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Abstract

Expressive voice conversion aims to transfer both speaker
identity and expressive attributes from a target speech to a given
source speech. In this work, we improve over a self-supervised,
non-autoregressive framework with a conditional variational
autoencoder, focusing on reducing source timbre leakage and
improving linguistic-acoustic disentanglement for better style
transfer. To minimize style leakage, we use multilingual dis-
crete speech units for content representation and reinforce em-
beddings with augmentation-based similarity loss and mix-style
layer normalization. To enhance expressivity transfer, we incor-
porate local FO information via cross-attention and extract style
embeddings enriched with global pitch and energy features. Ex-
periments show our model outperforms baselines in emotion
and speaker similarity, demonstrating superior style adaptation
and reduced source style leakage.

Index Terms: speech synthesis, expressive voice conversion

1. Introduction

Voice conversion (VC) approaches aim to transform a source
audio by transferring speaker characteristics from a target audio
while preserving the source content. Conventional VC models
perform well in replicating speaker identity but struggle when
the target speech is highly expressive. Expressive voice con-
version (EVC) expands on this by capturing both speaker and
expressive cues, such as emotions, intensity, and pitch, during
synthesis. This allows to not only generate read speech but also
replicate the emotional nuances of the target speaker. EVC can
be applied in dialogue systems such as [1, 2] to improve human-
robot interactions or speech translation pipelines [3, 4, 5], ensur-
ing that the emotions and expressions from the source language
are retained in the target language speech [6, 7].

EVC was tackled as a supervised sequence-to-sequence
task [8], however, due to the challenge of creating parallel
emotional speech corpora, many methods explored non-parallel
synthesis [9, 10]. A common strategy is disentangling lin-
guistic and acoustic information in a self-supervised manner,
then recombining the source’s linguistic features with the tar-
get’s acoustic attributes [11]. However, a persistent challenge
is source timbre leakage, where residual speaker timbre from
the source speech degrade style transfer. To address this, some
studies introduce an information bottleneck in the linguistic en-
coder to suppress residual acoustic information [12, 13].

In this work, we enhance the information bottleneck to im-
prove disentanglement and reduce source speaker leakage. We
adopt a non-parallel, self-supervised speech generation model
based on a conditional variational autoencoder, inspired by
VITS [14] and FreeVC [15]. Our system uses self-supervised
speech representations from mHuBERT-147 [16] as input,

leveraging its discrete speech units to eliminate non-linguistic
information more effectively than continuous representations
through quantization [17]. Additionally, its multilingual speech
units enable cross-lingual EVC, making it particularly valuable
for speech translation pipelines. To our knowledge, this is the
first use of mHuUBERT-147 in a VC setup, combining the bene-
fits of both discrete speech units and multilinguality. To further
improve disentanglement, we introduce a perturbation-based
similarity loss to minimize variation in the content embedding
distribution and integrate mixed-layer normalization from [18]
to enhance the linguistic-acoustic disentanglement. We repre-
sent both speaker identity and emotional cues in a single global
style embedding, using ECAPA-TDNN [19] complemented by
global pitch and energy information. Additionally, we add a
local FO encoder for a better prosodic similarity to the target
speech. We provide speech samples on the demo page.'.

2. Related Work

EVC is a speech-to-speech task, where early approaches often
relied on auto-regressive models trained with parallel speech
data [8, 20]. These models typically required text supervi-
sion. To reduce reliance on transcripts, [11] proposed a textless
approach that extracts discrete speech units directly from au-
dio and learns a translation network between emotion classes.
Given that obtaining original parallel data is challenging, some
studies explored using synthesized parallel data for accent con-
version [21, 22].

Meanwhile, in EVC, many recent methods have adopted
self-supervised speech reconstruction techniques to remove the
need for aligned data. One of the earliest studies in this area, [9],
disentangles emotion-invariant and emotion-variant features
and uses an autoencoder to synthesize speech from these fea-
tures. [23] employs StarGAN for the EVC task while [10] intro-
duces variational autoencoders with non-autoregressive speech
synthesis for EVC. [24] applies a VAE for language-agnostic
EVC with limited data. [25] leverages self-supervised speech
representations and a k-nearest neighbors model for feature re-
trieval. [26] uses discrete speech units as linguistic inputs and
a prosody encoder for acoustic inputs, synthesizing speech with
an auto-regressive decoder. The most similar works to ours are
conditional VAE based methods adapted for the style conver-
sion task where [12] uses a hierarchical adaptive generator for
generating the waveform, [27] adds the style consistency loss
for a better style transfer, [28] uses a similar architecture to
[12] and adapts it for jointly trained TTS and cross-lingual EVC
and [29] introduces prosody extraction and fusing methods for
improving VITS for EVC task.

'https://seymanurakti.github.io/evc/
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Figure 1: Overall architecture of the proposed system.

3. Methodology

We follow the architecture of FreeVC [15] and adapt it for EVC
with significant modifications as overall architecture illustrated
in Fig. 1. The aim is to learn two distributions: one for linguis-
tic features p = N(up, 0p) and one for spectrogram features
q = N(ugq,04q). During training, the normalizing flow maps the
posterior distribution ¢ to the prior distribution p, while the de-
coder generates speech from samples of ¢q. The content encoder
aims to capture only linguistic information, with acoustic fea-
tures injected via style embeddings through conditional layers.
During inference, the reverse flow generates style-injected rep-
resentations from linguistic features, allowing speech synthesis
that preserves the source content while adopting the target style.

3.1. Content Encoder

First, mnHuBERT-147 [16] units are extracted from waveform y
and quantized. Then, unit embeddings e are obtained through
an embedding layer and are processed through the Mix Encoder,
which helps to produce style-agnostic content embeddings by
applying mixed-layer normalization [18] with scale and bias
vectors derived from the mixed style embeddings as:

Ymiz(8) = Ay(s) + (1 = A)y(3) M
Brmixz(s) = AB(s) + (1 = A)B(3) @
MixLN(e,s) = Ymiz(s) X LN(€) + Bmiz(s)  (3)

where § is batch-wise shuffled style embeddings and X is a
parameter from Beta distribution. This introduces random
style information from other samples in the batch, injecting
some noise, reducing the dependency of content embeddings on
their original style embeddings and making them more style-
agnostic. Our experiments show that Mix-LN also improves
content-independence in style embeddings implicitly making
them time-invariant. This is particularly useful for mitigating
the train-inference mismatch, where training samples share the
same content for source and target speech, whereas this align-
ment does not hold during inference.

Concurrently, the Local FO Encoder extracts frame-based
FO embeddings from the audio’s FO contours which share the
same sampling rate (320) as the content embeddings c¢. FO
embeddings are then fused with the content embeddings via

multi-head cross-attention, with content embeddings as query
and FO embeddings as key and value. This more effectively
captures the pitch flow of the target compared to re-normalizing
the source FO and fusing via summation, as done in [18, 30]. It
also allows the target FO to be directly used as the pitch input
during inference—regardless of any length differences. Finally,
the prior encoder generates the distribution p(z|c) from the FO-
enriched content embeddings.

Additionally, we introduce a perturbation-based similarity
loss to improve the quality of content embeddings. We apply
augmentation via Parselmouth?, modifying the original audio
by reducing its pitch range to create less expressive and more
uniform speech, and applying pitch shifting to augment speaker
identity. The similarity loss then ensures that content embed-
dings from the original and augmented samples remain close,
reducing their dependency on non-linguistic variations. The
similarity loss function is formally defined in Eq. 4.

Lsim = (1 = cos(e, eaug)) + (1 = cos(c, caug)) ~ (4)

3.2. Posterior Encoder

Posterior Encoder takes the linear spectrogram xpe. as the in-
put and generates the posterior distribution ¢(z|Zspec), sharing
the same architecture with the Prior Encoder with convolution
layers and projection layer for learning distribution parameters.
In order to make the posterior and prior distributions closer, The
KL divergence loss is calculated as given in Eq. 5.

L = KL(q(z|Zspece) |Ip(z]c)) )

3.3. Normalizing Flow

The normalizing flow layer learns the mapping from the pos-
terior distribution to the prior distribution during training. We
use a Transformer-based normalizing flow, following the ap-
proach in [30], which has demonstrated superior performance
compared to convolution-only normalizing flows due to its abil-
ity to capture longer time dependencies [31]. During inference,
the content representation of the source speech is mapped to
the posterior distribution using reverse normalizing flow to be
decoded by Generator.

2https://github.com/YannickJadoul/Parselmouth



3.4. Waveform Synthesizer

For speech generation, we utilized the HiFi-GAN vocoder [32].
The Generator generates speech waveforms through a series of
upsampling layers, while the Discriminator aims to distinguish
between real and generated waveforms. The synthesizer em-
ploys three loss functions similar to conventional generative ad-
versarial networks, as defined in Eq. 6-8.

Laas(G) = E-[(D(G(2)) — 1)’ ®)
Laau(D) = Ey. 0 [(D(y) = 1)* + (D(G())] (D)

1
Lim(G) = Eq ) EIIDl(y) ~DYG()Ih] ®
1=1
Also, a reconstruction loss is calculated between the origi-
nal and generated mel spectrograms as shown in Eq. 9.

Lyee = meel - i‘mel“l )

3.5. Style Encoder

We use the ECAPA-TDNN model [19] for style encoding. Un-
like style encoders relying solely on mel spectrograms, we
also incorporate FO and energy contours. We extract 512-
dimensional embeddings from mel spectrograms, FO, and en-
ergy contours, then fuse them using a trainable weighted sum-
mation, as defined in Eq. 10.

S = )\mel~6mel + )\f().@f() + )\energy-eene'rgy (10)

Style embeddings are then used to condition all encoders,
injecting style information throughout the process. The overall
loss function is given in Eq. 11.

L= Ladv(G) + Ladv(D) + Lfm(G) + Lkt + Lrec + Lsim
(11

4. Experiments and Results

For training, we used a combination of LibriTTS-100 [33],
ESD [34] (English only), subset of GigaSpeech [35], and Ex-
presso [36]. All datasets are English and total duration is around
228 hours with more than 920 speakers. We used 2 NVIDIA
A600 GPUs for training with batch size of 64 for 1M steps. For
the ablation study, we trained the models for 300k steps.

4.1. Evaluation

For evaluation, we used test sets of ESD [34], Expresso [36],
and LibriTTS [33]. For ESD, the source and target samples are
from same speaker with same content and different emotions.
In other two datasets, source and target had different speakers
and content. For objective evaluation, we use several metrics as
follows:

¢ WER: We use Whisper-Large-3 [37] with text normalization.

* SECS: Speaker embedding cosine similarity computed be-
tween synthesized and target audio using Resemblyzer’.

* EECS: Emotion embedding cosine similarity between syn-
thesized and target audio using Emotion2Vec+ [38].

* ECA: Emotion classification accuracy calculated on the syn-
thesized samples using Emotion2Vec+.

* EER: Equal error rate computed with a speaker verification
model [19], with synthesized sample as query, source speech
as negative, and target as positive. A lower EER signals better
target speaker matching and less source speaker leakage.

3https://github.com/resemble-ai/Resemblyzer

We use three subjective metrics: naturalness MOS (nMOS)
for speech quality, speaker MOS (sMOS) for speaker similarity,
and emotion MOS (eMOS) for emotion accuracy, all rated on a
1-5 scale. We use ESD test set samples for ESD-only models
and RAVDESS [39] for zero-shot EVC for human evaluation.
15 users participated in evaluation and users were given 10-15
samples per model across different emotions.

4.2. Style Transfer Results

We compare our approach with three models with VAE archi-
tecture and a style encoder for copying expressive style infor-
mation by integrating emotional datasets in the training. For
a fair comparison, we report results in two settings based on
the training data: (1) ESD-only setting, comparing against X-E-
Speech [28] (trained on ESD) and Consistency-VC [27] (trained
on ESD and VCTK); and (2) multi-dataset setting, comparing
against Hierspeech++ [30], which is trained on a larger dataset.

Table 1 shows our model surpasses Hierspeech++ in emo-
tion copying across all test sets, achieving higher SECS for
both seen (Expresso) and unseen (LibriTTS) speakers, while
lower EER on LibriTTS suggests better source speaker identity
removal. In the ESD-only comparison, we outperform X-E-
Speech and Consistency-VC in converting emotional speech to
neutral, proving effective in eliminating source style. It also
achieves higher ECA than X-E-Speech in ’neutral to others’
and ’overall’ but is slightly surpassed by Consistency-VC. In
the zero-shot setting with unseen speakers from Expresso, our
model shows slightly better emotion and speaker transfer. How-
ever, its WER is higher in both setups, likely due to discrete
speech units reducing speaker information but also eliminating
some linguistic cues, leading to pronunciation artifacts [40, 17].

The subjective metric results at Table 3, support the objec-
tive evaluation, as we surpass others in emotion transfer capa-
bility for both setups. For speaker transfer, we perform better
for zero-shot, but others perform better for ESD version. Given
the nMOS scores of our model exceeding 3, it is possible to
claim that the audio remains reasonably natural and intelligible,
despite the higher WER compared to other methods.

4.3. Ablation Study

For assessing the effect of each contribution on EVC, we con-
ducted an ablation study, as shown in Table 2. Results show
that replacing FO injection via summation with cross-attention
significantly enhances style transfer. The addition of Mix-LN
improves both emotion and speaker similarity, and as reflected
in higher ECA (O — N) and lower EER scores, Mix-LN effec-
tively reduces source style leakage. Furthermore, the lower dif-
ference between WERs of ESD (source and target has the same
content) and LibriTTS (source and target has different content)
suggests that Mix-LN mitigates the train-inference mismatch
caused by content differences between the source and target
speech, possibly by reducing content leakage in the style em-
beddings. To investigate this, we measured the intra-speaker
cosine similarity of style embeddings from the style encoders
of both the proposed model and the model without Mix-LN.
Ideally, these embeddings should be content-agnostic, meaning
similarity should remain high for the same speaker regardless
of the content. For unseen speakers in LibriTTS, the average
cosine similarity increased from 0.719 to 0.748 with Mix-LN,
demonstrating improved disentanglement in style embeddings.

Addition of Lg;,, improves unseen speaker conversion
scores on LibriTTS, indicating reduced speaker identity leak-
age. The higher overall ECA score further suggests that



Table 1: Comparative results. N—O indicates conversion from neutral to the other emotions. (overall) is for cross-emotion conversion.

Models ESD Expresso LibriTTS
WER | ECA(N—0)1 ECA(O—N)T ECA (overall) 1 | SECSt EECSt|WER| SECST EER|
Consistency-VC | 4.71% 78.3% 72.6% 77.0% 66.6%  79.4% - - -
X-E-Speech 5.69% 69.6% 74.1% 68.9% 67.1%  78.7% - - -
Ours (ESD only) | 10.44% 76.3% 78.8% 76.5% 679% 81.2% - - -
Hierspeech++ 5.01% 35.7% 45.0% 37.0% 73.1% 82.0% | 3.48% 80.3% 14.6%
Ours 7.98% 81.2% 73.8% 78.9 % 812% 853% | 8.84% 832% 7.4%

Table 2: Ablation results. N— O indicates conversion from neutral to other emotions. (overall) indicates cross-emotion conversion.

ESD ‘ Expresso ‘ LibriTTS
Models

WER| ECA(N—O0)1T ECA (overall) T ‘ SECS 1 EECS 1 ‘ WER | SECST EERJ
w/o FO cross-attention 8.82% 68.3% 64.0% 79.6% 83.6% 7.42% 82.0% 11.1%
w/o Mix-LN 10.45% 72.9% 74.6% 78.8% 84.5% 19.83% 794% 13.9%
W/0 Lsim 9.90% 77.1% 73.0% 80.1% 85.2% 10.35%  81.9% 9.7%
w/o global FO and energy | 9.38% 76.8% 75.4% 80.3% 84.4% 9.58% 80.4%  10.3%
w/ MMS features 5.01% 62.2% 60.5% 79.1% 83.4% 5.21% 80.3% 16.5%
Proposed ‘ 9.25% 77.1% 76.5% ‘ 80.6% 84.9% ‘ 951%  82.3% 9.3%

Table 3: Subjective evaluation results.

nMOS eMOS sMOS
GT 440+0.15 4.17+£0.18 4.60+0.12
Consistency-VC ~ 425+0.15 3.88+0.19 4.73+0.08
X-E-Speech 4.12+0.17 3.88+0.16 4.63+0.10
Ours (ESDonly) 3.88+0.17 4.00+0.16 4.50+0.13
GT 450+£0.12 427+£0.16 4.66+0.12
Hierspeech++ 268+0.17 294+0.16 297+0.19
Ours (w/ FO sum) 3.41+0.17 3.51+0.16 3.74+0.17
Ours (w/ MMS) 341+£0.17 346+0.17 3.58+0.18
Ours (proposed) 337+£0.19 3.72+0.17 3.65+0.18

Table 4: Cross-lingual expressive voice conversion results.

English to German ‘ German to English
WER SSIM ECA ‘ WER SSIM ECA

Hierspeech++ 451% 72.8% 61.7% | 7.03% 65.5% 15.3%
Consistency-VC | 3.27% 64.1% 453% |13.54% 73.2% 25.1%
X-E-Speech 477% 59.8% 51.9% |43.70% 76.1% 47.7%
Ours 10.59% 74.8% 76.1% |30.84% 76.8% 50.7%

Ls;m enhances cross-emotional conversion by effectively re-
moving source speech style. Comparing content features from
MMS [41] and mHuBERT, using discrete speech units as con-
tent embeddings instead of continuous ones eliminates leaked
acoustic information from the source but degrades quality, as
reflected in higher WER scores. Lastly, incorporating global
FO and energy embeddings improves the style embeddings and
result in better speaker and emotion transfer across all metrics.

4.4. Cross-Lingual Style Transfer

Considering that the style encoder is content-agnostic, and lin-
guistic features were extracted from a multi-lingual model, our

model can perform cross-lingual VC (XVC) even when trained
solely on English data. In order to evaluate it, we used ESD
(English) and EmoDB [42] (German) to perform neutral-to-
emotional conversions across different languages. We choose
German to demonstrate the performance on an unseen language
for all models. We use XVC version for Consistency-VC which
is trained on multilingual data including ESD. As shown in
Table 4, our model more effectively preserves emotion and
speaker identity, even for German speakers unseen during train-
ing. However, the WER scores reveal a significant drop in in-
telligibility when source language is not included in training,
observed on German to English conversions for all models.

5. Conclusion

In this work, we proposed a novel zero-shot EVC framework
that enhances linguistic and acoustic feature disentanglement
to particularly reduce source style leakage. Our approach inte-
grates FO injection with cross-attention, Mix-LN, mHuBERT-
147 units, perturbation-based similarity loss, and style embed-
dings enriched with FO and energy contours in a novel frame-
work. Experimental results demonstrate that proposed frame-
work improves disentanglement, mitigates source style leakage
more effectively than baselines, and achieves superior emotion
transfer while preserving speaker similarity. Future work will
focus on enhancing intelligibility and improving cross-lingual
performance through multilingual training data.

6. Acknowledgements

The authors gratefully acknowledge support from the Ger-
man Federal Ministry of Education and Research (BMBF) un-
der grant 01EF1803B (RELATER), European Union’s Hori-
zon research and innovation programme under grant 101135798
(Meetween), and KIT Campus Transfer GmbH (KCT) staff in
accordance with the collaboration with Carnegie-Al



[1]

[2]

[3]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

7. References

A. Waibel, H. Steusloff, R. Stiefelhagen et al., “Chil: Computers
in the human interaction loop,” 2005.

M. Schmidt, J. Niehues, and A. Waibel, “Towards an open-domain
social dialog system,” Dialogues with Social Robots: Enable-
ments, Analyses, and Evaluation, pp. 271-278, 2017.

A. Waibel, M. Behr, D. Yaman, F. 1. Eyiokur, T.-N. Nguyen,
C. Mullov, M. A. Demirtas, A. Kantarci, S. Constantin, and
H. K. Ekenel, “Face-dubbing++: Lip-synchronous, voice preserv-
ing translation of videos,” in ICASSP Workshops, 2023.

I. S. Ahmad, A. Anastasopoulos, O. Bojar, C. Borg, M. Carpuat,
R. Cattoni, M. Cettolo, W. Chen, Q. Dong, M. Federico et al.,
“Findings of the iwslt 2024 evaluation campaign,” arXiv preprint
arXiv:2411.05088, 2024.

A. Waibel and C. Fuegen, “Simultaneous translation of open do-
main lectures and speeches,” Jan. 3 2012, uS Patent 8,090,570.

L. Barrault, Y.-A. Chung, M. C. Meglioli, D. Dale, N. Dong,
M. Duppenthaler, P.-A. Duquenne, B. Ellis, H. Elsahar, J. Haa-
heim et al., “Seamless: Multilingual expressive and streaming
speech translation,” arXiv preprint arXiv:2312.05187, 2023.

K. Song, Y. Ren, Y. Lei, C. Wang, K. Wei, L. Xie, X. Yin, and
Z. Ma, “Styles2st: Zero-shot style transfer for direct speech-to-
speech translation,” Interspeech, 2023.

K. Zhou, B. Sisman, and H. Li, “Limited data emotional voice
conversion leveraging text-to-speech: Two-stage sequence-to-
sequence training,” Interspeech, 2021.

J. Gao, D. Chakraborty, H. Tembine, and O. Olaleye, “Nonparallel
emotional speech conversion,” Interspeech, 2019.

Y. Cao, Z. Liu, M. Chen, J. Ma, S. Wang, and J. Xiao, “Nonpar-
allel emotional speech conversion using vae-gan.” in Interspeech,
2020.

F. Kreuk, A. Polyak, J. Copet, E. Kharitonov, T.-A. Nguyen,
M. Riviere, W.-N. Hsu, A. Mohamed, E. Dupoux, and Y. Adi,
“Textless speech emotion conversion using discrete and decom-
posed representations,” EMNLP, 2022.

S.-H. Lee, H.-Y. Choi, H.-S. Oh, and S.-W. Lee, “Hiervst: Hierar-
chical adaptive zero-shot voice style transfer,” Interspeech, 2023.

Z. Ning, Q. Xie, P. Zhu, Z. Wang, L. Xue, J. Yao, L. Xie,
and M. Bi, “Expressive-vc: Highly expressive voice conversion
with attention fusion of bottleneck and perturbation features,” in
ICASSP, 2023.

J. Kim, J. Kong, and J. Son, “Conditional variational autoencoder
with adversarial learning for end-to-end text-to-speech,” in ICML,
2021.

J. Li, W. Tu, and L. Xiao, “Freevc: Towards high-quality text-free
one-shot voice conversion,” in ICASSP, 2023.

M. Z. Boito, V. Iyer, N. Lagos, L. Besacier, and I. Calapode-
scu, “mhubert-147: A compact multilingual hubert model,” In-
terspeech, 2024.

S. Akti, T. N. Nguyen, Y. Liu, and A. Waibel, “Voice privacy-
investigating voice conversion architecture with different bottle-
neck features,” in Proc. SPSC 2024, 2024, pp. 44—49.

R. Huang, Y. Ren, J. Liu, C. Cui, and Z. Zhao, “Generspeech:
Towards style transfer for generalizable out-of-domain text-to-
speech,” NeurIPS, 2022.

B. Desplanques, J. Thienpondt, and K. Demuynck, “Ecapa-tdnn:
Emphasized channel attention, propagation and aggregation in
tdnn based speaker verification,” in Interspeech, 2020.

K. Zhou, B. Sisman, R. Rana, B. W. Schuller, and H. Li, “Emotion
intensity and its control for emotional voice conversion,” IEEE
Transactions on Affective Computing, vol. 14, no. 1, 2022.

T.-N. Nguyen, N.-Q. Pham, and A. Waibel, “Accent conversion
using pre-trained model and synthesized data from voice conver-
sion.” in Interspeech, 2022.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

T. N. Nguyen, S. Akti, N. Q. Pham, and A. Waibel, “Improving
pronunciation and accent conversion through knowledge distilla-
tion and synthetic ground-truth from native tts,” in ICASSP, 2025.

G. Rizos, A. Baird, M. Elliott, and B. Schuller, “Stargan for emo-
tional speech conversion: Validated by data augmentation of end-
to-end emotion recognition,” in /CASSP, 2020.

B. Schnell, G. Huybrechts, B. Perz, T. Drugman, and J. Lorenzo-
Trueba, “Emocat: Language-agnostic emotional voice conver-
sion,” arXiv preprint arXiv:2101.05695, 2021.

M. Baas, B. van Niekerk, and H. Kamper, “Voice conversion with
just nearest neighbors,” Interspeech, 2023.

L. Qu, T. Li, C. Weber, T. Pekarek-Rosin, F. Ren, and S. Wermter,
“Disentangling prosody representations with unsupervised speech
reconstruction,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2023.

H. Guo, C. Liu, C. T. Ishi, and H. Ishiguro, “Using joint train-
ing speaker encoder with consistency loss to achieve cross-lingual
voice conversion and expressive voice conversion,” in ASRU,
2023.

“X-e-speech:  Joint training framework of non-
autoregressive cross-lingual emotional text-to-speech and
voice conversion,” in Interspeech, 2024.

J. Li and L. Zhang, “Zse-vits: A zero-shot expressive voice
cloning method based on vits,” Electronics, vol. 12, no. 4, 2023.

S.-H. Lee, H.-Y. Choi, S.-B. Kim, and S.-W. Lee, “Hierspeech++:
Bridging the gap between semantic and acoustic representation of
speech by hierarchical variational inference for zero-shot speech
synthesis,” arXiv preprint arXiv:2311.12454, 2023.

J. Kong, J. Park, B. Kim, J. Kim, D. Kong, and S. Kim, “Vits2:
Improving quality and efficiency of single-stage text-to-speech
with adversarial learning and architecture design,” arXiv preprint
arXiv:2307.16430, 2023.

J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial net-
works for efficient and high fidelity speech synthesis,” Advances
in neural information processing systems, vol. 33, 2020.

H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen,
and Y. Wu, “Libritts: A corpus derived from librispeech for text-
to-speech,” Interspeech, 2019.

K. Zhou, B. Sisman, R. Liu, and H. Li, “Seen and unseen emo-
tional style transfer for voice conversion with a new emotional
speech dataset,” in ICASSP, 2021.

G. Chen, S. Chai, G. Wang, J. Du, W.-Q. Zhang, C. Weng, D. Su,
D. Povey, J. Trmal, J. Zhang et al., “Gigaspeech: An evolving,
multi-domain asr corpus with 10,000 hours of transcribed audio,”
arXiv preprint arXiv:2106.06909, 2021.

T. A. Nguyen, W.-N. Hsu, A. d’Avirro, B. Shi, I. Gat, M. Fazel-
Zarani, T. Remez, J. Copet, G. Synnaeve, M. Hassid et al., “Ex-
presso: A benchmark and analysis of discrete expressive speech
resynthesis,” arXiv preprint arXiv:2308.05725, 2023.

A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak su-
pervision,” in ICML, 2023.

Z. Ma, Z. Zheng, J. Ye, J. Li, Z. Gao, S. Zhang, and X. Chen,
“Emotion2vec: Self-supervised pre-training for speech emotion
representation,” arXiv preprint arXiv:2312.15185, 2023.

S. R. Livingstone and F. A. Russo, “The ryerson audio-visual
database of emotional speech and song (ravdess): A dynamic,
multimodal set of facial and vocal expressions in north american
english,” PloS one, vol. 13, no. 5, 2018.

B. Van Niekerk, M.-A. Carbonneau, J. Zaidi, M. Baas, H. Seuté,
and H. Kamper, “A comparison of discrete and soft speech units
for improved voice conversion,” in ICASSP, 2022.

V. Pratap, A. Tjandra, B. Shi, P. Tomasello, A. Babu, S. Kundu,
A. Elkahky, Z. Ni, A. Vyas, M. Fazel-Zarandi et al., “Scaling
speech technology to 1,000+ languages,” Journal of Machine
Learning Research, vol. 25, no. 97, pp. 1-52, 2024.

F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier et al., “A
database of german emotional speech.” in Interspeech, 2005.



	 Introduction
	 Related Work
	 Methodology
	 Content Encoder
	 Posterior Encoder
	 Normalizing Flow
	 Waveform Synthesizer
	 Style Encoder

	 Experiments and Results
	 Evaluation
	 Style Transfer Results
	 Ablation Study
	 Cross-Lingual Style Transfer

	 Conclusion
	 Acknowledgements
	 References

