeA’s “Hi” as “h/CH
ah/CH”. While the English phone recognizer decodes spekeiHi” as “h/EN ei/EN”, the
Chinese phone recognizer decodes spealkeiHi” as “h/CH eh/CH”. Therefore, we can code
speaker-dependent pronunciation dynamics across nailaplguage phone sequences. For ex-
ample, “ai/EN ah/CH” will represent speak&mvhile “ei/EN eh/CH” will represent speak&:

We call this approach “phonetic speaker recognition in &stseam dimension.” Similar to the
time dimension, the LSPM and the UBPM are created in the estyeam dimension and detec-
tion is done based on the log likelihood ratio. The detailextedure of how we process phone
sequences in multiple languages in phonetic speaker rémmyim cross-stream dimension is

described in the following subsections.

3.6.1 Cross-Stream Alignment

To discover the underlying dependencies of phones acro#ifpladanguages, we need first
to align the multiple phone sequences. This alignment idamply by aggregating all time

boundaries from all phone sequences. As illustrated inrgi@ue, the phones are duplicated
to the their smallest unified time slots in each language dieioto unify the boundaries across

languages. According to the smallest time overlap acrosgsttee languages, the English
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Time

N S TN PRI SN Y

S/IEN B/JA  S/EN P/SP  BIJA P/SP S/EN  BlJA P/SP

Figure 3.6:Temporal Alignment and Permutation of Multiple Phone Saqges

phone S/EN originally in the time sldt1,t3] is duplicated two times into time slofsl,t2]
and[t2,t3] and the Japanese phone B/JA originally in the time slot flistduplicated three
times into time slot§t1,t2], [t2,t3] and[t3,t4]. Similarly, other phones are duplicated into their

smallest time slots across the three languages.

3.6.2 Cross-Stream Permutation

A straight forward way to model the pronunciation dynamits$he cross-stream dimension is
to model the statistical dependencies across streamshiBpas in the time dimension, we use
n-grams by treating the aligned phones at each time slotaspnt "sentence” for the n-gram
modeling. In the above example, we will have five "sentendestrain the n-gram model:
"S/EN B/JA P/SP”, "S/IEN B/JA Q/SP”, "A/JEN B/JA Q/SP”, "A/IEN DA Q/SP”, and "A/EN

D/JA M/SP”. Since we want to model the bigram dependenciessaall streams, it would be
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Figure 3.7:Phonetic Speaker Detection in Cross-Stream Dimension

better to model all possible pair dependencies. From thgeahtignment, however, bigrams
can only model the dependencies of EN-JA pairs and of JA-8B, fiaut not of EN-SP pairs.
Therefore, we simply permute the aligned phones at eachdiot@s shown in Figure 3.6, thus
modeling all possible pairs from all languages at a giveretilA bigram phonetic model is

built for each speaker based on the aligned and permutece@imams.

3.6.3 Phonetic Speaker Detection Results in Cross-Stream Dimension

Figure 3.7 shows the phonetic speaker detection perforenanthe cross-stream dimension
with different training conditions. Figure 3.8 compares fterformance in the cross-stream

vs. time dimension under the 8-conversation training coori In the cross-stream dimen-
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Figure 3.8:Performance Comparison in Time Dimension vs. Cross-Streanebsion

sion, experimental results with and without permutaticeradlignment are shown. Under the
8-conversation training condition, the cross-streamesysachieves 4.0% EER with permuta-

tion and 5.1% EER without permutation; both significantlypmiformed the time dimension
system, where the EER was 8.4%.

3.6.4 Combination of Time and Cross-Stream Dimensions

Modeling pronunciation dynamics in the cross-stream dsi@nis expected to carry comple-
mentary information to that in the time dimension and, hepogentially can improve perfor-
mance when combined. As mentioned in the relative work, &l#\i7 7] proposed maximum-

likelihood binary-decision tree methods for phonetic sgeaecognition in the time dimension,

64



Section 3.6 Phonetic Speaker Recognition in the Crossi8tieension

g

£

2

5

I}

Q

o

o

[2]

] : : : :

= - i S : e :
0.5 - ' time_dimension(bigram) ------
crogs-stream_dimensian(bigram) + i 1

3 ' both_dimensions «:-«--- 3 Do
| | | | | | | |
0.1 0.5 2 5 10 20 30 40 50
False Alarm probability (in %)
S0 o ! I
40 ‘ ‘ : ‘ : ]
30

S 20" .

k=

> 10 s

g 5 .

o)

o

» ; "-.‘.g,‘

é’ : : ‘ ‘ B W
05 F | time_dimension(BT) #==--% — Y%
crogs-stream_dimension(bigram) - :

j . both-dimensions :-------
| | | | | N P

0.1 0.5 2 5 10 20 30 40 50
False Alarm probability (in %)

Figure 3.9:Combination of Cross-Stream Dimension and Time Dimensi@p€r) LSPMs are

bigrams in both dimensions; (lower) LSPMs are bigrams in tihmeension and binary trees in

cross-stream dimension

which aim to capture phonetic dependencies across longerdcales. We proposed n-gram
based phonetic speaker recognition in the cross-strearardiion and we have the n-gram
based system in the time dimension. Therefore, given tHetpzlapproaches outlined above,

we next set out to examine fusion of the different dimensiohsformation to see if they
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are indeed providing complementary information to imprepeaker recognition accuracy. A
simple linear combination with equal weights was used te the detection scores from both
systems. The upper part in Figure 3.9 shows the performahcenabining both dimensions.

Bigrams were used in both dimensions. The EER of the combimét reduced to 3.6%, com-
pared to 8.4% in the time dimension alone and 4.0% in the &tyeam dimension alone. The
lower part in figure 3.9 shows the performance of the systeimguie Binary decision Tree

(BT) models in the time dimension alone [77], the perfornentthe system using bigrams
in cross-stream dimension alone, and the performance obiong both systems under the
8-conversation training condition. The EER of the comborais further reduced to 3.0%,

compared to 3.4% in the time dimension and 4.0% in the crivess® dimension. Both exper-

imental results indicate that the two dimensions do cortamplementary information

3.7 PSR for Far-field Speaker Recognition

In this section, we apply phonetic speaker recognition apgres in time on the far-field
speaker recognition task. We proposed two phonetic speadéstification approaches which
we call LSPM-pp and LSPM-ds. These two approaches have the ghonetic language
model training step as shownlin 3.3. The difference betwe&ANI-pp and LSPM-ds is how
the LSPMs of each speaker are applied during the identibicati

3.7.1 LSPM-pp Speaker Identification

Figure 3.10 illustrates how the identification decisionrsc@DS) is computed for the test
speech against one enrolled speaker. First, each dfitippone recognizerBR (in the fig-
ure, we use 5 phone recognizers as example), decodes tispeesh and produces a phonetic
sequence in each language. Secondly, each phonetic segsestored against the LSPM in

the matched language for speakeand the perplexity scorEFi*‘ is produced. Finally, the per-
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Figure 3.10:Decision score computation against one enrolled speakér WP M-pp

plexity scores from all thé/ languages are fused together as the final identificatiorsieci

scorel DS* for speakek.

IDSk:_iwi*PP,k

whereM is the total number of IanguageBFi* is the perplexity score against speakein
languagd, andw; is the fusion weight for each language. Our decision rul® igléntify an

unknown speaker as spealsgigiven by

s
s = argrlp_i?{lDSk}
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Figure 3.11:Decision score computation against one enrolled speakér W$PM-ds

whereSis the total number of enrolled speakers.

3.7.2 LSPM-ds Speaker Identification

In the LSPM-pp approach, the test speech is decodell lphone recognizersPR) using
equal-probable language models. In contrast, for the L®BMpproach, we replace the equal-
probable language model with the LSPMs in matched langu&ggure 3.11 illustrates the

procedure of computing the identification decision scorétfe test speech against one enrolled
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speaker. The key idea of the LSPM-ds approach is to use takspdependent LSPMs directly
to decode the test speech. The underlying assumption ia thater decoding distance score is
produced on a matched speaker’s LSPM than on a mismatchakles{seL SPM. The decoding
score PS) (including both acoustic and language model score) frdrithalM languages are

fused together to form the final identification decision sd@S¥ for speakek.
K« $<
IDS* =Y w;xD
2

whereM is the total number of Ianguage,3< is the decoding score against speakean
languagd, andw; is the fusion weight for each language. Our decision rul® igléntify an

unknown speaker as spealeeigiven by
S
s = argrl(rlj?{lDSk}

whereSis the total number of enrolled speakers.

As illustrated in the Figure 3.11, the test utterance is dedd times against each of the
enrolled speakers. Therefore, it leads to the disadvargbtjee LSPM-ds approach in which
the test utterance will be decodbti« Stimes as opposed td times for LSPM-pp approach.
Furthermore, the success of this approach relies more aaiitigy to produce reliable speaker

phonetic models from the training data.

3.7.3 Data Description and Experimental Setup

We test phonetic speaker recognition approaches in timemsion on the 2D Distant Micor-
phone Database. The reason we evaluate on this databasmisseedhat there is more data
for each speaker in this database which is the requiremettéosuccess of phonetic speaker
recognition. This database, collected at ISL in 2000, dosta0 speakers in total. From each
speaker five sessions had been recorded where the speakatr aitable in an office environ-

ment, reading an article. The articles are different forresession. Each session is recorded
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using eight microphones in parallel: one closed-talkingrophone (Sennheizer headset), one
Lapel microphone worn by the speaker, and six other Lapetopliones. The latter six are
attached to microphone stands sitting on the table or bejlumdable, at distances of 1 foot,
2 feet, 4 feet, 5 feet, 6 feet and 8 feet to the speaker, ragplctTables and graphs shown
in this chapter use “Dis0” to represent closed-talking mptrone channel, “DisL” to represent
speaker-wearing microphone channel, and “DisN{ 0) to refer to the n-feet distance micro-
phone channel. We call this dataset “2D Distance MicropHaaiabase”. The data of the first
four sessions, together 7 minutes of spoken speech (ab00tEtbnes) are used for training
the LSPMs. Testing is carried out on the remaining fifth sessidding up to one minute of

spoken speech (about 1000 phones).

We first developed a speaker identification system using gtimsequences from phone rec-
ognizers trained on multiple languages. We call this ourtitmgual system. This system
uses phonetic sequences produced by context-independeng pecognizers from multiple
languages instead of traditional short-term acousticorsdit4], [103]. Since this informa-
tion comes from complementary phone recognizers, we gatieigreater robustness. Further-
more, this approach is somewhat language independent tiaa@cognizers are trained on
data from different languages. We also developed a spedé&atification system using pho-
netic sequences produced by single language phone reeogjti@ined on multiple conditions,
which we call our multi-engine system. This system uses piosequences produced by three
different context-independent English phone recogniZEng system performance is measured
using identification accuracy, which is the percentage ofewtly recognized test trials over all

test trials.

3.7.4 Multilingual LSPM-pp Speaker Identification Results

Table 3.1 shows the detailed language-dependent idetitficaccuracy of LSPM-pp approach

at different test utterance length under the matched comdivhere both testing and training
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Table 3.1:Detailed performance in each language on @isyder matched condition (in %)

Test Duration 60s | 40s | 10s | 5s
Language
CH 100 | 100 | 56.7| 40
DE 80 | 76.7| 50 | 33.3
FR 70 | 56.7| 46.7| 16.7
JA 30 | 30 | 36.7| 26.7
KR 40 | 33.3| 30 | 26.7
PO 76.7| 66.7| 33.3| 20
SP 70 | 56.7| 30 | 20
TU 53.3| 50 | 30 | 16.7
fusion of all languages|| 96.7 | 96.7 | 96.7 | 93.3

are recorded at distan@is0. We can see from the table that with decreasing test darahe
performance based on single language gets very low, hovieigeis overcame by fusing the
multilingual information derived from all eight languagester a fusion with equal weights of

all languages the SID performance clearly outperforms tieean single language.

Table 3.2 compares the multilingual LSPM-pp identificatiesults for all distances on dif-
ferent test durations under matched and mismatched conslitespectively. Under matched
conditions, training and testing data are from the samedigt. Under mismatched condi-
tions, without knowing the test speech distance; we maketak D « M language-dependent
and channel-dependent phonetic modEBF(I\/ﬁd) for speakek, whereD is the total number
of distant channels anlll is total number of languages. In this case, the final ideatiho

decision score of the test speech againsCitkéVl LSPMs for speakek is computed as:

M D
IDS = lei % Bni?{SCoréd}
2 " ,
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Table 3.2:LSPM-pp performance under matched and mismatched conditi®o)

Matched Mismatched

Test Cr‘]l':r?;t]lélength 60s | 40s | 10s| 5s | 60s | 40s | 10s | 5s

Dist 0 96.7] 96.7| 96.7| 93.3| 96.7| 96.7| 96.7| 90

Dist L 96.7] 96.7| 86.7| 70.0|| 96.7| 100 | 90.0| 66.7
Dist 1 90.0| 90.0| 76.7| 70.0|| 93.3| 93.3| 80.0| 70.0
Dist 2 96.7] 96.7| 93.3| 83.3|| 96.7| 96.7| 86.7 | 80.0
Dist 4 96.7] 93.3| 80.0| 76.7| 96.7| 96.7| 93.3| 80.0
Dist5 93.3]1 93.3/90.0| 76.7 || 93.3| 93.3| 86.7| 70.0
Dist 6 83.3| 86.7| 83.3| 80.0|| 93.3| 86.7| 83.3| 60.0
Dist 8 93.3]| 93.3| 86.7| 66.7 || 93.3| 93.3| 86.7| 70.0

whereScorérfd is the decision score in languapen thed distant channel. Here tH&corewill
be PP in the LSPM-pp approach ardsS in the LSPM-ds approach. The decision rule is as

follows:

S Dk
s = argrl(rll?{lDS }

wherek is the index of enrolled speakers a8 the total number of enrolled speakers.

Figure 3.12 summarizes the average performance on diffegshdurations under matched
and mismatched conditions. We see that the performance uratehed and mismatched con-
ditions are comparable, with better performance under mished conditions when test dura-

tion is longer than 5 seconds.
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Figure 3.12:Average SID performance under matched vs. mismatchedtomrsli
3.7.5 Comparison of LSPM-pp vs. LSPM-ds

Table 3.3 compares the performance of the LSPM-ds appraabliis@ under matched con-
ditions with that of LSPM-pp approach when test durationGsséc. Even though LSPM-ds
is far more expensive than LSPM-pp, its performance (60%mhush worse than LSPM-pp
(96.7%). The poor performance of LSPM-ds seems to supp@eagbumption made earlier that
the speaker phonetic models we produced, which performwitilin the LSPM-pp framework,
are not sufficiently reliable to be used during decoding asiired by LSPM-ds. Therefore in

the rest phonetic speaker identification experiments, LGNk the approach we applied.

In order to test the performance of the LSPM-ds approach veamerugh data is available
for training a reliable LSPM, we conducted the following den identification experiment.
We used the NIST 1999 speaker recognition evaluation lewith a total of 309 female
and 230 male speakers. For each speaker there are two mafutasming speech with each
minute from one telephone channel type and one-minute pesch of unknown channel type.

We group the training speech from speakers in same gendaitophonetic models of each
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Table 3.3:Performance Comparison of LSPM-pp and LSPM-ds on distaat (@a®o)

Approach LSPM-pp | LSPM-ds

Language

CH 100 53.3
DE 80 40
FR 70 23.3
JA 30 26.7
KR 40 26.7
PO 76.7 30
SP 70 26.7
TU 53.3 26.7
Fusion of of all Languages 96.7 60

gender. We conducted gender identification using both tH&ML-$p and LSPM-ds approaches.
We randomly choose 200 test trials containing 100 femaldsl@f males. The results in Table
3.4 indicate that given enough training data from which we get a reliable speaker phonetic

model, the LSPM-pp and LSPM-ds produce comparable results.

3.7.6 Multi-Engine LSPM-pp Speaker Identification Results

To investigate whether the reason for the success of thelimgiltal LSPM-pp approach is re-
lated to the fact that different languages contribute ugafarmation or that it simply lies in

the fact that different recognizers provide complementafgrmation, we conducted the fol-
lowing set of experiments. We replaced the eight multiliigohone recognizers with three
English phone recognizers which were trained on very dffiéiconditions, namely: Switch-

board (telephony, highly conversational), Broadcast Nexsious channel conditions, planed
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Table 3.4:Performance Comparison of LSPM-pp and LSPM-ds on gendemnlEofi

Approach LSPM-pp | LSPM-ds

Language

CH 88.5 89.5
DE 89.5 88.5
FR 89 91
JA 86.5 89
KR 87.5 88
PO 89 91.5
SP 92 92
TU 90 89
Fusion of all Languages 94 94

speech), and Verbmobil English (high quality, spontangdtsr a fair comparison between the
three English engines and the eight multilingual enginesgenerated all possible language
triples out of the set of eight languages (56 triples) andwdated the average, minimum and
maximum performance for each. Table 3.5 compares the sestithe multilingual system to
the multi-engine system. The results show that the besbpeance of the multilingual triples
always outperforms the performance of the multi-engingldéri From these results we draw
the conclusion that multiple English phone recognizeryigeless useful information for the
classification task than do multiple language phone reaegsi This is at least true for our
given choice of multiple English engines in the context afager identification. The multiple
languages have the additional benefit of being languageerntkent. This results from the fact
that the actual spoken language is not covered by the usdiplaldnguage phone recognizers.
For example, in our experiments, the test language is Bnglikich is not covered by the mul-

tilingual languages. The multi-engine system, which hastlatched language “English” with
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Table 3.5:Performance comparison of LSPM-pp multilingual vs mutigiee (in %)

System Multilingual Multi-Engine

Test Channel | Avg (Min - Max)

Dist 0 87.92 (66.7 - 100) 93.3
Dist L 88.21 (63.3-96.7 86.7
Dist 1 83.57 (66.7 - 93.3 86.7
Dist 2 93.63 (86.7 - 96.7 76.7
Dist 4 81.43 (56.7 - 96.7 86.7
Dist 5 86.07 (66.7 - 96.7 83.3
Dist 6 81.96 (66.7 - 93.3 63.3
Dist 8 87.14 (63.3 - 93.3 63.3

the test language, does not outperform the multi-lingusdesy. This indicates the potential of

language independence.

3.7.7 Combination of Multilingual and Multi-Engine Systems

In order to investigate whether combining the multilingsgstem and the multi-engine sys-
tem can provide more improvement for the speaker identifinaask, we conducted a second
set of experiments. Table 3.6 compares the speaker idauitificperformance of using the
multilingual system alone with those of combining the mimgual system with the three mul-
tiple English phone recognizers. The combination is redlias adding more languages to the
multiple languages. In Table 3.6, we use ML to represent tb#ilmgual system and ME
to represent the multi-engine system. SWB, BN and VE are useepresent single English
phone recognizer trained on Switchboard, Broadcast Nea/¥arbmobil English respectively.

The results indicate that the interpolation of multilingaad multi-engine could not give any
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Table 3.6:Combination of Multilingual and Multi-Engine systems (in %)

System| ML | ML+ME | ML+SWB | ML+BN | ML+VE

Test Channel

Dist 0 96.7 93.3 93.3 93.3 93.3
Dist L 96.7 96.7 96.7 93.3 96.7
Dist 1 93.3 90.0 90.0 90.0 90.0
Dist 2 96.7 96.7 96.7 96.7 96.7
Dist 4 96.7 93.3 93.3 93.3 93.3
Dist 5 93.3 93.3 93.3 93.3 93.3
Dist 6 93.3 80.0 80.0 83.3 83.3
Dist 8 93.3 90.0 90.0 93.3 93.3

further improvement. But we cannot conclude from theseltesinat adding English language
can not provide more complimentary information for spea#tentification, since the three En-
glish phone recognizers are trained differently from thBdanguage phone recognizers. To
clarify this question, we further investigate the relaship between number of languages and

identification performance as described in the followingties.

3.7.8 Number of Languages vs. ldentification Performance

In this set of experiments, we investigated the influenc&éeftumber of phone recognizers in
different languages on speaker identification performaiibese experiments were performed
on an improved version of our phone recognizers in 12 langsiaigiined on the GlobalPhone
data. AR, KO, RU and SW are available in this version in additio the 8 languages (CH,
DE, FR, JA, KR, PO, SP, TU). Figure 3.13 plots the speakettifieation rate over the number

m of languages used in the identification process under matchieditions on 60-second test
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Figure 3.13:Speaker ldentification Performance vs. number of phonegrazers

duration for all distant channels. The performance is giveaverage and range over tl(lﬁ)

(m out of 12) languagertuples. Figure 3.13 indicates that the average speakatifidation
rate increases with the number of involved phone recogsizealso shows that the maximum
performance of 96.7% can already be achieved using only &awguages; in fact, among the
total (122) = 66 language pairs, two pairs achieved best results: CH-KOCkhrSP. However,
the lack of a strategy for finding the best suitable languagedoes not make this very helpful.
On the other hand, the increasing average indicates thairtmbility of finding a suitable
language-tuple that optimizes performance increasestivitmumber of available languages.
While only 4.5% of all 2-tuples achieved best performancenasy as 35% of all 4-tuples, 60%
of all 6-tuples, 76% of all 8-tuples and 88% of all 10-tuplesrevlikewise found to perform

optimally in this sense.
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3.8 Chapter Summary

Despite the qualities of the human speech process and ssloiénformation in speech, most
speaker recognition systems rely only on one source ofaméion, acoustic features extracted
from short segments of speech [95]. Other high-level infation, such as particular word
usage (idiolect), related to learned habits and style, gwered by such systems. This excit-
ing research area, speaker recognition using high-levetrimation, pioneered by Doddington
d@], has attracted a lot of research effort. Although we’'dbave a quantitative measurement
of what level is more important among the different levelsrdbrmation, we know that for
automatic speaker recognition systems, it is not what yglusahow you say it that is impor-
tant. The particular content being conveyed is not as ingpbras how the words sound (i.e.

pronunciations).

In this chapter, we proposed a phonetic speaker recograppnoach that aims at modeling
the statistical pronunciation patterns based on the plomédrmation from two “orthogonal”
dimensions: time dimension and cross-stream dimensiop.bakic idea of phonetic speaker
recognition is to identify a speaker via the statisticalmmociation model trained using pho-
netic sequences derived from that speaker’s utterancénoédih the phonetic sequences are
produced using acoustic features, the identification @@tis made based solely on the pho-
netic sequences. The assumption behind the phonetic agpppredhat phonetic sequences
can cover a speaker’s idiosyncratic pronunciation. Bigraodeling of the phone dependen-
cies across tokenizers in multiple languages achieves 4Ry BBignificant improvement over
8.4% EER in the time dimension on the NIST 2001 Speaker Retogikvaluation Extended
Data Task. A linear combination of systems in both dimers@inthe score level reduces the
EER to 3%, which indicates that the information capturedhi@ ¢ross-stream dimension is
complementary to that in the time dimension. Also, the peggbapproach works without the

need for any lexical knowledge, which suggests its languadgpendence.
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Chapter 4

Speaker Segmentation and Clustering

4.1 Motivation

The rapid advance in speed and capacity of computers andrietwave allowed the inclu-
sion of audio as a data type in many modern computer apgitatiMultimedia databases or
file systems can easily have thousands of audio recordingsiding broadcasts, voice mails,
meetings or other “spoken documents.” However, an audiasfilesually treated as an opaque
collection of bytes with only the most primitive informatidags: name, file format, sampling
rate, etc. In order to make the audio data more accessibetaohinologies that enable the ef-
ficient retrieval of desired information from speech ar@siare of increasing interest. Speaker
segmentation and clustering consists of identifying whepeaking and when, in an audio
stream. ldeally, a speaker segmentation and clusteririgraywill discover how many people
are involved in the audio stream, and output clusters cparding to each speaker. There-
fore, speaker segmentation and clustering technique aadervaluable inputs for automatic
indexing of speech data. Speaker segmentation and chgpteain also significantly improve
speech recognition performance via enabling unsupenadagtation on each cluster. In 2002,

NIST started an evaluation paradigm, called Rich Transionpevaluation, which seeks to en-
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rich speech-to-text (STT) transcription with Metadatarggtion (MDE). "Who Spoke When”

speaker segmentation and clustering for English broadheass and conversational telephony
speech is one of the tasks in MDE. However, it is even mordagihg to segment and cluster
speakers involved in meetings. This is due to the occurahspeaking overlap and the use of
distant microphones in meetings. Therefore, NIST initadesimilar evaluation on meetings in

the spring of 2004 [96].

4.2 Background Knowledge

In this section, we briefly present some of the state-ofahestatistical tools used in most

speaker segmentation and clustering technigues, mainlgfioe notations and abbreviations.

4.2.1 Hypothesis Testing

Setting up and testing hypotheses is an essential parttadtistal inference and is used in this
thesis. In each problem considered, the question of irtesesmplified into two competing
claims/hypotheses between which we have to choose: théypdthesis, denotddy, against
the alternative hypothesis, denoteld. The null hypothesid#y represents a theory that has
been put forward, either because it is believed to be truesoabse it is to be used as a basis
for argument, but has not been proved. The alternative ngsigH; is contrary to the null

hypothesis

In the case of pattern recognition, the goal is to deternoneltich category or class a given
observation (or sequence of observatiodd)elongs. If the probability density function (PDF)
of each class is known, this becomes a problem in statidtigadthesis testing whetdy and

H, are defined as:

Ho: X is from clas<C;
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and
Hq: Xis from clas<,

The optimum test according to the Bayes decision rule foiimmiim error to decide “not to

reject” Hp is a likelihood ratio testjﬁ9] given by:

P(X|Ho)
P(X[H1)

P(Hz)
P(Ho)

> (4.1)
where p(X|H;),i = 0,1, is the likelihood of the data X under the hypothadjsand P(H;) is
the prior probability of hypothesibl;. If we assume the prior probability of the two classes
to be equal, the term on the right hand side of 4.1 is equal & dine term of the left hand
side of 4.1 is referred to as a likelihood ratio. Strictly akimg, the likelihood ratio test is only
optimal when the likelihood functions are known exactlyphactice this is rarely the case and
the likelihood ratio test usually involves a threshold valé decision to “rejecHg in favor of

H1” is made only if the likelihood ratio is less than threshold.

When the PDFs of two classes (hypotheses) are GaussianigemsitGaussian mixture
densities (which is always the case in this thesis), it isaraamvenient to compute and write
the Log Likelihood Ratio (LLR) rather than writing the likkbod ratio itself. The LLR is

computed by taking the logarithm of the likelihood ratio arav the decision rule becomes:

log p(X|Ho) —log p(X|H1) < threshold (4.2)

In many situations, the problem is first formulated as a hiyesis testing problem and LLR
is then used to make a decision. LLR is widely used in speagaagnition researcIL [SQJ] [94].
Sometimes, it is also referred to as Generalized LikelihBatio (GLR) [39]. LLR is used in

this chapter calculate a similarity measure between two?DF
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4.2.2 Model Selection

In many situations, we are forced to choose among nesteseslad parametric models, e.g.
models with different number of parameters. The Maximumelikood (ML) principle [30]
(i.,e. maximizing the likelihood of available training dataas developed only for a single
parametric family, and hence it is not guaranteed to yieldrestble selection criterion in such
situations. Schwarz [106] proposed a Bayesian approatietmbdel selection problem known
as Bayesian Information Criterion (BIC). BIC is an approxiioatto the posterior distribution
on model classes. While based on the assumption that projoes piave been assigned to
each model, this approximation effectively eliminates arglicit dependence on prior choice.
The resulting solution takes the form of a penalized loglii@d. The Bayesian Information

Criterion states that the quality of model M to represent data. .., xn } is given by:
A A
BIC(M) =logP(X|M) — EV(M) logN = logP(xy,...,Xn|M) — §V(M> logN (4.3)

where p(xy,...,xny|M) denotes the maximum log likelihood of daXa= {xy,--- ,Xn} given
model M, V(M) denotes the number of free parameterdvirand N denotes the number of
observations irX. In theoryA should equal to 1, but it is a tunable parameter in practite. |
was shown in[ﬂB] that maximizing the BIC value also resintsaximizing the integrated
likelihood which is the expected value of the likelihood ptlee set of parameters &fl. A

model having maximum BIC value is selected using this theory

BIC was introduced for the case of speech and specificallgdoustic change detection and
clustering by Chen and Gopalakrishnanm [17], where the lprolwas formulated as that of
model selection. Since then, BIC has been used in many sp@@tications and is a state-of-

the-art approach for acoustic change detection and cingter

The problem of determining if there is a speaker change attpan dataX = {xy,...,Xn}
can be converted into a model selection problem. The tworalt®e models are: (1) model

M; assumes that is generated by a multi-Gaussian process, thétis...,xny} ~ N(l, %), or
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(2) modelM, assumes thaX is generated by two multi-Gaussian processes, that is

{Xt,...,%} ~N(p1,Z1)

{Xir1,. s XN}~ N(p2,Z2)
The BIC values for the two models are

BIC(M1) = IogP(xl,...,xN|u,Z)—)—Z\V(Ml)logN

A
BIC(M2) = logP(x1,...,Xi|p1,Z1) +10gP(Xi11,. .., Xn|H2, Z2) — EV(Mz) logN
The difference between the two BIC values is

ABIC = BIC(My)—BIC(My)
P(x1.... Xy 1) )
+=V(M2) —V(M1)]logN
P(X1, .., XM, Z1)P(Xi41, - - -, Xn[ 2, 22) 2[ (Mz2) =V (My)]log

log

A negative value oABIC means that modé\¥l, provides a better fit to the data, that is there is
a speaker change at pointTherefore, we continue merging segments until the valusBi€C

for the two closest segments (candidates for merging) iatney

It is also interesting to note that BIC formally coincideghwother information theoretic cri-
teria like Minimum Description Length (MDLE?] and Akaikeformation Criterion (AIC)
2]. These information theoretic measures have a compléiéflerent motivation and deriva-
tion to BIC. The motivation for MDL, for example, is to seleat@del that provides the shortest
description of the data, where describing data can be redgaad coding. The term depending
on the number of free parameters in BIC (right hand side of & &xplained in the MDL
framework as the extra cost incurred by transmitting theapeaters of the model. Rissanen
ﬂ;?] demonstrates that for a regular parametric family ohensiond, this amounts to trans-

mitting at Ieasl% logN bits, whereN is the length of the data.
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4.2.3 Performance Measurement

A good speaker segmentation algorithm should provide dmycorrect speaker changes. So
each segment should contain exactly one speaker. Therevarg/pes of errors related to
speaker change detection: insertion errors (when a speakege is detected but it does not
exist in reference) and deletion errors (an existing speakange is not detected). These two
types of errors have a different impact depending upon thicgtion. In our system, the
segmentation stage is followed by a clustering stage. Towxeinsertion errors (resulting in
over segmentation) are less critical than deletion ersinge the clustering procedure has the
opportunity to correct the insertion errors by groupingskegments related to the same speaker.

On the other hand, deletion errors cannot be corrected inltlstering stage.

For evaluation, the reference was generated from a mararadription. However, the exact
speaker change point is not very accurate in the referemeeg $he perception of speaker
change is very subjective. Therefore, we define an accuraegiom around the reference
speaker change point; foIIowinHl18], it is set to one secdror example, iN, andN;, are
sample indexes of reference and hypothesized speakerelpangs respectively. We call the

hypothesid\,, a hit if

¢ N, is the hypothesized change point closes¥itpand
¢ N; is the reference change point closesitp and

e the distance betwedxy andN; is less than one second.

From the alignment between reference and hypothesis, weetarmine the precision (percent-
age of correct hypothesized speaker change points amotigedilypothesized change points)
and recall (percentage of correct hypothesized speakageh@oints among all the true change
points). Deletion errors will directly lower the recall.dertion errors will reduce the precision.

Generally we seek systems that exhibit both high recall agll precision. However, as men-
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tioned before, insertion errors can be overcome by follgnatustering procedure, therefore
deletion errors are more critical than insertion errors;ate more concerned about the recall

value.

Speaker diarization error is the standard measuremeneaérall performance for speaker

segmentation and clustering used in the NIST evaluatials][Trhe overall speaker segmenta-
tion and clustering performance can be expressed in terthgohiss rate (speaker in reference
but not in system hypothesis), false alarm rate (speakeystes hypothesis but not in refer-

ence), and speaker error rate (mapped reference speakeat isensame as the hypothesized
speaker). The speaker diarization score is the sum of these tomponents and can be calcu-

lated using

Yanstdur(S) x (maxNret(S), Nsys(s)) — Neorrect(S)) }
Yans{dur(S) «Neet(S)}

DiaErr = (4.4)

whereDiaErr is the overall speaker diarization erraiur(S) is the duration of the segment,
Nref (S) is number of reference speakers in the segnégyS) is the number of system speak-
ers in the segment, aldkorrect(S) is the number of reference speakers in the segment which are
also hypothesized by the system. This formula allows theesaudio to be evaluated, includ-
ing regions of overlapping speech. In tables in this chapteiuse abbreviations “Miss”, “False
Alarm”, “Spkr Err”, and “Diarization Err” to represent migate, false alarm rate, speaker error

rate, and diarization error rate, respectively.

4.3 Related Work

This section presents a literature review of most of theiB@ant work that addressed the issues

related to speaker segmentation and clustering.
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4.3.1 Speaker Segmentation

Speaker segmentation is also called "speaker change idetest the literature. Although
speaker change detection also belongs to the family of ppati@ssification problems, and
thus has a feature extraction module followed by classifio&gegmentation framework, no
significant work has been reported on the feature extractiodule. Traditionally, MFCC
features are extracted every 10ms and fed to the segmenégdgjorithm. Various segmentation

algorithms have been proposed in the literature, which eacabegorized as follows:

e Decoder-guided segmentationThe input stream is first decoded; then the desired seg-
ments are Kmduced by cutting the input at the silence locatgenerated from the de-
coder J[gl] [124]). Other information from the decoder, sas gender information could

also be utilized in the segmentation.

e Model-based segmentationThis involves making different models e.g. GMMs, for a
fixed set of acoustic classes, such as telephone speechnppsie, etc. from a training
corpus (e.g. ﬂ]Eﬂ); the incoming audio stream is clasdifby ML selection over a
sliding window; segmentation is made at the locations whieegee is a change in the

acoustic class.

e Metric-based segmentation:A distance-like metric is calculated between two neighbor-

ing windows placed at each sample; metrics such as Kullhéier (KL) divergence

([108]), LLR ([&)] @r] &] &5]) orBIC (EG] 541 ] &5] [68] [128] [117] [118]) can

be used. The local maxima or minima of these metrics are derexil to be the change

points.

All of these methods have limitations. The decoder guidegnantation only places bound-
aries at silence locations, which in general has no cormeetith the acoustic changes in the

data. The model based segmentation approaches may noalismér unseen data conditions
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as the models are no longer compatible with the new data tonsli The metric based ap-
proaches generally require a threshold/penalty term tcendakisions. These thresholds are set

empirically and require additional development data.

4.3.2 Speaker Clustering

Most of the state-of-the-art solutions to the speaker ehirgf) problem use a bottom-up hierar-
chical clustering approach i.e. starting from a large nunabsegments (clusters), some of the
clusters are sequentially merged following a “suitableatgy. This strategy mostly consists
of computing a distance metric between any two clusters had terging the two clusters
with the smallest distance. Since most of the popular digtametrics are monotonic functions
of the number of clusters, an external method of controltimg number of clusters (or merg-
ing process) is a necessary part of the problem. Thus, mdkegirevious work on this topic

revolves around employing a suitable distance metric angsponding stopping criterion.

One of the earliest pieces of work on speaker clustering fiteenpoint of view of speaker
adaptation in ASR systems was proposeo‘ in [51]. In this wthrk, Gish-distance proposed
in ii)] was used as a distance metric, which is based on Gaussodels of the acoustic
segments. Hierarchical clustering was performed basetismistance metric through select-
ing the best clustering solution automatically by minimgithe within-cluster dispersion with
some penalty against too many clusters. The penalty termaded because the within-cluster
dispersion will keep monotonically decreasing, which wethd to the unwanted clustering of
one segment per cluster. Although, a study of the numberustets obtained with different
penalty terms was done, no systematic way was proposed taeede optimal value of this
term. It was also shown in this work that the automatic speeksstering contributed signifi-

cantly to reduction of Word Error Rate (WER).

Siegler et al. in ES] used Kullback-Leibler (KL) divergan (relative cross entropy) as
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the distance metric for speaker clustering. The KL distdmetsveen the distributions of two
random variable®\ andB is an information theoretic measure equal to the additibitalate
accrued by encoding random varialievith a code that was designed for optimal encoding of
A[21]. In an agglomerative clustering approach, the KL diseawas also compared with the
Mahalanobis distance. In this framework, an utterance Westered with an existing cluster if

it was within a threshold distance, otherwise it was useth@séed of a new cluster. Different
threshold values were tried in this work but no systematig whfinding this threshold was

proposed.

Solomonoff et al. in@Q] used LLR and KL distance metrics $peaker clustering. An
agglomerative dendogram clustering framework was pragpasehis work. Thus, a closest
pair of clusters was picked using these distance matricésrarged until there was only one
cluster. In order to obtain the appropriate number of chsstdendogram cutting was used.

This was done using “cluster purity” as a measure, which uss@oposed in this work.

A top-down split-and-merge clustering framework was prgobin [55] [56]. This work was
based upon the idea that the output of this clustering was tasbd for Maximum Likelihood
Linear Regression (MLLR) adaptation, and so a natural eelo metric for clustering is the
increase in the data likelihood from adaptation. The distametrics used for splitting and
merging were Arithmetic Harmonic Sphericity (AHg) [8] an@@ssian Divergence. The clus-
tering scheme works top-down with each node being split utdo four child nodes at each
stage. The splitting was done until no more segments coutddsed or the maximum number
of iterations was reached. At each stage of splitting, sofmb@nodes were merged. The
merging criterion was based on simple distance from theecesftthe node to its segments.
The decisions were made by comparing this distance agaitiseshold value. It was also
found to be necessary to define when a split is allowable teepitedata being split back into
its constituent segments. Thus, a heuristic based on mmimecupancy count was used to

ensure robust speaker adaptation. This clustering algontvas applied to the HTK broadcast
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news transcription systerﬂlZaL_],MZ].

The most commonly used distance metric for speaker clustesi BIC [16]. In this work,
starting from each segment (hand segmented) as a clusteardhical bottom-up clustering
was performed by calculating the BIC measure for every paglusters and merging the two
clusters with the highest BIC measure (see equation 4.3) clstering was stopped when the
merging of two clusters resulted into no increase in BIC measAlthough, in this work the
authors used a theoretically motivated penalty value, equosnt work on speaker clustering
using BIC ([1“7] [1j18] [64]) found that adjusting this petyabn the training data not only

produces better results, but is also necessary for themytsteun on unseen data.

Recently, in the framework of the DARPA-EARS program, N1$drted the speaker diariza-
tion evaluation. This task is very similar to speaker clustg except that the motivation is a
little different. Speaker diarization is intended to make transcription of ASR systems richer
by determining who said what. Whereas, the motivation of kpeaustering work for speech
recognition is to create speaker clusters from the pointi@iv\of speaker adaptation. Thus,
in the later case, it is possible to make a single clustenfor gpeakers if the two individual
clusters do not have enough data and the two speakers argiaaty very similar. Most of the
approaches presented in this evaluation used BIC as tlandesimetric 78]‘ [3]‘ [74]). Another
penalized LLR distance metric was proposed by Gauvain amch8§37], where the penalty
parameters were tuned to get the best performance. The Ghgeltiarization system [116]
used the framework defined i£[55]. It is clear that BIC is thees-of-the-art approach toward

speaker clustering.

4.4 Speaker Segmentation and Clustering Scenarios

There are mainly three scenarios in speaker segmentatiboastering evaluations, Broadcast
News (BN), Conversational Telephone Speech (CTS), and Mge(MT). These three types
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of scenarios show different characteristics in terms of benof speakers and number of turn
changes. Generally, there are a large number of speakemsaddast news shows (average 14),
fewer number of speakers in meetings (average 6), and ysudif two speakers in conversa-
tional telephone speech. The speaker’s talking style fereift for these three scenarios. The
talking style is very spontaneous for conversational teteye speech and meetings, while for
broadcast news the talking style is relative formal andlsinio read speech. The different talk-
ing style results in different number of turn changes fofedént scenarios. As shown in Figure
4.1, conversational telephone speech and meetings havefasier speaker turn changes. The
fast turn change is particularly crucial as reported i [@] The very spontaneous speaker’s
talking style also results in the presence of many short amdwerbal sounds (e.g. huh, laugh-
ter etc.), and the existence of cross talking (speech cameiyltiple speakers speaking at the
same time). The factors including fast speaker turn chargmmtaneous talking style, and
relative large amount of speakers make the speaker segmensad clustering in meetings
the most challenge task. In the rest of this chapter, we ptesg speaker segmentation and

clustering systems for conversational telephone speetimaetings.
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Figure 4.1.CDF of Speaker Segment Length
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Figure 4.1 compares the cumulative density function (CDRegiment length for Broadcast
News (BN), conversational telephony speech (CTS) and Mg={(NT). We can see that the
speaker segment durations are much shorter in conversadimh meetings than in broadcast
news, which also indicates that speaker-changing rate ishrhigher in conversations and
meetings. The median and mean segment lengths measurecbimdseare 1.63 and 2.80 in

conversations, 2.36 and 1.93 in meetings, while in broadeass they are 6.19 and 11.27.

4.5 Speaker Segmentation and Clustering on CTS

This section presents our speaker segmentation and ¢hgssyrstem on the conversation tele-
phone speech, which is one of the evaluation tasks in the [R0®B Spring Rich Transcription
evaluation (RT-03S).

4.5.1 Data Description

The English Conversational Telephone Speech (CTS) set wddarste NIST RT-03S evalu-

ation [115]. The CTS set was selected from the Switchboambdae, a corpus of spontaneous
telephony conversations. It is a standard publicly avé&lalatabase that is suitable for speaker
identification, verification and segmentation evaluatiofsach call is about 5-6 minutes in
duration and contains English conversations between twalsgs via landline or cellular tele-
phone. The participants speak in a spontaneous and umrstuaty, with frequent pauses and
spontaneous effects such as non-verbal sounds. Origieatih side (speaker) in a call has
a separate channel, which is the condition used in RT-03bia&wan. We also mix the two
channels to form a single channel two-speaker conversatiga used both the dry run and
evaluation test set from RT-03S evaluation. The dry rundestontains 12 calls and the eval-
uation test set contains 36 calls, about 4 hours total. Thelewthata set is well diversified in

speaker genders and telephony networks (landline andagllu
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4.5.2 System Overview

For the CTS data, it is very unusual to find more than one spaak#re same conversational
side. When the data for the channels is provided separatedyspeaker segmentation and
clustering task reduces to a speech activity detectionl@nebthat is to detect whether the

(single) speaker is talking or not.

We use a hybrid segmentation approach, which consists osfeps. This approach utilizes
the advantages of metric-based and model-based approdttess not need any prior train-
ing. Therefore it has the potential of portability acrog$edlent do-mains. The four steps in the

implementation of this algorithm are:

¢ Initial segmentation
e GMMs generation
e Segmentation with GMMs

e Resegmentation with Tied GMM

Operations of each step are described in detail in the fatigwwubsections.

Initial Segmentation

In this step, each frame of the audio stream is first classifiea one of the three classes:
highly confident speech, highly confident non-speech, wnstine frame window size is 30ms
(240 samples) and it shifts every 10ms along the audio strédra classification decision is
based on the features of energy, zero-crossing rate and FEghitade variance. The feature
of FFT magnitude variance is chosen based on the statisttsatspeech frame has higher

FFT magnitude variance than a non-speech frame. The gohkdhitial segmentation is to
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gather as many highly accurate speech and non-speech gsgseuossible to bootstrap the

generation of GMM models for speech and non-speech events.

GMMs Generation

Based on the highly confident speech and non-speech segifoentsin the initial segmenta-
tion step, we build two GMMssp andBpsp, for speech and non-speech respectively. Feature
vectors use 13-dimensional Mel-frequency cepstral caoeffis extracted with the same frame
and window size as in the initial segmentation. 32 Gaussiatune components and diagonal

variance matrices are used.

Segmentation with GMMs

After building the GMMs @sp and 6,sp) for speech and non-speech, we use these models
to classify the unsure parts in the audio produced by th@airsegmentation. A three-way
classification is done according to formula 485, andénspare updated after each classification
step by adding the new speech and non-speech data. Thdic#®s step iterates with the
model-updating step (in our experiments, these two steyallysterate 3-5 times) until all the
unsure parts are labeled as either speech or non-speechcofb&@ant TH in formula 4.5 is
set to 0.5 in our experiments. Our goal in this step is to pcedas pure speech segments as

possible while not missing too many short speech segmettie game time.

P(X|6sp) — P(X|Onsp)

P(x|Bsp) > P(X|Bnsp) and >TH speech

P(X|Bnsp)
P(x|6nsp) — P(X|6
P(x|Bnsp) > P(x/8sp) and (XlBnsp) ~P(X8sp) _ nonspeech  (4.5)
P(X|0sp)
otherwise unsure
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Figure 4.2:Speaker Change Detection

Resegmentation with Tied GMMs

If there is a clear pause between a speaker turn-changdl, litendetected by the previous three
steps via non-speech segment. However, if no pause occiwsdiea speaker turn-change,
the previous three steps will fail to detect it. Thereforethis step, we aim at detecting those
seamless speaker turn-changes by the metric-based Bl@sé&agon. We suspect such speaker
turn-changes only happen in long segments. So for segmbtamed from the previous three
steps that are longer than a certain length (5 seconds isinised implementation since the
majority of segments is shorter than 5 seconds as shown inérig1), we use the metric-based
BIC segmentation approach to find out whether there stitesppeaker turns. This may cause
over segmentation, but the following clustering procedeaa recover from this by merging
homogeneous segments. However, if a speaker turn is migdech means that a segment
contains speech from more than one speaker, it can nevercbeered by clustering. The

procedure is shown in Figure 4.2.

We first compute the distance between two neighboring wirsdolhe window duration is

one second and windows are shifted by 10ms. The distanceebeWin; andWin, is defined
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as
P(Xc|6c)
(Xa[6a) P(Xg|68)

whereXa, Xg, andXc are feature vectors iWing, in Winp, and in the concatenation Win

D(Wim,Winp) = —log S (4.6)

andWinp, respectivelyBa, 8g, andB¢c are GMM models built orXa, Xg, andXc, respectively.
We can see from (4.6) that the larger the distance, the mkelyla speaker turn change exists
at the boundary betweéfing andWin,.

We assume a speaker turn change exists if the local maximulistahces satisfies

Dmax— Dk > O
Dmax— DrF]g"n > CX (4'7)

min{ (Imax— 1 in) (1Rin — Imax) } > B

where Dmax refers to the local maximum distance value d@ig,, and DR, = refer to the left
and right local minimum distance values around the localimar. I ax refers to the index

of the local minimum. The third inequality in (4.7) considarot only the value of the local
maximum but also its shapex and 3 are constant thresholds, for which we found optimal
values via cross-validation on the developmentges. equal to the variance of all the distance
values times a factor of 0.33 is set to 5. Our approach differs from other approaches, such
as [17][24], because in our implementation we build a TiedMEKTGMM) using all speech
segments and generate a GMM for each segment by adapting@NBVIT The advantage is

that a more reliable model can be estimated with a TGMM.

Speaker Clustering

Originally each side (speaker) in a telephone convers#ii@a separate channel. On the sepa-
rate channel, no speaker clustering is needed since onlgmaeker talks on this channel most
of the time. We also mix the two channels to form a single misleannel two-speaker conver-

sation. In this case, speaker clustering is required. Fealsgr clustering, we use a hierarchical,
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agglomerative clustering technique called TGMM-GLR. Wetftrain a TGMM,06, based on

all speech segments. Adaptifigo each segment generates a GMM for that segment. The defi-
nition of the GLR distance between two segments is the sanmg(4$). A symmetric distance
matrix is built by computing the pairwise distances betwakisegments. At each clustering
step, the two segments which have the smallest distanceaagedh and the distance matrix is

updated. We use the Bayesian Information Criterion as a stgmpiterion.

After clustering we merge any two segments that belong tes#me speaker and have less

than a 0.3 second gap between them.

4.5.3 Experimental Results

We use "Purity” to measure the performance of speech andspereh classification in the
initial segmentation and model-based resegmentatiorntyRiira speech segment is defined as
the percentage of the frames in the segment that are truelsfraenes. Purity of non-speech

is defined similarly.

We use the standard diarization error to measure the ov@raliker segmentation and clus-
tering performance. For the CTS data, since the data for thardis is provided separately,
Therefore the performance under the separate channeltmondan be explained by a sim-
ple graphical representation to allow a quick visual insje&cof the entire side in question,
which can not be provided by the numerical diarization ssoffeigure 4.3 gives an example
of such graphical representation. For the example illtestrin Figure 4.3, the two hypotheses
get the same overall diarization errors, but the graph blesdwows the differences between the

systems.

In initial segmentation, 42% of the entire conversatioratn is labeled as unsure. Table 4.1
shows the speech and non-speech purity after the initiahsatation step and GMM-based

resegmentation step. The results show that initial segatientis very effective and has the po-
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Figure 4.3: Graphical representation of system performance for theassp channel CTS

diarization problem

tential of domain independence since it does not need aaygwimain-dependent information.

Table 4.2 shows the decomposed diarization errors on separannels and single mixed chan-
nel respectively. The single mixed channel task is morelehging than the separate channel
task, since there are more severe cross talkings and sesasplegker turn changes. While in the
separate channel task, it is always true that each channtline only one speaker. Therefore,
speaker diarization task on separate channels is simpéfea speech activity detection task.
In our current implementation, we did not specifically de@hveross talkings, just label them

as one speaker by clustering.
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Table 4.1:Purity performance on dry run set

Purity Initial segmentation Segmentation with GMM

(58% of the data) (100% of the data)

Speech 99.5% 95.3%

Non-Speech 97.2% 95.5%

Table 4.2:Diarization error on separate vs. single mixed channel oy skt

Diarization Err Miss | False Alarm| Spkr Err
Dry run 4.5% 4.7% 0.0%
separate channel _
Evaluation|| 6.5% 4.0% 0.0%
_ Dryrun || 10.8% 7.0% 0.9%
Single channel _
Evaluation|| 15.5% 8.4% 1.4%

We also found that there is no significant difference in thigsmance for seperate channel
speech activity detection on landline telephony speectcatdar telephony speech, as shown
in table 4.3, which indicates that the techniques are rotoudifferent background noises and

telephony networks.

Table 4.3:Diarization error for landline vs. cellular on dry run set

Tele Network|| Miss | False Alarm| Diarization Err

Landline 4.8% 4.4% 9.22%

Cellular 4.0% 5.3% 9.29%

Table 4.4 compares the performance across different pgaatit systems in the RT03s eval-

uation for this seperate channel activity detection taskuising Cambridge University system
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Table 4.4:Performance comparison for seperate channel speec gctieitection across sys-

tems in RT0O3s evaluation

System Cu ISL LL

Diarization Err|| 11.63%/| 11.41%| 11.52%

(CU), our system (ISL) and Lincoln Laboratory system (LL).€f@is no significant difference
in performance across systems. Our results can represestate-of-the-art performance in

the NIST RT-03S evaluation for seperate channel speechtaatetection.

4.6 Speaker Segmentation and Clustering on Meetings

The full automatic transcription of meetings is considemedAl-complete, as well as an ASR-
complete, problenJT?S]. It includes transcription, metdadextraction, summarization, etc.
In recent years, the study of multi-speaker meeting audsoskean a surge of activity at many
levels of speech processing, as exemplified by the appeaddiarge meeting speech corpora
from several groups, important observations availablmmliteratureElh[?(??], and the new

evaluation paradigm launched by NIST, the Rich Trans@ipEvaluation on Meetings.

4.6.1 Data Description

The experiments throughout this section were conducteherRT-04S meeting data. Each
meeting was recorded with personal microphones for eacticipant (close-talking micro-

phones), as well as multiple room microphones (distantepicones) placed on the conference
table. In this section we focus on the task of automatic speséggmentation and clustering

based on multiple distant microphone (MDM) channels.

Both the development and the evaluation datasets from tBd WT-04S evaluation were
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Table 4.5:RT04s Development dataset

MeetingID (abbreviation)

#Spkrs

cMic

#dMic

CMU_20020319-1400 (CMU1

6

L

CMU_20020320-1500 (CMU2

ICSI.20010208-1430 (ICSI1)

ICS1.20010322-1450 (ICSI2)

LDC_20011116-1400 (LDC1)

LDC_20011116-1500 (LDC2)

NIST_20020214-1148 (NIST1

NIST_20020305-1007 (NIST2

N[ OO | w W NN A

T | T | || I | xIT|r

ol ~N|jo|o|~|A~]|F

used. The data were collected at four different sites, gholyf CMU, ICSI, LDC, and NIST
dﬁ]d@]@] 110]. The development dataset consists aféetings, two per site. Ten minute
excerpts of each meeting were transcribed. The evaluatitasdt also consists of 8 meetings,
two per site. Eleven minute excerpts of each meeting wewctss for testing. All of the
acoustic data used in this work is of 16kHz, 16-bit qualigblE 4.5 gives a detailed description
of the RT-04S development dataset, on which we subsequesytyt detailed performance
numbers. “cMic” refers to close-talking microphone used. stands for lapel and “H” stands

for headset. “#dMic” is the number of distant microphones/ted for each meeting.

4.6.2 System Overview

The MDM system consists of following steps:

e initial speech/non-speech segmentation for each channel

¢ unification of the initial segmentations across multiplamhels

102




Section 4.6 Speaker Segmentation and Clustering on Meetings

best channel selection for each segments

speaker change detection in long segments

speaker clustering on all segments

smoothing.

Initial speech/non-speech segmentatiois generated using the acoustic segmentation soft-
ware CMUse@).5. We removed the classification and clustering compaenamd used it as a

segmenter. A detailed description of the algorithms usehbigssoftware can be found in [108].

1 t2 t3t4 t5t6 t7 t8 time
E — E M E channelA
— — ' —1 channelB

Figure 4.4:Multiple Channel Unification

In themultiple channel unification step, the segment boundaries are unified across multiple
channels. Figure 4.4 shows an example for two distant mimog channels. The initial seg-
mentation produces two speech segments on channel A, Y&hd3t5, t7); and two segments,
(t1, t4) and (t6, t8), on channel B. After unification, the m@mts across the two channels are

(t1, £2), (2, 13), (3, t4), ({5, t6), (6, t7) and ({7, 8).

We then conduct &est channel selectiorfor each of the segments produced during the
unification step. We compute the minimum enerir(E;), maximum energyNaxE;), and
the signal-to-noise raticSN R) within each segment on all channels. We select the beshehan

for each segment according to following criterion,

MinE; 1 )

i* = argmin (MaxE. X SNR (4.8)
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Speaker change detectioims applied to any segment that is longer than 5 seconds tkchec
whether there exist speaker turn changes within such logmeets. We choose 5 seconds
because the majority of segments in meeting is shorter tis@a@nds as shown in figure 4.1 and
this was found to give optimal segmentation accuracy viasralidation on the development
set. The procedure is the same as shown in FigureSp2aker clusteringis then performed
on all segments. The same hierarchical, agglomerativaerlng technique as described in

section 4.5 is applied here.

In the finalsmoothingstep, we merge any two segments that belong to the same speake
have less than a 0.3 second gap between them. This is based experience in the RT-03S

evaluation.

4.6.3 Experimental Results

Speaker Segmentation Performance

Table 4.6:Speaker Segmentation Performance (in %) on dev set

System Stage Precision| Recall
Initial 86.83 | 11.60
Unification 87.74 | 19.00
Change Detection 85.17 | 76.41

Table 4.6 shows the speaker segmentation performanceeredif system stages. Not sur-
prisingly, the low recall of the initial segmentation indtes high deletion errors, which means
that a lot of speaker changes are missed. Multiple channétation compensates a little
for the deletion errors. Speaker change detection leadstg anprovement in recall while

suffering only a small decrease in precision.
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Speaker Diarization Performance

Table 4.7:Speaker Diarization Performance (in %)

Error Development Set| Evaluation Set
Include | Exclude || Include | Exclude
Miss 8.7 0.0 19.8 0.4
False Alarm 3.3 2.9 2.6 4.1
Spkr Err 25.1 26.7 17.8 23.4
Diarization Err 37.11 | 29.59 40.19 | 28.17

Table 4.7 shows the overall speaker diarization perforraarcthe development set and on
the evaluation set, both when including regions of oveiilaggpeech and when excluding the
regions of overlapping speech. Comparable results are\athan both datasets. The dominant

error among the three error components is speaker error.

In Table 4.8 we show the speaker diarization performancediidual meetings of the de-
velopment set. The results exhibit large variability ovezatings collected at different sites.
We think that this variability may be due to unquantified nmegtharacteristics such as over-
all degree of crosstalk, general meeting geometry inclyidoom acoustics and microphone
variability within a meeting. However, we noticed that oystem often underestimates the
number of speakers involved in a meeting. Although on mgstibMU2 and NIST1 the sys-
tem underestimates the number of speakers, it still achibetter performance compared to
most other meetings. This is due to the fact that both thesenteetings have a dominant

speaker who talks for more than 70% of the time. We computespigaker speaking time
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Table 4.8:Speaker Diarization Performance on individual meeting év det including over-

lapping speech (in %)

Meeting || Miss | False Alarm| Spkr Err | Diarization Err| #ref | #sys

CMU1 12.6 4.3 30.3 47.12 6 4
CMU2 3.4 5.0 16.3 24.72 4 2
ICSI1 4.7 2.9 35.0 42.62 7 4
ICSI2 9.8 11 37.0 47.92 7 3
LDC1 6.2 2.6 9.0 17.78 3 3
LDC2 17.3 11 11.0 29.41 3 3
NIST1 7.2 7.1 11.7 26.01 6 2
NIST2 6.5 3.1 49.5 59.04 7 2

entropyH (Meeting for each meeting,

H(Meeting = —%lP(S) xlogP(§)
TS
P& = SHLT(S)

whereM is the number speakers involved in the meetii@S) is the total time that speaker
S speaks.P(S) is the percentage of time (ie. probability) that speakespeaks. The lower
the entropy, the more biased is the distribution of the speageaking time in the meeting.
As H(Meeting — 0, it becomes more likely that there is only one dominant kpe@ the

meeting.

Figure 4.5 shows the speaker diarization error on eachiihai meeting in the development
set versus its speaker speaking time entropy. We can sedlffigure that our system tends
to produce lower speaker diarization error on meetingslihse lower speaker speaking time

entropy. We think the reason that the two CMU meetings do dlavichis trend is that there is
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only one distant microphone channel provided. This makkeariler in general to segment and
cluster relative to other meetings, for which multiple distmicrophone channels are provided.
701

NIST2

60

DiaErr (in %)

1.23 1.33 1.47 1.49 1.93 2.02 2.26 2.63
Entropy

Figure 4.5:Speaker speaking time entropy vs. diarization error.

We also conducted an experiment as follows. We assume aoceoreet mapping between
channel and speaker. We use the best channel informatignwhich was provided in the
channel selection step described in section 4.6.2. We dperform speaker clustering. For
any two segments, if the channel selection process prodbheesame best channel for them,
we assume these two segments belong to the same speakeyi€ltgs55.45% and 52.23%
speaker diarization error when including and excludingriapping speech, respectively. It
indicates that there is rich information that can be usedidaraspeaker segmentation and
clustering from the multi-channel recordings. Our currepstem utilizes such information

implicitly by doing best channel selection.

Table 4.9 compares the performance across different paatitsystems in the RT04s meet-
ing evaluation including joint systems from CLIPS and LIA da@tories (LIA+CLIPS), our
system (ISL) and Macquarie University system (Macquar@)r system was ranked number

2 among the three systems.
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Table 4.9:Performance comparison across systems in RT04s evaluation

System LIA+CLIPS ISL Macquarie

Diarization Err exclude overlapping 23.54% | 28.17%| 62.0%

Diarization Err include overlapping 37.53% | 40.19%| 69.1%

4.7 Impact on Speech Recognition

Incoming Audio Stream

T

Speech/Non-Speech Segmentat

b

)

Y Speech Only

Speaker Change Detecti

=

l Homegenous Speaker Segments

Speaker Clustering

l Speaker Adaptation

Y Y'Y

Automatic Speech Recognition (ASR Rich Transcription >

Figure 4.6:Speaker Segmentation and Clustering impact on Speech Re&gogn

Figure| 4.6 shows a typical ASR system work-flow for Rich Tiaimtion task and how
components in the speaker segmentation and clusteringmnsyistpact on ASR system. The
speech/non-speech segmentation allows only speech segrodse passed to the recognizer,
saving computation time as well as improving recognitioocusacy. The speech segments
are further segmented in terms of speakers, which is useflASR as decoding of well seg-
mented and manageable speech chunks is always more eatiacamate. These homoge-

neous speaker segments can be clustered together in terspeakers to facilitate speaker
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adaptation of an ASR system, which has been shown to sigmiifycenprove ASR accuracy
ﬂ;] ﬂ;] d;)]. Finally, the output of all these modules cdsmbe combined with the output of

the ASR system, resulting in Rich Transcription.

Table 4.10:Word error rate on RT04s dev set

Acoustic Models|| Manual Segmentation MDM Segmentation
PLAIN 53.4% 54.4%
SAT/CAT 46.6% 48.5%
SAT/CAT-VTLN 43.3% 45.5%
Multi-pass CNC 42.8% 45.0%

Table 4.10 compares the automatic speech recognitionmpeafece in word error rate based
on manual segmentation vs. on segmentation provided by @M Mpeaker segmentation and

clustering system [73]. The first column refers to differanbustic models in the ASR system:

e PLAIN Merge-and-Split training followed by Viterbi (2 iteratipon the close-talking
data only, no VTLN

e SAT/CAT Extra 4 iteration Viterbi training on the distant data, nol\N (speaker adap-
tive training (SAT); cluster adaptive training (CAT))

e SAT/CAT-VTLN = SAT/CAT, but trained with VTLN

e Multi-pass CNC confusion network combination

We lose 1% to 2.2% absolute in word error rate based on autos@gmentation compared
to manual segmentation. It is clear that speaker segmentatid clustering plays a vital role
in improving the performance of adaptation. We have notited speech recognition has a

different requirement for speaker segmentation and alugteln speech recognition, the goal
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of speaker segmentation and clustering is to provide clemesspeaker segments for speaker
adaptation. Speaker adaptation is concerned more withetiression of speakers, than with
the strict classification of speakers. So if two speakersdaimilar, they can be considered as
equal and grouped into one cluster. It actually would beenadiesirable for speech recognition
to group similar speakers together, so that more data isadaifor adaptation. Therefore, a
specific speaker segmentation and clustering system tamepéech recognition may achieve

better word error rate even if speaker diarization perfarogais worse.

Our system has been used widely in many other evaluationk,asiin the TC-STAR Eval-
uation |11£], in the NIST RT04 Mandarin Broadcast News Eatibn [127] and in the GALE
Evaluations (2006).

4.8 Chapter Summary

In this chapter we presented techniques for speaker segtimmand clustering (TGMM-GLR)
that do not require a prior training. These techniques aaduated in the NIST RT-03S evalu-
ation on the conversational telephony speech. We achiate-st-the-art performance with a
diarization error of 11.4%. The performance analysis alsm\s that these techniques are ef-
fective and robust against different background noises@leghony networks. They show the
potential of domain independence. We also presented oamatic speaker segmentation and
clustering system for natural, multi-speaker meeting eosations based on multiple distant
microphones. The performed experiments show that the mysteapable of providing use-
ful speaker information on a wide range of meetings. Theesysichieved a 28.17% speaker
diarization error in the NIST RT-04S evaluation. The speakgmentation and clustering tech-
niques also play significant roles in our automatic speecbgeition systems, which break the
continuous audio stream into manageable chunks applitatitee configuration of the ASR

system and provide speaker information that is used foriefficspeaker adaptation.
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Chapter 5

Person Identification System

5.1 Introduction

Person identification consists of determining the idendtya person from a data segment,
such as a speech, video segment, etc. Currently, there ishartegest in developing person
identification applications in the framework of smart roonvieonments. Person identification
in smart environments is very important in many aspects. istance, customization of the
environment according to the person’s identity is one oftlest useful applications. In a smart
room, the typical situation is to have one or more camerasaweral microphones as shown in
figure/5.1. Perceptually aware interfaces can gather neténtormation to model and interpret
human activity, behavior and actions. Such applications & assortment of problems such a

mismatched training and testing conditions or the limitegbant of training data.

The objective of the CHIL (Computers in Human Interaction Lppmject [20] is to create
environments in which computers serve humans who focus tenaicting with other humans
as opposed to having to attend to and being preoccupiedatmachines themselves. Instead
of computers operating in an isolated manner, and humansttim the loop of computers,

we put computers in the human interaction loop (CHIL) and glesiomputer services that
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Cam2 \ White Board \ Cam4

Mark llI-Array

Figure 5.1:Audio and Video sensors setup in a typical smart-room enwient

model humans and the state of their activities and inteatiBased on the understanding of the
human perceptual context, CHIL computers are enabled togedelpful assistance implicitly,

requiring a minimum of human attention or interruptions

A data corpus and evaluation procedure has been providée i IL project to encourage
the research efforts for person identification in smart emments. Following the two suc-
cessful uni-modal identification (audio-only and videdyyrevaluations, this year multi-modal

identification is also included to the person identificatiask.
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5.2 Multimodal Person ldentification

Multimodal recognition involves the combination of two obre human traits like voice, face,
fingerprints, iris, hand geometry, etc. to achieve betteiopmance than using unimodal recog-
nition. In our Person ID system, audio-based identificafgpeaker identification) and video-

based identification (face recognition) are combined.

5.2.1 Audio-based Identification

Our audio-based identification (speaker identificatiorstewm is a GMM based system. Rever-
beration compensation and feature warping as describedtail ih Chapter 2 are applied in
the feature processing stage. In our system, we use 13-diotett MFCC as speaker features
and 128 Gaussians and 32 Gaussians as speaker models @ngl@second training condition
and 15-second training condition respectively. We willshwhy we choose these numbers of

Gaussians in the experimental results section.

5.2.2 Video-based Identification

Our video-based identification system is a face recogngimiem [31]. The face recognition
system processes multi-view, multi-frame visual inforimato obtain an identity estimate. The

system consists of the following building blocks:

Image alignment

Feature Extraction

Camera-wise classification

Score normalization
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e Fusion over camera-views
e Fusion over image sequence

The system receives an input image and the eye-coordingithee tace in the input image.
The face image is cropped and aligned according to the eyelicades. If in the image only
one eye is visible, it is not processed. The aligned imagees tlivided into non-overlapping
8x8 pixels resolution image blocks. Discrete cosine tramsf(DCT) is applied on each local
block. The obtained DCT coefficients are ordered using zgyszan pattern. From the ordered
coefficients, the first one is removed since it only represéime average value of the image
block. The firstM coefficients are selected from the remaining og [120] efmave the effect
of intensity level variations among the corresponding k#oof the face images, the extracted

coefficients are normalized to unit norm.

Classification is performed by comparing the extracted feauectors of the test image,
with the ones in the database. Each camera-view is handpedagely. That is, the feature
vectors that are extracted from the face images acquired bye@al are compared with the
ones that are also extracted from the face images acquir€hlmera 1 during training. This
approach speeds up the system significantly. That is, if we Namages from each camera
for training, and if we havéRk images from each camera for testing, and we Hawameras,
it requires(C « N) x (Cx R) similarity calculations between the training and testintages.
However, when we do camera-wise image comparison, then Weneed to doC* (N x R)
comparisons between the training and testing images. A&pgsy this reduces the amount of
required computation by a factor Gf In addition to the improvement in system’s speed, it also
provides a kind of view-based approach that separates thpaeson of different views, which
was shown to perform better than doing matching betweermalfdce images without taking

into consideration their view anglel;[84]. Distance valobtined from each camera-view are
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normalized using Min-Max rule, which is defined as:

s—min(S)

where,s corresponds to a distance value of the test image to one dfaimng images in the
database, an8corresponds to a vector that contains the distance valuie ¢ést image to all
of the training images. The division is subtracted from aece the lower the distance is, the
higher the probability that the test image belongs to thantidy class. This way, the score is
normalized to the value range of [0,1], best match havingsttwee “1”, and the worst match
having the score “0”. These scores are then normalized byidiy them to the sum of the
confidence scores. The obtained confidence scores are suoveedamera-views and over
image-sequence. The identity of the face image is assignétegperson who has the highest
accumulated score. This face recognition system is deedlby our colleague Hazim Ekenel
31].

5.2.3 Multimodal Person Identification

Multimodal identification is performed by fusing the matcdores of both modalities (audio and
video). In a multimodal biometric system that uses severatacteristics, fusion is possible at
three different levels: feature extraction level, matghgtore level or decision level. Fusion
at the feature extraction level combines different biomdtatures in the recognition process,
while decision level fusion performs logical operation®aopghe unimodal system decisions to
reach a final resolution. Score level fusion matches theiddal scores of different recognition

systems to obtain a multimodal score. Fusion at the matcdgoge level is usually preferred

by most of the systems. Matching score level fusion is a ttep-process: normalization and
fusion itself ‘[32] [4%] ‘[6$] ‘[125]. Since unimodal scoresausually non-homogeneous, the
normalization process transforms the different scoresaohainimodal system into a coclnpara-

) [

ble range of values. One of the most conventional normadizahethods is z-score (ZS) [69]
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121], which normalizes the global mean and variance of tteges of a unimodal biometric.
Denoting a raw matching score afrom the sefA of all the original unimodal biometric scores,

the z-score normalized biometrds calculated according to the formula as follows:

_a—meanA)

2= TStdA) (1)

wheremear{A) is the statistical mean ok andstd(A) is the standard deviation. After nor-
malization, the converted scores are combined in the fysiooess in order to obtain a single
multimodal score. Product and sum are the most straigh#imhfusion methods. Other fusion
methods are min-score and max-score that choose the minandrthe maximum of the uni-
modal scores as the multimodal score. “Matcher Weightiisgd fusion method where each
biometric is weighted by a different factor proportionalttee recognition result of the bio-
metric, and in the user weighting method different weigptmethods are applied for every

user.

In our person identification system, the scores from eachheftivo unimodal systems
(speaker identification and face recognition) are norredlizsing z-score techniques, then they

are fused via sum rule.
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5.3 Data Setup and Experimental Results

5.3.1 Experimental Setup

Table 5.1:CLEAR 2006 Evaluation Test Dataset (%)

Segment Duration Num of segments
1 613
5 411
10 289
20 178

Classification of Events, Activities and Relationships (CIH)As a international technology
evaluation supported by CHIL, NIST and the US ARDA VACE prografset of audiovi-
sual recordings of seminars and of highly-interactive $matking groups seminars have been
used. These recordings were collected by the CHIL consorfiiurtne CLEAR 06 Evaluation.
The recordings were done according to the “CHIL Room Setupt#jation [15]. Data seg-
ments are short video sequences and matching far-field aeclodings taken from the above

seminars.

To evaluate how the duration of the training signals imp#utsperformance of the system,
two training durations have been considered: 15 and 30 siscofest segments of different
durations (1, 5, 10 and 20 seconds) have been used durindgbetlan development and
testing phases. A total of 26 personal identities have beed un the recognition experiments.
Each seminar has one audio signal from the microphone nufbkthe Mark Il array. Each
audio signal has been divided into segments which cont&mnmation of a unique speaker.
These segments have been merged to form the final testingeségof 1, 5, 10 and 20 seconds

(see Table 5.1) and training segments of 15 and 30 secondso V8 recorded in compressed
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JPEG format, with different frame-rates and resolutiongtie various recordings.

Far-field conditions have been used for both modalities, aegner cameras for video and
Mark Il microphone array for audio as shown in Figure|5.1the audio task only one array
microphone has been considered for both development atiai@dases. In the video task, we
have four fixed position cameras that are continuously neang the scene. All frames in the
1, 5, 10, 20 sec segments and all synchronous camera viewseaased and the information
can be fused to find the identity of the concerned person. @alfie faces to be identified, a set
of labels is available with the position of the bounding boxdach person’s face in the scene.
These labels are provided each one second. The face bourahieg are linearly interpolated
to estimate their position in intermediate frames. To hblp process, an extra set of labels is

provided, giving the position of both eyes of each individexgery 200 ms.

The metric used to benchmark the quality of the algorithmn@CLEAR evaluation is the

Miss Classification Rate (MCR) in percentage.

5.3.2 Experimental Results
Audio-based Identification Results

To find an optimal number of Gaussians for a speaker model,omducted several speaker
identification experiments with different number of Gaassi in a speaker model. We use
the evaluation data in CHIL 2005 Spring Evaluatiim [18] toideache number of Gaussians

for speaker models. This data set has been carried out omtbe af the UKA-ISL. Semi-

nar 2003 and UKA-ISLSeminar2004 databases. Non-speech segments have been manually
removed both from the training and the testing segmentsteldme two microphone conditions:
Closed-Talking-Microphone (CTM) and Microphone Array (ARRhe duration and number

of segments selected for the training and testing as impgovur system is described in Table

5.2
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Table 5.2:CHIL 2005 Spring Evaluation Dataset (%)
Segment ID | Duration | Num of CTM segments Num of ARR segments

Train A (15 sec) 30 11 11
Train B (30 sec) 15 11 11
Test 5 1100 682

Table/ 5.3 and 5.4 show that speaker identification error catges while the number of
Gaussians changes in a speaker model. According Table 8/3.4nwe choose to use 128
Gaussians for the 30-second training condition and 32 Ganusdor the 15-second training

condition.

Table 5.3:Performance with different number of Gaussians for Train 8 $8c) training dura-

tion (%)

Num Gaussians 64 | 128 | 256

MCR 0.36| 0.27| 0.36

Table 5.4:Performance with different number of Gaussians for Train Bx¢&c) training dura-
tion (%)

Num Gaussians 16 32 64

MCR 2.82]2.00| 2.23

The final results of audio identification on the CLEAR 2006 aa#ibn dataset are shown in
Table 5.5. We can see from the table that more training datdcamger test gets help to reduce

the false identification rate.
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Table 5.5:CLEAR 2006 Audio Person ID in Error Rate (%)

Duration | Segments| Train A (15-sec)| Train B (30-sec)
1 613 23.7 14.4
5 411 7.8 2.2
10 289 7.3 1.4
20 178 3.9 0.0

Video-based ldentification Results

In face recognition experiments, face images are alignedrdmg to eye-center coordinates
and scaled to 40x32 pixels resolution. Only every five fraha has the eye coordinate labels
is used for training and testing. The aligned image is theiddd into 8x8 pixels resolution

non-overlapping blocks making 20 local image blocks. Fr@aoheimage block 10 unit norm

DCT-0 coefficients are extracted and they are concatenatednstruct the 200-dimensional

final feature vector. The classification is performed usiagrast neighbor classifier. L1 norm
is selected as the distance metric, since it has been olosirak it consistently gives the best
correct recognition rates when unit norm DCT-0 coefficieméswesed. The distance values are
converted to the matching scores by using the Min-Max rukee fiormalized matching scores
are accumulated over different camera views and over imageence. The identity candidate

that has the highest score is assigned as the identity ofetiseip.

The miss classification rates for different training anditgsdurations can be seen in Table
’5.6. As can be observed from the table, the increase in thrtggssegments’ duration or in the

testing segments’ duration decreases the miss classficatie.
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Table 5.6:CLEAR 2006 Video Person ID in Error Rate (%)

Duration | Segments| Train A (15-sec)| Train B (30-sec)
1 613 46.8 40.1
5 411 33.6 231
10 289 28.0 20.4
20 178 23.0 16.3

Multimodal Person ldentification Results

In this section we summarize the results for the evaluatfahifferent modalities and the result
improvement with the multimodal technique. In the follogiitables, we show the identifica-
tion error rate for both audio and video unimodal modaliesl multimodal fusion. The first

column shows the duration of test segments in seconds. Toeadeolumn shows the number

of tested segments. Train A and B are the training sets of dénsks and 30 seconds.

Table 5.7:Multimodal Person ID in Error Rate (%) with Equal Fusion Weligh

_ Train A (15-sec) Train B (30-sec)
Duration| Segments
Audio | Video | Fusion|| Audio | Video | Fusion
1 613 23.7 | 46.8 | 29.2 144 | 40.1 | 19.3
5 411 7.8 33.6 | 17.7 2.2 23.1 | 10.0
10 289 7.3 28.0 | 17.5 14 20.4 | 10.5
20 178 3.9 23.0 | 135 0.0 16.3 7.3
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Table 5.8:Multimodal Person ID in Error Rate (%) with Unequal Fusion \Qjeis

_ Train A (15-sec) Train B (30-sec)
Duration| Segments
Audio | Video | Fusion|| Audio | Video | Fusion
1 613 23.7 | 46.8 | 194 14.4 | 40.1 | 129
5 411 7.8 33.6 7.6 2.2 23.1 1.7
10 289 7.3 28.0 6.8 1.4 20.4 2.9
20 178 3.9 23.0 4.5 0.0 16.3 1.1
All 1491 13.8 | 36.7 | 11.9 6.8 28.8 6.5

Table 5.7 summarizes the person ID results when audio I2syand video ID system are
fused together using equal weights. Again, it can be obsgetivat the increasing in training
segments’ duration or in test segments’ duration decrethgefalse identification rate. Due
to equal weighting of each modality, the multimodal iden#fion results are better than the
video-only results and worse than the audio-only resulibditer combine the audio and video
modalities, we weight the two modalities differently aatiog to the identification performance
of the uni-modality, which means we gave higher weights tli@only scores for fusion. Table
5.8 shows the performance improvement of the multimodaiesysy fusion over the audio-
only and video-only systems. From the results we see thadrfusf multi modalities can
significantly improve the performance over each of the undalities. Although there is other

sophisticated fusion logic, in this thesis we used simplgdir fusion strategy.

Tablel 5.9 compares the performance of uni-modal and muitahsystems from different
participants. Our audio-based and video-based unimoddésys achieved the best perfor-
mance among three participants. However, notice that ahdJPC system had worse audio-
based performance and much worse video-based performéachjeved fusion performance
close to our performance. This indicates fusion strateigieery crucial in a multimodal sys-

tem.
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Table 5.9:Multimodal Person ID in Error Rate (%) accross differenttgyas

Train A Train B
Duration| Segments
Audio | Video | Fusion|| Audio | Video | Fusion

1 613 25.0 | 79.8 | 23.2 16.0 | 80.4 | 13.8

5 411 10.7 | 78.6 8.0 2.9 77.1 2.9

UPC 10 289 10.7 | 775 5.9 3.8 74.4 2.0
20 178 11.8 | 76.4 4.0 2.8 73.0 1.1

All 1491 16.7 | 78.7 13.3 8.4 77.5 6.8

1 613 23.7 | 46.8 | 194 144 | 40.1 12.9

5 411 7.8 33.6 7.6 2.2 23.1 1.7

ISL 10 289 7.3 28.0 6.8 1.4 204 2.9
20 178 3.9 23.0 4.5 0.0 16.3 11

All 1491 13.8 | 36.7 | 11.9 6.8 28.8 6.5

1 613 26.9 | 50.6 | 23.7 15.2 | 47.3 | 13.7

5 411 9.7 29.7 6.8 2.9 31.1 2.2

AIT 10 289 8.0 23.2 6.6 1.7 26.6 1.7
20 178 4.5 20.2 2.8 0.6 24.7 0.6

All 1491 15.8 | 35.9 13.2 7.4 36.1 6.6

5.4 Chapter Summary

In this chapter, we presented our multimodal person ideatifin system, which combines
speaker identification modality and face recognition mipglaiVe show the evaluation results
of our multimodal person identification results in the CLEABOB evaluation. We achieved

best performance for both unimodal systems. Although teelte of the person identification
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system at the CLEAR evaluation are far superior for audio tidao recognition, fusion the
two systems brings additional gains. Although the resiitssthat video only provides minor
improvement of the audio recognition, this is not generailie. One obvious reason is that
speech is usually much sparser than face images in a mufei@asetup. In the CLEAR evalu-
ations, care has been taken to have segments with speeldbbe/aiore balanced contribution
from both modalities is expected in real unsupervised st@naAlso more sophisticated fusion

strategies may be deployed to more efficiently fuse multi atitids.
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Conclusion

6.1 Summary of Results and Thesis Contributions

In this thesis, we conducted research work to improve spe&kegnition robustness on far-
field microphones from two directions: to improve robussestraditional speaker recognition
system based on low-level features and to improve robustnessing high-level features. We
also implemented sytems that support robust speaker rgmygrincluding a speaker segmen-
tation and clustering system aiming at robust speaker rattog in multi-speaker scenarios

and a person identification system by integrating audio asuby modalities.

e \We first investigated approaches to improve speaker retognobustness on far-field
distant microphones, which is a research area has not sgteiuch attention. We intro-
duced a reverberation compensation approach and appaadéewvarping in the feature
processing. These approaches bring significant gain. Weopea four multiple channel
combination approaches to utilize information from mu#igources. These approaches
achieve significant improvement over baseline performaaspecially in the case that

test condition can not be covered in the training.
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Chapter 6 Conclusion

e We introduced a new approach to model a speaker’s pronumciaiosyncrasy from
two complementary dimensions: time dimension and cragsust dimension. Each di-
mension contains useful information for distinguishingakers pronunciation charac-
teristics. Combining both dimensions achieves significattel performance than that
of each single dimension. The proposed approach has that@btef language inde-
pendence. This research along with work from other reseascim phonetic speaker
recognition inspires other researchers to exploit higlelléeatures for speaker recogni-
tion. In addition, the proposed approach was applied toratlaessification tasks, such
as language identification and accent identification, amiesed good performance as

well.

¢ We studied speaker segmentation and clustering acrossin®swech as telephone con-
versations and meetings. We implemented a speaker segroaratad clustering system
which was tested within the NIST Rich Transcription evaluadg. It is also a very impor-
tant module in a complete ASR system, such as BN system, myeststem, and lecture

recognition system etc. It provides crucial information $peaker adaptation.

e We integrated speaker recognition modality with face redgn modality and built a

robust person identification system which was tested in t&TNCLEARO6 evaluation.

6.2 Future Research Directions

The speaker recognition problem can be formulated matheatigtas follows [44]:
Sk:argn)saP(SO) O={X,W,F.C,---} (6.1)

where S is speaker identity an@® is the observation. Observation can take many forms in-
cluding low-level features such as Mel-cepstrXmword or phone or phrase informatiam,

prosodic informationF, and channel informatio@ (including handheld/handsfree landline,
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Section 6.2 Future Research Directions

wireless, PC microphones, conference room microphongsettso on. We can factorize the
problem formula 6.1 into speaker knowledge components thighassumption that/ andF

are both independent @f.
S =arg msa>P(S[O)

=argmaP(SX,W,F,C) (6.2)

- P(X[SW,F.C) P(FW,S PW[S P(C|9)
AT B XW,E.C) FPEW)  PW) © P(C)

*P(S)

% can be considered as text-dependent speaker recogrféfé%\;—? can be the ex-

pression of speaker-dependent prosodic modeﬁé\gﬁ can be explained as speaker depen-
dent word/phonetic modelin F()(cg) can be described as speaker’s channel profile; (%)

can be considered as a speaker’s profile (prior).

As mentioned before, human listeners are aware of multifi@mation such as prosody,
word choice, pronunciation, accent, and other speech@bitexample laughs). when recog-
nizing speakers, while traditional systems only rely omsiegly one source of information. As
seen in the high-level speaker recognition research argdiginted by the SuperSID project,
researchers have already started to exploit differentstygbdigh-level information for speaker
recognition. However it is still an unfinished researchréhare still more high-level features
that have not been investigated such as how a person inteotulti-party conversations and
a person’s emotion status etc. On the other hand, humanenadlifferent level of information
under different contexts. Current systems do not aware theegts and use the different levels
of information equally. More research effort is needed tplese how to use different levels of

information more efficiently.

As shown in Chapter 4, multiple channel information is usdful speaker segmentation
and clustering in the meeting scenarios with multiple nptrane setups. It is beneficial to
investigate this issue. We have studied how to use infoondtiom multiple close-talking

microphones in meeting scenarios for speaker segmentatidrclustering as shown iLT[GS].
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Chapter 6 Conclusion

Other researchers studied this topic too as shov\bn @][@]. However, only the multiple
close-talking microphone conditions are studied. Thereldeen limited effort in studying the

multiple distant microphone condition.

To solve the sparse data problem for new speakers is impdresrause we will face such
problem in real applications. Approaches are desired teementally learn and adapt speaker
models. Other modalities are helpful if available to relyatfetect new speakers and identify

previously enrolled speakers.
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Appendix A

Open-Set Speaker Identification

A.1 Introduction

In this section we present how our system performs in the @eestituation. As mentioned in
the first chapter, speaker identification can be divided imo categories: closed-set speaker
identification and open-set speaker identification [?;ﬁ.[%iven a set of enrolled speakers
and a test utterance, open-set speaker identification isedkéis a twofold problem. Firstly,
it is required to identify the speaker model in the set, wHielst matches the test utterance.
Secondly, it must be determined whether the test utteraaseattually been produced by the
speaker associated with the best-matched model, or by sokmwn speaker outside the
enrolled set. As shown in figure A.1, the open-set speakettifitmation can be considered as

closed-set speaker identification plus speaker verifinatio

The potential errors and difficulties in open-set speakeniification can be analysed as
follows. Suppose tha¥l speakers are enrolled in the system and their statisticaleinde-

scriptions aréd1,0,,...,0\. If O denotes the feature vector sequence extracted from the test
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Speaker Models ( Threshold)

Feature Pattern |Claim . .
i *‘ > Extraction| > Matching > Verification |— Decision
\

Imposter Models

Figure A.1:Block diagram of open-set speaker identification system

utterance, then the open-set identification can be stated as

Ok, k=arg max{p(O|6i)}

max{p(0|6))}=¢ — O¢€ (A.1)

Lei=M unknown speaker model

where( is a pre-determined threshold. In other wor@ss assigned to the speaker model that
yields the maximum likelihood over all other speaker modelthe system, if this maximum
likelihood score itself is greater than the thresh§ldOtherwise, it is declared as originated
from an unknown speaker. It is evident from the above desorighat, for a giverO, three

types of error are possible:

e False Acceptance(FA)the system accepts an impostor speaker as one of the enrolled

speakers.
e False Rejection(FR):the system rejects a true speaker.

e Speaker Confusion(SC)the system correctly accepts a true speaker but confuséisdrim

with another enrolled speaker.

These types of errors are referred to as FA, FR, and SC regglgcOpen-set identification

is a two-stage process. For a giventhe first stage determines the speaker model that yields

130



Section A.1 Introduction

the maximum likelihood, and the second stage makes theided¢s assignO to the speaker
model determined in the first stage or to declare it as ortgshérom an unknown speaker. The
first stage is responsible for generating SC error wherezh, A and FR are the consequences

of the decision made in the second stage.

An important point to note about this two-stage processas the latter stage is far more
susceptible to distortions in the characteristics of trst tdterance than is the former stage.
This is because, in the former stage, since the same tesindteis used to compute all the
likelihood scores, the distortions in the test utteraneelikely to be similarly reflected in all
the likelihood scores. As a consequence, the selectioneaftbdel that yields the maximum
likelihood is likely to be unaffected. On the other hand, I tsecond stage, the absolute
maximum likelihood score is compared against a threshdigraened a priori and without any

knowledge about the characteristics of the distortion entést utterance.

It should be pointed out that a task similar to that descriabdve (in the second stage
of open-set identification) is also encountered in speakefication. However, in speaker
verification, the problem is not as challenging. To be moecsje, the challenge in open-set
identification can be viewed as a special (but unlikely) scierin speaker verification in which
each impostor targets the speaker model in the system fahwia/she can achieve the highest

Score.

Although more sophisticated decision logic may be deplpyped focus is not on this issue.

Our goal is simply to evaluate how our system works under tfeneset situation.

A.1.1 Data Description and Experimental Setup

For the set of open-set speaker identification experimargsise both 3D Distant Microphone
Database and 2D Distant Microphone Database. Each of tlaabates have 8 microphone

channels recording. There are in total 24 speakers in 3DabBidlicrophone Database and 30
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Chapter A Open-Set Speaker Identification

speakers in 2D Distant Microphone Database. We randomdecs2V speakers out of the total
54 speakers as target speakers. The female and male spaekéaanced in the selection.
In the following experimental results report, we use CH1 to Gél8fer to the 8 microphone
channels. The naming keeps the same as for the 3D Distanbphione Database, while for the
2D Distant Microphone Database, CH1 corresponds to DisO, GH2sponds to Disl, CH3
corresponds to Dis2, CH4 corresponds to Dis4, CH5 correspmnBss5, CH6 corresponds
to Dis6, CH7 corresponds to Dis8, CH8 corresponds to DisL. Bohef the target speakers,
we randomly select 60 seconds from his/her training speettain a 256-mixture GMMs as
the target speaker model. For the impostor model trainirguse leave one out strategy. We
exclude one impostor speaker from the entire impostor grovgrandomly select 60 seconds
training speech from each of the impostor speakers’ trgidiata in the group and pool them
together to train one 512-mixture GMMs as the impostor moddie remaining speech for
each of the target and impostor speakers are divided intee20nsls segments and are used
as test trials. There are in total 964 test trials, 451 tasgetker test trials and 513 impostor

speaker test trials.

A.1.2 Experimental Results

We plot the tradeoff between the three types of errors as etiimof a decision threshold.
Figure A.2 shows such tradeoff for the average performandeumismatched conditions as a

function of threshold values. The equal error rate is abétit 3

Figure A.3 summarizes the system performance in total ewith different threshold value
setup under mismatched conditions. Among the three thiéstadues, 0.8 achieves the best
performance under both matched and mismatched conditiva#i the channels. Although we
see different performance on different test channel, ocudds not to discover the reason for
this matter. Our expect is to see the same trend for one tbictsletting on all the channels.

Table A.1 shows the detailed average performance underaisied conditions with threshold
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Figure A.2:Tradeoff of FA, FR and SC errors with different threshold eslu

equals to 0.8 on all the test channels. This will be our baséb be compared with later after

multi channel combination approaches are applied.
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Figure A.3:Total errors with different threshold under mismatched abond
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Table A.1:Average performance under mismatched condition with tiolelsi®.8

Test Channe| CH1 | CH2 | CH3 | CH4 | CH5 | CH6 | CH7 | CHS8

FA 063 | 0.19 | 0.06 | 0.43 | 0.00 | 0.03 | 0.00 | 0.06
FR 9.41 | 12.34| 10.67| 11.94| 16.95| 12.07| 9.35 | 9.83
SC 209 | 030 | 097 | 152 | 062 | 261 | 1.16 | 0.20

Total Error 12.13| 12.83| 11.70| 13.89| 17.57| 14.71| 10.51| 10.09

A.1.3 Multiple Channel Combination

We applied the multiple channel combination approacheght&mt based Score Fusion” and
“Frame based Score Competition” as described in chapter @riogen-set speaker identifica-
tion experiment under mismatched conditions with our blestshold value, which equals to
0.8. Table A.2 and A.3 present the detailed open-set spédémtification performance with
“Segment based Score Fusion” and “Frame based Score Coimpetipproaches applied on
the baseline system respectively. Figure A.4 comparesotiaéérrors of the baseline system
with the systems where each of the two multiple channel coatlin approaches is applied.
No significant improvement is seen on most of the channelshby'egment based Score
Fusion” approach. On average “Frame based Score Compétipproach gains although it
loses on one of the channels. We can see both approachefcaigfty reduces the SC er-
ror. This matches our expectation because we already se#icagt improvement by these
approaches for closed-set speaker identification as pexsénchapter 2, while the first stage
of our open-set speaker identification, which can be consttlas closed-set speaker identifi-

cation, is responsible for generating the SC errors.
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Table A.2:Open-set speaker identification performance with Segmessico&core Fusion

Test Channe| CH1 | CH2 | CH3 | CH4 | CH5 | CH6 | CH7 | CH8

FA 7.75 | 0.00 | 0.00 | 0.00 | 0.00| 0.00 | 0.00 | 0.00
FR 3.01| 402| 460 | 2.37| 7.48| 8.03 | 255 | 2.85
SC 6.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Total Error 17.08| 4.02| 460| 2.37| 7.48| 8.03| 2.55| 2.85

Table A.3:Open-set speaker identification performance with Frame d&®re Competition

Test Channell CH1 | CH2 | CH3 | CH4 | CH5 | CH6 | CH7 | CHS8

FA 9.24| 451 | 563| 735 037 | 234 | 270 | 6.91
FR 0.00| 0.00| 0.00| 1.24 | 0.76 | 0.00 | 0.00 | 0.00
SC 0.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.00

Total Error 924| 451 563| 859| 151| 2.34| 2.70| 6.91

A.2 Summary

In this section, we show how our system performs in the oiscenario. Our focus is not to

explore new strategies for open-set speaker recognitigintobtest our system in the open-set
situation. We observe that there is trade off between theetktypes of errors in the open-set
speaker identification. The equal error rate for our systeabiout 3%. “Segment based Score
Fusion” and “Frame based Score Competition” multi channeilmoation approaches help the

performance differently. They both reduce the “Speaker Gsioh (SC)” error significantly,

the former increases the “False Rejection (FR)” error rate the later increases the “False
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Figure A.4:Performance comparison of multi channel combination velas

Alarm (FA)” error rate. The “Frame based Score Competitiopp@ach reduce the total error
rate on most of the channels.

136



Appendix B

Application of PSR to Other Tasks

We apply the phonetic speaker identification approachegiuer alassification tasks as well.
In this section, we present the work of accent identificatod language identification with

phonetic speaker recognition approaches.

B.1 Accent Identification

In this section we apply our LSPM-pp approach to accent ifieation. In the first experi-
ment, we use the LSPM-pp approach to differentiate betwedimenand non-native speakers
of English. The non-native English speaker set containsenapeakers of Japanese with vary-
ing English proficiency levels. Each speaker was recordading several news articles aloud.
Training and test sets are disjoint with respect to artiakesvell as speakers. The data used for

this experiment is shown in B.1

We used 6 of the GlobalPhone phone recognizers in langi@igeDE, FR, JA KR, PO, SP}.

On the test set of 303 utterances, this approach achievexaraay of 97.7%.

In the second experiment, we attempt to further classify-mative utterances according to
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Table B.1:Number of speakers, total number of utterances, total keafaudio for native and

non-native classes

native | non-native

Nspk | training 3 7
testing 2 5
Y Nyt | training 318 680
testing 93 210

S Tuit | training | 23.1 min| 83.9 min

testing | 7.1 min | 33.8 min

proficiency level. The original non-native data was labelgti the proficiency of each speaker
on the basis of a standardized evaluation procedure coadibgttrained proficiency raters [2].
All speakers received a floating point grade between 0 andtB,axgrade of 4 reserved for na-
tive speakers. The distribution of non-native trainingadqes proficiencies shows that they fall
into roughly three groups and we create three correspordasses for our new discrimination
task. Class 1 represents the lowest proficiency speakess, Zlkeontains intermediate speakers,

and class 3 contains the high proficiency speakers. Tablsi®&s our division of data.

With the LSPM-pp approach, we achieve accuracy of 61% far 3hivay proficiency clas-
sification task. This result indicates that discriminatargong proficiency levels is a more
difficult problem than discriminating between native andmative speakers. The proficiency
classification task attempts to determine the class of @naunite in a space that varies contin-
uously according to the English proficiency of its speaker.il@Vtlassification of native and
non-native speakers can be described as identifying speak® are clustered at the far ends

of this proficiency axis.

Overall, the phonetic approach worked well for classifyurterances from speaker profi-

ciency classes that were sufficiently separable. Like theraapplications of this approach,
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Table B.2:Number of speakers, total number of utterances, total lenfaudio and average

speaker proficiency score per proficiency class

class1l | class2 | class3
Nspk training 3 12 4
testing 1 5 1
SNyt | training 146 564 373
testing 78 477 124
> Tutt training | 23.9 min| 82.5 min| 40.4 min
testing | 13.8 min| 59.0 min| 13.5 min
ave. prof| training 1.33 2.00 2.89
testing 1.33 2.00 2.89

accent identification requires no hand-transcription amdaeasily be ported to test languages

other than English/Japanese.

B.2 Language Identification

In this section, we apply the LSPM-pp approach to the proldémlassification of four lan-
guages: Japanese (JA), Russian (RU), Spanish (SP) anagf(fkd).

We employed a small number of phone recognizers in languaites than the four classi-
fication languages to demonstrate a degree of languagedndepce which holds even in the
language identification domain. Phone recognizers in CRi(€sl), German (DE) and French
(FR), with phone vocabulary sizes of 145, 47 and 42 respsgtiwere borrowed from the

GlobalPhone project as discussed in [104].

The data for this classification experiment, also borrowedhfthe GlobalPhone project but
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not used in training the phone recognizers, was divided ughas/n in Table B.3. Data set
1 was used for training the phonetic models, while data seagl @ompletely held-out during
training and used to evaluate the end-to-end performantteeafomplete classifier. Data sets 2

and 3 were used as development sets while experimentinghffiénent decision strategies.

Table B.3: Number of speakers per data set, total number of utteranndst@al length of

audio per language

Set| JA RU SP | TU
Nspk | 1 | 20 | 20 | 20 | 20
2 5 10 9 10
3 3 5 5 5

4 3 5 4 5

snue | all | 2294| 4923 | 2724 | 2924
Stut | @l | 6hrs| 9hrs| 8hrs| 7 hrs

We achieve 94.01%, 97.57%, 98.96% and 99.31% accuracy oh0Ss,20s and 30s test

durations respectively.

The phonetic language identification technique was alstexpim our Mandarin Broadcast
News system for the RT-04f (Rich Transcription) evalua&m;?]. We have observed a number
of foreign language segments, mostly English, in severah€d@ news shows. As they cause
high insertion errors for our Mandarin ASR system, it is beral to detect and discard them.

The phonetic language identification technique is usedassdly English from Chinese.

Table B.4 shows the effect of language identification on speecognition performance on
the RT04 evaluation development data set. We can clearlpigegains by rejecting English

segments from the ASR output.
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Table B.4:Character Error Rate (CER) on development data set
RTO3 | Dev04

before Language Identificationlw 5.9% | 18.4%

after Language Identification || 5.2% | 16.6%

B.3 Summary

We applied the same techniques used in phonetic speakgmnigoa to other non-verbal cues
recognition tasks including accent identification and laage identification. Our classification
framework performed equally well in the domains of accert Eanguage identification. We
achieved 97.7% discrimination accuracy between nativenamdnative English speakers. For
language identification, we obtained 95.5% classificatmueacy for utterances 5 seconds in
length and up to 99.89% on longer utterances. The phonetgukge identification technique
was one component in our Mandarin Broadcast News systerhdd®T-04f Rich Transcription

evaluation. It brought significant gains to the over all sysiperformance.
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