AT

Karlsruhe Institute of Technology

Temporal Patterns (TRAPSs)
in Janus Recognition Toolkit

Student Project of

Tatiana Glushkova

At the Department of Informatics
Institute for Anthropomatics (IFA)
Prof. Dr. Alex Waibel Department

Reviewer: Prof. Dr. Alex Waibel
Second reviewer: Dr. Sebastian Stuker
Advisor: Kevin Kilgour

Duration:: 01.08.2012 — 31.10.2012

KIT — University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Ich erklére hiermit, dass ich die vorliegende Arbeit selbstindig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 31. Oktober 2012

Acknowledgments

This project would not have been possible without the kind support and help of many
people. I would like to extend my sincere thanks to Prof. Alex Waibel, Dr. Sebastian
Stiiker and Prof. Florian Metze for the opportunity to work on this project as well as for
the inspiring and guiding discussions. I wish to express my special thanks to Yury Titov
for sharing his enthusiasm and knowledge as well as for supervising me at the first steps
in this field. My deepest gratitude is for Kevin Kilgour for overtaking the supervising, for
helping to complete the experiments and to arrange the text of this project. Additionally
I would like to thank Udhay Nallasamy for providing his sample scripts and helping to
understand them. My thanks and appreciations also go to my student fellows Henrich
Kolkhorst, Jochen Weiner and Alexey Mokin for the cheerful atmosphere in the lab as well
as for the helpful advice. Finally, I wish to express my heartfelt thanks to my family and
friends for their patience, support and optimism.

Abstract

In the last years application of artificial neural networks (ANN) in the acoustic modeling
(AM) of automatic speech recognition (ASR) systems has drawn serious attention. One
of these techniques is TempoRAl Patterns (TRAP) which allows to extract input features
for a gaussian mixture model - hidden markov model (GMM-HMM) recognizer. Showing
good experimental results, TRAPs feature extraction method was included in the state-of-
the-art systems for large vocabulary continuous speech recognition (LVCSR) as a standard
component , .

The objective of this student project is to reproduce the basic TRAPs technique and to
try out some of its modifications for the Janus recognition toolkit (JRTK).

The most of the published experiments with TRAPs are done on English data. Therefore
it is also interesting to study how well this technique would work for other languages. In
this project experiments were done for Arabic and German languages.

vii

Contents

'/Acknowledgments|

Abstract

1. Introduction|
1.1. ASR System|.

1.2. Preprocessing and Acoustic Modeling (AM)|

[1.3. Training Cycle] . . .

2. TRAPs and BN: Related Work|

2.1. TempoRal Patterns (TRAPs)|

2.2. Bottle-Neck (BN) Features|

2.3. TRAP Modifications|

3. Experimental Setups|
3.1. MFCC Baseline] . . .

3.2. Basic TRAP Architecturel

3.3. TRAP-BN Architecturel

3.4. Implementation and Training|,

3.5. Used Tools

[4. Results and Discussion|

4.1. Experiments on Arabic corpus] oo o 0oL

[4.1.1. MLPs for Basic TRAP!.

4.1.2. MLPs for BN-TRAP|.

4.2. Experiments on German corpus|

4.2.1. MLPs for Basic TRAP!.

4.2.2. MLPs for BN-TRAP|.

4.2.3. MLPs for BN-MFCCI. oo

4.3. Comparing different AMs for the German ASR system|.

4.4. Problems and Challenges|

[4.5. Future Work]

Appendix

[A. Decoder Parameters

Bibliography

ix

10

13
13
14
16
16
18

19
19
19
20
20
20
20
21
21
22
22

25

27
27

29

1. Introduction

Automatic speech recognition (ASR) technology receives much interest in both scientific
circles as well as in wide public. The main advantages of the communication between peo-
ple and computers through speech are naturality, speed and portability. That is why there
are so many different applications from simple speech commands to advanced speech-to-
speech translation.

One of the ASR applications is data mining in spoken data. An example is the project
Quaero www.quaero.org, [3], which aims to develop indexing and information retrieval
tools for multilingual multimedia. This opens up possibilities to search not only in text
but also in audio and video data on the Internet.

Another application is the Lecture Translation project [4]. This project has an objective
of providing simultaneous translation of lectures that will support foreign students. The
lecturer’s speech will be first recognized and converted to text. Then the text will be
translated into the target language and presented to the audience e.g. on a display.
Although ASR applications are computationally intensive in general, as the examples
above, some of them are capable of running on mobile devices. The smartphone applica-
tion Jibbigo, http://www.jibbigo.com, provides speech-to-speech translation to twelve
different languages. Its portability is especially useful for travelers.

All these applications are results of many years of profound research in speech technolo-
gies. In spite of the current achievements, there are still many challenges. One of them
is to make ASR systems more robust and accurate. To achieve this goal, many different
techniques are being developed to improve each individual part of a system. This project
is focused on improving the acoustic model of an ASR system by using artificial neural
networks.

The project thesis is organized as follows. Chapter 1 gives a brief background on typical
ASR system components and its training cycle with an emphasis on the preprocessing and
the acoustic modeling. Chapter 2 summarizes the previous work on feature extraction
techniques used in the preprocessing. It introduces the Temporal Patterns (TRAP) and
the bottle-neck (BN) techniques. It also presents some of their modifications in architec-
ture and processing. Chapter 3 is devoted to the experimental part of the project. It
describes the baseline system, the configurations of chosen experimental setups and the
implementation details. Chapter 4 presents and interprets the experimental results. It
also mentions problems and challenges, ideas for improvement and suggestions for future
work. Chapter 5 summarizes the work done on this project and draws conclusions from
the analysis of the results.

www.quaero.org
http://www.jibbigo.com

2 1. Introduction

1.1. ASR System

This paragraph presents a typical statistical ASR system, its components and training cy-
cle. Asit may be seen in the figure an ASR system contains a preprocessing component
(also called a front end) and a decoder (or a recognizer). The decoder uses information
from an acoustic model (AM), a pronunciation dictionary and a language model (LM).

Recognition
0,0, ... O WW, ... Wr
F
Eﬁgt Decoder
Best Word
Analog Observation Sequence
Speech Sequence // \\
Acoustic . [.anguage
Diction
Model any Model

Figure 1.1.: Components of an ASR System, .

Recognition process runs as follows. The front end receives analog speech, converts it into
a digital format and applies several transformations to eliminate the unnecessary infor-
mation and to convert the remained essential information into a format suitable for the
decoder. This forms an input feature vector (or an observation sequence) for the decoder.
Given the extracted input feature vector, the decoder searches for the most probable word
sequences and outputs one or several of the best found sequences. The probability of a
word sequence given a sound observation is provided by the acoustic and the language
models using information from the dictionary. A sound observation consists of utterances
that corresponds to phonemes of the word.

Thus the AM delivers probability of a phoneme given an utterance. The dictionary con-
tains information on how to build words from phonemes. The LM gives the probability of
a word given several previous ones.

The probability of a word given an utterance can be computed using the Bayes rule. This
gives the fundamental formula of the statistical ASR:

w* = arg max,, p(w|X) = arg max,, % = arg max,, p(X|w) * P(w)

Generally, this is a classification problem where pattern X is given and to find is the class
w* with the maximum probability given the observed pattern. In our case the pattern is
an utterance and classes are words.

The X here stands for an utterance. The word w* maximizes the conditional probability
density function p(w|X) over all the words w. Due to the Bayes rule, this density can be
expressed through the inverted conditional density function p(X|w) and the probabilities
of the variables it contains. Since the maximization is being done over w, the P(X) is a
constant and therefore can be omitted. So, the w* depends only on p(X|w) and P(w). As
it was mentioned above, the conditional density function p(X|w) is computed by the AM
and the probability of a word P(w) by the LM.

Since the number of possible words is countably infinite, a smart searching strategy should
be applied to prune the search space. This strategy reveals the promising word sequences
and eliminates the improbable ones. The best suitable word sequence will be found after
searching among the most probable word sequences that are generated using the AM, the

1.2. Preprocessing and Acoustic Modeling (AM) 3

dictionary and the LM.
This was a general overview of the whole system. For better understanding the techniques
used in this project, front end component and acoustic model will be examined in detail.

1.2. Preprocessing and Acoustic Modeling (AM)

This project is focused on the preprocessing step and, since it influences the AM configu-
ration, also on AM training. The preprocessing step contains the transformation from the
speech recorded in a sound file into the features suitable for the AM input.

Typical preprocessing steps are the following. An analog speech is recorded and digitized,
having the 16 kHz sampling rate and the 16 bit resolution. The speech will be then cut in
small fragments by applying some window, e.g. overlapping Hamming windows with the
width of 16 ms and the shift of 10 ms. Each of these fragments forms a frame.

For each frame a discrete Fourier-transformation (FT) will be done and a power spec-
trum will be calculated. After that, Mel-scale filterbanks will be applied and logarithm
will be taken. Then, cepstral coefficients will be gained by applying an inverse FT or a
discrete cosine transformation (DCT). Obtained features are mel-frequency cepstral coef-
ficients (MFCC). In order to make these features more suitable for a decoder, the linear
discriminant analysis (LDA) will be used. LDA is a linear feature space transformation
that makes different classes better separated from each other. Here the classes are some
phonetic units, e.g. phonemes. The features that correspond to the same phoneme be-
came more compact being more distant to the features of other phonemes. So, the gained
MFCC-LDA features are ready input for a decoder.

The acoustic model consists of a hidden markov model (HMM) used with Gaussian mix-
ture models (GMM) to represent emission probabilities of HMM states. A recognizer that
employs such AM is called HMM-GMM recognizer.

There are phoneme HMMs and word HMMs in the AM as shown in the figure[1.2 Phoneme
HMM have often 3 states corresponding to the beginning, middle and end part of a
phoneme. Emission probabilities for all these states are modeled by GMMs. Word HMMs
are the combinations of phoneme HMMSs into complete words. Several concatenated word
HMDMs represent a word sequence. The word transitrion in this sequence are chosen by
the LM.

o =
()= ()= () = ()= () = ()

n AN AN A A an a0 N0
--- --- @)= ED=)=

<= | anguage Mode| ===

N

are ’ -‘ you ’

Figure 1.2.: HMMs in acoustic modeling, ||

1. Introduction

There are several ways to represent a GMM. The same mixture of Gaussins can be used
for many different HMM states. In this case there is a number of Gaussian mixtures called
codebooks. Each HMM state can use one of these codebooks, adjusting it by mixture
coefficients that weight each Gaussian in the codebook. Thus different states can share
the same distributions as shown in the figure

GAG
g/ /ae/ gl

g-b g—¢ ae-b ae-e g-b g-e
—m

. *, 4t
= g+ ae—m ‘se*
- 0, PELAACN +
. oy o ., ot
) e, oot b
. Yo gt o L 0 ‘N,
L]
- “‘-. Tay -."“ ‘.-
g-b g-m ae—e

Figure 1.3.: GMMs in acoustic modeling, |\

1.3. Training Cycle

Typical training cycle of an ASR system is shown in the figure The following para-
graphs roughly describe the steps should be performed to train a complete system. The
focus here lies on the AM training that was used in the experiments of this project.

First of all, training data for AM and LM should be collected. AM training data is usually
about 100 hours of transcribed recordings from different speakers. LM training data is
texts on both specific domains as well as general topics. All the data should be separated
into training, cross-validation, developing and evaluation set.

The AM training includes two parts. The first one is a context-independent (CI) model
training and the second one is a context-dependent (CD) model training. Before the train-
ing, all the necessary configuration should be defined. These are e.g. a set of phonemes,
a kind of preprocessing, the maximal number of Gaussians in mixtures, a HMM topology.
Then, the forced alignment (or time alignment) can start. This is the process of writing
labels to provide the correspondence between training data and HMM states.

The CI acoustic model will be trained by the expectation maximization (EM) algorithm.
There are several steps that precede this training. The linear discriminant analysis (LDA)
matrix should be computed, that is required for the preprocessing part, and the GMMs
should be initialized by the k-means algorithm. After that, the EM training can begin.

1.3. Training Cycle 5

Data Collection

Context-Independent AM Training Expectation Maximization (EM) Training
- compute LDA matrix

- initialize GMMs with k-means algorithm

- run Viterbi training

- write new labels

- iterate
Context-Dependent AM Training Expectation Maximization (EM) Training
LM Training
Evaluation Decoding & Scoring

Figure 1.4.: ASR system training steps

Generally, the EM is an iterative method to find the maximum likelihood parameter es-
timates for a statistical model that have some unobserved variables. It consists of the
expectation step (E-step), which computes the expectation function with the current pa-
rameters, and maximization step (M-step), which computes the parameters that will maxi-
mize the expectation function founded in the previous step. These two steps should iterate
in the interchanging way.

In the AM training, the Viterbi training corresponds to the M-step and writing new im-
proved labels corresponds to the E-step. After several iteration, the CI acoustic model is
trained.

While the context-independent AM has 3 HMM states for the phoneme parts, the context-
independent uses the parts of a polyphone instead. A polyphone represents a single
phoneme with the influence of the previous and succeeding phonemes. Often this con-
text is formed by one preceding and one following phoneme. There is a big number of
possible polyphones. That is why they will be first grouped by their context forming a
decision tree which is called polyphone tree.

After the polyphone tree is created, the CD acoustic model training proceed analogous to
the CI training.

Having the AM and LM models trained, there are still some parameters that should be
adjusted before the system is ready to decode. For example, to get a good balance between
the AM and the LM, their scores can be adjusted by the appropriate weights found on the
development data.

6 1. Introduction

Finally, the performance of the trained system will be measured. The ASR system evalu-
ation consists of two steps. The first step is the decoding of some test set. The text, that
is obtained by the system from the given test speech, is called hypotheses. The second
step is the scoring, where the hypotheses will be compared with the transcription of the
test set.

In order to measure the recognition quality, the word error rate (WER) will be computed.
The system can be then compared to its previous version or to another system. WER
is based on the minimal editing distance between the automatically generated hypothesis
and the human reference of the same speech. This can be calculated by the following
formula:

_ I+D+S
WER = [+D+5

where [is the number of insertions, D is the number of deletions, S is the number of
substitutions and R is the number of words in the reference.

2. TRAPs and BN: Related Work

The preprocessing at the front end can include several feature extraction techniques. The
goal of these techniques is to extract important information and to eliminate unnecessary
one from a raw sound file providing a proper input for a recognizer. Typically a GMM-
HMM recognizer is used.

There are two categories of feature extraction techniques: the ones delivering acoustic
features and the others delivering probabilistic features. Acoustic features are obtained
by applying to raw speech a set of acoustic transformations without using of classifiers.
Examples of acoustic features are mel-frequency cepstral coefficients (MFCC), perceptual
linear prediction (PLP) features and minimum variance distortionless response (MVDR)
features.

Probabilistic features are obtained by a classifier that provides posterior probabilities of
phonetically motivated classes given the input utterance. The phonetic class is either a
phoneme or a sub-phoneme. So, the probabilistic features are not based on acoustic trans-
formations but consist of probabilities for phonetic units.

Both acoustic and probabilistic features should be post-processed before they can be used
as an input for a GMM-HMM recognizer. Since the emission probability of an HMM state
has a Gaussian distribution, the features should also have a similar distribution. In order
to achieve this, logarithm of the features is taken. Then, dimensionality reduction and
decorrelation techniques are applied. This allows to obtain the required size and to make
the feature space better separable for the classifier. The most common techniques for
post-processing are linear discriminant analysis (LDA), kernel LDA, heteroscedastic linear
discriminant analysis (HLDA), principal component analysis (PCA), kernel PCA, discrete
cosine transformation (DCT) and bottle-neck (BN) techniques.

In the TANDEM approach @, , it was proposed to use two different classifiers con-
secutively. The output of the first stage classifier is used as the input to the second one.
This is outlined by the figure that shows the front-end, the first stage classifier, its
post-processing and input features for the second classifier that is commonly a standard
GMM-HMM recognizer. The first stage classifier is often based on an artificial neural net-
work (ANN) and produces posterior probabilities of phonetic classes. First stage classifiers
based on TRAP and on BN techniques will be discussed in the following sections.

Both TRAP and BN techniques use a multilayer perceptron (MLP) that belongs to the
class of feed-forward artificial neural networks. Its network is a directed graph with several

8 2. TRAPs and BN: Related Work

Standard |11
W Jx: | Classifier
Front-end .
U$t+1
Speech Input Output ASR features
(features+context) (posteriors or scores)

Figure 2.1.: TANDEM Approach, .

layers of nodes. The neighboring layers are fully interconnected. Each node, except for
the input nodes, is a neuron with a nonlinear activation function. Training of the network
is realized by the back-propagation technique which is a supervised learning technique.
Training data should therefore have corresponding class (or target) labels.

2.1. TempoRal Patterns (TRAPS)

The idea to use long temporal context in narrow frequency sub-bands was first introduced
in ﬂgﬂ The figure illustrates the difference between the classical features based on full
spectrum with short time context and the ones derived from narrow spectrum band with
long time context.

Conventional ASR

10 ms

f 5
g =
5 o> 2
= S
‘g (&)
time —
TRAP

=

o

S -1 sec —*

> I - f;
=3

D

o=

time —
Classifier

Figure 2.2.: Temporal Paradigm of ASR, @]

TempoRal Patterns (TRAPs) are feature vectors gained by two stages of MLP classifiers
on a long temporal context. The concept of TRAP processing refers to preprocessing of
raw features before they are used as an input to the first stage MLPs. The term TRAP
architecture implies the architecture of MLPs.

Research on TRAPs has been conducted for more than ten years. Profound theory and
experiments in this field can be found in the doctoral theses and . Nowadays
TRAPs have became a state-of-the-art component of ASR systems [2], [1].

According to [12], the basic TRAP vector can be obtained in the following way. Raw
TRAP features are derived from temporal trajectory of spectral energy in frequency sub-
bands (or critical bands). Critical band energies (CRBE) can be obtained by segmenting

2.2. Bottle-Neck (BN) Features 9

input speech sampled at the 16 kHz into 25 ms frames shifted by 10 ms. This is followed by
calculating the power spectrum, applying a filter bank, mean and variance normalization.
Temporal evolution of energy in one critical band within a context of up to 1 second forms
a raw TRAP vector. There is one TRAP vector per each critical band in a frame.

At the first stage there are several MLPs called band classifier MLPs. There is one MLP
per critical band. Given raw TRAP vectors as an input band classifiers compute phoneme
probabilities. The outputs from all the band classifiers are then concatenated into one
vector and a logarithm of this resulting vector is taken. This forms the input for the MLP
of the next stage which is called main merger MLP. It combines all the band-conditioned
probabilities into one final TRAP vector. After the post-processing, which includes loga-
rithmization and feature space transformation, this TRAP vector is used as an input for
a GMM-HMM recognizer.

2.2. Bottle-Neck (BN) Features

The bottle-neck (BN) technique is based on the specific MLP architecture with a narrow
middle layer which is called a bottle-neck. As opposed to other MLP techniques used in
ASR, BN does not provide posterior probabilities for an input feature vector, but reduces
its dimensionality. BN is thus an effective feature vector reduction technique.

S layer MLP
— ‘ .

1

T
P Y
Loy
Lo
Doy
I
o L
N Ty
P iv

Figure 2.4.: Hierarchical Bottle-neck Architecture, |\

As illustrated by the figure a 5-layered MLP has a narrow 3rd layer, large 2nd and
4th layers of the same size. After the whole MLP is trained, only the first 3 layers will be
used. The bottle-neck layer’s output will be taken as the output of the network. Thereby

10 2. TRAPs and BN: Related Work

an input vector will be reduced to the size of the bottle-neck layer. This allows to choose
the size of the bottle-neck layer as required for the dimensionality reduction.

The BN technique can be successfully combined with TRAPs as confirmed by the good
experimental results in , , .

Hierarchical BN is a more advanced type of BN which has hierarchical or multi-stage net-
works with a bottle-neck layer in each network. An example of this network architecture
is shown in the figure

2.3. TRAP Modifications

Due to many attempts to enhance and to develop the TRAP technique many various
TRAP modifications exist. Generally, TRAP modifications can be classified by the fol-
lowing criteria:

e Processing
— basic TRAP processing, figure
— dimensionality reduction, figure
— multi-band TRAPs, figure
e Architecture
— basic TRAP architecture, figure
— single stage TRAP architecture, figure
— BN-TRAP architecture, figure
e Phonetic targets used in MLP
— phonemes
— sub-phonemes

The processing parts are shown on the left sides of the figures and The gray-
scaled field is a spectrogram which represents some raw feature vector in the short time
slices. A darker color corresponds to a higher energy. The x-axis represents time while the
y-axis represents raw input features by the frequency or its equivalent.

As typical for TRAP processing, long time context is used. In the basic processing only
one critical band is taken for the further processing while in the multi-band processing
there are e.g. three neighboring bands concatenated in one vector. In the case of 3-band
processing it is reasonable to reduce the large MLP input vector by applying some dimen-
sionality reduction technique, e.g. DCT.

The basic TRAP architecture, figure 2.5 has two stages of 3-layered MLPs. Its alterna-
tives could be 3-layered single stage MLPs, figure and hierarchical BN MLPs, figure
This illustrates the search for the balance between a compact network with less pa-
rameters and classification performance.

Originally, phonemes were suggested as the MLP targets. It was later experimentally
shown that sub-phonemes (or other units that correspond to HMM sub-states) have bet-
ter performance than usual phoneme targets .

The most promising improvements of TRAP technique at the moment are 3-band process-
ing, feature vector reduction with DCT, hierarchical BN architecture and sub-phonemes as
classes for MLPs. Combined together they give the BN-TRAP-3band-DCT configuration
that shows a good performance according to .

10

2.3. TRAP Modifications 11

Raw features

4L

Log

MERGER

_ band—conditioned :
i final class

i class probabilities : ‘
probabilities

Log

—_— TRAP vectors

Figure 2.5.: Basic TRAP architecture, ||

Raw features

TRAP vectors

Figure 2.6.: Three band processing and DCT, .

First stage

Merger

Input features

Figure 2.7.: Bottle-neck TRAP architecture, |\

11

3. Experimental Setups

In this project the basic TRAP technique was reproduced. Inspired by the good results
of the 3band-DCT-BN-TRAP setup in , an attempt was also made to reproduce a
more advanced configuration. The TRAP-BN architecture with basic processing and sub-
phonemes as MLP targets was chosen for this purpose.

Most publications present experiments on English data. Here, the experiments were done
for another two languages - Arabic and German - to see if this technique also works well
for these languages.

There are many possible parameter configurations for architecture and processing that can
be combined arbitrarily with each other. Below are the examples of parameters and their
values:

e raw features: MFCC, IMEL, PLP, MVDR

e MLP architecture: basic 3 layers, 4- or 5-layered BN

e MLP targets: phonemes, sub-phonemes

e band processing: 1-band, 3-band

e dimensionality reduction of the TRAP vector: PCA, DCT, no reduction
e TRAP context length: 25 frames, 50 frames

e post-processing: LDA, HLDA, PCA

The parameters chosen for the setups in this project are: basic TRAP processing with the
IMEL as the raw feature, context of 25 frames; basic 3-layered MLPs and 5-layered BN
MLPs; LDA as post-processing. The first two trial setups were trained on conversational
Arabic data (50 hours) and the next two setups were trained on conversational German
data (180 hours).

The basic TRAP setup for German was then used for AM training. The new AM was
used with the already existing ASR system components to perform the decoding. A setup
with the MFCC-based AM was chosen as a baseline for performance comparison.

3.1. MFCC Baseline

The workflow of MFCC-based feature extraction, used in the baseline setup, is shown in
the figure The frames here are 16 ms long, shifted by 10 ms and weighted by a Ham-

13

14 3. Experimental Setups

ming window. For each frame a power spectrum is calculated, mel-scale filter-bank with
30 filters is applied, a logarithm is taken and a DCT is performed. As a result a feature
vector with 13 cepstral coefficients is formed for each frame. After reducing this vector
by the LDA on the context of 7 previous and 7 following frames, the input vector for the
decoder is obtained.

Mel Scaled Cepstral FEAT
Coefficients (MFCC)

context: +/- 7

mfec ! " FEAT-
+
12
1 195
0 42
Cepstrum t LDA

Figure 3.1.: Baseline Architecture.

3.2. Basic TRAP Architecture

The basic TRAP architecture is shown in the figure The workflow is similar to the
MFCC-based feature extraction workflow. The first steps are the same until the applica-
tion of DCT, whereas the following steps differ from the baseline by the way of forming a
feature vector and by using MLPs.

The filter banks are applied to get the sub-bands (or critical bands). The mel-scale filter-
bank has here 30 filters that gives 30 critical bands. For each band a raw TRAP vector
is formed from the 51 coefficients of the corresponding sub-band by the context of £+25
frames. The raw TRAP vectors are given as the inputs to the band classifiers. All of these
30 MLPs have 3 layers with 51 neurons in the input layer corresponding to the raw TRAP
vector size and 50 neurons in the output layer corresponding to the number of target
classes. The number of neurons in the hidden layers has to be calculated, see section
The MLP targets here are the 41 German phonemes:

AAEH AHATAUBCHXDEE2EHEREUFGHIIEJKLM N NG O OE OEH
OHPRSSCHT TS UUE UEH UH V Z.

Considering the noise classes and the MLP training tool requirements gives 50 different
classes in total.

The outputs of all the band classifiers are concatenated into one vector that is given as
the input for the main merger MLP. This MLP has 3 layers with 1500 neurons in the
input layer and 50 neurons in the output layer corresponding to the number of targets.
Again, the number of neurons in the hidden layers has to be calculated, see section
The output of this network delivers the final posterior probability for each phoneme in
a given frame. According to the soft decision function used in this MLP, an output is a
vector with the values in (0, 1). The coefficients of this vector should have a distribution
similar to a Gaussian to be a suitable input for the GMM-HMM recognizer. To achieve
this the logarithm of this vector is taken that smoothens and expands the value range.
The resulting vector is a TRAP feature vector. As it is also done in the baseline, the LDA
is applied on the context of +4 frames giving the desired TRAP-LDA vector that can be
fed to the recognizer.

14

3.2. Basic TRAP Architecture 15

band classifier MLPs

TRAP vectors —

raw features main merger MLP

IMel4
29

i ‘i::\{

TRAP feature

g)—l context: +/- 4

log

-
0 >
-

!
~

450

context: -25 .. 0 .. +25 t]
log-Mel Spectrum 42
- TRAP-LDA
30 vectors of size 51 1500 x 1160 x 50
30 MLPs: 51 x 66 x 50
Figure 3.2.: Basic TRAP architecture.
band classifier BN-MLPs
TRAP vectors
raw features main merger BN-MLP
IMel4
9 L TRAP feature
28 ——
context: +/- 4
0 ——
e — t 378
context: -25.. 0., +25
log-Mel Spectrum 42
TRAP-LDA

30 vectors of size 51 600 x 2166 x 42 x 2166 x 145
30 MLPs: 51x 28 x 20 x 28 x 145

Figure 3.3.: 3band Bottle-neck feature vector extraction.

15

16 3. Experimental Setups

3.3. TRAP-BN Architecture

The architecture with BN-MLPs and basic preprocessing is shown in the figure It is
analogous to the basic TRAP architecture and the feature extraction workflow. The differ-
ence is only in the MLP architecture and its targets. The targets here are sub-phonemes.
Using 48 different phonemes including noises and considering the beginning, middle and
end HMM sub-states for every phoneme gives 144 different classes of sub-phonemes. The
MLP training tool requirements increase this number to 145 target classes in total.
Every MLP has a 5-layered bottle-neck architecture. The input layers of the band classi-
fiers and the main merger are chosen to correspond to the sizes of their input vectors. The
2nd and 4th layers are hidden layers of the same size calculated in section The output
layers have 145 neurons corresponding to the number of targets. The narrow bottle-neck
layers of the band classifiers and the main merger have 20 and 42 neurons, respectively.

3.4. Implementation and Training

Development of an ASR recognition system consists of two parts: training and testing (or
decoding). First, an acoustic model (AM) and a language model (LM) should be trained,
then a completely trained system can be used for decoding. The quality of the recognition
is normally measured by the word error rate (WER).

The experiments were done using the Janus recognition toolkit (JRTK). The standard
scripts for training and testing, general setup configuration and trained LM were already
available. The existing AM training was extended with scripts for two stage MLP training
and with description files for TRAP-based features. These new description files and scripts
were based on the existing ones for the BN features that had been successfully used for the
systems in and . For the implementation details of the TRAP feature extraction,
the descriptions given in and [1] were used.

MLP Training
- samples extraction in pfiles
- MLP training using QuickNet

Feature Description Files

Standard AM Training 2
- LDA
- samples
- MAS training
- OFS training

3

Decoding and Scoring

Figure 3.4.: ASR system development

16

3.4. Implementation and Training 17

In the figure the new components are marked with orange filling. The other compo-
nents marked with blue color are the ones almost unchanged. A complete setup with the
TRAP-based AM consists of three parts. The first part is the two stage MLP training
which can be divided into the following steps:

e define the architectures of all MLPs
e create pfliles with training samples for the band classifier MLPs
e train the band classifier MLPs with the QuickNet

e using the trained band classifiers, create pfliles with training samples for the main
merger MLP

e train the main merger with the QuickNet

The second part is the standard AM training that uses the MLPs trained in the first part.
Finally, the third part is the decoding with the ASR system that includes this trained AM.
The produced hypotheses are used for scoring the WER.

Suitable feature description files are required for every part mentioned above. The de-
scription files for the TRAP-based features were implemented using the existing functions
of Janus. The figure shows the pre-processing workflow used in the feature description
files. It schematically represents the applied steps as blue boxes and the created objects
as orange circles.

MEL

16 ms frame, | _ | Vocal Tract Length .
10msshit | | Normalization |~ Mol Fiter Banks

(rawTRAP) (OUT_band
Mean substraction,| _| take each sub—bana\&—« Forward each rawTRAP

speaker-based "] with the context into according band clasifier MLP

MLP_OUT) (MLP2_OUT) [TRAP
concatenate T 7 forwardinto T | lo]
MLP outputs " |main merger MLP o 9 o

L el LB @

Figure 3.5.: Feature Extraction Steps.

take context
of +/- 4

The training time, convergence and recognition performance of an MLP has a direct rela-
tion with its size. That is why it is necessary to choose suitable sizes for the layers. In the
experiments described in the total number of weights was 2 000 000. Suggested ratio
between the networks in the first and second stages was 1:9. This means, there are 200
000 weights available for all the band classifier MLPs and 1 800 000 for the main merger
MLP.

All the band mergers have the same network architecture. The sizes of the input and the
output layers are fixed for all the MLPs. In the BN MLPs the sizes of the bottle-neck

17

18 3. Experimental Setups

layers are fixed as well. Taking these constraints into consideration, the sizes of the middle
layers can be computed as follows.
Basic TRAP
Given the band classifier size 51 x N x 50, where N is the size of the middle layer, the
following inequality can be composed. The first two summands are weights between the
layers and the rest are biases for each layer and all that for each of 30 MLPs:

30-(51- N+ N-50+51+ N +50) < 200000

= N <64

= 51 x 64 x 50.
Main merger size: 1500 x N x 50

1500 - N + N - 50 + 1500 + N + 50 < 1800000

= N < 1159

= 1500 x 1159 x 50.

BN-TRAP
Normally the first and the third hidden layers have equal sizes, while the bottle-neck layer
has a suitable fixed size. Given the band classifier size 51 x N x 20 x N x 145, where N
is the size of the middle layers, the following inequality can be composed:

30-(51- N4+ N-20+20-N+ N -145+ 51+ N + 20 + N + 145) < 200000

=N <27

= 51 x 27 x 20 x 27 x 145.
Main merger size: 600 x N x 42 x N x 145

600 - N+ N -42442- N 4+ N -145+ 600 + N + 42 + N + 145 < 1800000

= N <2165

= 600 x 2165 x 42 x 2165 x 145.

Note: While computing these sizes for the experiments the parameters for biases were
not considered. This explains the small difference between the sizes computed above (64,
1159, 27, 2165) and those used in experiments (66, 1160, 28 and 2166). Because of high
time and resource costs the networks were not retrained.

3.5. Used Tools

e The Janus recognition toolkit (JRTK) is a recognition system which is being devel-
oped by the Interactive Systems Lab at the KIT and at the CMU since 1993. General
information about this toolkit is available at http://isl.ira.uka.de/english/
1406.php. Its documentation can be found at http://www.cs.cmu.edu/afs/cs.
cmu. edu/Web/People/paisarn/papers/janus-doku.pdf.

e The QuickNet is an artificial neural network (ANN) training and simulating tool
which was developed by the speech group at the International Computer Science
Institute (ICSI). It is available at http://wwwl.icsi.berkeley.edu/Speech/qn.
html. This tool allows to use the training data in the pfile format and to store
network weights in Matlab format files. Tools for creating, editing and reading pfiles
are also included in the QuickNet package.

18

http://isl.ira.uka.de/english/1406.php
http://isl.ira.uka.de/english/1406.php
http://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/paisarn/papers/janus-doku.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/paisarn/papers/janus-doku.pdf
http://www1.icsi.berkeley.edu/Speech/qn.html
http://www1.icsi.berkeley.edu/Speech/qn.html

4. Results and Discussion

4.1. Experiments on Arabic corpus

The corpus contains 50 hours of the GALE Arabic broadcast news dataset with 9000 dif-
ferent speakers. The small size of this corpus allows faster training and easier debugging.
It was used for the initial experiments on MLP training for TRAP-based feature extraction.

4.1.1. MLPs for Basic TRAP

The objective of this setup was to build an MLP training framework for basic TRAP fea-
ture extraction.

In this and all the following setups standard back-propagation algorithm with a "new-
bob” learning rate updating strategy is used for MLP training in the QuickNet tool. This
learning rate strategy keeps the learning rate constant as long as the increment in cross-
validation (CV) accuracy is higher than a threshold and then this rate is decreased expo-
nentially for the subsequent epochs. The chosen relation between the CV set and training
set for all the experiments is 1:10. The output neurons of all MLPs have the softmax
activation function that delivers values in the interval (0, 1).

The table shows the main merger accuracy and the mean value of the band classifiers
accuracies. As it was expected, the band classifier MLPs show much lower accuracy than
the main merger. This can be explained by the fact that the band classifiers use only a
part of input information provided by the corresponding band while the main merger uses
the information from all bands. The band classifier accuracies presented in are also
approximately two times lower than the corresponding merger accuracies.

Bacis TRAP H band MLPs ‘ main merger MLP ‘

targets 40 phonemes 40 phonemes
size 51 x 73 x40 | 1200 x 1451 x 40
accuracy 22% 49%

Table 4.1.: Accuracies of the AR-BasicTRAP MLPs.

19

20 4. Results and Discussion

4.1.2. MLPs for BN-TRAP

The objective of this setup was to build an MLP training framework for the BN-TRAP
feature extraction.

Similarly to the previous setup the training accuracies are presented in the table The
band MLPs accuracies are much lower and the main merger MLP showed no convergence
at all. This could be explained by the superfluous number of parameters in the MLP
architecture for the given training data amount.

BN-TRAP H band MLPs ‘ main merger MLP
targets 111 sub-phonemes 111 sub-phonemes

size 52 x 33 x 20 x 33 x 111 | 600 x 2264 x 42 x 2264 x 111
accuracy 11% no convergence

Table 4.2.: Accuracies of the AR-BN-TRAP MLPs.

4.2. Experiments on German corpus

This German data base was used for the Quaero 2011 evaluation system, containing 180
hours of Quaero data with 50% of broadcast news and 50% of conversational speech. There
are 6000 different speakers. The mean duration per speaker is X and the standard devia-
tion is Y.

4.2.1. MLPs for Basic TRAP

The objective of this setup was to adapt to the German corpus the existing MLP training
framework for Basic TRAP feature extraction done for the Arabic corpus.

The table|4.1/shows the mean value of the band classifiers accuracies and the main merger
accuracy. While the band classifiers have the same mean accuracy compared to the AR-
BasicTRAP setup, the main merger showed an improvement from 49% to 57%. This can
be explained by the larger size of the used corpus.

| Bacis TRAP || band MLPs | main merger MLP |

targets 50 phonemes 50 phonemes
size 51 x 66 x 50 | 1500 x 1160 x 50
accuracy 22% 57%

Table 4.3.: Accuracies of the GER-BasicTRAP MLPs.

4.2.2. MLPs for BN-TRAP

The objective of this setup was to adapt to the German corpus the existing MLP training
framework for BN-TRAP feature extraction done for the Arabic corpus.

The resulting accuracies are shown in the table The band accuracies showed an
increase compared to the AR-BN-TRAP setup. The main merger MLP could converge
but only with a low accuracy. This could mean that even for the larger data amount there
are still too many parameters.

20

4.3. Comparing different AMs for the German ASR system 21

| BN-TRAP || band MLPs \ main merger MLP
targets 145 sub-phonemes 145 sub-phonemes
size 51 x 28 x 20 x 28 x 145 | 600 x 2166 x 42 x 2166 x 145
accuracy 21 % 26 %

Table 4.4.: Accuracies of the GER-BN-TRAP MLPs.

4.2.3. MLPs for BN-MFCC

This is an existing setup for the single BN-MLP training based on the MFCC features.
The table [4.5/ shows the accuracy of this MLP. The acoustic model trained on these BN-
MFCC features was used for the further comparison.

BN-MFCC || BN-MLP
targets 145 sub-phonemes
size 450 x 2000 x 42 x 145
accuracy 62 %

Table 4.5.: Accuracies of the GER-BN-MFCC MLPs.

4.3. Comparing different AMs for the German ASR system

The objective of the following experiments was to train several acoustic models (AM)
based on different input features and to compare their performance.

The existing setup for the German ASR system with the MFCC-based AM was used as the
baseline. This setup was adapted to use BN-MFCC and TRAP-based features. Among
the TRAP-based setups the GER-BasicTRAP setup with the best performing MLPs was
chosen. Thus the MFCC-based AM, the BN-MFCC-based AM, and the basicTRAP-based
AM were trained on the same data and with analogous configurations. Then the ASR
system was tested with each of these three AMs.

The word error rate (WER) scores are presented in the table[4.6, The best result was shown
by the baseline system with the MFCC-based AM. Close to its score was the result of the
BN-MFCC. The system with the TRAP-based AM showed much higher WER compared
to the others. Nevertheless the performance of the basic TRAP with 37.63 % WER is
comparable to the results presented in [1] (28.6 % and 38.7 % for the RT’05 and RT’07
evaluations, respectively) while the MFCC-based systems were not considered there.

As it is stated in [20], basic TRAP features alone do not reach the performance of standard
cepstral features (e.g. MFCC) nor probabilistic features from a single MLP (e.g. BN-
MFCC). This could explain the obtained results for the basic TRAP setup.

’ Setup H WER ‘
MFCC 26.58 %
BN-MFCC 28.06 %
Bacis TRAP | 37.63 %

Table 4.6.: Word error rate (WER), German corpus, 180 hours.

21

22 4. Results and Discussion

4.4. Problems and Challenges

The described experiments require access to a computationally powerful cluster and a
large data storage to keep large amount of temporary data for the intermediate steps of
the MLP training.

Another challenge is high MLP training accuracy that is required for high recognition
performance. High training accuracy can be achieved by both providing sufficient data
amount divided in a good proportion into a training set and a cross-validation (CV) set
and choosing a reasonable MLP architecture depending on the provided data amount.
Time required to train all the MLPs is also a challenge. The QuickNet tool supports
multi-threading for single cluster node. Therefore the training time can be significantly
reduced by parallelizing the MLP training between several cluster nodes.

In order to use the existing Janus scripts to train an AM on new features, several updates
should be done including decoder configurations. The decoder parameters used in the
basic TRAP setup and the parameters for other setups are shown in the table This
table can be useful for further parameter tuning.

4.5. Future Work

According to , the best results are shown by the 3band-DCT-BN-TRAP setup (23.7 %
and 31.7 % for the RT’05 and RT’07 evaluations, respectively). For the TRAP processing
three adjacent bands are taken and their dimensionality is reduced by DCT. All the MLPs
there have the BN architecture and use sub-phonemes as targets. It is therefore reasonable
to extend the existing basic TRAP setup for Janus by an implementation of multi-band
processing. Then with the existing framework for two stage bottle-neck MLPs training,
networks should be trained on a large amount of data to reach high training accuracy.
After this has been done, it will be possible to obtain the 3band-DCT-BN-TRAP features
and to train an AM on them.

The other direction of research is to examine how TRAPs will perform when used for other
languages. It can be tested if already trained MLP weights for one language can be used
for another one.

cepstral features

+ reduced input feature vector
probabilistic features for a GMM-HMM recognizer
AM L I T
MFCC TRAP

concateneted features

multi-stream

AM-1 [
MFCC
|:‘I > Total AM score =
al * scorel + a2 * score2
AM-2 L]

TRAP

Figure 4.1.: Feature combination.

22

4.5. Future Work 23

Being complementary to cepstral features, TRAP features can thereby be used as an aug-
mentation of them [20]. In the setups for this project no feature or AM combination
was used. The figure outlines examples of possible feature combinations as suggested
in . One approach is to train a single AM on concatenated features with eventual
dimensionality reduction. Another approach is to train two or several AMs separately and
use their weighted sum in the decoding process.

A setup can also include several different systems. These systems can be combined by
confusion network combination (CNC). Additionally several system outputs can be com-
bined by recognizer output voting error reduction (ROVER). Different applications of the
TRAP techniques for setups with several systems were examined in obtaining up to
10 % relative WER reduction for some system configurations. Thus it is reasonable to
further investigate how the TRAP technique can be applied to provide an improvement
for multi-component ASR systems.

23

5. Conclusion

In this student project different feature extraction techniques for the acoustic modeling
were investigated. In order to extend the existing in the Janus recognition toolkit mel-
frequency cepstral coefficients (MFCC) features and the bottle-neck (BN) features, both
the basic Temporal Pattern (TRAP) features as well as elements for other TRAP modifi-
cations were implemented.

There are still challenges which are reducing training time of multilayer perceptrons
(MLPs) and boosting their recognition accuracy. It is realistic to solve this by a more
advanced parallelization of the training process, by using more data and by choosing
training parameters that improve MLP performance. There are already some successful
applications of the TRAP technique in multicomponent systems, nevertheless further re-
search is desirable. Both these points inspire for the further work on TRAPs technique to
improve acoustic modeling for automatic speech recognition.

25

Appendix

A. Decoder Parameters

| MFCC, BN-MFCC | Basic TRAP

base 1z/lp

1z 26 1z 38

Ip 0 Ip O

sp 20 sp 40
final 1z/1p

1z2 34 1z2 62

1p2 16 1p2 -22

- Isp 40

rescoring matrix
llz 24 26 28 30 32 34 36 38 40 42 | llz 54 58 62 66 70 74 78 82 86 90

llp 8 10 12 14 16 18 20 22 24 llp -22 -20 -18 -16 -14 -12 -10 -8 -6
decoder settings

mb 1.3 mb 1.9

transN 40 transN 30

morphN 10 morphN 9

Table A.1.: Decoder parameters for MFCC, BN-MFCC and basic TRAP.

27

Bibliography

1]

2]

F. Grezl and M. Karafiat, “Integrating recent mlp feature extraction techniques into
trap architecture,” Proc. Interspeech’11, 2011.

M. Sundermeyer, M. Nussbaum-Thom, S. Wiesler, C. Plahl, A. E.-D. Mousa, S. Hahn,
D. Nolden, R. Schluter, and H. Ney, “The rwth 2010 quaero asr evaluation system
for english, french and german,” Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Processing ICASSP’11, 2011.

S. Stiicker, K. Kilgour, and J. Niehues, “Quaero speech-to-text and text translation
evaluation systems,” Proc. HLRS. Springer, 2010, pp. 529-542., 2011.

C. Fiigen, A. Waibel, and M. Kolss, “Simultaneous translation of lectures and
speeches,” Machine Translation, vol. 21, no. 4, MTSN 2008, Springer, 2008.

S. Stiicker, “Basics of automatic speech recognition.” Lectures in winter semester
2009/2010.

H. Hermansky, D. P. W. Ellis, and S. Sharma, “Tandem connectionist feature extrac-
tion for conventional hmm systems,” Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Processing ICASSP 00, 2000.

H. Hermansky, “Trap-tandem: data-driven extraction of temporal features from
speech,” Proc. IEEE Workshop Automatic Speech Recognition and Understanding
ASRU 03, 2003.

A. Faria, “An investigation of tandem mlp features for asr,” ICSI Technical Report
TR-07-003, 2007.

H. Hermansky and S. Sharma, “Traps - classifiers of temporal patterns,” Proc. 1C-
SLP’98, 1998.

P. Fousek, Fxtraction of features for automatic recognition of speech based on spectral
dynamics. PhD thesis, Czech Technical University in Prague, Faculty of Electrical
Engineering, 2007.

F. Grezl, TRAP-based probabilistic features for automatic speech recognition. PhD
thesis, Brno University of Technology, Faculty of Information Technology, 2007.

F. Grezl and J. Cernocky, “ITrap-based techniques for recognition of noisy speech,”
Proc. 10th International Conference on Text Speech and Dialogue TSD’07.

F. Grezl and P. Fousek, “Optimizing bottle-neck features for lvesr,” Proc. IEEE Int.
Conf. Acoustics, Speech and Signal Processing ICASSP’08, 2008.

F. Grezl, M. Karafiat, S. Kontar, and J. Cernocky, “Probabilistic and bottle-neck
features for lvesr of meetings,” Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Processing ICASSP’07, 2007.

29

30

Bibliography

[15]

[16]

[20]

[21]

C. Plahl, R. Schliiter, and H. Ney, “Hierarchical bottle-neck features for lvcsr,” Proc.
Interspeech’10, 2010.

P. Schwarz, P. Matejka, and J. Cernosky, “Towards lower error rates in phoneme
recognition,” Proc. 7th International Conference on Text Speech and Dialogue TSD’04,
2004.

U. Nallasamy, M. Garbus, F. Metze, Q. Jin, T. Schaaf, and T. Schultz, “Analysis of
dialectal influence in pan-arabic asr,” Proc. Interspeech’11, 2011.

K. Kilgour, C. Saam, C. Mohr, S. S., and A. Waibel, “The 2011 kit quaero speech-
to-text system for spanish,” Proc. International Workshop on Speech Translation

(IWSLT 2011), 2011.

J. Cernocky, “Traps in all senses,” tech. rep., Oregon Graduate Institute, School of
Science and Engineering, 2001.

Q. Zhu, A. Stolcke, B. Y. Chen, and N. Morgan, “Using mlp features in sri’s conver-
sational speech recognition system,” Proc. Interspeech’05, 2005.

F. Metze, R. Hsiao, Q. Jin, U. Nallasamy, and T. Schultz, “The 2010 cmu gale speech-
to-text system,” Proc. Interspeech’10, 2010.

30

	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 ASR System
	1.2 Preprocessing and Acoustic Modeling (AM)
	1.3 Training Cycle

	2 TRAPs and BN: Related Work
	2.1 TempoRal Patterns (TRAPs)
	2.2 Bottle-Neck (BN) Features
	2.3 TRAP Modifications

	3 Experimental Setups
	3.1 MFCC Baseline
	3.2 Basic TRAP Architecture
	3.3 TRAP-BN Architecture
	3.4 Implementation and Training
	3.5 Used Tools

	4 Results and Discussion
	4.1 Experiments on Arabic corpus
	4.1.1 MLPs for Basic TRAP
	4.1.2 MLPs for BN-TRAP

	4.2 Experiments on German corpus
	4.2.1 MLPs for Basic TRAP
	4.2.2 MLPs for BN-TRAP
	4.2.3 MLPs for BN-MFCC

	4.3 Comparing different AMs for the German ASR system
	4.4 Problems and Challenges
	4.5 Future Work

	5 Conclusion
	Appendix
	A Decoder Parameters

	Bibliography

