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Karlsruhe, den 10.8.2005

Lena Maier-Hein





Abstract

The applicability of conventional automatic speech recognition (ASR) in everyday life is still limited.
ASR is neither suitable in situations requiring silence (e.g. in a meeting) nor in noisy environments.
For this reason, we introduce a speech recognition system based on myoelectric signals. The system
can handle both ordinary audible speech and non-audible speech where the speaker moves the lips
and the tongue as in normal speech but does not produce any acoustic signal. It deploys up to seven
surface electrodes placed in various positions on the face and the neck and uses Hidden Markov Models
(HMMs) as classifiers. The system outperforms previously developed electromyography (EMG) based
ASR systems on a vocabulary of ten English digits yielding an average of 98.1% word accuracy for
audible speech and of 97.3% for non-audible speech.
Major challenges in surface electromyography based ASR ensue from repositioning electrodes between
recording sessions and from varying qualities of the electrode/skin interface. In order to reduce
the impact of these factors, we investigate a variety of signal normalization and model adaptation
methods. An average word accuracy of 97.3% on the ten English digits vocabulary is achieved for non-
audible speech using the exact same electrode configuration for training and recognition (within-session
testing). The performance drops to 76.2% when the electrodes are removed after training and re-
applied for testing (across-sessions testing). By applying our adaptation and normalization methods
we manage to raise across-sessions recognition rates to 87.1%. This is important for applications in
everyday life because it is infeasible to train an ASR system prior to every usage.
Furthermore, we compare audibly to non-audibly spoken speech. The results suggest that large
differences exist between the corresponding muscle movements, yet, it is possible to merge training
data to obtain a recognizer that deals accurately with both speech manners.
As a first step towards continuous speech recognition we further investigate connected digits recog-
nition. The results indicate that segmentation and context dependency are major issues in EMG
based continuous speech recognition. Furthermore, initial experiments on phoneme based approaches
suggest that classical phoneme models are not an appropriate choice for the recognition of non-audible
speech.
In order to demonstrate the potential of speech recognition based on myoelectric signals we describe
two online recognition systems showing different applications of the new technology: a prototype
“silent” mobile phone suitable for conducting non-disturbing private conversations in situations re-
quiring silence and a prototype lecture translator designed to translate a non-audibly spoken talk in
English into potentially any language of one’s choice.



Zusammenfassung

Automatische Spracherkennung hat inzwischen breite Anwendung in unserem Alltagsleben gefunden.
Auskunftssysteme, Mobiltelefone und Diktiersysteme bedienen sich beispielsweise längst dieser Tech-
nologie. Dennoch ist die Anwendbarkeit konventioneller Spracherkennung auf bestimmte Situationen
beschränkt. Das hörbare akustische Signal verhindert nicht nur eine vertrauliche Kommunikation
durch ein auf automatischer Spracherkennung basierendes elektronisches Gerät, sondern kann zu-
dem auch sehr störend sein (z.B. im Meeting, in Bus und Bahn, in der Bibliothek). Hinzu kommt,
dass konventionelle Spracherkennung in geräuschbehafteten Umgebungen sowie in veränderten atmo-
sphärischen Bedingungen wie unter Wasser oder im All nur mäßig gut oder überhaupt nicht funktio-
niert. Sprachbehinderte können derartige Systeme ebenfalls nicht nutzen.
Um diese Einschränkungen zu überwinden, wurden alternative Methoden entwickelt, welche nicht vom
akustischen Signal abhängen. Nachdem Morse et. al 1986 den Beweis erbrachten, dass die myoelek-
trischen Signale gewisser Hals- und Gesichtsmuskeln Sprachinformation enthalten [Morse M., 1986],
nutzten verschiedenste Forschergruppen in den vergangen fünfzehn Jahren elektromyographische Sig-
nale für isolierte Worterkennung. Jorgensen et al. zeigten zudem, dass eine Klassifikation auch bei
nicht hörbarer Sprache möglich ist, das heißt, wenn kein akustisches Signal erzeugt wird, aber Lippen
und Zunge wie bei normaler Spracherzeugung bewegt werden [Jorgensen et al., 2003].
Die Anwendbarkeit Elektromyographie (EMG) basierter Spracherkenner ist zur Zeit allerdings noch
aufgrund folgender Probleme beschränkt: Erstens benötigen Oberflächenelektroden, die zum Messen
der Muskelaktivität notwending sind, physikalischen Kontakt mit der Haut, was die Benutzerfreund-
lichkeit vorhandener Systeme verringert. Zweitens wurden bislang nur isoliert gesprochene einzelne
Wörter mit zufrieden stellenden Ergebnissen erkannt. Drittens sind heutige Systeme alles andere als
robust, da sie auf identische Trainings- und Testkonditionen angewiesen sind. Myoelektrische Signale
hängen nämlich nicht nur vom jeweiligen Sprecher mit seinem individuellem Sprechstil ab, sondern
zusätzlich von der genauen Elektrodenpositionierung sowie Temperatur, Hautleitfähigkeit und anderen
Konditionen die sich von Aufnahmesession zu Aufnahmesession ändern können. Letzteres Phänomen
bezeichnen wir als Sessionabhängigkeit in Analogie zur Kanalabhängigkeit, die sich in konventioneller
Spracherkennung durch veränderte Mikrofonqualität und Umgebungsgeräusche ergibt.
Um die neue Technologie voranzutreiben, entwickelten wir einen EMG basierten Einzelworterkenner,
der dem Stand der Technik entspricht. Anschließend beschäftigten wir uns mit Themen, die bislang
nicht in der Fachliteratur behandelt wurden, und zwar mit Sessionabhängigkeit, mit dem Vergleich
von hörbarer und nicht hörbarer gesprochener Sprache sowie mit initialen Experimenten zu kontinuier-
licher Spracherkennung. Zuletzt implementierten wir zwei Echtzeit-Systeme, um das Potential EMG
basierter Spracherkennung zu demonstrieren.



Unser Baseline-System benutzt sieben Oberflächenelektroden und Hidden-Markov-Model Klassifika-
toren zur Einzelworterkennung auf einem festen Vokabular. Vorverarbeitung, HMM Topologien und
Elektrodenpositionierung wurden in verschiedenen Experimenten optimiert. Die Worterkennungsrate
auf dem Zehn-Ziffern-Vokabular beträgt 97.3%.
Unserer Erfahrung nach sind die durch Sessionabhängigkeit verursachten Leistungseinbußen in EMG
basierten Spracherkennungssystemen höher als die durch Kanalabhängigkeit entstehende Verringerung
der Wortakkuratheit in konventionellen Systemen. Bislang wurden jedoch laut Literatur nur session-
abhängige Systeme entwickelt. Aus diesem Grund untersuchten wir verschiedene Normalisierungs-
und Adaptionsmethoden zum Anpassen der Signale einer neuen Aufnahmekonfiguration an gegebenes
Trainingsmaterial. Unsere Ergebnisse zeigten, dass Methoden, die in konventioneller Spracherken-
nung angewandt werden, um Sprecherunabhängigkeit zu erreichen, in EMG basierter Spracherkennung
gegen Sessionabhängigkeit eingesetzt werden können. Varianznormalisierung, Feature Space Adaption
sowie das Trainieren auf mehreren Sessions verbesserten sessionübergreifende Erkennung. Wir erhiel-
ten eine Erkennung von 97.3% bei identischen Trainings- und Testbedingungen. Sessionübergreifendes
Testen ohne Normalisierungen und Adaptionen verursachte einen Erkennungsabfall um 20.9% auf
76.2%. Durch Anwendung unserer Adaptionsmethoden konnten wir diese Erkennungsrate um 14.3%
auf 87.1% steigern.
Einer der größten Vorteile EMG basierter Spracherkennung ist die Tatsache, dass keine Erzeugung
eines akustischen Signals erforderlich ist. Da unseres Wissens nach bislang keine Studie über die für
die Spracherkennung relevanten Unterschiede von hörbarer und nicht hörbarer Sprache durchgeführt
wurde, beschäftigten wir uns mit dem Vergleich der beiden Sprachmodi. Unsere Experimente zeigten
signifikante Unterschiede zwischen den korrespondierenden Muskelbewegungen. Dennoch war es
möglich, einen Erkenner zu trainieren, der für beide Sprechmodi zufrieden stellende Ergebnisse liefert.
Zudem erhielten wir bei mit dem System nicht vertrauten Sprechern signifikant bessere Erkennungsergeb-
nisse für hörbar gesprochene Sprache. Allerdings konnte im Laufe der Zeit bei allen Sprechern ein
Lerneffekt für nicht hörbare Sprache festgestellt werden.
Da Einzelworterkennung nur bedingte Anwendbarkeit hat, beschäftigten wir uns ausserdem mit ini-
tialen Experimenten zur kontinuierlichen Spracherkennung. Untersuchungen zur Ziffernfolgenerken-
nung ergaben, dass Segmentierung und Kontextabhängigkeit die Hauptprobleme bei der Umstellung
von isolierter Worterkennung auf die Erkennung von Wortfolgen sind. Unseren Ergebnissen zufolge
sind klassische Phonem-Modelle zudem nicht die optimalen Spracheinheiten bei der Erkennung nicht
hörbarer Sprache mit Hilfe von Elektromyographie.
Unsere beiden Demo-Systeme illustrieren zwei verschiedene potentielle Anwendungen, die besonders
für EMG basierte Spracherkenner geeignet sind: ein “stilles Mobiltelefon”’ zum Führen privater,
nicht störender Telefongespräche sowie einen automatischen ”Übersetzer” zum Übersetzen einer nicht
hörbar gesprochenen Rede in eine Sprache nach Wahl. Beide Demo-Systeme werden jeweils auf einer
Menge von für die zugehörige Anwendung geeigneten Sätzen trainiert. Die Ausgabe erfolgt sowohl
auf dem Bildschirm als auch über eine Sprachsynthese.
Als zukünftige Forschungsschwerpunkte schlagen wir die Umstellung auf kontinuierliche Sprache sowie
die Entwicklung benutzerfreundlicherer Sensoren vor.



Acknowledgements

I would like to thank my supervisors Dr. Tanja Schultz and Florian Metze for their constant gui-
dance and support during the research conducted for this thesis. Both of them were a valuable help.
Furthermore, I want to thank Prof. Alex Waibel for encouraging me to run the risk of approaching a
relatively new research field. Many thanks also go to Christoph Mayer, Marcus Warga, Peter Osztotics
and Artus Krohn-Grimberghe who helped me with the data recording as well as with the design and
implementation of parts of the software. I would also like to thank Christian Fügen and Sebastian
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Chapter 1

Introduction

1.1 Motivation

Automatic Speech Recognition (ASR) has developed into a popular technology and is being deployed
in a wide variety of every day life applications, including personal dictation systems, call centers
and mobile phones. Despite the various benefits a conventional speech-driven interface provides to
humans, there are three major drawbacks: Firstly, the audible (i.e. acoustic) speech signal prohibits a
confidential conversation with or through a device. Besides that, talking can be extremely disturbing
to others, especially in libraries or during meetings. Secondly, speech recognition performance degrades
drastically in adverse environmental conditions such as in restaurants, cars, or trains. Acoustic model
adaptation can compensate for these effects to some degree, however the pervasive nature of mobile
phones challenges this approach. Performance is also poor when sound production limitations occur,
like under water. Last but not least, conventional speech-driven interfaces cannot be used by speech
handicapped people, for example those without vocal cords.

To overcome these limitations, alternative methods are being investigated, which do not rely on an
acoustic signal for ASR. Chan et al. [Chan et al., 2002b] proved that the myoelectric signal (MES)
from articulatory face muscles contains sufficient information to discriminate a given set of words
accurately (>90% word accuracy on the ten English digits). This holds even when the words are
spoken non-audibly, i.e. when no acoustic signal is produced [Jorgensen et al., 2003].

The potential of electromyography (EMG) based speech recognition lies primarily in the fact that it
does not rely on the transmission of an acoustic signal: it allows private, non-disturbing communication
in any situation and could possibly be deployed by speech handicapped people. Moreover, it is robust
to environmental noise.

To date, however, the practicability of MES based speech recognition is still limited. Firstly, the
surface electrodes require physical contact with the speaker’s skin. Secondly, experiments are still
restricted to isolated word recognition. Finally, today’s systems are far from being robust, since they
only work in matching training and test conditions. Just like conventional speech recognizers, the
MES based systems are heavily influenced by speaker dependencies, such as speaking style, speaking
rate, and pronunciation ideosyncrasies. Beyond that, the myoelectric signal is affected by even slight
changes in electrode positions, temperature or tissue properties [Lamb and Hobart, 1992]. We will
refer to this phenomenon as session dependence in analogy to the channel dependence of a conventional
speech recognizer resulting from microphone quality, environmental noise, and signal transmission of
the acoustic signal.

Thus, significant challenges remain. In the next section we introduce the goals we have set for this
work in order to contribute to the development of the new technology.
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1.2 Goals of this work

The goals of this work were to (1) build a state-of-the-art speech recognition system based on myo-
electric signals, (2) to address major issues in the novel technology that have not yet been addressed
in literature and (3) to demonstrate the practicability of EMG based speech recognition.

State-of-the-Art-System

State-of-the-art EMG based speech recognizers perform session dependent, isolated word recognition
(section 3). One goal of this work was to explore appropriate feature extraction and classification
methods in order to develop an EMG based discrete speech recognizer that achieves recognition
results comparable to those that have so far been reported in literature.

Novel Issues

According to our experience the loss in performance caused by session dependence in MES based
speech recognition is significantly higher than that resulting from channel conditions in conventional
systems. Despite this, only session dependent MES based speech recognition systems have been
developed so far. A second goal of this work was therefore to address the issue of session dependence
by exploring methods for adjusting data from a new recording session to given training material from
previous recording sessions.
The most important advantage of using the MES for speech recognition is the fact that it does not
rely on the speaker to pronounce words audibly. Coleman et al have established that the speech motor
control plans for whispered speech and vocalized speech are similar [Coleman et al., 2002]. Yet, no
study has investigated the differences between audible and non-audible speech relevant for MES based
speech recognition. This issue was therefore another focus of our work.
Isolated word recognition is only of limited practical applicability. In order to move towards continuous
speech recognition on large vocabularies we planned to perform initial experiments on connected digits
recognition and to examine phoneme model based approaches.

Demo System

Another aim of our work was to implement an online recognition demo system showing the potential
and practicability of EMG based speech recognition.

1.3 Approach

Our approach for solving the goals we presented in the previous section can be be divided into the
following six steps.

Step one: Session Dependent Isolated Word Recognizer for Audible Speech

In order to build an initial EMG based speech recognizer and to gain experience with the new
technology we used a small set of electrodes and a small set of words for recognition. Audible
speech was produced to allow the recording of the acoustic signal which could be used to support
the analysis of the EMG channels. We developed a baseline isolated word recognizer by exploring
various features for an EMG speech recognition frontend, examining several HMM topologies
and investigating useful segmentation methods.

Step two: Session Independent Isolated Word Recognizer for Audible Speech

In a second step we investigated session independent recognition of audible speech, that is, we
conducted across-sessions experiments by testing a system on data from recording sessions that
were not used for training the system. Optimizing across-sessions results involved investigating
methods to obtain reliable electrode placement and exploring feature normalization as well as
model adaptation schemes.
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Step three: Isolated Word Recognizer for Non-audible Speech

After having gained experience in the recognition of audible speech we approached non-audible
speech recognition. We examined differences between non-audible and audible speech, compared
the corresponding recognition rates and investigated implementing a recognizer that works ac-
curately on both speech manners.

Step four: Optimization of Isolated Word Recognizer

In order to achieve state-of-the-art recognition rates for isolated word recognition we purchased
a second physiological data recording system providing eight EMG channels instead of two.
Experiments on electrode placement yielded a set of positions which was then used to optimize
the frontend and the Hidden Markov classifier of the previously obtained baseline system.

Step five: Connected Words Recognition

In order to move towards continuous speech recognition we performed initial experiments on
connected words recognition and and explored phoneme model based approaches. The goal was
to identify the main challenges associated with large vocabulary continuous speech recognition
and to compare recognition results for isolated digits and connected digits.

Step six: Implementation of Demo Systems

Finally, we implemented two demo systems showing different applications of EMG based speech
recognition: a prototype “silent” mobile phone suitable for conducting non-disturbing, non-
audibly spoken phone calls in situations requiring silence (e.g. in a meeting) and a prototype
lecture translation system that can be applied for an online-translation of a non-audibly spoken
talk into a language of one’s choice. Both systems were trained on a set of sentences suitable
for the corresponding application.

1.4 Structure of the Report

The remaining part of this thesis is structured as follows:
Chapter 2 gives background information necessary for understanding the concepts used in this work.
It provides both basics of electromyography from the physiological and measurement point of view
and an introduction to speech production and automatic speech recognition.
Related work on EMG based speech recognition is presented in chapter 3.
In chapter 4 we give an overview of our speech recognition system which includes a description of the
hardware and software we deployed and implemented.
The corpora we produced for our work are introduced in chapter 5.
Chapter 6 is the core chapter of this work, presenting the most relevant experiments we conducted
on EMG based speech recognition. The first part describes the development of a state-of-the-art
system presenting experiments on electrode positioning, feature extraction, HMM classification and
segmentation methods. In the second part of the chapter, we deal with issues in EMG based speech
recognition that have not yet been addressed in literature, namely with session independence, the
comparison of audible and non-audible speech, and connected digits recognition. Furthermore, the
performance of EMG based speech recognizers is compared to the performance of conventional speech
recognition systems.
In the following chapter 7 we describe the two demo systems we have implemented to show the
applicability of EMG based speech recognition.
We end this thesis with chapter 8 which summarizes our work and provides suggestions for future
directions.



Chapter 2

Background

The purpose of this chapter is to provide background information necessary for understanding the
concepts of this work. Section 2.1 explains anatomical and physiological basics of surface Electromyo-
graphy (sEMG) while section 2.2 gives an introduction to sEMG measurement and processing. The
nature of speech production is described in section 2.3 while section 2.4 presents basic concepts of
state of the art speech recognition systems.

2.1 Anatomical and Physiological Basics

This section aims to provide information fundamental to understanding the recording of the electrical
activity of muscle using surface electromyography. After an introduction of the anatomy of skeletal
muscle in section 2.1.1 the origin of the electromyographic signal is explained in section 2.1.2.

2.1.1 Anatomy of the Skeletal Muscles

Skeletal muscle - as opposed to heart muscle and smooth muscle - is the muscle attached to the
skeleton. Its structural unit is the muscle fiber - an elongated cell ranging from 10 to 100 microns
in diameter and from a few millimeters to 40cm in length [Soderberg, 1992]. Each muscle fiber is
surrounded by a layer of connective tissue called endomysium. Groups of muscle fibers are wrapped
by another layer of connective tissue called perimysium to form muscle bundles or fascicles. Skeletal
muscles are composed of numerous fascicles. They are usually attached to bones via tendons composed
of epimysium (figure 2.1).
The contraction of skeletal muscle is controlled by the nervous system. Each muscle fiber can be
activated by one motor neuron (i.e. by one nerve) yet, one motor neuron can branch in up to several
thousand branches, each one terminating in a different muscle fiber. A motor neuron and all the
fibers it innervates is called a motor unit (figure 2.2). The term neuromuscular junction refers to the
junction between a muscle fiber and the terminal of the motor neuron it is recruited by.

2.1.2 Origin of the Electromyographic Signal

Resting Membrane Potential

The membrane of a cell serves to separate the extra cellular space from the inner cellular space. The
plasma membrane of a muscle cell is called sarcolemma. It is composed of a lipid bilayer that has
channels by which certain ions can enter and leave the cell. Due to the fact that the membrane
can regulate the movement of ions between the extracellular fluid and the intracellular fluid the
intracellular and extracellular ion concentration differ from each other (table 2.1 and figure 2.3). The
composition of the fluids can be explained by the following phenomena:
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Figure 2.1: Composition of Skeletal Muscle [Ritchison, 2005]

Figure 2.2: Motor Unit [Ritchison, 2005]
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Figure 2.3: Electrical and chemical forces acting on Na2+, K+ and Cl− ions in the intracellular and
extracellular fluids [Ritchison, 2005]

Figure 2.4: The Sodium-Potassium pump [Ritchison, 2005] constantly transports Na2+ ions from the
inner cellular space to the extracellular space and K+ ions back into the cell.

• Electrical gradient: a difference in potential between the intracellular and the extracellular fluid
draws negative ions (such as Cl−) to the location of higher potential and positive ions (such as
Na2+ and K+) to the location of lower potential (figure 2.3).

• Chemical gradient: Diffusion is the passive movement of a substance from an area of high
concentration to an area of lower concentration by means of random molecular motion. The
concentration gradient (i.e. the difference in concentration between two regions) draws ions to
the region of lower concentration (figure 2.3).

• Ion pumps: The membrane contains a number of ion pumps that actively transport certain
ions to the other side of the membrane using metabolic energy. The so-called sodium-potassium
pump is the most relevant one in this context. It constantly transports Na2+ ions from the
inner cellular space to the extra cellular space and K+ ions back into the cell (figure 2.4).

• Membrane permeability : Cell membranes are semipermeable, that is, they act as barriers to
some, but not all, substances. Moreover, some molecules can pass the membrane more easily
than others. The sarcolemma, for instance, is much more permeable for Cl− ions than for Na2+

ions.

Ion Intracellular Fluid Extracellular Fluid

K+ 140 4
Na2+ 14 142
Cl− 4 125
HCO−3 8 28
A− 150 -

Table 2.1: Intracellular and Extracellular Ion Concentration for Mammalian Muscle (mEQ/L) [Lamb
and Hobart, 1992]

The effect of the electrical and chemical gradient and the active transport system results in a constant
movement of ions between the intracellular and the extracellular fluid. When the muscle is in a resting
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Figure 2.5: Action Potential involving the phases depolarization (B), repolarization(C), and hyperpo-
larization(D) [Matthews, 1991]

state, an equilibrium is reached where the concentration of ions is stable - that is, the number of ions
leaving the cell is equal to the number of ions entering the cell in any given time interval. For example,
there is a constant movement of Na2+ ions towards the intracellular space because of the higher Na2+

concentration outside the cell and the negative potential inside the cell (with respect to the outside)
(figure 2.3). However, no netto movement takes place because at the same time the sodium-potassium
pump causes Na2+ ions to leave the cell. The potential difference across the membrane corresponding
to the equilibrium when the muscle fiber is in a resting state is referred to as resting membrane
potential. It typically measures about -80mV inside the cell with respect to the outside.

Action Potential

An action potential is the rapid change in membrane potential occurring in nerve or muscle cells when
excitation occurs. It minimally involves the phases depolarization, repolarization and hyperpolarization
(figure 2.5).

Depolarization: Action potentials are triggered by an initial depolarization of the cell: due to a
chemical, electrical or physical stimulation the membrane potential increases (i.e. becomes less
negative). When a certain threshold value is exceeded, voltage-gated ion channels are opened
and thus change the permeability of the membrane to specific ions - namely to sodium (Na2+),
calcium (Ca2+)) or both. Consequently, positively charged ions move into the cell along the
concentration gradient. As a result, the membrane potential increases and temporarily even
changes its polarity reaching about +20mV.

Repolarization: The voltage-gated sodium/calcium channels close after a fixed period of time (typ-
ically after about 1ms in skeletal muscle fiber) Moreover voltage-gated potassium channels are
opened as a response to the cell’s depolarization causing K+ ions to leave the cell (because of
the concentration gradient and the electrical gradient). Consequently, the membrane potential
returns to a negative inside potential.

Hyperpolarization: The relatively slow closing of the potassium channels causes a period of hyper-
polarization, when the membrane potential is more negative than in the resting state.
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Figure 2.6: Neuromuscular Junction [Noffke, 2005]

Finally, the resting membrane potential is re-established. Figure 2.5 illustrates the process. It is worth
mentioning here, that an action potential is always followed by a so-called refractory period, where
the cell cannot respond to another stimulus. More detailed explanations on the genesis of the action
potential can be found in most physiology books (for example [S.Silbernagel and Despopoulos, 2003]).

Muscle Contraction

In order for a muscle fiber to contract the central nervous system has to activate the corresponding
motor neuron by initiating a depolarization. The depolarization is conducted along the motor neuron
and finally reaches the neuromuscular junction where it causes the release of a chemical substance
called Acetylcholin (ACh) (figure 2.6).
Acting as a so-called neurotransmitter, ACh causes an action potential in the corresponding muscle
fiber under the motor endplate. As a result, a potential difference is established between the active
region and the adjacent inactive regions of the muscle fiber (figure 2.7). Consequently, ions are
exchanged between the active and inactive regions causing depolarization (and thus action potentials)
in the adjacent regions. This way, action potentials are propagated away from the motor endplate
in both directions of the fiber. They spread along the sarcolemma and deep into the muscle fiber
through the so-called transverse tubules (figure 2.8). Transverse tubules are invaginations of the cell
membrane that almost touch the sarcoplasmic reticulum - a structure within the cell that serves as a
storage for Ca2+. Action potentials in the transverse tubules stimulate the release of Ca2+ from the
sarcoplasmic reticulum and the increase in Ca2+ in the inner cellular fluid leads to the contraction of
the muscle fiber. For a detailed explanation of the underlying mechanisms please refer to [S.Silbernagel
and Despopoulos, 2003]).

Extracellular Recording of Action Potentials

A single muscle action potential can only be seen in isolation using microelectrode techniques. Surface
EMG is ”the temporal and spatial summation of all active motor units within the recording area”
of the electrodes being used [Lamb and Hobart, 1992]. In order to understand how extracellular
electrodes can be used to detect action potentials consider placing two electrodes, A and B, on the
surface of a muscle fiber as illustrated in figure 2.9. When the muscle is in equilibrium, there is no
potential difference between the electrodes because both are placed on the outside of the cell. When
an action potential is initiated to the left of electrode A, however, it reaches the region under electrode
A before it reaches the region under electrode B. As a result, a difference in potential can be detected
between the two electrodes. Figure 2.9 shows the course of the potential differences between the
electrodes.
The following section explains how surface EMG measurements are conducted in practice.
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Figure 2.7: Propagation of action potentials in both directions along a conductive fiber [Lamb and
Hobart, 1992]

Figure 2.8: Propagation of action potentials along the sarcolemma into the muscle fiber through the
transverse tubuli (t-tubuli) [Noffke, 2005].
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Figure 2.9: The measurement of action potentials with electrodes placed on isolated irritable tissue
[Lamb and Hobart, 1992]

2.2 Surface EMG Measurement

Electromyography is the process of recording the electrical activity of a muscle. As explained in
section 2.1.2 muscle fibers generate small electrical currents as part of the signaling process for the
muscle fibers to contract. There are two basic methods to measure the signal called Electromyogram:
invasively using fine wire electrodes that are inserted directly into the muscle or non-invasively by
applying the electrodes to the skin surface.
Fine wire electrodes allow the testing of deep or small muscles and have a more specific pick-up area
than surface electrodes. However, the needles may cause discomfort and the measurements should
only be carried out by a medical doctor. Moreover, it is extremely difficult to identify the same point
of insertion in consecutive recording sessions. As a result, surface EMG (sEMG) is the more common
method of measurement. There is more potential for cross-talk (section 2.2.3) from adjacent muscles
and only the signals from surface muscles can be adequately measured, yet, surface electrodes are easy
to apply and their application does not involve physical pain. In this chapter, we will therefore focus
on surface EMG measurement. The reader may refer to [Ankrum, 2000] and [Luca, 2002] for a more
detailed introduction into the subject.

2.2.1 Equipment

The following equipment is necessary for surface EMG recordings:

Electrodes: Generally speaking, surface electrodes convert the ionic currents generated by muscle
contraction into electronic currents that can be fed into electronic devices. While the detection
electrodes serve to pick up the desired signal, the ground electrode provides a common reference
to the differential input of the preamplifier. Refer to section 2.2.2 for more details on properties
of surface electrodes.

Differential Amplifier: When detecting an EMG signal, amplification is necessary to optimize the
resolution of the digitizing equipment [Scott, 2003]. Moreover, an amplifier can also be used to
maximize the signal-to-noise ratio - that is, the ratio of the energy of the wanted EMG signal to
the energy of unwanted noise contributions of the environment. For that reason sEMG recordings
generally involve a differential detecting configuration as schematically shown in figure 2.10. The
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Figure 2.10: Equipment required for sEMG measurements. The EMG signals are represented by “p”
and “m” and the noise signals by “n” [Luca, 2002]

idea is simple: A differential amplifier subtracts the signals from two detection sites and amplifies
the difference voltage between its two input terminals. As a consequence, signals common to
both electrodes - such as noise originating far away from the detection sites - should ideally
produce a zero output, whereas local EMG signals are amplified. The Common Mode Rejection
Ratio (CMRR) is a measure of the degree to which this ideal is realized in practical designs.
It is defined as the difference signal gain divided by the common mode signal gain. An ideal
differential amplifier would thus have a CMRR of infinity, yet, in practice, only amplifiers with a
maximum CMRR of approximately 120dB are available. As a result, it is not possible to obtain
a signal free from noise, however, a CMRR of 90dB (CMRR(x)[dB] = 20 ∗ log10CMRR(x))
normally results in sufficient noise suppression [Soderberg, 1992]. Please refer to [Scott, 2003]
or [Soderberg, 1992] for a more detailed description of the properties of ideal and realistic
amplifiers.

Electrical Isolator: The failure of any electrical device that has galvanic contact with the subject
can cause a potentially harmful current to pass through the skin. In order to ensure safety the
subject must therefore be electrically isolated from any electrical connection to the power source.
This can be achieved by placing an optical isolater between the amplifier and the devices that
are connected to the power point (e.g. the computer) [Luca, 2002].

A/D-converter: EMG signals usually need to be digitized for further processing and data analysis.
The analog-to-digital converter transforms an analog signal into a discrete number of data points
representing the amplitude of the input signal at particular instances in time.

Recorder: The purpose of the recorder is to generate a time record of the input EMG signal that
can be reviewed later for data analysis.

Figure 2.10 schematically shows how the individual components work together.

2.2.2 Electrodes

Electrodes serve as converters of the ionic currents produced in muscles into electronic currents that
can be manipulated in electronic circuits. This section gives background knowledge on the use of
surface electrodes in EMG measurements.

Dry vs Gelled Electrodes

There are two main types of surface electrodes: dry electrodes that have direct contact with the skin,
and gelled electrodes, where an electrolytic gel is placed between the metallic part of the electrode
and the skin to decrease the skin-electrode impedance. [Scott, 2003]
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Dry electrodes are typically used when the constitution of the electrodes does not allow the use
of gel (e.g. bar electrodes). Due to the high electrode-skin impedance it is common to have the
preamplifier circuitry at the electrode site. This makes the dry electrodes considerably heavier than
gelled electrodes (about 20g vs. 1g) such that electrode fixation becomes an issue.
Gelled electrodes are therefore the common choice. Oxidative and reductive chemical reactions in
the contact region of the metal surface and the gel allow an exchange between the ionic current
generated by muscle contraction and the electron current flow of the recording instrumentation. It
is worth mentioning here, that the quality of an electrode depends almost exclusively on its ability
to exchange ions for electrons and vice versa [Soderberg, 1992]. A general explanation of the mode
of operation of surface electrodes from the chemical point of view may be found in [Meyer-Waarden,
1985] and [Soderberg, 1992].

Electrode Properties

Surface electrodes differ in shape, size and material. Moreover, inter-electrode distance also plays a
crucial role for EMG measurements. The SENIAM initiative (Surface Electromyography for the Non-
Invasive Assessment of Muscles) is a European project that “has resulted in European recommenda-
tions for sensors and sensor placement procedures and signal processing methods for SEMG” [Hermens
and Freriks, 2005]. The recommendations for the use of bipolar sEMG electrodes include

• Electrode material: Pre-gelled Ag/AgCl electrodes. (disposable or reusable)

• Electrode size: size of the electrode in direction of the muscle fiber should not exceed 10mm

• inter-electrode distance: 20mm

For more details on the SENIAM recommendations refer to [Scott, 2003] and [Hermens and Freriks,
2005].

Electrode Placement

When determining electrode positions it is desirable to identify locations where a good and stable
sEMG signal can be obtained. Despite the use of surface EMG in wide variety of disciplines, only
little information on optimal electrode positions is available in literature. The SENIAM initiative set
forth some guidelines for determining electrode placements. Generally speaking, a location should be
defined in relation to a line between two anatomical landmarks (e.g. bones). When using bipolar
electrodes, the general recommendation is to choose an arrangement longitudinal to the long axis
of the muscle of interest. The electrode should be placed “between a motor point and the tendon
insertion or between two motor points”, where the motor point is defined as “ that point on the muscle
where the introduction of minimal electrical current causes a perceptible twitch of the surface muscle
fibers” [Luca, 2002]. A detailed description can be found in [Luca, 2002].
The ground electrode should be placed on electrically neutral (e.g. bony) tissue relatively far away
from the detection site. This way it can serve as common reference to the differential input of the
preamplifier.

2.2.3 Signal Characteristics

The raw EMG signal detected by a differential amplifier using surface electrodes is a “bipolar signal
whose random fluctuations, if summed over a significantly long time period, would produce a zero
result” [Lamb and Hobart, 1992]. Its amplitude typically ranges from 0.01 to 5 mV [Lamb and Hobart,
1992]. Figure 2.11 shows an example of an EMG signal and the corresponding frequency spectrum.
The usable energy of the signal is contained in the 0 to 500Hz frequency range, that is, the signal
energy is above the electrical noise level in that frequency band. In fact, the dominant energy lies in
the 50-150Hz frequency range [Luca, 2002].
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Figure 2.11: EMG signal and corresponding frequency spectrum detected from the Tibialis Anterior
muscle during a constant force contraction [Luca, 2002]

Factors that influence the sEMG signal

The sEMG signal is the result of many anatomical, physiological and technical factors. Generally
speaking, the effect of these factors on the electromyographic signal can be qualitatively characterized,
yet, there exists no complex model that allows the deduction of quantitative relationships. According
to [Scott, 2003] the time and frequency domain properties of the sEMG signal are dependent on the
following factors:

• the timing and intensity of muscle contraction

• the distance of the electrode from the active muscle area

• the properties of the overlying tissue

• the electrode and amplifier properties

• the quality of contact between the electrode and the skin

In most applications, only the information on the timing and intensity of muscle contraction is desired
whereas the rest of the factors merely increase the variability of EMG records. In order to ensure the
comparability of consecutive recordings, it is therefore necessary to work with the same equipment
and to place the electrodes on the same skin location in consecutive recording sessions. For a more
detailed description on the influence of a number of factors on the electromyographic signal refer
to [Soderberg, 1992].

Noise

Noise is defined as any unwanted signal collected along side the wanted signal. Sources of noise
include [Luca, 2002] [Scott, 2003]:

• Ambient noise: This noise is generated from electromagnetic devices such as computers and
power lines. It has a wide range of frequency components, yet, the dominant frequency compo-
nent is 50Hz or 60Hz depending on the frequency of the power supply. The exposure to ambient
noise can be reduced by carrying out the recordings in a room that contains a minimum of
electronic equipment.
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• Inherent noise in the equipment : Electronic equipment always generates electrical noise with fre-
quency components ranging from 0Hz to several thousand Hz. This noise can not be eliminated
but the use of high quality devices and appropriate circuit design can reduce it.

• Electrode contact : The signal to noise ratio is particularly determined by the properties of the
electrode-electrolyte-skin contact [Scott, 2003]. For this reason, it is recommended to prepare
the skin (e.g. clean it with alcohol) prior to recording and to ensure a proper electrode-skin
contact.

• Cross-Talk : Cross-talk is “interference of the EMG signals from adjacent muscles or deeper
muscles that are within the pick-up area of the electrode” [Rash, 1999]. It can be reduced by
choosing an appropriate electrode size and inter-electrode distance [Scott, 2003].

• Movement Artifacts: these artifacts can result from a movement disturbance of the electrode-
electrolyte interface or from cable movement. Again, most of the generated energy lies in the
frequency components between 0 and 20Hz so that the use of a highpass filter is advisable (see
below).

2.2.4 Signal Processing

Filtering

It is well established that the bipolar electrode configuration has a bandpass filtering effect in the
spectral frequency region of the EMG signal. It can be explained by the differences in the time of
arrival of the signal at each detection site: due to the fact that the differential amplifier merely amplifies
differences in potential, a signal frequency “whose wavelength is equal to the interelectrode distance
or is an integer multiple of that frequency would be cancelled” [Soderberg, 1992]. See [Soderberg,
1992] for further details.
Despite this, it is advisable to apply a low-pass filter in order to avoid aliasing. High-pass filters with
a cut-off frequency between 10 and 20Hz are also often used to remove movement artifacts.
In the past, it was common to use a 60Hz (50Hz respectively) notch filter for power-line noise removal.
Yet, due to the fact that notch filtering results in the loss of important EMG signal information (a
great part of the EMG energy lies in the 50/60Hz region), it is nowadays often avoided.

Normalization

As explained in section 2.1.2 the sEMG signal serves as a measurement of the electrical activity in
a muscle during contraction. However, slight changes in electrode position, temperature or tissue
properties may alter the signal significantly. In order to make comparisons of amplitudes possible
it is therefore advisable to apply a normalization procedure at each recording that compensates for
these changes. The most widely used method of normalization is to perform a reference contraction -
the so-called Isometric Maximal Voluntary Contraction (MVC) - and to express all myoelectric values
obtained as a percentage of the MVC [Leveau and Andersson, 1992]. Again, further details can be
found in [Leveau and Andersson, 1992].

Signal Interpretation

In the past, the most common way to interpret EMG was by visual inspection of the unprocessed
signal. However, the raw signal only provides limited information. For this reason, many time domain
representations of the myoelectric signal have been introduced for data analysis. The linear envelope
can be used to provide a profile of the activity of the muscle over time while the root-mean-squared
(RMS) voltage is applied to measure the electrical power in the signal. Both methods make use of
absolute values instead of the actual time domain values. Moreover, pattern recognition system based
on myoelectric signals often deploy a frequency analysis of the signal [Leveau and Andersson, 1992].
Englehart et al. reported that feature sets based on the Short Time Fourier Tranform (STFT), the
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Figure 2.12: The human vocal organs. (1) Nasal cavity, (2) Hard palate, (3) Alveoral ridge, (4)
Soft palate (Velum), (5) Tip of the tongue (Apex), (6) Dorsum, (7) Uvula, (8) Radix, (9) Pharynx,
(10) Epiglottis, (11) False vocal cords, (12) Vocal cords, (13) Larynx, (14) Esophagus, and (15)
Trachea. [Lemmetty, 1999]

Wavelet Transform, or the Wavelet Packet Transform provide an effective representation for classifi-
cation provided that they are subject to an appropriate form of dimensionality reduction [Englehart
et al., 1999]. A detailed introduction into EMG signal processing methods can be found in [Leveau
and Andersson, 1992].

2.3 Speech Production

2.3.1 Human Speech Organs

Human speech is produced by the vocal organs presented in Figure 2.12. When speaking, an airstream
is forced through the glottis (the space between the vocal cords) (12) and the larynx (13) to the three
main cavities of the vocal tract: the pharynx (9) and the oral and nasal cavities (1). From the oral
and nasal cavities the air flow exits through the mouth and nose, respectively.
Different sounds result from different modifications of the airstream. They can roughly be divided
into voiced and unvoiced sounds. When a voiced sound is produced, the vocal cords vibrate (i.e. close
and open rapidly) and modulate the air flow such that a quasi-periodic pressure wave is produced.
When there is no vibration of the vocal cords the resulting sound is called unvoiced. In this case
the vocal cords can for example be completely open (like for the unvoiced consonants /s/ or /f/) or
change from a closed position to an open position to produce a stop consonant like /p/. The voiced
sounds determine the speech “melody” [Lemmetty, 1999].
The oral cavity plays a major role in sound production because its size and shape can be varied
considerably by movements of the tongue, the lips, and the jaw to modify the incoming airstream.
Despite the fact that the speech organs are in constant motion during the act of speaking it is possible
to segment a speech signal by identifying points where linguistically relevant changes occur. In order
to describe the pronunciation of every possible word in a given language a minimal set of symbols
each representing a certain sound can be defined. The following section addresses this issue.
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Figure 2.13: The vowel quadriliteral from the IPA chart [Bowden and HAJEK, 1999]. Vertical position
of the dorsum (row), horizontal position of the dorsum (column).

2.3.2 Phonetic Alphabet

A phoneme is the smallest contrastive unit in the sound system of a language. In other words, the set
of phonemes corresponding to a given language is the minimum number of symbols needed to describe
the pronunciation of every possible word in that language. The number of phonetic symbols ranges
from 20 to 60 for different languages. The IPA (International Phonetic Association) - the major as
well as the oldest representative organisation for phoneticians - constructed a language-independent
phonetic alphabet, the International Phonetic Alphabet (also IPA).
The pronunciation of a particular phoneme depends on contextual effects, speaker’s characteristics, and
emotions. When continuous speech is produced the articulators are in different positions depending
on the preceding and following phoneme. The variations in pronunciation in individual phonemes are
called allophones. Thus, each allophone is a specialization of a phoneme.
A phonetic alphabet is usually divided into two main categories: vowels and consonants. Vowels are
voiced sounds where the air flows inhibited through the vocal tract. Consonants, on the other hand,
are produced by a narrow or closed vocal tract and may be either voiced or unvoiced [Lemmetty,
1999].
Vowels are mainly distinguished by the horizontal and vertical position of the highest point of the
tongue, called the dorsum. Figure 2.13 shows the so-called vowel quadrilateral which represents the
space of all possible vowels. The height parameter refers to the notional height of the dorsum during
production of a vowel and can take the values close, close-mit, open-mid, and open. The parameter
backness describes how far forward or back the dorsum lies (front, central, or back). Finally, the
rounding parameter refers to the position of the lips during vowel production. Refer to [Bowden and
HAJEK, 1999] for further information.
Consonants are defined by the place of articulation (describing the position of the constriction of the
vocal tract on the mid-sagittal plane), the manner of articulation and by the fact if they are voiced
or unvoiced (figure 2.14). The manner of articulation is defined by several different factors and is
represented by different categories as shown in figure 2.14. The category plosiv, for instance refers
to sounds that are produced by a complete closure of the vocal tract followed by a sudden release of
the air. (e.g. /d/, /p/) while fricatives are associated with a near complete stoppage of air where
friction occurs between the airstream and the speech organs (e.g. /f/). For a detailed description on
the classification on human sounds refer to [Bowden and HAJEK, 1999].
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Figure 2.14: The consonant table from the IPA chart [Bowden and HAJEK, 1999]. Manner of artic-
ulation (row), place of articulation (column).

2.3.3 Muscles Involved in Speech Production

A complete list of muscles involved in speech production, their exact location and functionality can
be found in [Laboratory, 2002]. Figure 2.15 shows the muscles we have used for EMG based speech
recognition experiments. Table 2.2 lists the corresponding functions.

2.4 Speech Recognition

The aim of this section is to give a brief overview of state-of-the-art speech recognition systems. It
serves as a memory refresher rather than as a detailed introduction into the subject and requires some
background knowledge on Artificial Intelligence (AI) and Digital Signal Processing (DSP). The reader
may refer to [Rogina, 2003] or [Rabiner and Juang, 1993] for more detailed information.

2.4.1 Overview

The goal of Automatic Speech Recognition (ASR) is to translate an acoustic signal into a sequence of
words. This process can generally be divided into two steps:
The so-called frontend of the ASR system preprocesses the incoming acoustic signal: The signal is
low-pass filtered (to avoid aliasing artifacts), digitized, quantized and transformed into a sequence of
feature vectors. These feature vectors are designed to preserve the information important for phonetic
distinction whilst omitting irrelevant information.
In a second step, the decoder translates the sequence of feature vectors into a sequence of words
using the acoustic model (AM) which models the sound units of a language and the dictionary which
describes the pronunciation of words as a concatenation of these units. The search space is limited by
a language model (LM) which provides estimates of the probabilities of word sequences.
The acoustic model and the language model are generally defined during system training where pre-
processed and labelled training data is used to set the required parameters (section 2.4.3). Figure
2.16 gives a schematic overview of a typical speech recognition system.
A typical frontend and decoder used in conventional speech recognition systems are introduced in
sections 2.4.2 and 2.4.3 respectively.
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Figure 2.15: Muscles involved in speech production. [Sobotta, 2000]

Figure 2.16: Schematic view of a typical speech recognizer
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Muscle Name Function

Orbicularis oris On contraction, this muscle adducts the lips by drawing the lower lip
up and the upper lip down, probably in conjunction with some of the
other facial muscles. It may also pull the lips against the teeth. This
muscle can also round the lips by its sphincter action.

Zygomaticus major Raises upper lip for [f] along with the muscles that raise the angles of
the mouth.
On contraction, this muscle draws the angle of the mouth upward and
laterally. The upward movement probably works with levator anguli
oris to achieve the raised upper lip in labiodental fricatives. The lateral
movement may be used in the production of [s].

Levator Anguli Oris This muscle draws the corner of the mouth upwards and, because of the
fibers that insert into the lower lip, may assist in closing the mouth by
drawing the lower lip up, for the closure phase in bilabial consonants.

Depressor Anguli Oris This muscle depresses the angles of the lips. This action may work
with depressor labii inferioris to prevent the mouth from closing entirely
when spreading for vowels like [i] and [e]. Because of the fibers that
insert in the upper lip, this muscle may also aid in compressing lips by
drawing the upper lip down.

Platysma The platysma can aid depressor anguli oris and depressor labii inferioris
to draw down and laterally the angles of the mouth.

Anterior Belly of the Digas-
tric

The function of this muscle is to draw the hyoid bone up and forward.
It also serves to bring the tongue forward and upward for alveolar and
high front vowel articulations. In pulling up the hyoid bone, it may also
pull up the larynx thereby tensing the stretching the vocal cords and
raising the pitch. If the hyoid bone is fixed, the anterior belly of the
digastric can serve to lower the jaw in conjunction with the geniohyoid,
mylohyoid and lateral pterygoid muscles.

Table 2.2: Subset of muscles involved in speech production and their corresponding functions. [Labo-
ratory, 2002]

2.4.2 Preprocessing

Figure 2.17 presents a typical frontend for state-of-the art speech recognition systems. [Wölfel, 2003]
describes the module in detail. We give a brief summary of the most important components at this
point:

Speech Waveform: The incoming acoustic signal is sampled at 16kHz and quantized at 16bit. A
low-pass filter is deployed to avoid aliasing artifacts.

Windowing: Speech is a so-called quasi-stationary signal because the vocal tract shape remains nearly
constant over short periods of time (5-25ms). In order to allow the computation of the spectral
character of individual speech segments using the Short Time Fourier Transform (STFT) the
complete signal is multiplied with a window of typically 16ms length (frame size) every 10ms
(frame shift). The shape of the window determines the resolution of the speech segment in the
frequency domain. The most commonly used windows are Hamming windows which are shown
in figure 2.17.

FFT: The Fast Fourier Transform is computed for each window and its absolute value is squared
such that the signal is decomposed into its frequency components.

VTLN: Vocal Tract Length normalization (VTLN) is applied to compensate for different anatomies
of different speakers.

Mel Filterbank: The Fourier Coefficients are transformed into Mel-scale filterbank coefficients which
imitate the frequency dependent spectral resolution of the human ear.
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Figure 2.17: Typical frontend of a speech recognition system [Wölfel, 2003]

DCT: After applying the logarithm, the Mel Filterbank feature vectors are transformed by the Dis-
crete Cosine Transform (DCT ) into the ceptral space which is less sensitive to channel distortion
and speaker variations such that Mel-frequency cepstral coefficients (MFCC) are obtained

LDA: A Linear Discriminant Analysis (LDA) is applied to further reduce the dimensionality of the
feature vector. Each feature vector is assigned to a particular class (e.g. to a certain phoneme)
and all vectors are linearly transformed into a space where vectors associated with the same
class are as close as possible to each other (according to a similarity criterion) and vectors
corresponding to different classes lie as far apart as possible.

After the preprocessing step the obtained sequence of feature vectors is translated into a sequence of
words by the decoder. The decoding process is based on statistical models which are described in the
following section.

2.4.3 Modelling and Classification

Maximum Likelihood Criterion

The Decoder translates a given sequence of feature vectors into a sequence of words according to the
Maximum Likelihood (ML) criterion. That is, it identifies the most probable sequence of words Ŵ
given the sequence of feature vectors X:

Ŵ = arg max
W

P (W |X) (2.1)

By applying Bayes-Rule to the probability P (W |X) we obtain:

P (W |X) =
P (X|W ) · P (W )

P (X)
(2.2)

where P (X) denotes the prior probability to observe the sequence of feature vectors X, P (X|W )
represents the probability that, given the sequence of words W, the feature vectors X are observed
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Figure 2.18: Typical phoneme HMM.

and P (W ) represents the prior probability of observing W independently of the feature vector X. Due
to the fact that P (X) does not depend on W the equation can be reduced to

Ŵ = arg max
W

P (X|W ) · P (W ) (2.3)

This equation is known as the Fundamental Equation of Speech Recognition. P (X|W ) is called the
acoustic model and P(W) is referred to as the language model.
P (X|W ) is most commonly modeled using Hidden Markov Models (HMMs) as explained in the fol-
lowing section.

Hidden Markov Models for Speech Modelling

A Hidden Markov Model (HMM) is typically defined as a stochastic finite state automaton (SFSA)
whose states Q are each associated with a specific probability distribution or probability density
function, depending on the application.
In ASR, HMMs are applied to model the probability P (X|W ). This is done by two embedded
stochastic processes - one that produces a sequence of states and a second one that produces a
sequence of output observation symbols (feature vectors) according to the probability density function
associated with each state qi ∈ Q. Each probability density function is modeled by a Gaussian Mixture
Model (GMM), that is, a weighted sum of a set of multidimensional Gaussians, each defined by a
covariance matrix and a mean vector. While the latter process is directly observable the first process
(i.e. the state sequence) is unobservable, or hidden.
The most commonly used HMM in speech processing is the first order HMM which implies two
assumptions. The first assumption is that the probability of being in a particular state depends solely
on the preceding state. The second assumption is that the probability of emitting a particular symbol
at a particular time only depends on the current state and is conditionally independent of the past
observations (output-independence assumption).
Due to the fact that it is infeasible to construct a separate HMM for every possible utterance, a
hierarchical scheme must be applied to reduce the number of models. One possible approach is to
train one Hidden Markov Model for each phoneme and to then compose words of phonemes and
sentences of words [Rogina, 2003]. Figure 2.18 depicts a three-state left-to-right HMM typically
used in speech recognition to model (context independent) phonemes. The three states represent the
beginning (b), middle (m) and end (e) of the phoneme. The probability of observing feature vector
x in state qi is obtained from the probability density function P (x|qi) (qi ∈ Q = {b, m, e}). The
transition probabilities P (qj |qi) represent the probability of state qj following state qi. P (qi|qi) 6= 0
(self-loop) accounts for different durations of sounds.
In order to decode an arbitrary utterance represented by a sequence of feature vectors X = x1, ..., xn

it is necessary to determine the probability P (X|W ) of observing X when W was spoken for every
sequence of words W (equation 2.3). It can be calculated from the transition probabilities and the
mixture density functions of the corresponding Hidden Markov Model by evaluating over all possible
sequences of states:

P (X|W ) =
∑

S=s1,...,sn

P (X|W,S) (2.4)
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where S = s1, ..., sn(si ∈ Q) represents a sequence of states of length n such that each xi is associated
with one state si. P (X|W,S) can be obtained by multiplying P (xi|si) · P (si|si−1) for all vectors xi.
The Forward-Backward-Algorithm solves the problem efficiently. For ease of computation the sum in
P (X|W ) is often replaced by the maximum to approximate P (X|W ) and save computational costs.

P (X|W ) = max
S

P (X|W,S) (2.5)

The latter equation is commonly solved by the so-called Viterbi algorithm. The path Ŝ for which 2.5
is maximized is called the Viterbi path of X for the word W . In practice, efficient search algorithms
are additionally deployed to reduce the search space.
The interested reader is refered to more comprehensive introductions into acoustic modeling such
as [Rogina, 2003].

Hidden Markov Model Training

In order to construct a Hidden Markov Model for a given speech unit and a fixed topology it is necessary
to define the Gaussian mixture models associated with the individual states and find appropriate
transition probabilities. The Expectation-Maximation (EM) Algorithm can be applied to set the
required parameters based on statistics obtained from labelled training material. It is an iterative
algorithm that can be used for finding Maximum Likelihood estimates of parameters in probabilistic
models. Please refer to [Rogina, 2003] for a more detailed description.

Context Dependency

As already mentioned above the pronunciation of a particular phoneme depends on its context. The
words “two” and “true”, for instance, exemplify the possible acoustic differences of the phoneme /t/.
State-of-the-art systems incorporate context dependency by using triphones as smallest speech units
instead of phonemes. A triphone X(Y |Z) represents the phoneme X occurring in the context Y (left)
and Z (right) where Y and Z are also phonemes. When n = 50 is the size of the set of phonemes,
there are n3 = 125000 triphones. Due to the fact that it is infeasible to train one model per phoneme,
a common approach is to cluster similar contexts and to represent a set of triphones by one model.
Again, [Rogina, 2003] gives a detailed description.

Feature Space Adaptation

Feature Space Adaptation is a constrained Maximum Likelihood (ML) transformation of input features
with the goal of adapting acoustic signals to a given speech recognizer. Incoming feature vectors are
linearly transformed using an adaptation matrix, where the adaptation matrix is defined such that
the overall probability of observing a given set of training utterances is maximized. The matrix can
be computed in a supervised manner using labelled training data or in an unsupervised manner where
hypothesis from a given recognizer are used for determining the matrix. A detailed description can
be found in [Gales, 1997].
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Related Work

In this chapter we review the work that has so far been produced on speech recognition based on
myoelectric signals. Section 3.1 gives an overview of the development of the new technology while
sections 3.2 to 3.5 describe focuses of current research activity.

3.1 Overview

The use of myoelectric signals in speech dates back to the 1980’s. In 1986, Morse et al. showed the
availability of speech information in the myoelectric signals of neck and head muscles [Morse M., 1986].
In the following years, several research groups investigated the use of electromyography for isolated
word recognition (e.g. [Morse et al., 1991]). The results were significantly better than chance but
with maximum rates of 70% on a ten words vocabulary rather poor compared to conventional speech
recognition standards. The first reasonable classification rates were reported in 2001 by Chan et al.
who achieved an average word accuracy of 93% on the ten English digits vocabulary [Chan et al.,
2001]. Moreover, the authors showed the potential of the myoelectric signal to augment conventional
speech recognition systems [Chan et al., 2002a]. In 2003, Jorgensen et al. proved the applicability
of the MES for non-audible speech recognition reporting 92% word accuracy on a set of six control
words.
Current research focuses on vowel and consonant classification as a step towards continuous speech
recognition [Jorgensen and Binsted, 2005] and on making EMG systems more user-friendly [Manabe
and Z.Zhang, 2004]. The following sections give an introduction into state-of-the-art work.

3.2 Isolated word recognition

State of the art systems only achieve reasonable recognition results on isolated words. The best recog-
nition rates have so far been reported by Chan et al. who proposed to apply ASR on the myoelectric
signal in the context of aircraft pilot communication. Five bipolar electrodes were embedded in pilot
oxygen masks and the myoelectric signals were recorded during audible pronunciation of the digits
“zero” to “nine” (figure 3.1). A Linear Discriminant Analysis (LDA) classifier utilized on a set of
wavelet transform features (reduced by principle component analysis (PCA)) yielded a word accuracy
of 93% [Chan et al., 2001]. The LDA classifier required temporal alignment of the MES data which
was accomplished by recording an additional acoustic channel. For each utterance a signal segment of
size 1024ms beginning 500ms (pre-trigger value) before the start of audible speech was used for both,
training and classification. It is worth mentioning here that pre-trigger values between 0s and 700s
have been examined, yet a value of 500ms yielded the maximum classification rates. Due to the fact
that the temporal position of articulation relative to the acoustic signal varies with the speaking rate,
the authors proposed the use of a Hidden Markov Model (HMM) for MES based speech recognition in
another paper [Chan et al., 2002b]. Even though the HMM classifier yielded worse maximum recog-
nition rates (86%) than the LDA classifier for the same data, it was much less susceptiple to temporal



3.3 Electromyography to Augment Conventional Speech Recognition Systems 33

Figure 3.1: Oxygen mask with embedded electrodes [Chan et al., 2002b]

misalignment, that is, there was no dramatic decrease in performance when the pre-trigger value used
for the training set was slightly different from the one used in the test set.
Jorgensen et al. demonstrated the applicability of electromyography for non-audible speech recogni-
tion. Their idea is to intercept nervous signal control signals sent to speech muscles using surface EMG
electrodes placed on the larynx and sublingual areas below the jaw. The authors reported recognition
rates of 92% on a set of six control words using a Neural Network classifier [Jorgensen et al., 2003].
They examined various feature extraction methods, including STFT coefficients, wavelets, and lpc
coefficients and reported a maximum word accuracy for dual tree wavelets (92%) followed by Fourier
coefficients (91%). In 2005, the authors extended the original six word vocabulary by the ten English
digits and achieved a word accuracy of 73% [Jorgensen and Binsted, 2005].
Manabe et al. investigated conventional ASR techniques for isolated word recognition using three
surface electrodes placed on different facial muscles (the orbicularis oris, the zygomaticus major and
the digastricus) [Manabe and Z.Zhang, 2004]. Experiments with a multi-stream HMM indicated that
it is effective to give different weight to different MES channels so that the corresponding muscles can
contribute to a different extend to the classification. The authors reported a maximum recognition
rate of 64% on the ten Japanese digits using delta filterbank coefficients and spectral subtraction.

3.3 Electromyography to Augment Conventional Speech Recog-
nition Systems

Chan et al. proposed to use the myoelectric signal from articulatory muscles of the face as a secondary
source of speech information in order to enhance conventional speech recognition systems [Chan et al.,
2002a]. An EMG speech expert was combined with an acoustic speech expert. While recognition
results of the acoustic expert decreased dramatically with increased noise level the EMG expert
remained rather unaffected by noise. The multi-expert system which dynamically tracks the reliability
of each expert yielded recognition rates better or near either individual expert at a wide variety of
noise levels.

3.4 Vowel and Consonant Recognition

Recently, Jorgensen et al. expanded their earlier isolated word experiments to the recognition of
vowels and consonants as a first step towards phoneme based speech recognition [Jorgensen and
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Figure 3.2: User-friendly electrodes wrapped around the fingers and the thumb [Manabe et al., 2003b]

Binsted, 2005]. They achieved recognition rates of 33% on a set of twenty-three consonants and
eighteen vowels. Performance could be raised to 50% by excluding six alveolars (t,d,s,z,ch,j), that is,
sounds where the tip of he tongue touches alveolar ridge. Furthermore, confusion pairs often only
differed in the voicing feature. /d/ and /t/ for example, had a high confusion rate. The authors are
currently working on sensor positioning in order to detect these problematic features as well as on the
adaptation on context sensitive techniques commonly used in conventional speech recognition.
It is worth mentioning here that significantly better recognition results have been achieved for smaller
sets of phonemes. Kumar et al. reported 88% word accuracy on the five English vowels (e,i,o,u,a)
using Neural Networks [Kumar et al., 2004]. Manabe et al. achieved recognition rates of 95% for
the five Japanese vowels [Manabe et al., 2003b]. According to our experience in conventional speech
recognition systems, however, continuous speech recognition requires a larger set of vowels for accurate
continuous speech recognition.

3.5 User-friendly systems

The physiological data recording systems available for surface electromyography recordings today are
not user-friendly at all. Not only is the equipment extremely voluminous and unhandy but the surface
electrodes need to be attached permanently to the skin. In order to adress this issue Manabe et al.
proposed the use of ring-shaped electrodes wrapped around the thumb and two fingers for more user-
friendly non-audible speech recognition [Manabe et al., 2003b] [Manabe and Z.Zhang, 2004]. In order
for the electrodes to detect sEMG signals from facial muscles the fingers need to be pressed against
the face in a specified manner as illustrated in figure 3.2. A detailed description of the system can
be found in [Manabe et al., 2003a] and [Manabe, 2004]. The authors hope to perfect the system such
that it develops to a mobile interface that can be used in both, silent and noisy environments.
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System Overview

In this chapter we give an overview of our EMG speech recognition system. Section 4.1 describes
the hardware we deployed while section 4.2 introduces the software we have written and used for this
project. The workflows for data collection, system training and recognition are presented in section
4.3.

4.1 Hardware

4.1.1 EMG Equipment

Section 2.2.1 introduced the equipment necessary for sEMG recordings. We used two different phys-
iological data recording systems for data collection which we will refer to as VARIOPORT II and
VARIO-PORT VIII depending on the number of EMG channels they provide (two and eight channels
respectively) [K.Becker, ].

VARIOPORT II

The VARIOPORT II data recording system was used for initial experiments on EMG based speech
recognition. It consists of the following components:

Amplifier: The amplifier was originally designed for EEG measurements, i.e. for measuring the
electrical activity of the brain. We made use of the following five inputs: one ground input
(GND1), two reference inputs (REF1, REF2), and two EMG inputs (EMG1, EMG2). Table

Figure 4.1: Physiological data recording system (Amplifier of the VARIOPORT VIII system (left),
recorder (middle), and electrical isolater (right)) and setup for data recording session
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4.1 summarizes the amplification and filter properties for the EMG channels. Contrary to the
VARIOPORT VIII device the low-pass cutoff frequency is at 500Hz. Consequently, minimal
sampling rates of 1000Hz are required for this system.

Recorder: The recorder we deployed (figure 4.1) communicates with the PC via the serial port. It has
an integrated A/D-converter and can be configured with various sampling rates. When the data
is directly transmitted to the PC (and not stored on a memory card) the serial port determines
the maximal sampling rate. The laptop we deployed for data recording allows transmission rates
of up to 115kBaud, yet, it is recommended not to exceed 80-90% of the total capacity. For two
EMG channels and commonly used sampling rates (1000Hz), the serial port is no bottleneck.

Marker Channel: The recorder provides an additional marker channel input which can be connected
to the LPC port of a PC for synchronizing an acoustic channel with the physiological data
channels (when an audio recording is started the values of the marker channel are simply changed
from 0 to a value 6= 0 by the software.)

Electrical Isolater: The electrical isolater is installed between the recorder and the PC (figure 4.1).

Synchronization Channel A data package transmitted by the recorder over the serial port consists of
one sample per selected channel. When the so-called synchronization channel is switched on, it
additionally transmits a fixed number after each package which can be used by the software on
the PC to detect lost data.

Electrodes: The EMG channels of the VARIOPORT II system were designed to perform unipolar
measurements, that is, voltages are recorded between one detection electrode placed on muscle
tissue and one or two reference electrodes placed on electrically neutral tissue. When two
reference electrodes are deployed, the potential difference between the detection electrode and
the average potential of the two reference electrodes is amplified. We used reusable Ag/Ag-
Cl electrodes which measured 5mm in diameter for the detection and reference electrodes and
disposable self-adhesive Ag/Ag-Cl electrodes as ground electrodes (i.e. for the GND1 input)
for the VARIOPORT II system (figure 4.2). The reusable electrodes require the application of
electrode gel for a reduction of impedance at the electrode/skin junction.

Name EMG
Channels

Frequency
range

Amplification
factor

Range A/D
conversion

Resolution

VARIOPORT II 2 0.9Hz..500Hz 2400 ±500µV 12 bit 0.25µV
per Bit

VARIOPORT VIII 8 EMG1-7:
0.9Hz..295Hz
EMG8:
19..295Hz

1170 ±1070µV 16 bit 0.033µV
per Bit

Table 4.1: Properties of data recording systems VARIOPORT II and VARIOPORT VIII [Becker,
] [Becker, 2004]

VARIOPORT VIII

The VARIOPORT VIII data recording system was used for the core experiments of this work. It
consists of the following components (figure 4.1):

Amplifier: The amplifier provides nine inputs: one ground input (GND), and eight EMG inputs
(EMG1-8). Table 4.1 summarizes its properties.

Recorder: The recorder of the VARIOPORT VIII system is the same as for the VARIOPORT II sys-
tem (including marker channel and synchronization channel). Due to the fact that the amplifier
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Figure 4.2: Reusable detection electrode filled with gel (left) and disposable ground electrode (right).

Figure 4.3: Detection electrodes of the VARIOPORT III system. Bipolar (upper) and unipolar (lower)
electrode configuration.

provides 8 EMG channels, however, there is now a tradeoff between choosing a high sampling
rate and using as many channels as possible. A sampling rate of 1000Hz, for instance, allows
to select a maximum of five channels (80% · 115kBaud/s

16bit·1000Hz = 5.75). When the marker channel and
the synchronization channel are both deployed this leaves only three EMG channels that can be
used for recognition. Refer to section 6.3.4 for an analysis of this problem.

Electrical Isolater: The electrical isolater is the same as for the VARIOPORT II system.

Electrodes: Each EMG channel is associated with two inputs that represent the plus and minus input
of the corresponding amplifier. All channels can be measured in one of two ways as illustrated
in figure 4.3:

• Bipolar measurements: each of the two inputs of the channel is connected to one surface
electrode. The corresponding potentials are subtracted from each other.

• Unipolar measurements: One input channel is connected to a detection electrode placed
on muscle tissue. The second input is connected to two reference electrodes that can for
example be placed behind the left and the right ear. These two electrodes provide a special
connector which allows the input of arbitrarily many EMG channels.

We used the same electrode types as in the VARIOPORT II system.

4.1.2 Computers

Data collection and online recognition were generally performed on a Pentium III laptop (1000MHz,
512 MB RAM) with a Microsoft Windows operating system. For offline recognition and training we
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Figure 4.4: General user interface consisting of control, visualization, and speaker interface.

deployed different Linux based machines provided by the ITI Waibel of the Universität Karlsruhe. It
is worth mentioning here that recognition rates varied slightly for different operating systems.

4.2 Software

The software we designed and implemented for this work consisted of two parts: (1) a Visual C++
project for data collection and demonstration purposes and (2) a JRTk based Tck/Tk script collection
for recognizer training and classification. The following two sections describe the functionality of both
units.

4.2.1 Visual C++ User Interface

The Visual C++ software was designed by Christoph Mayer, Marcus Warga, Marek Doniec, and
Lena Maier-Hein. Most components were implemented by Christoph Mayer and Marcus Warga. For
a detailed description of the software refer to [Mayer, 2005]. At this point we merely give a brief
overview.
The functionality of the Visual C++ project is accessible via the general user interface which is shown
in figure 4.4. It consists of the following components:

Control

The control component determines the general workflow. When the PC is connected to a physiological
data recording system, the software can communicate with that system, initiate/stop data recording,
and receive data. The control component allows to choose various settings. Refer to appendix B for
a brief overview.

Speaker Interface

The speaker interface provides a push-to-talk button that can be pressed/released to initiate/end the
storage of signal data. In the data collection mode an additional “repeat” button can delete previously
stored utterances. The upper part of the speaker interface presents the word from the wordlist to be
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spoken next or the hypothesis of the previously recorded utterance depending on the mode the system
is in (data collection or recognition).

Visualization

The visualization component visualizes all selected channels. The data can optionally be scaled and
downsampled.

4.2.2 JRTk Recognition Engine

All speech recognition experiments presented in this thesis were conducted with the Janus Recognition
Toolkit (JRTk) which is developed and maintained by the Interactive Systems Labs at the University of
Karlsruhe (TH), Germany, and at the Carnegie Mellon University (CMU), Pennsylvania, USA. JRTk
provides a flexible Tcl/Tk script based environment which allows rapid development of state-of-the-art
speech recognition systems [Finke et al., 1997].
A JRTk based Tcl script collection was produced for this project which allows flexible training and
recognition of EMG based speech recognition systems. Various frontends, HMM topologies, normal-
izations, adaptations and segmentation methods can be selected. A detailed description can be found
in [Maier-Hein, 2005].
The following section presents the basic workflow for data collection, training, and recognition.

4.3 Workflow

4.3.1 Data Collection

All signal data used for our experiments was collected in so-called recording sessions. A recording
session is defined as a set of utterances collected in series by one particular speaker. All settings
(channels, sampling rate, speech mode) remain constant during a session. Data collection consists of
four steps:

1. Choosing settings: several settings have to be made prior to recording a session. Among other
things a word list is selected containing all utterances a speaker has to record during that session.
The list can optionally be randomized.

2. Data recording: The speaker records one file set (appendix A) for each word in the word list
using the push-to-talk button of the speaker interface.

3. Generation of transcript file: When all utterances have been recorded a transcript is (automat-
ically) created for the session.

4. Generation of settings file: All settings are stored in a file. A sample settings file is given in
appendix C.

The session can then be transferred to the server and trained offline. Refer to appendix A or [Mayer,
2005] for a more detailed explanation on how to produce a recording session.

4.3.2 Training

Training is performed offline using the scripts collection introduced in section 4.2.2. It consistst of the
following three steps:

1. Choosing settings. The following settings have to be determined prior to training a system

• one speaker and a set of n training recording sessions is selected.

• the vocabulary and the desired number of training samples per speech unit is chosen
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Figure 4.5: Principle of online recognition: The semaphore files (start, done, stop) initiate certain
actions. The data files (hypothesis file and .adc file) contain the actual data.

• Frontend, HMM topologies and segmentation methods are selected. Normalizations/adaptations
can optionally be used.

2. Model Initialization: Models are initialized as described in section 6.1.

3. EM-Training is performed.

4.3.3 Recognition

Recognition can either be performed online or offline.

Online recognition

Online testing was implemented for isolated words and phrase recognition only. First, a training session
and a set of possible hypothesis is selected (subset of the set of training utterances). Next, the recorder
and a janus recognition script are started by the VC++ software. Janus and the software communicate
via semaphore files. When an utterance has been recorded (i.e. the push-to-talk “recording” button is
released) a “start” file is created that is detected by janus. Janus deletes the file and reads the .adc file
corresponding to the recorded signal data. It determines the Viterbi path for each hypothesis allowed
in the vocabulary and the word/phrase yielding the best Viterbi score is written to a hypothesis file.
A “done” file is then created by Janus which is detected by the VC++ software. The VC++ software
reads the hypothesis and displays it on the speaker interface. When Janus detects a “stop” file (created
by the VC++ software) it leaves the recognition loop. Figure 4.5 illustrates the communication
between the different modules.

Offline testing

Contrary to online testing offline testing does not involve the VC++ software and is thus primarily
conducted on Linux machines. The user can optionally

• perform training and testing on individual sessions and average the results over all sessions
(within-session testing).

• perform training on n− 1 sessions and test on the remaining session. This is performed n times
so that each session is tested on once (leave-one-out).

• perform training on one session and test on another session. This is performed n · (n − 1) for
each tuple (i, j); i 6= j.
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• perform training and testing on the set of all sessions (i.e. each session occurs in training and
testing).

In each case the round robin algorithm is applied such that a maximal number of test data is obtained:
For within-session testing the complete session is split into a number of rN sets of equal size (each
containing the same number of utterances per word). For each combination of rN −1 sets a recognizer
is trained and then tested on the remaining set. This way every single utterance is used for testing
exactly once.
For across-sessions testing the training data is split into a disjoint set of training sets each containing
the same number of samples. The test session is then tested on each of the corresponding recognizers.
When isolated word recognition is performed all training sets contain the same number of utterances
per word in the vocabulary.
Further details can be found in [Maier-Hein, 2005].
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Corpora

This chapter introduces the corpora we deal with in this work. An overview of all corpora, vocabulary
domains and speakers is introduced in the following section 5.1. Sections 5.2 to section 5.6 describe
each corpus in detail.

5.1 Overview

The term corpus refers to a collection of transcribed recorded speech data. We produced ten corpora
for this work. Their distinguishing characteristics are (1) the vocabulary domain, (2) the physiological
data recording system used for the recordings, and (3) their functionality.

Vocabulary domains

Name Words/Phrases in the Vocabulary

phone yes no accept deny wait

digits zero, one, two, three, four, five, six, seven, eight, nine, [call], [end]

commands stop, go, left, right, alpha, omega

meeting hello, i’m in a meeting, is it urgent, i’ll call back later, talk to you later, bye, hang
on, [hi mom], [hi veronica], [ok]

lecture good afternoon ladies and gentlemen, welcome to the interact center, my name is stan
jou, let me introduce our new prototype, any questions, thank you for your attention,
[my name is alex waibel], [good morning ladies and gentlemen], [my name is lena
maier-hein], [thank you very much for your attention], [thank you very much] [thanks
a lot]

Table 5.1: Vocabulary domains and corresponding words/phrases. When an utterance appears in
brackets [] it is optional for the vocabulary and was not necessarily recorded in all sessions corre-
sponding to the domain.

The following vocabulary domains were used in this work:

phone: the phone domain consists of five generic words suitable for accepting or denying a phone
call. It was used for initial experiments on EMG based speech recognition.

digits: the digits domain consists of the ten English digits and the words “call” and “end”. It was
chosen as the standard isolated word vocabulary because it allows comparison of recognition
rates to results previously reported in literature. The additional words call and end allow the
recording of sequences of digits in the form “call [digit] ... [digit] end”.
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meeting : The meeting domain consists of a set of sentences typically used for answering a phone call
during a meeting, for instance “I’m in a meeting”, “is it urgent?” and “I’ll call back later”. It
was deployed for the “silent mobile phone” demo introduced in section 7.1.

lecture: The lecture domain consists of a set of sentences typically used by somebody who is giving
a talk, e.g. “good morning ladies and gentlemen”, “my name is ...”, “any questions?”, “thank
you for your attention”. It was deployed for the lecture translation system demo introduced in
section 7.2.

commands: The command set consists of a set of six commands that can for example be used to
control a robot. It was developed by Jorgensen et al. for initial experiments on EMG based
speech recognition [Jorgensen et al., 2003]. We used these words for experiments on connected
words recognition.

The words and sentences corresponding to the different domains are shown in table 5.1.

Speakers

Seven speakers participated in recording the corpora for this work. None of them was a native English
speaker, however their English was sufficient for our purposes. Table 5.2 presents sex, mother-tongue,
age and command of English for each speaker.

Speaker ID mother-tongue English sex age

S0 German fluent male 23
S1 German fluent female 25
S2 German fluent male 26
S3 Hungarian basic male 27
S4 German fluent male 49
S5 Taiwanese fluent male 34
S7 German fluent male 25

Table 5.2: Speakers (ID S6 was not assigned as speaker ID)

Producing a corpus

The workflow for data collection was already introduced in section 4.3.1 and in appendix A. In each
recording session a word list was selected with all utterances the speaker was to record in the session.
The order of the words could be chosen to be either the same as in the loaded word list or to be a
random permutation of the given list. In each recording session the words from the list were presented
to the subject one at a time. A push-to-talk button controlled by the subject was used to mark the
beginning and the end of each utterance. Subjects were asked to begin speaking approximately 1sec
after pressing the button and to release the button about 1sec after finishing the utterance. When
connected words were recorded they were asked to leave no silence between the words. When the
pseudo-word silence appeared they were supposed keep all facial muscles relaxed for approximately
2sec.
EMG signal data was collected using one of the two data recording systems introduced in section 4.1
and the corresponding electrodes. The ground electrode was always placed on the left wrist and the
reference electrodes for unipolar measurements were positioned behind the left and right ear. The
positions of the detection electrodes varied.
In several sessions, the incoming data was visualized so that biofeedback was given to the speakers. The
term biofeedback refers “the process of measuring and quantifying an aspect of a subject’s physiology,
analyzing the data, and then feeding back the information to the subject in a form that allows the
subject to enact physiological change.” [Wikipedia, 2005]. It has been shown that biofeedback can
improve the performance of so-called Brain Computer Interfaces, which analyse the activity of the
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Corpus Name Recording
Device

Speakers
(# sessions)

Function

PHONE INIT VARIOPORT II
(1010Hz)

S0(4), S1(5),
S2(2), S7(2)

Initial experiments on EMG based
speech recognition.

PHONE VARIOPORT II
(1010Hz)

S0(6), S1(5),
S3(8)

Development of baseline system.
Experiments on segmentation and
on session independence.

DIGITS II VARIOPORT II
(1010Hz)

S3(16) Experiments on session indepen-
dence, non-audible speech recogni-
tion and connected digits recogni-
tion.

DIGITS VIII INIT VARIOPORT VIII
(600Hz)

S3(11), S7(2) Initial experiments with the VARI-
OPORT VIII recording device and
initial experiments on electrode po-
sitioning.

DIGITS VIII VARIOPORT VIII
(600Hz)

S1(5), S3(6),
S7(8)

Optimization of baseline system.
Final experiments on session inde-
pendence and on the comparison of
audible and non-audible speech.

DIGITS VIII POS VARIOPORT VIII
(600Hz)

S1(4), S3(10) Experiments on electrode position-
ing.

DIGITS VIII CON VARIOPORT VIII
(600Hz)

S3(1), S5(1) Final experiments on connected
digits recognition.

COMMANDS VARIOPORT VIII
(600Hz)

S3(1) Experiments on connected words
recognition.

MEETING VARIOPORT VIII
(600Hz)

S0(3), S3(6)
S4(2), S5(4)

sessions for practicing and present-
ing meeting demo.

LECTURE VARIOPORT VIII
(600Hz)

S5(3) sessions for practicing and present-
ing lecture demo.

Table 5.3: Overview of all corpora.

brain for classification tasks [Lehtonen, 2002]. We provided biofeedback to the speakers in all sessions
corresponding to the VARIOPORT VIII system.

Corpus structure

An overview of all corpora produced for this work is given in table 5.3. Each corpus is associated
with a number of test sets. A test set corresponding to a given corpus consists of a set of sessions
from that corpus that were used for a particular experiment discussed in chapter 6. For example, all
non-corrupt sessions of the PHONE corpus make up Set I of the PHONE corpus while all non-corrupt
non-audible sessions of the DIGITS VIII corpus make up Set I of the DIGITS VIII corpus. It is worth
mentioning here that various reasons exist for a session not being part of any set:

• Hardware Problems: We encountered a variety of hardware problems. Several sessions, for
example, were interrupted because the recording device crashed too often. In other sessions, too
much data got lost. It should be pointed out that these problems have been solved by changing
the recording mode of the VARIOPORT VIII system. Details can be found in [Mayer, 2005].

• Synchronization problems: In certain sessions the acoustic channel and the EMG channels were
badly synchronized because of system delays and buffer sizes. Some of these sessions had to
be repeated in order to ensure a reliable evaluation of audio based segmentation methods. The
synchronization problems have now been solved ( [Mayer, 2005]).

• Electrode problems: Several sessions contain bad quality data for certain channels which was
either due to a bad electrode contact or hardware problems. These changes were sometimes not



5.2 Corpora on the phone domain 45

Figure 5.1: Positioning of the detection electrodes (P1: inner electrode, P2: outer electrode) and of
the reference and ground electrodes for the PHONE corpus.

detected during the recording of the session because the visualization component was still being
developed and had a relatively bad resolution.

• Hardware delivery delay: Due to the fact that the delivery of the VARIOPORT VIII was delayed
we recorded a large set of sessions with the VARIOPORT II device which provides only two EMG
channels. These sessions had to be repeated with the new eight-channel device so that better
recognition results could be obtained.

Appendix D enumerates all sessions that were recorded for this work. The following sections 5.2 to
5.6 introduce each corpus and the corresponding test sets.

5.2 Corpora on the phone domain

We produced two corpora on the phone domain: one for initial experiments on EMG based speech
recognition (PHONE INIT) and one for the development of a baseline speech recognition system as
well as for experiments on segmentation and session dependence (PHONE).

5.2.1 PHONE INIT corpus

Four speakers, S0, S1, S2 and S7 participated in the recording sessions for the PHONE INIT corpus.
Various positions and numbers of utterances per word were chosen because the corpus merely served
for experimental purposes.

5.2.2 PHONE corpus

The PHONE corpus consists of those sessions associated with the phone domain that were recorded for
particular experiments discussed in chapter 6. Two speakers, S0 and S1, participated in these sessions.
They recorded six and five audibly spoken sessions respectively with thirty to sixty repetitions per
word including silence. The words were presented to the subjects in blocks of ten utterances of the
same kind. Due to the fact that experiments on segmentation methods were performed on this data,
the speakers were asked to record a relatively large amount of “silence” of 1-2sec before and after
speaking a word from the list.
EMG signal data was collected using the two-channel device VARIOPORT II introduced in section
4.1.1 and two Ag/Ag-Cl detection electrodes. Due to the fact that Jorgensen et al. reported en-
couraging results using electrodes placed on the left and right side of the larynx [Jorgensen et al.,
2003] we selected similar positions for our two electrodes. We will refer to them as positions P1 and
P2. However, instead of choosing a classical bipolar configuration with a 2cm inter-electrode spacing
we referenced each electrode to both ears which is the standard for EEG measurements as already
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Set Sessions Electrode
Positions

Utterances
per Word

audible Comment

Set 1 S0: 004, 007, 008, 009
S1: 005, 006, 008, 009

EMG1: P1
EMG2: P2

30-60 yes Set was used for
developing a base-
line system and
for experiments on
segmentation.
Tape measure was
used for position
identification.
A lot of ”silence” in
signals.
No visualization.

Set 2 S0: 004, 006, 007 EMG1: P1
EMG2: P2

30-60 yes Set was used to
examine the effect of
different factors on
session dependency.
Tape measure was
used for position
identification.
A lot of ”silence” in
signals.
No visualization.

Table 5.4: Test sets of the PHONE corpus.

explained in section 4.1.1. Figure 5.1 shows the exact positions for speaker S1. We used tape measure
to identify the same positions in consecutive sessions.
Table 5.4 presents the test sets used from the PHONE corpus for the experiments in chapter 6.

5.3 Corpora on the digits Domain

Four corpora were produced for the digits domain: the DIGITS II corpus for speech recognition
experiments using the VARIOPORT II device, the DIGITS VIII INIT corpus for initial experiments
with the new recording device VARIOPORT VIII, the DIGITS VIII POS for experiments on electrode
posisioning, the DIGITS VIII CON corpus for connected digits recognition, and the DIGITS VIII
corpus for optimizing the baseline system, for comparing non-audible and audible speech and for
performing experiments on session dependence and connected digits recognition.

5.3.1 DIGITS II corpus

The DIGITS II corpus consists of all sessions recorded on the digits domain with the recording device
VARIOPORT II. Speaker S3 recorded a total of seven audible sessions for isolated digits recognition,
five non-audible sessions for isolated digits recognition, and four sessions for connected digits recog-
nition. The isolated digit sessions contain fifty exemplars for each word including silence. The words
were presented to speaker S1 in blocks of ten utterances of the same kind.
The same positions as for the PHONE corpus were used because serious experiments on electrode place-
ment were planned to be conducted with the VARIOPORT VIII device which was not yet available.
A Gypsum mask produced for speaker S3 was deployed to identify the same positions in consecutive
sessions. Table 5.5 presents the test sets of the DIGITS II corpus that are referred to in chapter 6.
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Set Sessions Electrode
Positions

Utterances
per Word

audible Comment

Set I S3: 018, 020 021 EMG1: P1
EMG2: P2

50 yes Set was used for
initial experiments
on digits recognition
and session indepen-
dence.
Gypsum masks were
used for position
identification.

Set II S3: 010, 013, 014, 017 EMG1: P1
EMG2: P2

50 no Set was used for ini-
tial experiments on
non-audible speech
recognition and on
session indepen-
dence.
Gypsum masks were
used for position
identification.

Set III S3: 018, 019 EMG1: P1
EMG2: P2

50 no Sessions have exact
same electrode place-
ment.
Isolated digits were
recorded in session
018; utterances of
the form “call [digit]
end” were recorded
in session 019.

Table 5.5: Test sets of the DIGITS II corpus.

5.3.2 DIGITS VIII INIT corpus

Two speakers, S0, and S3 participated in the recording sessions for the DIGITS III INIT corpus. The
sessions were recorded to test the new system VARIOPORT VIII and to perform initial experiments
on electrode placement.

5.3.3 DIGITS VIII POS corpus

The DIGITS VIII POS corpus consists of those sessions associated with the digits domain recorded
with the VARIOPORT VIII device that were used for systematic experiments on electrode position-
ing. Two speakers, S1 and S3, participated in these sessions. They recorded four and ten sessions
respectively with thirty repetitions per word including silence. Refer to section 6.2 for a detailed de-
scription on the electrode positioning. Table 5.6 presents the test set of the DIGITS VIII POS corpus
that is referred to in chapter 6.

5.3.4 DIGITS VIII corpus

The DIGITS VIII corpus consists of those sessions associated with the digits domain that were used to
optimize the baseline system, to perform experiments on session dependence and to compare audible
and non-audible speech. Three speakers, S0, S1 and S3, participated in these sessions. Each subject
took part in audible and non-audible recording sessions on different days, in morning and afternoon
sessions.
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Set Sessions Electrode
Positions

Utterances
per Word

audible Comment

Set I S1: 010, 011, 012, 013
S3: 031, 032, 033, 034,
035, 036, 037, 038, 049,
050

refer to section
6.2

50 both Set was used for
optimizing electrode
positioning.
Gypsum masks were
used for position
identification.

Table 5.6: Test sets of the DIGITS VIII POS corpus.

Figure 5.2: Positioning of electrodes EMG1-EMG7 for the DIGITS VIII corpus.

In each recording session forty exemplars of each vocabulary word and forty exemplars of silence were
recorded. The order of the words was randomly permuted.
EMG signal data was collected using the eight-channel device VARIOPORT VIII introduced in section
4.1.1 and seven pairs of Ag/Ag-Cl electrodes. As shown in Figure 5.2 the electrodes were positioned
such that they obtain the EMG signal of six articular muscles: the levator anguli oris (EMG2,3),
the zygomaticus major (EMG2,3), the platysma (EMG4,5) the depressor anguli oris (EMG5), the
anterior belly of the digastric (EMG1) and the tongue (EMG1,6,7) [Laboratory, 2002] [Chan et al.,
2002b]. For three of the seven EMG channels (EMG2,6,7) a classical bipolar electrode configuration
with a 2cm center-to-center inter-electrode spacing was used. For the remaining four channels one of
the detection electrodes was placed directly on the articulatory muscles and was referenced to either
the nose (EMG1) or to both ears (EMG3,4,5) (Figure 5.2). The gypsum masks we had produced for
each speaker were used for position identification. The positioning of the electrodes was optimized in
the experiments described in section 6.2.1.
Table 5.7 presents the test sets of the DIGITS VIII corpus that are referred to in chapter 6.

5.3.5 DIGITS VIII CON corpus

The DIGITS VIII CON corpus consists of those sessions associated with the digits domain that were
used for connected digits experiments. Two speakers, S3 and S5 recorded one session each.
In each session utterances of the form “silence [6 * [digit]] silence” were recorded such that the
complete set of utterances could be divided into two disjoint sets each containing each digit tripel at
least once. Thus each digit was contained a least a hundred times (|V |(left context) ·|V |(right context)
= 10 · 10 = 100; |V |: number of words in the vocabulary) in each set and at least once in any possible
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Set Sessions Electrode
Positions

Utterances
per Word

audible Comment

Set I S1: 014, 015, 018, 019
S3: 051, 053, 055, 058
S7: 004, 008, 010, 011

EMG1: P22-P23
EMG2: P35-P38
EMG3: P17
EMG4: P42
EMG5: P28
EMG6: P46-P47
EMG7: P51-P52

40 no Set was used for op-
timizing the baseline
system and for ex-
periments on session
independence.
Gypsum masks were
used for position
identification.

Set II S1: 015, 016
S3: 051, 052
S7: 008, 009

EMG1: P22-P23
EMG2: P35-P38
EMG3: P17
EMG4: P42
EMG5: P28
EMG6: P46-P47
EMG7: P51-P52

40 no The two sessions for
each speaker were
recorded in series
without removing
and re-applying the
electrodes.
Set was used for
comparing audible
and non-audible
speech.
Gypsum masks were
used for position
identification.

Set III S1: 016
S3: 052
S7: 009

EMG1: P22-P23
EMG2: P35-P38
EMG3: P17
EMG4: P42
EMG5: P28
EMG6: P46-P47
EMG7: P51-P52

40 no Set was used for
comparing EMG
based isolated digit
recognition to audio
based isolated digit
recognition.
Gypsum masks were
used for position
identification.

Table 5.7: Test sets of the DIGITS VIII corpus.

left/right-context. The speakers were asked to speak continuously, that is, without a break between
the individual digits.

Electrode positioning was the same as in the DIGITS VIII corpus.

Table 5.8 presents the test set of the DIGITS VIII CON corpus that is referred to in chapter 6.

5.4 MEETING corpus

The MEETING corpus consists of those sessions that were recorded for practicing and presenting
the silent phone demo introduced in section 7.1. The electrode positions were not the same in all
sessions because these sessions were recorded at the same time as the sessions for optimizing electrode
positions (the optimal position set was thus still being developed at that time). Our set of optimal
positions was only used in the last recording sessions of this corpus. Several sessions were trained in
a dialog to match training and testing conditions. Details can be found in appendix D.

Table 5.9 presents the test sets of the MEETING corpus that are referred to in chapter 6.
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Set Sessions Electrode
Positions

Utterances
per Word

audible Comment

Set I S3: 056
S5: 006

EMG1: P22-P23
EMG2: P35-P38
EMG3: P17
EMG4: P42
EMG5: P28
EMG6: P46-P47
EMG7: P51-P52

40 no Set was used for
connected digits
experiments.
Gypsum masks were
used for position
identification.

Table 5.8: Test sets of the DIGITS VIII CON corpus.

Set Sessions Electrode
Positions

Utterances
per Word

audible Comment

Set I S5: 000, 004 EMG1: P22-P23
EMG2: P35-P38
EMG3: P17
EMG4: P42
EMG5: P28
EMG6: P46-P47
EMG7: P51-P52

40 no Set was used for
practicing the silent
phone demo and
for comparing filter
settings.
Tape measure was
used for position
identification.

Table 5.9: Test sets of the MEETING corpus

5.5 LECTURE corpus

The LECTURE corpus consists of those sessions that were recorded for practicing the lecture trans-
lation demo introduced in section 7.2. Electrode positions were the same as for the DIGITS VIII
corpus. The number of utterances per sentence varied. Details can be found in appendix D.
Table 5.10 presents the test set of the LECTURE corpus that chapter 6 refers to.

Set Sessions Electrode
Positions

Utterances
per Word

audible Comment

Set I S5: 001, 002, 003 EMG1: P22-P23
EMG2: P35-P38
EMG3: P17
EMG4: P42
EMG5: P28
EMG6: P46-P47
EMG7: P51-P52

40 no Set was used for
practicing the lecture
translation demo.
Tape measure was
used for position
identification.

Table 5.10: Test sets of the LECTURE corpus

5.6 COMMANDS corpus

The COMMANDS corpus consists of only one session. It was recorded for experiments on connected
words recognition using the same electrode positions as were used for the DIGITS VIII corpus. Ut-
terances of the form “[command] [command] [command]” were recorded with no silence in between
individual words. Each triple was recorded twice.



5.6 COMMANDS corpus 51

Set Sessions Electrode
Positions

Utterances
per Word

audible Comment

Set I S3: 054 EMG1: P22-P23
EMG2: P35-P38
EMG3: P17
EMG4: P42
EMG5: P28
EMG6: P46-P47
EMG7: P51-P52

40 no Set was used for
experiments on
connected words
recognition.
Gypsum mask was
used for position
identification.

Table 5.11: Test sets of the COMMANDS corpus



Chapter 6

Experiments and Results

In this chapter we present the experiments and results we conducted on EMG based speech recognition.
The first part of the chapter describes the development of a state-of-the-art system. Section 6.1 intro-
duces our baseline system. Section 6.2 describes methods and experiments for identifying appropriate
electrode positions and for repeating electrode placement based on this system. Experiments for op-
timizing the baseline system are presented in sections 6.3 and 6.4. The segmentation methods we
examined are introduced in section 6.5.
In a second part of this chapter, we deal with issues in EMG based speech recognition that have not
yet been addressed in the literature, namely with session independence (section 6.6), the comparison
of audible and non-audible speech (section 6.7) and initial experiments on EMG based continuous
speech recognition (6.8).
Finally, section 6.9 compares the performance of EMG based speech recognizers to the performance
of conventional speech recognition systems.

6.1 Isolated Word Recognition - Baseline System

In this section we present the baseline system used for our isolated word recognition experiments.
The system was developed based on various experiments on the PHONE INIT and the PHONE
corpus using two surface electrodes. Those experiments were conducted on different speakers, different
sessions, and different numbers of training utterances and are thus not comparable. Despite this, we
give a short summary of the system’s development in the following section 6.1.1.
Sections 6.1.2 and 6.1.3 describe the system in more detail while section 6.1.4 presents the baseline
results on the PHONE corpus and the DIGITS VIII corpus.
Note that the baseline system serves as a reference system for all experiments we conducted on
EMG based speech recognition. Among other things it was used to identify appropriate electrode
positions for our eight-channel data recording system VARIOPORT VIII. A systematic approach for
optimizing the baseline system is presented in sections 6.3 and 6.4. However, we will show that
parameter optimization does not lead to significant improvements.

6.1.1 Development of the Baseline System

Initial experiments on EMG based speech recognition were conducted on the PHONE corpus using
two surface electrodes, 32ms observation windows with 8ms shift and Short Time Fourier Coefficients
as features. One (context-independent) Hidden Markov Model with 8 gaussians per state was trained
for each word in the vocabulary. The number of states of a Hidden Markov Model was equal to the
number of phonemes in the corresponding word. We achieved word accuracies of approximately 80%
after performing ten iterations of the Expectation-Maximization algorithm.
By optimizing HMM topologies, segmentation, window shift, the number of gaussians per state and
the number of EM iterations we increased recognition rates by approximately 10% absolute to 90%.
From the fact that mean subtraction led to a significant decrease in performance we deduced that the
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Oth Fourier Coefficient - and therewith the mean of the time domain values - is of particular relevance
for recognition. Consequently, we introduced an extra feature mean (containing the mean of the time
domain values of each window) which led to further improvements (about 3% absolute). The use of
delta coefficients instead of ordinary STFT coefficients raised recognition rates by approximately 2%
absolute to about 95%. It should be pointed out that the use of cepstral coefficients, LPC coefficients,
autoregressive coefficients, the zero crossing rate, the RMS value and the JRTk adjacent feature did
not improve the system. Filterbank coefficients did not increase recognition rates either which is
probably traceable back to the fact that the number of STFT coefficients was relatively small anyway
(17 coefficients) because of the low sampling rate (1010Hz).
In summary, optimizations on our initial system yielded an improvement of approximately 15% ab-
solute. The following paragraphs give a more detailed description of the obtained baseline system.

6.1.2 Feature Extraction

Training and Classification are performed on feature vectors using Hidden Markov Models (HMMs).
For each channel, 18-dimensional channel feature vectors are extracted. We used a sampling rate
of 1010Hz and a corresponding observation window size of 32ms for the two-channel device VARI-
OPORT II. The window size for the eight-channel device VARIOPORT VIII which was always con-
figured with a 600Hz sampling rate was chosen to be 54ms so that the number of feature vector
coefficients was the same as for the two channel device. Both systems used a window overlap of 4ms.
In order to obtain channel feature vector oij for channel j and observation window i the windowed
Short Time Fourier Transform (STFT) is computed. Delta coefficients serve as the first 17 coefficients
of oij . The 18th coefficient consists of the mean of the time domain values in the given observation
window. The complete feature vector oi for the observation window i is simply the concatenation of
the channel feature vectors oij .

6.1.3 Training and Classification

A five-state left-to-right Hidden Markov Model λj with 12 Gaussians per state is trained for every
word Wj in the vocabulary using the Expectation Maximization (EM) algorithm. Silence is modelled
by a one-state HMM.
Training consists of the following steps:

1. For each utterance in the training data set (labelled with “silence [word] silence”) a Hidden
Markov Model is built. The signal data is transformed into feature vectors and the obtained
sequence of feature vectors is split into k sets of equal size where k is the number of states in
the HMM. The ith set is then assigned to the ith state in the HMM. It is worth mentioning
here that each state of the complete HMM represents either one state in the five-state model of
[word] or the (one-state) silence model.

2. The k-means algorithm is applied to every state of each word model using the previously assigned
feature vectors. This way, an initial set of twelve codebooks is obtained for each state. We
restricted the shape of gaussians by choosing diagonal covariance matrices.

3. EM Training with four iterations is performed to optimize codebooks and distributions.

To recognize an unknown signal the corresponding sequence of feature vectors (ok) is computed.
Next, the Viterbi alignment for each vocabulary word Wj is determined and the word corresponding
to the best Viterbi score is output as the hypothesis. Feature extraction, HMM training, and signal
recognition are performed using the Janus Recognition Toolkit (JRTk) which is introduced in section
4.2.2.

6.1.4 Recognition Results

Table 6.1 and table 6.2 summarize the baseline within-session results for isolated word recognition on
the phone domain and on the digits domain respectively. The term within-session refers to a matching
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training/test condition, i.e. training and testing are performed on the same session. We always applied
the round robin algorithm for within-session testing which works as follows: the complete session is
split into a number of rN sets of equal size (each containing the same number of utterances per word).
For each combination of rN −1 sets a recognizer is trained and then tested on the remaining set. This
way every single utterance is used for testing exactly once.
Baseline experiments for the phone domain were conducted on Set I of the PHONE corpus (section
5.2.2). We used 25 training samples per word, rN = 6 round robin sets and the segmentation method
Audio Speech Alignment (section 6.5). The results are averaged over the four sessions from each
speaker (S0 and S1). It should be pointed out that the number of test samples varied from session
to session because different numbers of utterances were recorded (section 5.2.2). Moreover, several
sessions contained a small number of corrupt IDs. The exact number of test samples for both speakers
in Set I of the PHONE corpus is shown in table 6.1.
Baseline experiments for the digits domain were conducted on Set I of the DIGITS VIII corpus
(section 5.3.4). We used rN = 4 round robin sets which yielded uN = rW ·|V |

rN = 40·10
4 = 100

utterances per round robin set (|V |: vocabulary size excluding silence; rW : repetitions per word) and
thus (rN−1)·uN

|V | = 30 training samples per word for each recognizer. The results for each speaker were
averaged over the corresponding sN = 4 sessions which yielded a total of sN ·rN ·uN = 4·4·100 = 1600
test samples per speaker. No segmentation method was applied but pure silence was used in addition
to the vocabulary words for system training. Refer to section 6.5 for an introduction into different
segmentation methods.

Word S0 S1 S0 & S1

Yes 97.4 90.2 94.1
No 98.4 73.5 86.9
Accept 98.4 97.6 98.0
Deny 98.9 97.0 92.1
Wait 85.7 99.4 92.1

Word accuracy 95.8 91.6 93.8

Number of test words 948 818 1766

Table 6.1: Within-session word accuracies (in %) for Set I of the PHONE corpus (four audible sessions
per speaker). The segmentation method was Audio Speech Alignment (section 6.5).

Word S1 S3 S7 S1 & S3 & S7

One 100.0 99.4 100 99.8
Two 93.8 100.0 100.0 97.9
Three 96.9 99.4 96.3 97.5
Four 98.8 99.4 96.3 98.1
Five 99.4 98.8 94.4 97.5
Six 91.3 98.8 93.1 94.4
Seven 100.0 98.1 94.4 97.5
Eight 96.3 98.8 98.1 97.7
Nine 96.3 98.1 91.1 95.4
Zero 99.4 99.4 95.6 98.1

Word Accuracy 97.2 98.8 96.0 97.3

Number of test words 1600 1600 1600 4800

Table 6.2: Within-session word accuracies (in %) for Set I of the DIGITS VIII corpus (four non-audible
sessions per speaker). No segmentation method was applied.

The following observations deserve mentioning: Firstly, recognition rates differ significantly across
speakers. In the case of the PHONE corpus this may be traceable back to slightly different electrode
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Figure 6.1: EMG signals for the words “no” (first), “accept” (middle) and “yes” (last) and speaker
S0 (EMG1, session 008).

positioning whereas we attribute the variation to different degrees of experience in the case of the
DIGITS VIII corpus. Secondly, it is noticeable that several words are particularly well distinguishable
for all speakers (e.g. accept, one). Others, however, show extremely high values for one speaker, and
rather low values for another speaker (e.g. wait, no, two, seven). We deduce from this, that speaker
dependence is an important issue in EMG based speech recognition.
Figures 6.1 and 6.2 show EMG signals for the words no, accept and yes for speakers S0 and S1
respectively. It is noticeable that the signals for the individual words look very different. Interestingly,
the heartbeat can be seen in the signals from speaker S1 (regularly occurring peaks) but not in the
signals from speaker S0.
In the following section we present our approach for finding a set of appropriate electrode positions
using the baseline for comparison of recognition results for different positions. All settings (feature
extraction, classification, number of training samples, number of round robin sets etc) described in
this section will be used throughout this chapter unless explicitly stated otherwise.

6.2 Optimization of Electrode Positioning

As already mentioned in section 2.2.2, exact electrode positioning is an important issue for sEMG
measurements. The main problems are to identify ideal electrode positions for individual muscles and
to ensure repeatability of placements. When applying EMG for speech recognition another challenge
is to choose appropriate muscles for recognition.
We used the eight-channel device VARIOPORT VIII and the baseline system introduced in the pre-
vious section for optimizing electrode placement. Section 6.2.1 explains the methods we applied for
determining appropriate electrode positions for EMG based speech recognition while different ap-
proaches for repeating placements are introduced in section 6.2.2.

6.2.1 Selecting Electrode Positions

In order to determine an appropriate set of electrode positions for EMG speech recognition with the
eight-channel recording device VARIOPORT VIII we considered the following problems:

1. Which muscles should be examined?
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Figure 6.2: EMG signals for the words “no” (first), “accept” (middle) and “yes” (last) and speaker
S1 (EMG1, session 008)

• Which muscles are involved in speech production?

• Which muscles were chosen by other research groups?

2. What is the ideal position for measuring the activity of a particular muscle?

• What is the ideal position according to EMG literature?

• Which position yields the best signals (e.g.with little movement artifacts)?

• Which position yields the best recognition results?

3. What is the best combination of electrode positions for EMG based speech recognition?

• Which positions provide orthogonal information?

• Which positions are the most practical ones?

Muscles

In order to solve the first problem we simply extracted appropriate information from literature. The
following muscles were used for EMG based speech recognition by [Chan et al., 2002b], [Jorgensen
et al., 2003] , [Manabe et al., 2003b]: the levator anguli oris, the zygomaticus major, the platysma,
the depressor anguli oris, the anterior belly of the digastric, the orbicularis oris and the tongue.
The corresponding functions can be found in section 2.3. We decided to examine all of the enumerated
muscles in our experiments.

Position Selection

The next step was to find an ideal electrode position for each of these muscles. We examined both,
classical bipolar electrode configurations where voltages are recorded between pairs of neighbour-
ing electrodes placed directly on a muscle and unipolar electrode configurations where voltages are
recorded between one electrode placed on muscle tissue and a reference electrode placed on electrically
neutral tissue. The second method is a standard approach for EEG measurements (i.e. for measuring
brain activity) but is not commonly used for EMG measurements. Yet, the fact that we do not want
to obtain an accurate measure for muscle force but simply want to minimize word error rates justifies
exploring this method.
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Figure 6.3: Muscles zones I-IV (left to right)

Zone Associated Muscles Associated Positions

Zone 1 Tongue P3, P4, P5, P6, P7, P8, P46,
P47, P51, P52

Zone 2 Orbicularis Oris P31, P32, P33, P34, P40,
P41, P42

Zone 3 Zygomaticus major, levator anguli oris P15, P16, P17, P36, P37,
P39, P43

Zone 4 Depressor anguli oris, digastric, tongue, platysma P23, P24, P25, P27, P28

Table 6.3: Muscle zones, associated muscles and corresponding electrode positions. Figure 6.5 shows
the enumerated positions.

Two speakers, S1 and S3, participated in the experiments on electrode placement. The resulting
corpus was DIGITS POS (5.3.3). Our original approach was as follows:

• Record three recording sessions per muscle: one audible and one non-audible session from the
first speaker and one non-audible session from the second speaker

• in each session place two “electrode arrays” on the muscle to be examined - one for unipolar
electrode configurations as illustrated in figure 6.4 (on one side of the face) and one for bipolar
electrode configurations (on the other side of the face). Due to the fact that signals from these
positions are measured simultaneously it is possible to compare signals (and recognition rates)
for the same utterances but different positions.

• determine the best position (unipolar or bipolar) for each muscle for non-audible speech recog-
nition by comparing signal quality and performance of the individual electrodes. It is worth
mentioning here, that the classical bipolar electrode configuration is less susceptible to artifacts
than the unipolar configuration because the detection electrodes are closer to each other and
thus receive similar noise signals which are consequently eliminated by the differential amplifier.
(refer to section 2.2 for more details). For this reason, bipolar configurations should always be
preferred when similar recognition results can be achieved as with the unipolar configuration.

• select a subset of electrode positions from the set of “best positions” as final position set. Choose
the combination of positions that maximizes word accuracies for non-audible speech.

• Additionally, compare the non-audible and audible sessions from the first speaker to examine
which positions are particularly adequate for non-audible and audible speech respectively.

The following problems arose:
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Figure 6.4: Data recording session for determining the best unipolar electrode configuration for zone
II.

• our recording device only allowed simultaneous measurement of up to seven channels. Due to
hardware problems, several sessions could only be recorded using six channels. As a result, it was
impossible to measure two arrays, one for bipolar and one for unipolar electrodes, simultaneously.

• the electrodes could not be placed arbitrarily close to each other because of their own size. 1.5cm
was the minimal possible inter-electrode distance. Consequently, not the complete area above a
muscle could be covered by an array.

• identifying the exact location of a muscle without a medical expert was extremely challenging.

• An accurate assignment of one muscle to one position was impossible to find due to cross-talk
and muscle overlap.

Due to these problems we came to the conclusion that our equipment and our medical background
were not adequate for the task of identifying an optimal set of electrode positions for EMG based
speech recognition. For this reason, we decided to find a (probably suboptimal) set of appropriate
positions for each muscle zone. A muscle zone includes several muscles as illustrated in figure 6.3.
Table 6.3 assigns muscles to zones.
We conducted several initial experiments on the DIGITS INIT corpus to determine a set of elec-
trode positions for further examination. Two speakers took part in these experiments. Among other
things we examined where to optimally place bipolar electrodes by examining the signals resulting
from different placement. We always included the positions chosen by other research groups in our
experiments. Moreover, we recorded several short sessions to compare recognition results. The results
are not reported here. Based on our experience we then chose a set of six to eight positions for each
muscle zone for more systematic experiments on electrode placement (table 6.3). Figure 6.5 shows
the corresponding positions. Note that position P22 merely serves as a reference point for unipolar
measurements as proposed by [Chan et al., 2002b] (figure 3.1)).
Tables 6.4, 6.5, 6.6, and 6.7 summarize the results for our experiments on electrode positioning for
each zone. The experiments were conducted on Set I of the DIGITS VIII POS corpus using six round
robin sets and twenty-five training utterances per word in the vocabulary. The first column of each
table contains the positions that were used. We used the format Px-Py to indicate which detection
electrodes went to the plus and minus input of the amplifier respectively. When unipolar electrode
configurations were used where both ears served as the reference Px served as an abbreviation for
Px − average(Pleft ear − Pright ear). Columns 2,3 and 5 show the recognition results for the three
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Figure 6.5: Set of electrode positions for zones I-IV. Connected positions were used for bipolar mea-
surements. The remaining unipolarly measured positions were referenced to both ears except for P23
which was referenced to P22.
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Position S3 n-a. S3 a. Signal Quality S3 S1 n-a. Signal Quality S1 candidate

P3 52.2% 66.3% good; heartbeat visi-
ble

45.7% weak signal; ear elec-
trodes possibly had
bad contact

no

P4 60.2% 77.7% ” 36.0% ” no

P5 53.9% 79.3% ” 31.0% ” no

P6 43.8% 57.0% ” 30.0% ” no

P7 61.9% 77.3% ” 40.3% ” no

P8 60.8% 73.7% ” 43.7% ” no

P46-P47 - - - 61.3% good yes

Table 6.4: Within-session word-accuracies (in %) and description of the signal quality for the positions
in zone I. The last column states whether the corresponding position is a candidate position for the
final set of positions. n-a: non-audible session; a: audible session. The missing entries are referred to
in the text.

Position S3 n-a. S3 a. Signal Quality S3 S1 n-a. Signal Quality S1 candidate

P42 82.0% 85.6% good 47.0% good yes

P41 80.7% 85.6% many artifacts 52.7% many artifacts no

P33-P34 83.7% 92.6% many artifacts 45.0% many artifacts no

P31 83.7% 92.6% many artifacts 45.0% many artifacts no

P32 86.0% 87.2% good 48.0% many artifacts no

P40 76.3% 88.2% many artifacts 45.0% many artifacts no

P35-P38 - - - 43.7% good yes

Table 6.5: Within-session word-accuracies (in %) and description of the signal quality for the positions
in zone II. The last column states whether the corresponding position is a candidate position for the
final set of positions. n-a: non-audible session; a: audible session. The missing entries are referred to
in the text.

recorded sessions from speaker S1 (one non-audible (n-a.) session) and speaker S3 (one audible (a.)
and one non-audible (n-a.) session). Feature extraction and classifier training were performed using
our baseline system. A brief statement on the signal quality for each speaker is given in columns 4
and 6. Figure 6.6 shows sample signals for zone IV, and speaker S3. The third utterance contains a
movement artifact in EMG6 (last signal sequences).
Depending on signal quality and recognition results the last column states whether or not the cor-
responding position was a candidate for our set of appropriate positions. Here, we have excluded
positions that yielded bad signal quality or where a neighbouring position gave significantly better
recognition results (e.g. P17 vs. P36 in table 6.6).
In zone I P46-P47 was chosen as candidate because it yielded the best recognition results. It is worth
mentioning here that we assume that the reference (i.e. ear) electrodes had a rather bad contact to
the skin in the recording session from speaker S1 because recognition results for all unipolar electrodes
are extremely poor. For this reason we also included P4 in our set of candidates which had performed
particularly well in initial experiments.
In the experiments for zone II P42 and P35-P38 were chosen as candidates because all other position
yielded signals containing many artifacts. It is worth mentioning here that those positions were
considered uncomfortable by the speakers.
In zone III the only positions that yielded acceptable signals for both speakers and had no neighbours
with significantly better recognition results were P17 and P39 which were thus chosen as candidates
for that zone.
Due to the fact that P22-P23 and P28 were the only positions with acceptable signal quality in zone
IV they were picked as candidates for the fourth zone.
It should be pointed out that electrode configuration P35-P38 which does in fact correspond to zone III
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Position S3 n-a. S3 a. Signal Quality S3 S1 n-a. Signal Quality S1 candidate

P17 88.7% 92.3% good 74.3% good yes

P16 85.0% 89.3% good 52.7% good no

P36 80.7% 86.0% good 53.6% good no

P43 73.3% 79.3% good 38.3% weak signal no

P37 83.3% 84.9% good 56.0% good; several arti-
facts

no

P15 80.3% 84.2% good 60.3% good; several arti-
facts

no

P39 60.8% 73.7% good 66.3% good yes

Table 6.6: Within-session word-accuracies (in %) and description of the signal quality for the positions
in zone III. The last column states whether the corresponding position is a candidate position for the
final set of positions. n-a: non-audible session; a: audible session.

Position S3 n-a. S3 a. Signal Quality S3 S1 n-a. Signal Quality S1 candidate

P22-P23 84.6% 94.6% good 71.0% good yes

P24-P25 81.9% 85.7% good 50.0% many artifacts no

P27 74.6% 86.4% many artifacts 57.3% many artifacts no

P28 78.9% 83.3% good 58.3% good yes

P29b 73.9% 87.5% several artifacts 70.0% good no

P45b 72.2% 86.4% many artifacts 50.0% good no

Table 6.7: Within-session word-accuracies (in %) and description of the signal quality for the positions
in zone IV. The last column states whether the corresponding position is a candidate position for the
final set of positions. n-a: non-audible session; a: audible session.

was used in the recording session for zone II because our hardware device did not allow simultaneous
measurement of more than seven channels. Moreover, two entries for speaker S3 (zone I and zone II )
are missing which must again be attributed to hardware problems. A final session was recorded to
compensate for these errors. Refer to the following paragraph for a more detailed explanation.
Our experiments yielded a set of candidates for appropriate electrode positions as shown in table 6.8.
For each candidate the third column enumerates neighbouring positions that were also contained in the
candidate set. We had to choose a subset of six positions from the set of candidates to ensure reliable
recordings with our hardware device. We therefore recorded a final session with those candidate
positions whose set of similar positions was not empty. The fact that positions P35-P38 and P46-P47
were recorded in these sessions compensates the problem addressed in the previous paragraph.
The results are shown in table 6.9. We excluded the positions P4 and P39 because similar positions
(P46-P47 and P35-P38,P17 respectively) yielded better recognition results for non-audible speech. The
set of appropriate electrode positions was thus: P22-P23 (EMG1), P35-P38 (EMG2), P17 (EMG3),
P42 (EMG4) , P28 (EMG5), and P46-P47 (EMG6) as shown in figure 6.7.
For data collection and offline recognition (where we could run the risk of the recording system’s
crashing) we added another position to the list, namely position P51-P52 (EMG7) which is in fact
the same as P46-P47, but on the other side of the larynx. We chose this position because it was
recommended by [Jorgensen et al., 2003] and because positions in zone I are the most practical ones
(the electrodes are placed on the neck rather than on the face). Moreover, we were going to examine
if the two positions P46-P47 and P51-P52 would provide complementary information.

Results for Selected Positions

We evaluated our selected positions on Set I of the DIGITS VIII corpus (3 speakers, 4 non-audible
sessions each) using our baseline system described in section 6.1. Table 6.10 shows the word accuracies
for within-session testing for each speaker using different numbers of channels for recognition. The
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Figure 6.6: Sample signals for the word “three” (four repetitions) and EMG1 (P22-P23; upper), EMG2
(P24-P25; middle) and EMG6 (P45b; lower). Speaker S3, session 038.

Figure 6.7: Positioning for electrodes EMG1-EMG7. Section 6.2.1 enumerates the associated muscles
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Figure 6.8: Myoelectric signals (left) and delta coefficients (right) for the audibly spoken word “zero”
and electrodes EMG1-EMG7 (speaker S1, session 016).
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Position Zone Similar Candidates

P4 1 P46-P47

P46-P47 1 P7

P42 2 -

P17 3 P39, P35-P38

P39 3 P17, P35-P38

P35-P38 3 P17,P39

P22-P23 4 -

P28 4 -

Table 6.8: Set of candidates for finale position set.

Position S3 audible S3 non-audible Signal Quality Final Position

P35-P38 94.3% 94.0% good yes

P46-P47 78.7% 86.3% good yes

P39 95.3% 90.7% good no

P17 96.7% 95.3% good yes

P7 67.3% 79.3% good no

Table 6.9: Results for final experiment on electrode positioning

table presents the results for (a) each individual channel, (b) the combination of all channels, and
(c) the best combination of k = 2, 3, 4, 5, 6 channels. We used a greedy procedure to identify the
best combination of k channels: Initially, we simply chose the channel yielding the best individual
within-session results. We then added the remaining channels one by one, in the order that gave the
best (within-session) performance when combined with the already selected channels.
The results in table 6.10 indicate a significant variation in performance for the individual channels.
Channels EMG1 and EMG3 yield the best recognition results for all speakers. These two channels
correspond to different muscle groups, and therefore provide orthogonal information. The results from
the best channel combination in table 6.10 reveal that it is crucial to apply more than one electrode
(highly significant difference between Best 1 and Best 2). Even between two and three electrodes we
see a highly significant performance increment on the 9.56E-05 · 100% level, while the performance
differences for five, six, or seven electrodes are insignificant.
It should be pointed out that speaker S3 achieved the best recognition results. As already mentioned
above this speaker had already recorded several non-audible sessions before recording the sessions for
the DIGITS VIII corpus. He stated that he had developed a particular speaking style for non-audible
speech over time. It is worth mentioning here that we noticed for all speakers that an increasing level
of experience improved the performance. Recognition results for speaker S3, for example, are better
in the final experiment on electrode positioning (table 6.9) than in the previous experiments (tables
6.4 and 6.5) for both, audible and non-audible speech.
Figure 6.8 presents sample signals and the corresponding delta coefficients for the selected positions.
Visualization was performed with the help of JRTk (section 4.2.2) which normalizes the colour intensi-
ties for each utterance according to the minimum and maximum value in the corresponding matrix of
delta coefficients. Consequently, the same colour in different delta coefficient presentations generally
represents a different absolute value.
The low amplitudes of the bipolarly recorded channels (EMG2,6,7) suggests that the signals of the
unipolarly recorded channels (EMG1,3,4,5) provide more information. However, recognition results
do not confirm this assumption. EMG2 for example yields better recognition results than EMG4
and EMG5. Moreover, even though several signals look similar they still provide complementary
information: The channels EMG6 and EMG7 together, for instance, yield a within-session recognition
rate of 75.7% which is significantly higher than the individual channel results (60.1% and 62.0%
respectively). It should be pointed out again that these two channels actually represent the same
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Channels S1 S3 S7 Average

Individual Channels
EMG1 (P22-P23) 74.2 92.1 77.4 81.2
EMG2 (P35-P38) 64.1 90.7 69.4 74.7
EMG3 (P17) 76.1 93.8 72.9 81.0
EMG4 (P42) 61.2 83.1 71.6 71.9
EMG5 (P28) 62.4 73.4 63.6 66.5
EMG6 (P46-P47) 63.6 64.4 52.3 60.1
EMG7 (P51-P52) 59.8 66.3 60.0 62.0

Avg EMG1-EMG7 65.9 80.5 66.7 71.1

Channel Combination
Best 1 (EMG1) 74.2 92.1 77.4 81.2
Best 2 (EMG1,3) 93.5 97.6 90.1 93.7
Best 3 (EMG1,3,6) 97.1 98.1 91.3 95.5
Best 4 (EMG1,3,4,6) 97.5 98.3 93.4 96.4
Best 5 (EMG1,2,3,4,6) 97.3 98.6 95.5 97.1
Best 6 (EMG1,2,3,4,5,6) 97.4 98.8 96.2 97.4
All 7 channels 97.2 98.8 96.0 97.3

Table 6.10: Within-session word accuracies (in %) for individual channels and the best combination
of k = 2, 3, 4, 5, 6, 7 channels on Set I of the DIGITS VIII corpus using the baseline system (section
6.1).

position - just on different sides of the larynx (figure 6.7).

Suitability of positions for audible and non-audible speech

The purpose of our experiments on electrode placement was to (1) find an appropriate set of electrode
positions for non-audible speech recognition and to (2) compare usefulness of positions for audible
and non-audible speech. The first aspect was dealt with in the previous section. We want to begin
our analysis on suitability of the positions for audible and non-audible speech by mentioning some
observations we made in the course of our experiments.

1. In the first experiments (tables 6.4 to 6.7) the results for non-audible speech are significantly
worse that those for audible speech for all positions. This indicates that audible speech is either
more intuitive or contains more information for speech recognition.

2. In the final experiment (table 6.9) some positions (P17, P35-P38, P7, P39) perform better for
non-audible speech than for audible speech even though the situation was vice versa in previous
experiments (tables 6.5 and 6.6). It is worth mentioning here, that speaker S3 recorded several
non-audible sessions for our demo system between the initial experiments and the final experi-
ment. We deduce from this that non-audible speech can be learnt and that certain positions are
just as good for non-audible speech as for audible speech (at least for our recognition task).

3. Recognition results for non-audible speech are worse than recognition results for audible speech
for all positions in zone I. This could be traceable back to the fact that signals from the vocal
cords are picked up by the electrodes in zone I.

We produced Set II of corpus DIGITS VIII for further analysis. One audible and one non-audible
session was recorded for each speaker. These two “sessions” were in fact recorded as one session with
the exact same electrode placement, i.e. the electrodes were not removed between the two parts.
The only difference was the speech manner. The recognition results for individual EMG channels are
shown in table 6.11 and 6.12 for non-audible and audible session respectively. Table 6.13 presents the
differences (∆) in the recognition results in % (absolute values).
Speakers S1 and S7 have significantly better recognition results for audible than for non-audible speech
for all positions (∆ > 0). Again, this is traceable back to the fact that they had no or only little
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Channel Position S1 S3 S7 Average

EMG1 P22-P23 69.5 91.3 73.3 78.0
EMG2 P35-P38 65.8 89.5 65.5 73.6
EMG3 P17 75.3 95.0 64.5 78.3
EMG4 P42 59.5 86.3 60.5 68.8
EMG5 P28 56.0 76.5 58.8 63.8
EMG6 P46-P47 57.8 71.0 48.3 59.0
EMG7 P51-P52 57.3 74.3 49.8 60.4

Table 6.11: Within-session word accuracies (in %) for individual channels and the non-audible sessions
of Set II of the DIGITS VIII corpus using the baseline system (section 6.1).

Channel Position S1 S3 S7 Average

EMG1 P22-P23 81.5 92.8 79.8 84.7
EMG2 P35-P38 71.5 91.8 82.0 81.8
EMG3 P17 83.5 90.5 77.5 83.8
EMG4 P42 77.3 90.0 71.5 79.6
EMG5 P28 73.8 71.5 66.8 70.7
EMG6 P46-P47 65.8 73.5 51.8 63.7
EMG7 P51-P52 63.8 83.0 63.0 69.9

Table 6.12: Within-session word accuracies (in %) for individual channels and the audible sessions of
Set II of the DIGITS VIII corpus using the baseline system (section 6.1).

experience in speaking non-audibly. Speaker S3 on the other hand has better recognition results for
non-audible speech than for audible speech in some cases (EMG3, EMG5). Once more, this indicates
that non-audible speech is indeed learnable. The high ∆ values for EMG7 compared to EMG6 for
speakers S3 and S7 are surprising because EMG6 and EMG7 are actually placed on the same position
- just on different sides of the larynx. We have no explanation for this phenomenon at this point.
It is noticeable that EMG1 and EMG3 yield the best recognition results while EMG6 and EMG7 yield
the worst recognition results for both, non-audible and audible speech. This indicates, that positions
that are particularly well suited for audible speech are also well suited for non-audible speech and vice
versa.
In section 6.7 we compare audible and non-audible speech in general.
As already mentioned above, another challenge for EMG measurements besides locating appropriate
electrode positions is to identify (approximately) the same locations in consecutive recording sessions.
The following section addresses this issue.

6.2.2 Reliability of Electrode Placement

One of the main challenges in EMG measurements is to ensure repeatability of electrode placement.
We investigated the following methods in order to obtain reliable positioning.

Methods

Tape measure: The standard approach for identifying electrode positions for EMG measurements is
the use of tape measure. As already mentioned in section 2.2.2, a location should be defined in
relation to a line between two anatomical landmarks (e.g. bones). However, this proves to be
relatively difficult in areas on the body surface, where no appropriate anatomical landmarks can
be found. The region around the larynx that we referred to as zone I in section 6.2 for example
contains no bones.

Picture: Another approach to obtain stable placement is the use of pictures from previous recordings.
This method is quite successful for relatively flat regions like the region around the mouth, where
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Channel Position ∆S1 ∆S3 ∆S7 ∆Average

EMG1 P22-P23 12.0 1.5 6.5 6.7
EMG2 P35-P38 5.8 2.25 16.5 8.17
EMG3 P17 8.3 -4.5 13.0 5.6
EMG4 P42 17.8 3.8 11.0 10.8
EMG5 P28 17.8 -5.0 8.0 6.9
EMG6 P46-P47 8.0 2.5 3.5 4.7
EMG7 P51-P52 6.5 8.8 13.3 9.5

Avg EMG1-EMG7 - 10.8 1.3 10.3 7.5

Table 6.13: Differences of recognition results for audible and non-audible speech. ∆S1 = Word
Accuracy S1 audible (table 6.12) - Word Accuracy S1 non-audible (table 6.11).

Figure 6.9: Application of gypsum mask for position identification.

no perspective information is needed. However, finding a specific spot on more curved areas is
extremely difficult and unreliable.

Marker: A straightforward idea for ensuring stable positioning is the use of a marker. The exact
electrode positions are marked in one recording session prior to electrode removal and re-used in
the following recording session. Obviously, this approach is impractical (nobody wants to wear
permanent marker outside the recording sessions), yet, it can serve for experimental purposes.

Gypsum masks: Finally, gypsum masks can serve to ensure placement repeatability for one person:
once a mask has been produced for a particular speaker, appropriate positions can be marked
on that speaker’s face (e.g. using lipstick). The mask is then applied to the speaker in order to
transfer the marked positions to the inner side of the mask. Finally, holes are drilled into the
mask in order to allow position marking in following sessions. Figure 6.9 illustrates the use of a
gypsum mask for position identification.

The advantages and disadvantages of all four methods are summarized in table 6.14. Tape measure
and gypsum masks seem to be the most useful utensils for position identification. In order to compare
the accuracy of the two methods we conducted the following experiment with speaker S3:

1. Apply each method five times in a row to a set of three different positions (P17, P23, P46).
Mark the identified spot each time.
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2. For each position determine the distance between each pair of marks and calculate the average
distance.

3. Compare the results.

Average and maximal distances for each position and both methods are shown in table 6.15.

Method inter-session
deviation

advantages disadvantages

Tape Measure < 10mm relatively relieable; usable
across speakers

requires long preparation time;
hard to find anatomical land-
marks

Gypsum mask < 5mm very reliable method; quick po-
sition identification

requires preparation of gypsum
masks; only usable for one
speaker

Picture < 15mm good for transferring positions
from one speaker to another
speaker

very unreliable

Marker < 2mm most reliable method impractical; only usable for one
speaker

Table 6.14: Advantages and disadvantages of different methods for repeating electrode placement.

Method Avg/Max P17 Avg/Max P23 Avg/Max P46 Overall Average

Gypsum mask 2.1mm/4mm 1.8mm/4mm 2.4mm/4mm 2.1mm

Tape measure 2.8mm/5mm 4.2mm/7mm 3.6mm/5mm 3.5mm

Table 6.15: Average and maximal differences between independently marked positions using tape
measure and gypsum masks for positions P17, P23 and P46.

We deduce from our results that using gypsum masks is the most appropriate method for ensuring
reliable placement when a large number of experiments are conducted on a small number of speakers.
In this case, producing gypsum masks is worth the effort. In the more general case (few experiments,
many speakers) our recommendation is to make use of tape measure.

Influence of robust positioning

As already mentioned in section 2.2.4 slight changes in electrode position, temperature, amount of
applied electrode gel or tissue properties may alter the sEMG signal significantly. In order to measure
the impact of some of these factors on across-sessions recognition speaker S0 recorded two sessions
(006 and 007) on the phone domain in series. The positions from session 006 were marked and the
electrodes were removed and re-applied according to the labels for the following session 007. We
then determined within-session and across-sessions recognition results on Set II of the PHONE corpus
(sessions 006, 007 and another session 004 from a different day) using our baseline system (section
6.1) and twenty-five training samples per word for each recognizer. The results are shown in table
6.16.
The following conclusions can be inferred from this:

1. Across-sessions results are significantly higher for the marker dependent sessions 006 and 007
(77.5%) than for the independent sessions (004 with 006 and 007; 55.1%). This is most likely
traceable back to greater positioning variations as well as to changes in speech patterns, tem-
perature, or skin properties which vary on different days.

2. Within-session results (average: 94.2%) are significantly better than across-sessions results even
for the marker related sessions 006 and 007 (average: 77.5%). We infer from this that the
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Session 004 Session 006 Session 007

Session 004 90.4 55.1 62.2
Session 006 52.1 94.8 77.0
Session 007 50.9 78.0 97.3

Table 6.16: Across-sessions results (in %) on Set II of the PHONE corpus. No segmentation method
was applied. Train on (row). Test on (column).

properties of the electrode/skin interface (e.g. the amount of applied electrode gel) - which
change with removal and re-application of electrodes - have a significant impact on the sEMG
signal and thus on across-sessions recognition. Moreover, we assume that even position changes
in the range of 1mm - 2mm alter the sEMG signal significantly. Due to the fact that a change in
position always requires re-application of electrodes and vice versa, however, these two aspects
cannot be examined independently of each other.

We deduce from our observations that session dependence is a major challenge in EMG speech recog-
nition and address this issue in a separate section 6.6.
In conclusion, we derived an appropriate set of electrode positions for EMG based speech recognition
taking into account signal quality, recognition results for individual positions, and recognition results
for combined positions. Furthermore, we examined several methods for repeating electrode placement
and showed that gypsum masks and tape measure are suitable for this task. In the next section
we describe the experiments we performed to improve the frontend of our baseline system using the
selected electrode positions.

6.3 Optimization of Data Preprocessing

Data Preprocessing is the process of transforming raw input signals into a sequence of feature vectors.
The aim is to extract information relevant for discriminating speech units (e.g. phonemes or words)
while omitting irrelevant information. Over the years a variety of different preprocessing methods for
ASR have been developed. Section 2.4.2 summarizes the most commonly used ones. Most approaches,
however, incorporate information about human auditory processing and perception. Mel-scale Filter-
bank coefficients, for example, imitate the frequency dependent spectral resolution of the human ear.
Due to the fact that we deal with electromyographic signals instead of acoustic signals we did not
simply apply a standard ASR frontend. Instead, we investigated various preprocessing methods in
order to find an appropriate frontend for EMG based speech recognition. Initial experiments were
conducted on the PHONE corpus and yielded the baseline system introduced in section 6.1.1. The
features that gave promising results in those initial experiments were investigated further on the
DIGITS VIII corpus in order to optimize the baseline system.
Our approach for the development of an appropriate frontend consisted of the following steps:

1. Determining window size and shift: window size and window shift of the observation windows
were varied while all other settings of the baseline system were held constant in order to obtain
optimal values for these parameters (section 6.3.1)

2. Choosing useful features: Different features were examined while all other setting of the baseline
system were held constant (section 6.3.2).

3. Dimensionality reduction: the use of an LDA on the baseline system for dimensionality reduction
was explored (section 6.3.3).

The following sections (sections 6.3.1 - 6.3.3) address these aspects. We will show, however, that
no significant improvements can be achieved by modifying the frontend. Section 6.3.4 describes our
approach for determining appropriate values for the sampling rate and the bandpass filter cut-off
frequencies of our system.
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6.3.1 Optimizing Window Size and Window Shift

Tables 6.17 and 6.18 show the within-session recognition rates for various window sizes and shifts.

Window size STFT Coefficients
per Channel

S1 S3 S7 Average

54ms (BASE) 17 97.2 98.8 96.0 97.3

27ms 9 97.1 99.1 96.1 97.4
108ms 33 94.6 93.4 58.1 82.0

16ms 9 96.4 99.0 96.2 97.2
32ms 17 97.0 98.6 95.6 97.1
64ms 33 95.6 97.6 95.0 97.1
128ms 65 92.6 93.6 43.6 76.6

Table 6.17: Recognition rates (in %) for different window sizes on Set I of the DIGITS VIII corpus.
The second column shows the corresponding number of STFT coefficients per channel.

Window shift S1 S3 S7 Average

4ms (BASE) 97.2 98.8 96.0 97.3

8ms 97.3 98.8 95.1 97.1
16ms 96.4 98.1 91.4 95.3
27ms 94.8 97.6 89.0 93.8

Table 6.18: Recognition rates (in %) for different window shifts on Set I of the DIGITS VIII corpus.
All other parameters are the same as as in the baseline system.

It can be seen that no significant improvements can be made by varying window size and window shift;
maximum values are obtained for nine or seventeen STFT coefficient per channel and window sizes of
up to 8ms. However, it is noticeable, that recognition rates for speaker 007 drop significantly for large
window sizes. Interestingly, this holds especially for non-audible speech and could be traceable back
to a greater speaking rate which violates the assumption of a quasi-stationary signal (section 2.4.2).

6.3.2 Optimizing Feature Extraction

As already mentioned in section 6.1.1 we examined the use of various features for an EMG speech
recognition frontend in initial experiments. Some of them performed so poorly (zero crossing rate, lpc
coefficients, AR coefficients among others) that we did not investigate them any further. The most
promising features were

• STFT : windowed Short Time Fourier coefficients (JRTk function FeatureSet:spectrum)

• Delta: Delta coefficients (JRTk function FeatureSet:delta; delta=1)

• Adjacent : The JRTk adjacent feature (JRTk function FeatureSet:adjacent ; delta=1)

• mean: the windowed mean of the time domain values

• abs mean: the windowed mean of the absolute values of the time domain values

Refer to the JRTk documentation ( [Metze, 2004]) for a more detailed description of these functions.
Table 6.19 shows the recognition results for individual features and some combinations of features.
The following observations deserve mentioning:

1. The time domain features (mean and abs mean) by themselves yield high recognition rates (up
to 89%).
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2. Despite the fact that EMG data processing in the time domain usually involves absolute values
(section 2.2.4), the mean feature performs better than the abs mean feature. We assume, that
this relies to the fact that we have an extremely low cut-off frequency for our high-pass filter.
Section 6.3.4 addresses this aspect.

3. Delta coefficients outperform STFT coefficients. The extremely large performance difference for
speaker S7 is surprising. It suggests that the signals are dominated by noise which is eliminated
by the delta coefficients. However, a visual analysis of the signal data did not confirm this
assumption.

4. The adjacent feature performs rather poorly compared to the remaining features which confirms
the results of previously conducted experiments on the PHONE corpus.

Features S1 S3 S7 Average

STFT 89.6 95.8 56.1 80.5
Delta 95.4 97.8 93.9 95.7

adjacent 69.4 77.8 47.3 64.8

mean 83.9 94.3 88.9 89.0
abs mean 81.4 92.4 83.3 85.7

delta & mean (BASE) 97.2 98.8 96.0 97.3
delta & abs mean 96.4 98.1 95.3 96.6

STFT & mean 92.3 96.9 59.3 82.8
STFT & abs mean 81.4 92.4 83.3 85.7

Table 6.19: Recognition rates (in %) for various features on Set I of the DIGITS VIII corpus.

In conclusion, we were not able to improve performance by choosing different features. The delta
feature along with the mean feature were confirmed to be the optimal choice.

6.3.3 Applying Dimensionality Reduction

Dimensionality reduction is the mapping of a multidimensional space into a space of fewer dimension.
The goal is to reduce data complexity without losing information. As already mentioned in section
2.4.2 a Linear Discriminant Analysis (LDA) is commonly applied in conventional speech recognition
systems which leads to a reduction of word error rates. We examined the use of an LDA for dimen-
sionality reduction in EMG based speech recognition. Each codebook represented one LDA class. The
within-session results for different numbers of LDA coefficients on Set I of the DIGITS VIII corpus
are shown in table 6.20.
It can be seen that applying an LDA leads to a degradation in performance regardless of the number
of coefficients. Results were even worse for across-sessions testing (> 20% (absolute) performance
difference between naive baseline system results (no normalization) and results for an additionally
applied LDA with 24 coefficients). Jorgensen et al. reported similar results when examining the
use of a Principal Component Analysis (PCA) for dimensionality reduction in EMG based speech
recognition [Jorgensen et al., 2003]. It should be pointed out that word accuracies decreased even
more when different LDA classes (e.g. words) were chosen. Even though, it is noticeable, that
relatively small numbers of LDA coefficients (e.g. 24) yield comparable or better recognition results
than large numbers of coefficients (e.g. 126).
We suggest to explore feature dimensionality reduction methods for EMG based speech recognition
in the future.

6.3.4 Optimizing Sampling Rate and Filter Properties

Just like acoustic signals EMG signals highly depend on the sampling rate and filter properties.
Typically, sampling rates above 1000Hz are chosen because of the usable energy of the EMG being
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Number of coefficients S1 S3 S7 Average

BASE (no LDA) 97.2 98.8 96.0 97.3

1 21.3 22.3 16.8 20.1
2 51.1 72.5 54.1 59.2
4 77.9 90.6 79.5 82.7
8 85.8 95.3 89.2 90.1
12 87.4 97.5 92.2 92.4
16 89.7 97.5 93.7 93.6
24 92.1 97.8 94.3 94.7
32 91.8 97.9 94.1 94.6
50 91.4 97.4 93.8 94.2
64 91.9 97.4 93.1 94.1
126 90.3 96.8 92.8 93.3

Table 6.20: Within-session results (in %) on Set I of the DIGITS VIII corpus depending on the number
of LDA coefficients.

in the 1Hz - 500Hz frequency range. Due to the fact that we used the serial port with a maximum
transmission rate of 115kBaud (only about 80% of which should be utilized for data transmission)
a 1000Hz sampling rate only allowed the simultaneous recording of up to 80% · 115000bit/s

1000Hz·16bit = 5.75
channels including the synchronization and the marker channel. Thus, there was a tradeoff between
choosing a high sampling rate and recording a large number of channels. The following paragraph
addresses this problem. Next, we describe our experiments on determining appropriate high-pass filter
settings.

Sampling Rate and Low-Pass Filter

As already mentioned above, the differential electrode configuration acts as a bandpass filter in the
spectral region of the EMG signal. For a typical conduction velocity (4.0m/s) and an inter-detection
surface distance of 10mm, the pass frequency is at 200Hz [Luca, 2002]. Moreover, it decreases with in-
creased inter-electrode distance [Soderberg, 1992]. There is no significant loss of information, however,
because of the dominant EMG energy lying in the 50Hz - 150Hz frequency range.
We deduced from this that there should be no loss in information when applying a 300Hz low-pass filter
along with a 600Hz sampling rate instead of a 500Hz low-pass filter along with a 1000Hz sampling rate
for our EMG measurements. The following experiment was performed to confirm this assumption:
First, recognition rates on the PHONE corpus and on the DIGITS II corpus were determined with
the standard settings (1010Hz sampling rate, 1Hz-500Hz bandpass filter). Next, we performed down-
sampling on several test sets, choosing sampling rates ranging from 500Hz to 1000Hz, and determined
the corresponding word accuracies. The results are shown in 6.21.

Sampling Rate Window S0 S1 S3 audible S3 non-audible Avg

1000Hz 32ms 90.6 88.3 81.3 71.1 82.8
900Hz 35ms 90.3 86.4 82.2 71.1 82.5
800Hz 40ms 90.7 86.7 83.4 73.3 83.5
700Hz 45ms 90.8 85.8 82.4 73.2 83.0
600Hz 54ms 90.9 86.3 83.6 73.8 83.6
500Hz 64ms 87.8 86.0 84.3 72.3 82.6

Table 6.21: Within-session word accuracies (in %) on Set I of the PHONE corpus (speakers S0 and S1)
and on Set I (S3 audible) and Set II (S3 non-audible) of the DIGITS II corpus for various sampling
rates. The remaining settings are the same as in the baseline system.

It can be seen that downsampling does not decrease recognition rates - there was even a slight im-
provement in performance. It is worth mentioning here that the reconstructed downsampled data
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could theoretically contain aliasing artifacts. Even though, we see our assumption confirmed by the
experimental results. As a consequence, a 300Hz low-pass filter was chosen for the VARIOPORT VIII
data recording system.

High-Pass Filter

As already mentioned in section 2.2, EMG data recording systems typically apply 10Hz-20Hz high-pass
filters in order to reduce movement artifacts. The EMG channels of our first data recording system,
VARIOPORT II, however, yielded extremely good recognition rates despite the fact that they were
configured with 1Hz high-pass filters. In order to examine the MES characteristics depending on the
high-pass filter cut-off frequency one channel of our new data recording system VARIOPORT VIII was
configured with a 20Hz high-pass filter whereas the rest of the EMG channels was again configured
with a 1Hz high-pass cutoff frequency. We then performed the following experiment to determine
which filter yields the better results:

1. Set I of the MEETING corpus was recorded (two sessions from one speaker). In the first session,
position P46-P47 (section 6.2) was recorded by channel EMG7 (1Hz high-pass filter). In the
second session, the same position was recorded by channel EMG8 (20Hz high-pass filter).

2. Recognition results for position P46-P47 and different features were determined and compared
for both sessions as shown in table 6.22. Twenty-five samples per phrase were used for system
training and the remaining settings were the same as for the baseline system (section 6.1).

Features EMG7 (Session 000) EMG8 (Session 004) ∆

STFT 58.3 42.9 15.5
Delta 60.0 43.3 16.7
mean 32.9 23.8 9.1

abs mean 20.8 27.1 -6.3

Delta & mean 70.8 49.5 21.3
Delta & abs mean 64.6 42.9 21.72

Table 6.22: Recognition accuracies for position P46-P47 for channels EMG7 (1Hz high-pass filter) and
EMG8 (20 Hz high-pass filter) on Set II of the MEETING corpus for various features.

It is noticeable that recognition results for all features except for the abs mean feature are significantly
higher for channel EMG7 (1Hz filter). We deduce from this that a 1Hz high-pass filter is more
appropriate for EMG based speech recognition than the standard 20Hz high-pass filter even though
the signal contains more movement artifacts. The better recognition results for the abs mean feature
and channel EMG8 are possibly traceable back to the fact that the absolute value of an EMG channel
that is configured with a 20Hz high-pass filter yields a more accurate measure of muscular force
because no DC is contained in the signal.

6.4 Optimization of Hidden Markov Model Classifier

First order HMMs with Gaussian mixture models are used in most conventional ASR systems as
classifiers because they are able to cope with both, variance in the time-scale and variance in the
shape of the observed data. In this section we present experiments for optimizing the Hidden Markov
Model classifier for isolated word recognition introduced in section 6.1. We will show, however, that no
significant improvements in performance can be achieved by varying HMM topologies and the number
of gaussians per state.
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6.4.1 Optimizing HMM Topologies

When performing isolated word recognition on a relatively small vocabulary (< 20 words) it is feasable
to train a Hidden Markov Model for every word in the vocabulary. We examined the following
approaches to determine an optimal number of states for each word:

1. Choose the same number of states for every word in the vocabulary.

2. For each word let the corresponding number of states be proportional to the number of phonemes
in that word.

The methods were tested on Set I of the DIGITS VIII corpus as presented in table 6.23. Due to the
fact that all digits consist of only one or two syllables we did not choose HMM topologies where the
number of states was proportional to the number of syllables in the corresponding word. However, this
approach was examined in isolated phrase recognition which we used in our demo systems (chapter
7).

Unit states per unit S1 S3 S7 Average

word 3 95.8 98.4 94.9 96.4
word 4 95.9 98.5 94.5 96.3
word 5 97.2 98.8 96.0 97.3
word 6 96.4 98.9 95.9 97.1
word 7 96.6 98.8 95.9 97.1

phoneme 1 93.9 97.6 94.6 95.4
phoneme 2 96.5 98.9 95.3 96.9
phoneme 3 96.6 98.4 95.6 96.9

Table 6.23: Within-session word accuracies (in %) on Set I of the DIGITS VIII corpus for different
HMM topologies.

The results indicate that choosing at least five states per word and two states per phoneme is crucial.
In fact, the χ2-test confirms that the results for the four-state and five-state HMM are different at a
significance level of 0.538%. The two different methods of determining HMM topologies (fixed number
of states per word vs. number proportional to number of phonemes in the corresponding word) yield
no significant performance differences.

6.4.2 Optimizing Gaussian Mixture Models

The second step for building a HMM speech classifier is to determine an appropriate number of
gaussians for each HMM state. The corresponding experiments were performed on Set I of the
DIGITS VIII corpus. Table 6.24 shows the results.

Gaussians per State S1 S3 S7 Average

8 96.1 98.0 94.7 96.2
12 97.2 98.8 96.3 97.4
16 96.6 98.8 95.4 96.9
20 96.9 99.4 96.4 97.6
24 97.2 99.1 96.7 97.6
32 97.2 98.8 97.0 97.6
50 96.8 98.9 96.7 97.4

Table 6.24: Within-session word accuracies (in %) on Set I of the DIGITS VIII corpus for different
numbers of gaussians per HMM state.

It can be seen that no significant improvements can be made by varying the number of gaussians per
state. The experiments suggest, however, to choose more than eight gaussians.
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In summary, we did no improve performance by varying HMM topologies or the number of gaussians.
The next section addresses the issue of EMG signal segmentation.

6.5 Segmentation

The task of segmentation is to find the boundaries of words within an utterance. In isolated word
recognition utterances of the form “silence [word] silence” are recorded and classified. Theoretically,
the system does not have to “know” the exact beginning and end of the word within the utterance,
because viterbi paths for each vocabulary word can be computed using the complete signal. In this
case, however, recognition rates may depend on the amount of silence contained in the signal. In
order to address this issue, we investigated methods for identifying segments within the EMG signals
that yield optimal recognition results when used for training and classification instead of the original
signals. Section 6.5.1 introduces the segmentation methods we examined. The results are given in
section 6.5.2.

6.5.1 Segmentation Methods

We investigated several different methods for segmenting EMG signals. Some of them rely on addi-
tionally recorded audio data.

No Segmentation (with extra silence): the complete signal is used for training and classification. Pure
samples of silence are additionally recorded so that the speech recognizer can automatically learn
to assign the “speech segment” to the spoken word and recognize the “no speech segment” as
silence.

EMG Speech Alignment: An EMG speech recognizer is trained on all utterances of the training set.
It receives the training signals labelled with “silence speech silence” during training so that it
learns to distinguish between speech and silence. This recognizer is then used to find the speech
segments in all utterances. The isolated word recognizer performs training and recognition on
the segments identified as speech.

Audio Speech Alignment: The acoustic signal is recorded along with the EMG signal. An audio
speech recognizer is then used to find a forced alignment for all utterances using the label
“silence speech silence” . The EMG segments corresponding to the “speech segments” of the
audio signal are used for training and testing the EMG recognizer.

Audio Word Alignment: The acoustic signal is recorded along with the EMG signal. An audio speech
recognizer is used to find a forced alignment for all utterances using the label “silence [word]
silence”. The EMG segments corresponding to the audio [word] segments are used for training
and testing the EMG recognizer.

Others: We additionally explored several other segmentation methods. Energy threshold based
methods, for example, performed poorly. We also examined the segmentation method introduced
by [Chan et al., 2002b] who used the beginning of an additionally recorded audio signal as a
trigger and cut out an EMG signal block of a fixed size beginning 500ms before the beginning
of the audio speech signal. However, we could not find an advantage of this method compared
to our “audio speech alignment” approach which performed better.

It should be pointed out that there are three major drawbacks of audio based segmentation methods:
firstly, they only work for audible speech. Secondly, they require synchronization of the audio channel
and the EMG channels. Finally, muscle activation generally can prior to and after sound generation
as shown in figure 6.10. Consequently, it is necessary to examine whether an extension of the speech
segment to the left and/or the right side improves performance. We address this issue in the following
section 6.5.2.
Table 6.25 summarizes advantages and disadvantages of all segmentations methods.
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Figure 6.10: EMG and audio signal for the word accept (speaker S0, session 009, EMG1). Muscle
activity occurs approximately 200ms prior to sound generation.

Figure 6.11 shows three EMG signals of the word “accept” along with the signals resulting from dif-
ferent segmentation methods. It is noticeable that the audio speech recognizer yields longer segments
than the audio word recognizer. Visual inspection of the signals indicated that the audio word recog-
nizer generally detects the speech segment in the acoustic signal accurately. Yet, it can be seen that
EMG activity occurs up to about 200ms prior to sound generation in the sample utterances. Despite
the fact that the EMG speech detector seems to cut out the best segment our recognition results
presented in the next section suggest that audio segmentation based recognizers perform better.

Segmentation Method Advantages Disadvantages

No Segmentation
(with extra silence)

easy learns silence as part of words;
worst recognition results

EMG Speech Alignment performs better than baseline
method; requires less effort than
audio based methods; works for
non-audible speech

requires the training of two recog-
nizers for each training set

Audio Speech Alignment yields good recognition results;
knowledge on audio data usable for
analysis of EMG signals

only works for audible speech; re-
quires synchronization; requires au-
dio recognizer

Audio Word Alignment yields best recognition results ;
knowledge on audio data usable for
analysis of EMG signals

requires knowledge of which word
was actually spoken; only works for
audible speech; requires synchro-
nization; requires audio recognizer

Table 6.25: Advantages and disadvantages of segmentation methods.

6.5.2 Results

The recognition results for the different segmentation methods on Set I of the PHONE corpus are
presented in table 6.26. The baseline method BASE differs from the segmentation method No Seg-
mentation in that the latter was trained with additional pure silence signals - not merely with the
vocabulary words.
The results show that all our segmentation methods lead to a performance improvement compared
to the baseline method. The audio based segmentation methods perform particularly well. It is
worth mentioning here that the signals in the PHONE corpus contained a relatively large amount of
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Figure 6.11: Signals resulting from different segmentation methods applied to three sample signals of
the word three (speaker S0, session 009, EMG1).

Segmentation Method S0 S1 Average

BASE 89.3 87.5 88.4

No Segmentation
(with extra silence)

91.6 87.9 89.7

EMG speech alignment 92.8 90.5 91.6
Audio Word Alignment 96.5 94.2 95.4
Audio Speech Alignment 96.1 91.7 93.9

Table 6.26: Within-session word accuracies (in %) for diffferent segmentation methods on Set I of the
PHONE corpus.

silence (more silence than speech). Experiments on the DIGITS VIII corpus indicate that the different
segmentation methods perform similarly when less silence is contained in the signals.
Table 6.27 shows recognition results for the method Audio Speech Alignment for different extensions
of the speech segment to the left and right. Maximal recognition rates are achieved for a 200ms
extension of the speech segment to the right. It is worth mentioning here, that Chan et al. discovered
speech activity up to 500ms prior to sound generation [Chan et al., 2002b].
In conclusion, we have developed a state-of-the-art EMG speech recognition system by investigating
various electrode positions, features, HMM topologies and segmentation methods. In the following
section, we address the issue of session independence as an attempt to improve practicability of the
system.

6.6 Session Independence

As already mentioned above the signal obtained from surface EMG measurements depends on a
number of different factors which cannot be held constant over several recording sessions. Exact
electrode positioning plays a particularly crucial role [Lamb and Hobart, 1992]. Although gypsum
masks were used to increase placement repeatability, the poor across-sessions results indicate existing
variation in the positioning. In fact, experiments showed an across-sessions deviation of up to 5mm
(6.2.2). Furthermore, other factors like the amount of applied electrode gel may vary from session
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Extension to left [ms] Extension to right [ms] S0 S1 Average

0 0 96.1 91.7 93.9
100 0 96.4 92.3 94.4
200 0 96.3 93.0 94.7
300 0 95.9 92.9 94.4
400 0 95.5 89.6 92.6
500 0 95.0 88.6 91.8
600 0 93.0 89.1 91.1
0 100 96.6 93.3 95.0
0 200 97.0 92.8 94.9
0 300 95.7 93.3 94.5
0 400 96.3 92.9 94.6
0 500 95.2 92.0 93.6

Table 6.27: Within-session word accuracies (in %) for different extensions of the audio segmented
EMG signal to the right and to the left on Set I of the PHONE corpus.

to session. Moreover, the speakers’ speech patterns produced on different days may differ from each
other. Speaker S7, for example, stated that he had the impression that he pronounced the non-audibly
spoken words differently in different recording sessions.
Table 6.28 shows the within-session and naive across-sessions results for speaker S7. Naive across-
sessions testing refers to testing without any normalizations and adaptations. The large performance
differences between within-session results (values on the diagonal in bold face) and across-sessions
results (values in the remaining cells) illustrate the problem of session dependence.

session 004 session 008 session 010 session 011

session 004 94.5 74.3 83.0 58.8
session 008 67.5 93.5 80.5 73.8
session 010 48.8 59.5 97.5 77.8
session 011 60.5 67.0 91.8 98.5

Table 6.28: Word accuracies (in %) for within-session testing and naive (no normalization) across-
sessions testing on Set I of the DIGITS VIII corpus for speaker S7 using all seven channels. Train on
(row), test on (column)..

The results for naive across-sessions testing for all speakers are summarized in Tables 6.29 and 6.30
for all channels and for individual channels respectively (method=BASE ). The numbers represent the
average word accuracy when one session is used for training and one session is used for testing. Thus, in
Table 6.29 each cell corresponding to method BASE represents the results for sN ·(sN−1) = 4·3 = 12
experiments (sN : number of sessions). In Table 6.30 on the other hand, the entries represent the
results for cN ·sN · (sN −1) = 7 ·4 ·3 = 84 experiments, where cN represents the number of channels.
Again, the results for across-sessions testing are significantly worse than those for within-session
testing. We address this crucial problem of session dependence in the next section and will show that
we achieve significant improvement across sessions by normalizing data and adapting our models.

6.6.1 Normalization and Adaptation Methods

We investigated the following normalization and adaptation procedures to compensate for the des-
cribed session dependent variations:

1. Session Combination (SC): The data to train the classifiers is shared across three sessions, each
contributing the same number of samples (ten samples per vocabulary word)

2. Session Selection (SS): A conventional HMM classifier Ci is trained for every training session i.
The incoming unknown signal is then decoded by each classifier Ci, giving a hypothesis Wi and
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a corresponding Viterbi score vi. The word with the overall best viterbi score is output as the
hypothesis. Whyp = Wl; l = arg maxn vn

3. Variance Normalization in combination with SC (SC&VN): For each training session two nor-
malization vectors are computed; one containing the mean of each feature vector coefficient for
the session’s training samples and one containing the variance of each feature vector coefficient.
Similarly, two normalization vectors are computed for all test session data. Prior to Viterbi
path computation during training or testing, the obtained vectors are applied to normalize the
extracted feature vectors oi.

4. Variance Normalization with enrollment data and SC (SC&VN enr): Similar to SC&VN but
the normalization vectors for the test session are computed on enrollment data rather than on
the test data itself. The enrollment data set consisted of two examples for each vocabulary word
including silence.

5. Supervised Feature Space Adaptation and SC (SC&FSA sup): Feature Space Adaptation is a
constrained Maximum Likelihood (ML) transformation of input features. In analogy to Speaker
Adaptive Training (SAT) [Jin et al., 1998] we perform session adaptive training. First, an initial
classifier is computed on three training sessions. Then, we iteratively (a) adapt each training
session to the current classifier (beginning with the initial classifier) and (b) recompute the
classifier models using the adapted training data. After four iterations, the final classifier is
used for a supervised computation of an adaptation matrix for the test data. During testing,
only adapted test data is used.

6. Unsupervised Feature Space Adaptation and SC (SC&FSA unsup): Like SC&FSA sup but unsu-
pervised adaptation is performed on the test data using hypothesis from the computed classifier.

7. Feature Space Adaptation with enrollment data and SC (SC&FSA enr): Like SC&FSA sup but
the adaptation matrix is computed on an enrollment data set consisting of twenty-two signals
(as in SC&VN enr).

8. Feature Space Adaptation with enrollment data, iterative learning and SC (SC&FSA enr it):
Like SC&FSA enr but the adaptation matrix for the test data is recomputed after each hypoth-
esis computation for a test signal.

9. Combinations of the above methods: When both, VN and FSA are applied, the features are first
normalized and then adapted to the model.

Method S1 S3 S7 Average

BASE 74.5 83.7 70.3 76.2

SC 84.6 90.1 77.6 84.1
SS 85.2 88.3 77.3 83.7

SC&VN 83.4 94.3 83.7 87.1
SC&VN enr 84.3 90.3 79.6 84.7

Table 6.29: Word accuracies (in %) for across-sessions testing on Set I of the DIGITS VIII corpus
using all channels for recognition.

6.6.2 Results

The baseline system (section 6.1) (extended by the respective normalization and adaptation meth-
ods) and Set I of the DIGITS VIII corpus (3 speakers, 4 non-audible sessions each) were chosen for
experiments on session independence. It should be pointed out that all recognizers referred to in this
section were trained with thirty samples per word in the vocabulary. Refer to section 4.3.3 for a
general description on within-session and across-sessions offline testing.
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We examined both, across-sessions recognition using all seven channels (table 6.29) and across-sessions
recognition using only one channel (table 6.30). In the latter case, the word accuracies for the indi-
vidual channels were averaged. Due to the fact that FSA computations led to numerical instabilities
when high-dimensional data was used (seven channels correspond to 126 dimensions), we did not
apply feature space adaptation based methods when using all seven channels for recognition. Initial
experiments using an LDA for dimensionality reduction decreased word accuracies.
As shown in Tables 6.29 and 6.30, normalization and adaptation improve performance for all speakers.
In fact, the χ2-test confirms that the results for BASE and SC are different at a significance level of
2.93E-20%. The additional application of VN leads to another increment on a significance level of
2.84E-03%.

Method S1 S3 S7 Average

BASE 37.0 53.5 41.3 43.9

SC 40.3 59.3 44.2 47.9
SS 43.4 61.4 48.6 51.1

SC&FSA sup 42.5 62.7 47.7 51.0
SC&FSA unsup 42.0 62.3 47.0 50.5
SC&FSA enr 42.3 62.5 47.1 50.6
SC&FSA enr it 42.1 62.5 47.2 50.6

SC&VN 40.2 61.6 47.1 49.6
SC&VN enr 38.8 60.5 45.5 48.3

SC&VN&FSA sup 42.6 65.0 49.9 52.5
SC&VN&FSA unsup 42.0 64.6 49.5 52.0
SC&VN enr&FSA enr 41.2 63.7 48.2 51.0
SC&VN enr&FSA enr it 41.3 64.1 48.5 51.3

Table 6.30: Word accuracies (in %) for across-sessions testing on Set I of the DIGITS VIII corpus
using one channel for recognition. Each cell represents the average over all seven channels.

As in ASR, combining data from several sessions improves performance considerably (session combi-
nation SC ). Session Selection (SS ) leads to significant improvements in performance as well. However,
this method requires three times as much training material and the training of three times as many
parameters. Consequently, SS is not directly comparable to the other methods. In fact, we obtained
an improvement of 1.9% (1.5% absolute) for all channels and and 4.6% (2.2% absolute) for individual
channels when we used the same amount of training material for combination (SC ) as for selection
SS (thirty samples per word from each session). We therefore did not combine SS with VN and FSA.
Experiments suggest, however, that a similar increase in word accuracy as with SC can be achieved.
Both tables show a significant improvement in word accuracy when Variance Normalization (VN ) is
applied. However, the method fails to increase word accuracies for speaker S1. We attribute this
to large deviations in recording lengths for speaker S1 which leads to significant deviations in the
amount of silence relative to the amount of speech in different recording sessions. This in turn leads
to a unreliable estimation of the VN normalization vector.
Feature Space Adaptation based methods increase the performance for all speakers. Interestingly,
supervised adaptation performs equally well as unsupervised adaptation. Combining FSA and VN
leads to further improvements, yet the improvements are not additive, i.e. both methods address
similar artifacts. In order to apply FSA based methods when several channels are used for recognition,
we suggest to explore feature dimensionality reduction techniques for EMG speech data in the future.
Both, FSA unsup and VN require the whole set of test data for initial computations. Obviously, this is
impractical. We therefore examined the use of enrollment data for the computation of normalization
vectors and adaptation matrices. According to Table 6.30 only a small decrease in word accuracy
occurs when enrollment data is used. However, VN enr performs significantly worse than VN when
all channels are used for recognition. Unfortunately, this cannot be explained satisfyingly by the
current experiments.
In conclusion, we were able to improve word accuracies for across-sessions testing by 18.5% (8.1%
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absolute) for individual channels and by 14.3% (10.9% absolute) by sharing training data across ses-
sions and by applying methods based on Variance Normalization and Feature Space Adaptation. This
indicates, that conventional speech recognition methods can be transferred to EMG based recognition
systems and achieve comparable word error rate reductions.

Remarks

We conducted a large number of additional experiments on session independence that have not yet
been mentioned in order to facilitate reading of this thesis. Some observations, however, deserve
mentioning at this point:

1. Recognition results improved significantly when signal data from the test session was included
in training. 92% word accuracy was achieved when training was performed on four (instead of
three) sessions including the test session, each contributing (approximately) the same number
of utterances per word (seven or eight). Due to the fact that online training is far too time-
consuming when it comes down to large vocabulary tasks this results is irrelevant for practical
applications.

2. We also examined training a speech recognizer based on session labels: For each training session
a complete speech recognizer was trained which was used for labelling all signals in the corre-
sponding session. We then combined the method Session Combination (SC) with training along
the session dependent labels. This approach yielded slight improvements compared to SC, yet,
we did not investigate it any further because it requires three times as much training material
as SC. For a general explanation on training along labels refer to [Metze, 2004].

3. Several normalizations in the time domain have been examined:

(a) Maximum Voluntary Force: The speaker tried to generate maximum muscular force in a
reference contraction . All time domain values were then normalized to the average of the
n = 1, 5, 10, 20 maximal absolute values in that reference contraction. Yet, production of
maximal force with facial muscles proved to be extremely difficult.

(b) Normalization to Maximum Value: The n = 1, 5, 10, 20 maximal absolute values within an
utterance were determined and all values were normalized to the average of these values.

(c) Variance Normalization: Mean Subtraction and Variance Normalization was performed on
the time domain values prior to STFT computation

Due to the fact that these methods performed extremely poorly (across-session recognition rates
were significantly worse than naive across-sessions results without normalizations), we did not
investigate them further.

4. When segmentation methods were applied (refer to section 6.5) STFT performed better when
the normalization vectors were computed on the signal segments rather than on the complete
utterances.

5. When the normalization vectors were merely computed on the silence utterances performance
dropped significantly.

By presenting methods for improving across-sessions recognition results we have moved one step
towards a more practical EMG based speech recognition system. In the following section we investigate
differences of non-audible and audible.

6.7 Analysis of Audible and Non-Audible Speech

To investigate the influence of speech manner (audible vs. non-audible) on the performance of EMG
based speech recognition, we recorded one audible and one non-audible session for each speaker. These
two sessions were in fact recorded as one session with the exact same electrode placement, i.e. the
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Figure 6.12: Three non-audibly spoken (upper) and three audibly spoken (lower) EMG signals for the
word “zero” (speaker S3, sessions 051 and 052, EMG1).

electrodes were not removed between the two parts. The only difference was the speech manner. We
investigated the following aspects:

1. do the EMG signals produced by audible speech differ from those produced by non-audible
speech?

2. is the recognition performance of audible speech different from that of non-audible speech?

3. is it possible to train a speech recognizer that works accurately on both speech manners?

To investigate the first aspect we determined the recognition results across speech manners, i.e. models
trained on audible speech were applied to non-audible speech and vice versa. To examine the second
issue we compared the recognition results between the two speech manners in a matching condition,
i.e. the models were trained and tested on the same speech manner. In a third experiment, we
shared the training data across speech manners from each speaker to determine the performance of
a recognizer that works on both, non-audible and audible speech. In the latter case we trained two
systems; one with the same number of parameters as our baseline system and one with twice as many
parameters.
The results of our experiments are shown in Table 6.31 for all channels and in Table 6.32 for individual
channels respectively. It is noticeable that speakers S1 and S7 have much better recognition rates
for audible speech than for non-audible speech. By contrast, there is no significant difference in
performance for speaker S3. We believe that this relies to the fact that speaker S3 had the most
experience in speaking non-audibly. As alluded to in section 6.2 we noticed an improvement in
performance with increasing experience for all speakers. We deduce from this, that MES based
recognition of non-audible speech can work just as well as MES based recognition of audible speech on
our vocabulary provided that the speaker is accustomed to the speaking manner. Note that section
6.2 gives more information on the suitability of individual electrode positions for non-audible and
audible speech.
The relatively low results in the mismatched condition indicate that muscle movements corresponding
to audible speech differ from muscle movements corresponding to non-audible speech. Interestingly,
the difference is not clearly visible in the signals (figure 6.12).
Moreover, the results for the mixed systems show that a recognizer can be trained for both, audible and
non-audible speech, with reasonable results. The comparison of the 12-Gaussian vs. the 24-Gaussian
systems suggests to increase the numbers of parameters for the mixed system.
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Speech Manner S1 S3 S7 Average

non-audible 97.0 99.8 93.5 96.8
audible 99.5 98.8 96.0 98.1

audible on non-audible 72.8 84.5 64.3 73.8
non-audible on audible 67.2 92.5 69.3 76.3

mixed; 12 Gaussians 96.1 98.1 91.8 95.3
mixed; 24 Gaussians 96.1 98.4 93.5 96.0

Table 6.31: Word Accuracies (in %) of non-audible and audible speech on Set II of the DIGITS VIII
corpus using all seven channels and the baseline system introduced in section 6.1.

Speech Manner S1 S3 S7 Average

non-audible 63.0 83.4 60.0 68.8
audible 73.9 84.7 70.3 77.5

audible on non-audible 43.3 59.4 39.2 47.3
non-audible on audible 39.0 60.9 32.7 44.2

mixed; 12 Gaussians 62.6 79.3 57.3 66.4
mixed; 24 Gaussians 64.7 81.1 59.7 68.5

Table 6.32: Word Accuracies (in %) for non-audible and audible speech on Set II of the DIGITS VIII
corpus using one channel for recognition and the baseline system introduced in section 6.1. Each entry
represents the average over all seven channels.

In order to investigate the suitability of non-audible speech for any given recognition task (not just
for discrete word recognition) it is necessary to compare recognition results for non-audible and au-
dible speech for smaller units than words, e.g. for phonemes. In the next section we present initial
experiments on connected digits recognition and on phoneme based recognition approaches.

6.8 Towards Continuous Speech Recognition

In the previous sections we have demonstrated the applicability of surface electromyography for dis-
crete speech recognition. Yet, isolated word recognition is only suitable in a limited number of situ-
ations. In order to move towards continuous speech recognition on large vocabularies we performed
experiments on connected digits recognition (section 6.8.1) and examined phoneme-model based ap-
proaches for recognizing words and phrases (section 6.8.2).

6.8.1 Connected Digits Recognition

In this section we will show that context dependency and segmentation are among the biggest chal-
lenges for connected words recognition.

Context Dependency

In order to investigate the influence of context dependency on connected words recognition we trained
a first recognizer on isolated words and a second recognizer on connected words and compared the
performance of the two systems on connected words. If context dependency between words was not
an issue the system trained on isolated words should not perform worse than the system trained on
connected words.
The following experiment was conducted:

1. Two sessions (Set III of the DIGITS II corpus) were recorded in series without the electrodes
being removed between the two sessions. In the first session, we recorded isolated words from
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the extended digits vocabulary {zero, one, ..., nine, call, end}. In the second session, we recorded
utterances of the form “call [digit] end”.

2. Context independent models for each word of the extended vocabulary were trained on the
first session, i.e. on the isolated words, using forty samples per word. The resulting recognizer
was used to decode the utterances from the second session. The set of possible hypothesis was
restricted to utterances of the form “call [digit] end” by the language model (a grammar) and
the number of correctly recognized digits relative to the total number of utterances was defined
as the word accuracy.

3. The second session was split into a set of five disjoint sets and the round robin algorithm was
applied to train context independent models for each word in the extended vocabulary (training
and testing were thus both performed on connected words). Forty samples of each digit were
used for training each recognizer. It is worth mentioning here, that the left and right contexts
of each digit were the same in all utterances (call and end respectively). No labels were used to
present an initial segmentation of the utterances during training, thus, the recognizers had to
learn the word boundaries by themselves. Word accuracies were determined as in 2.

Table 6.34 shows the results of our experiments.

Isolated Digit Session Connected Digits Session

Isolated Digit Session 82.4 53.0
Connected Digits Session 54.6 78.0

Table 6.33: Within-session and across-sessions results (in %) on Set III of the DIGITS II corpus (1
speaker, 2 sessions). Train on (row), test on (column). The recognition results printed in bold-face
illustrate the problem of context dependency.

It can be seen that the results for connected words recognition are significantly higher when training
is performed on connected words rather than on isolated words, even though training on connected
words was performed without labels (i.e. without given word boundaries). We deduce from this that
context dependency is an important issue in EMG based speech recognition just like in conventional
speech recognition systems.

Segmentation

As already mentioned above the task of segmentation is to find the boundaries of words within an
utterance. In order to demonstrate that segmentation is a particularly important issue in EMG based
speech recognition we compared connected digits recognition results of (1) a standard system and
(2) a system whose models were initialized with the help of an audio recognizer such that an initial
segmentation was indirectly presented to the recognizer.
For this purpose we recorded Set I of the DIGITS VIII CON corpus, which consists of two sessions
from two different speakers. In each session utterances of the form “silence [6 · [digit]] silence”
were recorded such that the complete set of utterances could be divided into two disjoint sets each
containing each digit tripel at least once. Context independent models were then trained for each
digit in two different ways:

1. Standard: Training was performed as in the baseline system but with the two sets introduced
in the previous paragraph used for the round robin algorithm.

2. Audio Label Initialization: Like “Standard” but an audio based initialization of the codebooks
was choosen:

(a) An audio recognizer was used to determine a forced alignment (i.e. a segmentation) for
all utterances in the training data set. According to the word boundaries identified by the
audio recognizer the complete sequence of feature vectors extracted from the myoelectric
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signals of a given utterance was split into a set of segments each of which was associated
with either one of the six spoken digits or with silence. It should be pointed out that the
audio recognizer was configured to allow optional silence in between words.

(b) For each digit all sequences of feature vectors that were assigned to that digit by the audio
recognizer were split into ns = 5 parts of equal length (ns: number of HMM states for each
word) and the ith part was assigned to the ith state of the word model of that digit.

(c) The sequences of feature vectors corresponding to the silence at the beginning and the end
of each utterances were assigned to the silence model.

(d) segments corresponding to silence between individual digits were not included in the ini-
tialization procedure because experiments suggested to omit them. We attribute this to
the fact that the EMG signal and the audio signal are not perfectly synchronized because
muscle activity generally occurs prior to sound generation (section 6.5).

The k-means algorithm was then applied to every state of every word model using the previously
assigned feature vectors just like in the baseline system (section 6.1.3).

The recognition results for the two different initialization methods are shown in table 6.34. The space
of possible hypothesis (defined by the language model) consisted of all sequences of six connected
digits. We used a standard definition of the word error rate (WER):

WER =
#substitutions + #deletions + #insertions

#words

The word accuracy was defined as 1 − WER. Refer to [Rogina, 2003] for details.
From the fact that audio label initialization leads to significantly better results than the baseline
method we deduce that model initialization and thus segmentation in general are important issues
in connected words recognition. Moreover, experiments presented in section 6.9 indicate that seg-
mentation is a greater challenge in EMG based speech recognition systems than in conventional ASR
systems - at least in situations involving little ambient (acoustic) noise.

Method Recognition

Standard 34.7
Audio label initialization 43.1

Table 6.34: Within-session results (in %) on Set I of the DIGITS VIII CON corpus for different model
initialization methods.

It is worth mentioning here, that significantly better connected words recognition results were ob-
tained on Set I of the COMMANDS corpus (1 speaker, 1 audible session). Training and testing were
performed on word tripels (each possible tripel was seen in training) and recognition results of 97%
were achieved. These results are encouraging, yet, it should be pointed out that only two boundaries
between words had to be found instead of five so that the segmentation task was not as difficult as
in the experiments described above. Moreover, the commands vocabulary consists of only six words
instead of ten.
We assume that automatic segmentation is particularly difficult for context independent models. How-
ever, it is infeasible to train context dependent models for every possible word tripel in a large vocab-
ulary. Consequently the use of smaller units than words for EMG based speech recognition must be
explored. The following section introduces initial experiments on phoneme based speech recognition.

6.8.2 Phoneme Models

When performing continuous speech recognition it is infeasible to train a Hidden Markov Model for
every possible utterance. In order to minimize the amount of training data phoneme-models are
most commonly used in automatic speech recognition (section 2.4). In context-independent speech
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recognition, one HMM is trained for each phoneme. Words are then composed of phonemes and
sentences are composed of words.
For experimental purposes we trained phoneme models for isolated digit recognition. The phonemes
corresponding to individual digits are presented in table 6.35.
We chose Set II of the DIGITS VIII corpus (3 speakers, 1 audible and 1 non-audible session each) for
these experiments in order to determine differences in performance between non-audible and audible
speech. Within-session recognition results for both, word models and phoneme models are shown in
table 6.36. Two states per phoneme were used in both cases. The recognizers’ only difference to the
baseline system (section 6.1) was the changed topology.

Word Phonemes

one W AH N
two T UW

three TH R IY
four F AO R
five F AY V
six S IH K S

seven S EH V AX N
eight EY T
nine N AY N
zero Z IH R OW

Table 6.35: Decomposition of digits into phonemes. Phonemes that occur more than once are printed
in bold-face.

Model S1 a. S1 n-a. S3 a. S3 n-a. S7 a. S7 n-a. Avg a. Avg n-a.

word 98.5 96.8 98.8 99.8 97.5 94.5 98.3 97.0
phoneme 95.5 93.3 98.3 94.8 87.3 77.3 93.7 88.4

∆ 3.0 3.5 0.5 5.0 10.3 17.3 4.6 8.6

Table 6.36: Within-session word accuracies (in %) for word models and phoneme models on Set II of
the DIGITS VIII corpus. Results are shown for one audible (a.) and one non-audible (n-a.) session
for each speaker. The ∆ row presents the difference of row 2 (word models) and row 3 (phoneme
models).

It can be seen that performance differences between word models and phoneme models are significantly
higher for non-audible speech than for audible speech (significance level of 1.3% according to the χ2-
test). This holds even for speaker S3 whose results for non-audible speech were originally better than
those for audible speech (when word models were deployed). We deduce from this that phoneme-
models may not be the optimal choice for non-audible speech recognition.
In order to investigate the issue in more depth we examined the word accuracies for individual words
from the vocabulary for all speakers as shown in table 6.37. Moreover, confusion matrices for the
phoneme model recognizers are presented in tables 6.39 and 6.38 for the audible and the non-audible
sessions respectively.
The following observations deserve mentioning:

1. Huge performance differences between word and phoneme models exist for several words (five,
six, eight, nine) for both, audible and non-audible sessions while the performance of several words
(two, zero) is almost unaffected by the model change. Yet, there seems to be no relationship
between the change in performance of a particular digit and the number of phonemes that digit
shares with other digits.

Moreover, the confusion matrices show that the hypothesis of misclassified digits do not necessar-
ily share phonemes with the actually spoken digits. The misclassified utterances corresponding



6.8 Towards Continuous Speech Recognition 87

Word Word
models n-a.

Word
models a.

Phoneme
models n-a.

Phoneme
models a.

∆ n-a. ∆ a.

one 98.3 100.0 97.5 98.3 0.8 1.7
two 95.8 98.3 95.8 98.3 0.0 0.0

three 98.3 100.0 99.2 97.5 -0.8 2.5
four 100.0 100.0 89.2 99.2 10.8 0.8
five 97.5 100.0 89.2 95.0 8.3 5.0
six 95.8 96.7 87.5 90.8 8.3 5.8

seven 95.0 98.3 91.7 97.5 3.3 0.8
eight 92.5 95.8 50.0 70.8 42.5 25.0
nine 97.5 96.7 85.8 92.5 11.7 4.2
zero 99.2 96.7 98.3 96.7 0.8 0.0

Table 6.37: Within-session word accuracies (in %) for word models on the non-audible sessions (2nd
column), word models on the audible sessions (3rd column), phoneme models on the non-audible
sessions (4th column) and phoneme models on the audible sessions (5th column) on Set II of the
DIGITS VIII corpus. The last two columns present recognition differences between word and phoneme
models for non-audible (∆ n-a.) and audible speech (∆ a.) respectively. All results are averaged over
three speakers.

one two three four five six seven eight nine zero

one 117 1 1 1
two 115 1 1 3

three 119 1
four 2 1 107 10
five 1 7 107 1 1 3
six 3 1 105 5 1 5

seven 2 2 110 6
eight 5 2 10 4 6 11 60 15 7
nine 6 3 5 1 103 2
zero 1 1 118

Table 6.38: Confusion matrix for all non-audible sessions from Set II of the DIGITS VIII corpus (i.e.
one non-audible session per speaker) and phoneme models. Empty cells represent the value 0.

to the digits “eight”, for example are not usually classified as “two” which is the only digits
sharing a phoneme with “eight”.

Also, the decrease in performance does not seem to be related to the length (number of phonemes)
of a word, because the two shortest words “two” and “eight” show completely different behaviour.
We assume that in many cases misclassification relies to the fact that shared phonemes learn a
rather general EMG pattern which can be easily confused with any other phoneme.

2. Performance drops drastically in the non-audible session for several words while there is no sig-
nificant difference in word accuracy for the audible sessions. The digit “four” is the most obvious
example. The confusion matrices (tables 6.39 and 6.38) show that the non-audible utterances
corresponding to “four” are often misclassified as “zero” while only one misclassification occurs
for the audibly spoken “fours”. This could possibly be traceable back to the fact that mus-
cle movement corresponding to the phonemes OW and AO is similar when words are spoken
non-audibly and that a rather general speech pattern has been learnt for the phoneme R.

We suggest to perform more extensive experiments on phoneme-model based approaches to investigate
these issues in more detail. However, our results indicate that phoneme-models are not the optimal
choice for EMG based non-audible speech recognition.
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one two three four five six seven eight nine zero

one 118 1 1
two 1 118 1

three 117 2 1
four 1 119
five 1 1 1 114 2 1
six 1 4 109 3 1 2

seven 117 3
eight 2 6 3 1 2 9 85 8 4
nine 3 2 2 1 111 1
zero 1 2 1 116

Table 6.39: Confusion matrix for all audible sessions from Set II of the DIGITS VIII corpus (i.e. one
audible session per speaker) and phoneme models. Empty cells represent the value 0.

6.9 Comparison of Conventional Speech Recognition and EMG-
Based Speech Recognition

We compared the performance of our EMG based speech recognition systems to conventional speech
recognition systems by training audio based speech recognizers on the acoustic signals of sessions that
had already been used for training myoelectric signal based recognizers. Set III of the DIGITS VIII
corpus (3 speakers, 1 session each, individual digits) was chosen for isolated digits recognition and Set
I of the DIGITS VIII CON corpus (2 speakers, 1 session each, 6 connected digits) was selected for
connected digits recognition.
We used the exact same settings as for the EMG systems that had previously been trained on these sets
(section 6.7 and section 6.8.1), but replaced the frontend by a standard speech recognition frontend
(Melscale-filterbank coefficients). The word accuracies for both, the MES recognizers and the audio
based recognizers are shown in table 6.40.

Recognition Task Test set EMG
Recognizer

Audio
Recognizer

∆

isolated digit recognition DIGITS VIII, Set VI 98.1 99.9 1.8

six digits recognition,
standard

DIGITS VIII CON, Set I 34.7 89.0 54.3

six digits recognition
with audio label initialization

DIGITS VIII CON, Set I 43.1 87.9 44.9

Table 6.40: Comparison of the performance of speech recognizers based on myoelectric and acoustic
signals respectively. ∆ shows the difference.

It can be seen that similar recognition results are achieved for isolated word recognition. We assume
that this relies to the fact that the recognition task is too easy to make a useful comparison. The
difference in recognition would probably be higher for a larger vocabulary.
Connected digits recognition is much more accurate for the acoustic signal than for the EMG signal.
However, the EMG speech recognizer yields a significantly higher improvement for optimized model
initialization than the audio speech recognizer. This could be traceable back to the fact that small
segments of silence can be found in the acoustic signals in between words while we could not (visually)
detect silence (i.e. muscle relaxation) between individual digits in the EMG signals. Consequently, it
was more difficult to find an appropriate segmentation within the myoelectric signals than within the
acoustic signals. It is worth mentioning here, however, that segmentation is still a great challenge in
conventional ASR as well because many applications involve noisy environments which complicates
the segmentation task significantly.
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We deduce from our results that conventional speech recognizers outperform state-of-the-art EMG
based speech recognizers provided that there is no ambient noise. On the other hand, Chan et al.
have shown that EMG recognizers perform better than audio recognizers (at least for individual words)
in noisy environments [Chan et al., 2002a] (chapter 3). Moreover, they can be used for recognizing
non-audible speech.
In order to present applications for EMG based speech recognition we implemented two demo systems
which are introduced in the following chapter.



Chapter 7

Demo Systems

The purpose of this chapter is to introduce the two demo systems we have implemented to show the
potential of EMG based speech recognition. Section 7.1 introduces a prototype “silent” mobile phone
suitable for conducting phone calls in situtations requiring silence, e.g. in a meeting. Section 7.2
presents a prototype EMG based lecture translation system.

7.1 Silent Mobile Phone

7.1.1 Motivation

One of the major advantages of EMG based speech recognition is the fact that it does not require the
transmission of an acoustic signal. Consequently, the resulting speech is non-disturbing and allows
confidential conversation with or through a device. One possible application of electromyography in
speech is a “silent” mobile phone which can be deployed to conduct phone calls in situations requiring
silence, for example in a meeting. The phone consists of a physiological data recording system for
capturing EMG signals, an EMG based speech recognizer for translating EMG signals into speech, a
speech synthesizer (text-to-speech) that converts the hypothesis into acoustic signals and transmits
these signals to the conversational partner, and a receiver that converts incoming acoustic signals to
text which appear on a display. Alternatively, acoustic signals could be received using headphones.
The following section introduces the prototype silent phone we have implemented.

7.1.2 Prototype

We have implemented a prototype silent mobile phone consisting of the following components:

• The physiological data recording system VARIOPORT VIII introduced in section 4.1.1.

• An EMG speech recognizer trained on a set of sentences typically used for answering a phone
call during a meeting, for instance “I’m in a meeting”, “is it urgent?” and “I’ll call back later”.

• The speaker interface introduced in section 4.2.1 providing a push-to-talk button for recording
an utterance to be transmitted and a display for showing the hypothesis obtained from the EMG
speech recognizer.

• A text-to-speech module that displays the hypothesis as acoustic signals through loudspeakers.

Figure 7.1 illustrates the setup.
The EMG speech recognizer deployed by our prototype silent phone is identical to the baseline system
introduced in section 6.1. The only difference is the fact that the smallest units in the vocabulary
are complete sentences instead of words and that ten states (instead of five) are used per “word” (i.e.
sentence) in the vocabulary.
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Figure 7.1: Schematic view of silent phone prototype

We created the following scenario to demonstrate our prototype system: P. is sitting in a meeting
when he receives a phone call from L. He picks up his silent mobile phone to find out whether or not
the call is important and conducts the following short dialog without producing a sound:

P: Hello?
L: Hi Peter, this is Lena. Do you have a minute?
P: I’m in a meeting.
P: Is it urgent?
L: Not really. We can talk about it another time.
P: I’ll call back later.
L: Perfect! Talk to you later.
P: Talk to you later.’

As already mentioned above the hypothesis are output by a speech synthesizer in order to simulate
what the conversational partner would hear.
The performance of the system is discussed in the following section.

7.1.3 Performance

In order to evaluate our online recognition system we determined online (“demo-mode”) and offline
recognition results on Set I of the MEETING corpus. Offline recognition refers to round-robin within-
session testing, i.e. the round robin algorithm is applied to the respective recording session as already
explained in section 4.3.3. For demo mode recognition the system is trained on a complete recording
session. Words are then randomly picked, and recorded by the speaker using the online recognition
mode of our system (section 4.3.3).
Table 7.1 shows the results for offline and demo mode testing on Set I of the MEETING corpus using
six electrodes (EMG1-EMG6).

Recognition Session 000 Session 004

offline 97.5 99.5
demo mode 80.0 91.4

Table 7.1: Word Accuracies (in %) for demo mode and offline recognition on Set I of the MEETING
corpus (Speaker S5, two non-audible sessions) using six electrodes (EMG1-EMG6). 105 utterances
(15 per phrase in the base vocabulary) were used for demo mode testing.

The results show that offline classification generally performs better than demo mode classification.
It is worth mentioning here, that a classification error in the demo mode increased the probability of
the next utterance being misclassified. It is also noticeable that there was a significant improvement
in recognition - especially for the demo mode - in session 004 compared to 000 which is traceable back
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to increased experience of speaker S5. We observed increasing demo recognition rates with increasing
experience for speaker S3 as well.

7.2 Non-audible Speech Translator

7.2.1 Motivation

In the age of globalization, international conventions are part of everyday life for many people. Com-
munication, however, requires a common language. While English can be spoken and understood by
the majority of Europeans and thus serves a the common language in the western world, communica-
tion between certain nationalities is difficult (e.g. between Russians and Japanese people). In order to
overcome this problem, professional interpreters are being employed who translate a conversation or
a talk online. This is not only expensive but also quite inconvenient because it requires two people to
speak at the same time. EMG based speech recognition suggests a solution to this problem: The idea
is to produce a translation system that translates non-audible speech into a chosen language. That
is, EMG signals resulting from non-audible speech in a certain language (e.g. English) are captured
and recognized by an EMG based speech recognizer. The resulting hypothesis is then translated into
another language and transformed into an acoustic signal by an appropriate speech synthesizer. The
owner of such a translation system could thus give a non-audible talk in English that is translated
directly into Chinese.
The following section introduces our prototype non-audible speech translator.

7.2.2 Prototype

We have implemented a prototype non-audible speech translator consisting of the following compo-
nents:

• The physiological data recording system VARIOPORT VIII introduced in section 4.1.1

• An EMG speech recognizer trained on a set of English sentences typically used by somebody who
is giving a talk, e.g. “good morning ladies and gentlemen”, “my name is ...”, “any questions?”,
“thank you for your attention”. The system’s only difference to our baseline system (section
6.1) is the fact that the smallest units in the vocabulary are complete sentences instead of words
and that the states of a Hidden Markov Model were chosen to be proportional to the number of
syllables in the correponding sentence (two states per syllable).

• two lookup tables for translating the given set of English sentences into German and Spanish
respectively.

• Three speech synthesizers (text-to-speech) that can display English, German, and Spanish hy-
pothesis respectively.

Figure 7.2 illustrates the setup.
In order to demonstrate the system the user can choose a language of his or her choice. He or she then
conducts the following monologue which is translated directly into the chosen language and output
by a speech synthesizer.

S: Good afternoon, ladies and gentlemen!
S: Welcome to the Interact Center.
S: My name is Stan Jou.
S: Let me introduce our new prototype.
S: explains that the body of the talk would follow here
S: Any questions?
S: Thank you for your attention.

The performance of the system is discussed in the following section.
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Figure 7.2: Schematic view of our lecture translator prototype. The German translation is activated.

7.2.3 Performance

Offline classification results for the prototype translator ranged from 99.1% to 99.6% for the sessions of
Set I of the LECTURE corpus. In a demo mode experiment, all thirty-five randomly spoken sentences
(five for each sentence in the base lecture vocabulary) were classified correctly (Set I of the LECTURE
corpus). We attribute the better classification results compared to the MEETING demo to the greater
lengths of the sentences in the vocabulary.



Chapter 8

Summary, Conclusions and Open
Issues

8.1 Summary and Conclusions

In this thesis we have presented a state-of-the-art isolated word EMG based speech recognizer that
outperforms previously developed systems on the ten English digits vocabulary. Moreover, we dealt
with issues that have not yet been addressed in the literature, namely with session dependence,
the comparison of non-audible and audible speech, connected digits recognition and phoneme based
approaches. In order to demonstrate the practicability of the new technology we have further presented
two demo systems showing different applications of speech recognition based on myoelectric signals.
Our baseline isolated word recognition system was developed based on various experiments on electrode
positioning, feature extraction and Hidden Markov classification. The system deploys seven surface
electrodes placed in various positions on the face and the neck and yields within-session accuracies of
97.3% on the ten English digits vocabulary. Comparative experiments indicate that applying more
than two electrodes is crucial, while using more than five electrodes does not lead to significant
performance improvements.
To cope with the issue of session dependence, we have investigated a variety of signal normaliza-
tion and model adaptation methods. Our results suggest that methods used in conventional speech
recognition systems for channel and speaker adaptation can be used for session adaptation in EMG
based speech recognizers. Sharing training data across sessions and applying methods based on Vari-
ance Normalization and Maximum Likelihood Adaptation improve across-sessions performance. We
achieved an average word accuracy of 97.3% for within-session testing using seven EMG channels.
Naive across-sessions testing - i.e. across-sessions testing without normalizations or adaptations -
yielded an average of 76.2%. By applying our normalization and adaptation methods we were able to
bring recognition rates back up to 87.1%, which corresponds to a relative improvement of 14.3%. Gains
were even higher (18.5%), when individual channels were used. This is important for applications in
everyday life because it is infeasible to train an ASR system prior to every usage.
Furthermore, our experiments indicate significant differences between the muscle movement corre-
sponding to non-audible and the muscle movement corresponding to audible speech. Despite this,
it is possible to merge training data to obtain a recognizer that deals accurately with both speech
manners.
In order to move towards continuous speech recognition we have performed experiments on connected
digits recognition and on phoneme based recognition. The results indicate that segmentation and
context dependency are major issues in EMG based continuous speech recognition and that classical
phoneme models are not the appropriate choice for the recognition of non-audible speech.
Furthermore, we compared the performance of conventional speech recognition systems to the perfor-
mance of EMG based speech recognition systems in environments with a minimum of ambient noise.
While recognition results on isolated words were similar, the conventional speech recognizer performed
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significantly better on connected digits than the EMG based recognizer. We attibute this to greater
context dependencies between individual words in the myoelectric signals which makes segmentation
for the MES recognizer more difficult.
In order to demonstrate the practicability of EMG based speech recognition two demo systems have
been implemented showing possible applications of the new technology: a prototype “silent” mobile
phone suitable for conducting non-disturbing phone calls in situations requiring silence (e.g. in a
meeting) and a prototype lecture translation system that can be applied for an online-translation of
parts of a non-audibly spoken talk in English into a language of one’s choice. Both systems were
trained on a set of sentences typical for the respective application. Hypotheses are output by speech
synthezisers in the selected language.
The presented results are very promising but several limitations still need to be overcome. The
following section presents our suggestions for future work.

8.2 Open Issues

One of the main challenges of EMG based speech recognition is to move beyond discrete speech
recognition and approach continuously spoken large vocabulary tasks. Conventional speech recognition
system use phonemes as basic units, yet, our results indicate that classical phonemes are not the
optimal basic units for speech recognizers based on myoelectric signals. Several phonemes, for example,
are exclusively distinguished by the fact that they are voiced or unvoiced (i.e. if there is a vibration
of the vocal cords or not). When non-audible speech is deployed, however, there is no vibration of
the vocal cords. Consequently, we suggest to identify a set of speech units that can be characterized
by features detectable in electromyographic signals. Whether or not myoelectric signals resulting from
non-audible speech are rich enough to disambiguate all words and handle the full richness of a given
language remains to be seen.
Another challenge associated with EMG based speech recognition is further the development of more
user-friendly data recording systems. The use of sensors that do not require physical contact with
the skin and could possibly be integrated in the collar of a shirt is being investigated by Jorgensen
et al. [Jorgensen and Binsted, 2005]. The finger electrodes introduced by [Manabe and Z.Zhang,
2004] (section 3.5) are also considerably more user-friendly than classical surface EMG electrodes and
deserve further research activity.
Finally, the issue of speaker independency must be addressed. This goal requires reliable electrode
placement across speakers as well as the investigation of normalization and adaptation methods to
compensate for variation in speaking style and speaking rate. It is worth mentioning here, however,
that possible applications of EMG based speech recognizers focus on personal devices so that speaker
independence is not a major issue.
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Data Collection Procedure

All signal data used for our experiments was collected in so-called recording sessions. A recording
session is defined as a set of utterances collected in series by one particular speaker. All settings
(channels, sampling rate, speech mode) remain constant during a session. Data collection consists of
the following steps:

1. Application of electrodes: The surface electrodes are positioned on the user’s face (e.g. using
tape measure or gypsum masks). Individual electrodes must be removed and re-applied until all
channels yield good-looking signals.

2. Choosing settings: the following settings have to be made prior to starting the recording:

• a set of channels along with appropriate sampling rates is selected

• a word list is loaded containing all utterances the speaker is to record during the session.

• A unique ID (three digits) is entered for the speaker.

• the session number (four digits) is entered. It is equal to the total number of sessions
previously recorded by that speaker. Consequently, each tuple (speaker ID, session number)
corresponds to exactly one session and vice versa.

• the first utterance number for the session is entered. It is equal to the total number of
utterances collected by the corresponding speaker. Thus each tuple (speaker ID, utterance
number) corresponds to exactly one recorded utterance and vice versa.

3. Data recording: The speaker records one file set for each word in the word list using the push-
to-talk button of the speaker interface. For each channel a .txt file is stored containing the
transmitted time domain values in ASCII code. The values from all channels are additionally
stored in a .adc file which is interpretable by janus. The directory and file structure is shown
in figure A.1. After each recording the utterance number is automatically incremented and the
next word from the word list is presented to the speaker.

4. Generation of transcript file: When all utterances have been recorded a transcript is (automat-
ically) created for the session (button create transcript).

5. Generation of settings file: All settings are stored in a file. A sample settings file is given in
appendix C.



97

Figure A.1: Directory and file structure for data recording session 049 from speaker 003 (S3)



Appendix B

VC++ Control Component

The control component of our VC++ software determines the general workflow. When the PC is
connected to a physiological data recording system, the software can communicate with that system,
initiate/stop data recording, and receive data.
The software can be in one of three states:

1. Raw : the raw mode was designed for experimental purposes. The software can communicate
with the recorder and visualize incoming data without storing it.

2. Data Collection: The data collection mode was designed for producing complete recording ses-
sions. Section 4.3 describes the corresponding workflow.

3. Recognition: In the recognition mode EMG signals are recorded and classified by a selected
EMG speech recognizer. Section 4.3 describes the corresponding workflow.

In each mode, various settings can be chosen. They include

• Channel selection: A subset of all channels provided by the physiological data collection system
can be selected. Only the values corresponding to the selected channels are transmitted over
the serial port.

• Sampling rate: A sampling rate for the physiological signals can be chosen.

• Word list: In the data collection mode a word list can be selected, consisting of the utterances
a speaker has to record in the corresponding session. The words can either be presented to the
speaker in the same order as in the word list file or be randomized.

• Visualization: The incoming data can optionally be visualized.

• Audio data: An additional acoustic channel can optionally be recorded. Sampling rate and
resolution can be selected.

• Synchronization: The marker channel can optionally be deployed for synchronizing the acoustic
channel with the remaining channels: The PC is connected to the marker input of the recorder.
When an audio recording is started the values of the marker channel are changed from 0 to a
value ! = 0 by the software.

• Translation: In the recognition mode it is possible to select a language to which the hypothesis
is translated to.

For a more detailed description refer to [Mayer, 2005].
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Example Settings file

GENERAL INFORMATION
——————————————-
Speaker name: Peter Osztotics
Speaker ID: 003
Session: 052
Date: 30.05.2005
Time: 19:25 - 19:48
Software version: V2.03

CHANNEL INFORMATION
——————————————-
Channels recorded: EMG1 EMG2 EMG3 EMG4 EMG5 EMG6 EMG7
Number of channels: 7
Sampling rate: 0.60 kHz

Electrode positions:
EMG1: P22-P23
EMG2: P35-P38
EMG3: P17
EMG4: P42
EMG5: P28
EMG6: P46-47
EMG7: P51-52
GROUND: LEFT WRIST
REF1: LEFT EAR
REF2: RIGHT EAR

Electrode types:
EMG1: BIPOLAR
EMG2: BIPOLAR
EMG3: UNIPOLAR
EMG4: UNIPOLAR
EMG5: UNIPOLAR
EMG6: BIPOLAR
EMG7: BIPOLAR
GROUND: ARBO H99LG
REF1: LE
REF2: RE
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Signal quality: GOOD

VOCABULARY
——————————————-
Domain: DIGITS
Connected: NO
Wordlist: digits 40 randomized.wdl

ID INFORMATION
——————————————-
IDs recorded: 00320720 - 00321159 (440 IDs)
Corrupts IDs: -
Bad Signal IDs: -
Comparable sessions: -
Sessions with exactly the same electrode placement: 051

AUDIO INFORMATION
——————————————-
Speech audible: Yes
Audio sampling rate: 16.0 kHz
Synchronization: NONE

COMMENT
——————————————-



Appendix D

Listing of all recording sessions

D.1 Sessions from speaker S0

Table D.1: Listing of all sessions from speaker S0.

Session
Number

Word List Audible Electrode
Positions

Corpus Comment

000 no and accept 15.wdl yes M INITa
M INITb

PHONE INIT M INITa: next
to larynx; right
side; inner elec-
trode.
M INITb: next
to larynx; right
side; outer elec-
trode.

001 phone 10.wdl yes M INITa
M INITb

PHONE INIT -

002 phone 80.wdl yes M INITa
M INITb

PHONE INIT -

003 phone 30 ohne sil.wdl no M INITa
M INITb

PHONE INIT -

004 phone 50.wdl yes P1
P2

PHONE -

005 phone 40.wdl yes P1
P2

PHONE Marker was
used in order
to obtain same
placement as
in session 004.
Bad signal
quality.

006 phone 50.wdl yes P1
P2

PHONE -

Continued on next page
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Table D.1 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

007 phone 30.wdl yes P1
P2

PHONE Marker was
used in order
to obtain same
placement as in
session 006.

008 phone 60.wdl yes P1
P2

PHONE -

009 phone 50.wdl yes P1
P2

PHONE -

010 demo 30.wdl yes P1
P2

MEETING -

011 demo 30.wdl no P22-P23
P32
P17
P16
P42
P5

MEETING Electrode
EMG2 (P32)
lost contact
during session.

012 demo dialog.wdl no P22-P23
P32
P17
P16
P42
P5

MEETING Electrode
EMG2 (P32)
lost contact
during session
11.
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D.2 Sessions from speaker S1

Table D.2: Listing of all sessions from speaker S1.

Session
Number

Word List Audible Electrode
Positions

Corpus Comment

000 phone 10.wdl yes L INITa
L INITb

PHONE INIT L INITa: next
to larynx; right
side; inner elec-
trode.
L INITb: next
to larynx; right
side; outer elec-
trode.

001 phone 10.wdl yes L INITa
L INITb

PHONE INIT -

002 phone 70.wdl yes L INITa
L INITb

PHONE INIT -

003 phone 20.wdl no L INITa
L INITb

PHONE INIT -

004 phone 40.wdl yes L INITa
L INITb

PHONE INIT -

005 phone 35.wdl yes P1
P2

PHONE -

006 phone 40.wdl yes P1
P2

PHONE -

007 phone 40.wdl yes P1
P2

PHONE Positions from
006 marked and
re-used.
Bad signal qual-
ity. Electrodes
possibly lost
contact.

008 phone 40.wdl yes P1
P2

PHONE -

009 phone 50.wdl yes P1
P2

PHONE -

010 digits 30.wdl no P22-P23
P24-P25
P45 b
P29 b
P28
P27

DIGITS VIII POS -

Continued on next page
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Table D.2 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

011 digits 30.wdl no P5
P4
P7
P8
P3
P6
P46-P47

DIGITS VIII POS -

012 digits 30.wdl no P17
P16
P36
P43
P37
P15
P39

DIGITS VIII POS -

013 digits 30.wdl no P42
P41
P33-P34
P31
P32
P40
P35-P38

DIGITS VIII POS -

014 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

015 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

016 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

Continued on next page
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Table D.2 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

017 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

018 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -
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D.3 Sessions from speaker S2

Table D.3: Listing of all sessions from speaker S2.

Session
Number

Word List Audible Electrode
Positions

Corpus Comment

000 phone 2.wdl yes MH INITa
MH INITa

PHONE INIT -

001 phone 45.wdl yes MH INITa
MH INITa

PHONE INIT -
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D.4 Sessions from speaker S3

Table D.4: Listing of all sessions from speaker S3.

Session
Number

Word List Audible Electrode
Positions

Corpus Comment

000 phone 60.wdl no P1
P2

PHONE -

001 phone 40.wdl yes P1
P2

PHONE synchronization
not optimal.

002 phone 50.wdl yes P1
P2

PHONE synchronization
not optimal.

003 phone 60.wdl no P1
P2

PHONE -

004 phone 50.wdl yes P1
P2

PHONE synchronization
not optimal.

005 phone 50.wdl no P1
P2

PHONE -

006 phone 50.wdl yes P3
P4

PHONE synchronization
not optimal.

007 phone 50.wdl no P3
P4

PHONE -

008 digits 50.wdl yes P3
P4

DIGITS II synchronization
not optimal.

009 digits with call end 50.wdl yes P3
P4

DIGITS II synchronization
not optimal.

010 digits with call end 50.wdl no P3
P4

DIGITS II -

011 connected digits test 3.wdl yes P3
P4

DIGITS II synchronization
not optimal.

012 digits with call end 50.wdl yes P3
P4

DIGITS II synchronization
not optimal.

013 digits with call end 50.wdl no P3
P4

DIGITS II -

014 digits with call end 50.wdl no P3
P4

DIGITS II -

015 call 2digits end 5.wdl yes P3
P4

DIGITS II -

Continued on next page
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Table D.4 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

016 call 6digits end 5.wdl yes P3
P4

DIGITS II -

017 digits with call end 50.wdl no P3
P4

DIGITS II -

018 digits with call end 50.wdl yes P3
P4

DIGITS II -

019 call digit end 50.wdl yes P3
P4

DIGITS II -

020 digits with call end 50.wdl yes P3
P4

DIGITS II -

021 digits with call end 50.wdl yes P3
P4

DIGITS II -

022 digits with call end 50.wdl yes P3
P4

DIGITS II Bad signal
quality because
electrode con-
tact changed
during record-
ing.

023 digits with call end 50.wdl no P3
P4

DIGITS II Bad signal
quality because
electrode con-
tact changed
during record-
ing.

024 digits 30 10sil.wdl yes P4
P3
P5 b
P6 b
P7 b

DIGITS VIII INIT No audio files
recorded (cor-
rupt).
Amplification
too high.

025 digits 30 10sil.wdl no P4
P3
P5
P6
P7

DIGITS VIII INIT Amplification
too high.

026 digits 30 10sil.wdl yes P3
P9
P10
P11
P13-P12
P44

DIGITS VIII INIT Amplification
too high.

Continued on next page
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Table D.4 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

027 digits 30.wdl no P17
P16
P21-P20
P18-P19
P14
P15

DIGITS VIII INIT -

028 digits 30.wdl yes P17
P16
P21-P20
P18-P19
P14
P15

DIGITS VIII INIT Electrode con-
tact changed
during session
(all channels
bad)

029 digits 30.wdl no P22-P23
P24-P25
P26
P27
P28
P29
P30

DIGITS VIII INIT Electrodes
EMG4 and
EMG6 lost
contact during
session. EMG3
and EMG5 not
so good either.

030 digits 30.wdl yes P22-P23
P24-P25
P26
P27
P28
P29
P30

DIGITS VIII INIT Electrodes
EMG4 and
EMG6 lost
contact during
session 029.
EMG3 and
EMG5 not so
good either.

031 digits 30.wdl no P5
P4
P7
P8
P3
P6

DIGITS VIII POS -

032 digits 30.wdl yes P5
P4
P7
P8
P3
P6

DIGITS VIII POS -

Continued on next page
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Table D.4 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

033 digits 30.wdl no P42
P41
P33-P34
P31
P32
P40

DIGITS VIII POS -

034 digits 30.wdl yes P42
P41
P33-P34
P31
P32
P40

DIGITS VIII POS -

035 digits 30.wdl no P17
P16
P36
P34
P37
P15

DIGITS VIII POS -

036 digits 30.wdl yes P17
P16
P36
P34
P37
P15

DIGITS VIII POS -

037 digits 30.wdl no P22-P23
P24-P25
P45 b
P29 b
P28
P27

DIGITS VIII POS -

038 digits 30.wdl yes P22-P23
P24-P25
P45 b
P29 b
P28
P27

DIGITS VIII POS -

039 demo 10wds 20sil 35.wdl no P24-P25
P22-P23
P28
P42
P32
P17
P5

MEETING -

Continued on next page
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Table D.4 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

040 digits 40 20sil.wdl no P24-P25
P22-P23
P28
P42
P32
P17
P5

DIGITS VIII INIT -

041 digits 40 20sil.wdl yes P24-P25
P22-P23
P28
P42
P32
P17
P5

DIGITS VIII INIT -

042 demo 10wds 20sil 35.wdl no P22-P23
P24-P25
P28
P42
P32
P17
P5

MEETING -

043 digits 40 20sil.wdl no P22-P23
P24-P25
P28
P42
P32
P17
P5

DIGITS VIII INIT -

044 digits 40 20sil.wdl yes P22-P23
P24-P25
P28
P42
P32
P17
P5

DIGITS VIII INIT -

045 demo dialog 7wds 35.wdl no P22-P23
P24-P25
P28
P42
P32
P17
P5

MEETING All ADC files
wrong because
of change in
the software.
Session not
usable!

Continued on next page
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Table D.4 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

046 demo dialog 7wds 45.wdl no P22-P23
P24-P25
P28
P42
P32
P17
P5

MEETING -

047 demo dialog 7wds 40.wdl no P22-P23
P24-P25
P28
P42
P32
P17
P4

MEETING -

048 demo dialog 7wds 45.wdl no P22-P23
P24-P25
P28
P42
P32
P17
P4

MEETING Marker from
session 047
(previous day!).

049 digits 30.wdl no P35-P38
P46-P47
P39
P17
P4
P50
P48-P49

DIGITS VIII POS -

050 digits 30.wdl yes P35-P38
P46-P47
P39
P17
P4
P50
P48-P49

DIGITS VIII POS -

051 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

Continued on next page
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Table D.4 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

052 digits 40.wdl yes P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

053 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

054 commands tripels.wdl yes P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

COMMANDS -

055 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

056 6connected digits.wdl yes P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII CON -

057 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII signals for
EMG6 were
bad.

Continued on next page
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Table D.4 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

058 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -
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D.5 Sessions from speaker S4

Table D.5: Listing of all sessions from speaker S4.

Session
Number

Word List Audible Electrode
Positions

Corpus Comment

000 demo dialog 7wds 35.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

MEETING EMG1 and
EMG5 were
placed on
beard.

001 demo dialog 7wds 35.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

MEETING Speech was
whispered.
EMG1 and
EMG5 were
placed on
beard.
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D.6 Sessions from speaker S5

Table D.6: Listing of all sessions from speaker S5.

Session
Number

Word List Audible Electrode
Positions

Corpus Comment

000 demo 7wds 30.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

MEETING -

001 lecture 14wds 30.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

LECTURE -

002 lecture 7wds 30.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

LECTURE -

003 lecture 7wds 30.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

LECTURE -

004 demo 7wds 35.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

MEETING -

Continued on next page
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Table D.6 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

005 demo dialog 7wds 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

MEETING Speaking rate
was different
(faster) than in
related sessions
000 and 004.

006 6connected digits.wdl yes P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII CON -

007 demo dialog 7wds 45.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

MEETING Speaking rate
was different
(faster) than in
sessions 000 and
004.
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D.7 Sessions from speaker S7

Table D.7: Listing of all sessions from speaker S7.

Session
Number

Word List Audible Electrode
Positions

Corpus Comment

001 phone 40 sil 40.wdl yes P1
P2

PHONE INIT -

002 digits 30.wdl yes P3
P9
P10
P11
P13-P12
P16

DIGITS VIII INIT Amplification
too high.
Device crashed
many times.

003 digits 30.wdl no P3
P9
P10
P11
P13-P12
P16

DIGITS VIII INIT Amplification
too high.
Device crashed
many times.
Electrode con-
tact got worse
during session.

004 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII Amplification
too high.

005 digits 40.wdl yes P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII some audio files
corrupt be-
cause of wrong
microphone
settings (up to
approximately
utterance 1800).

006 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII EMG2 was
supposed to be
35-38 but was
38-35; subject
felt tired from
about utt id
0072040 to
utt id 0072180

Continued on next page
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Table D.7 – continued from previous page
Session
Number

Word List Audible Electrode
Positions

Corpus Comment

007 digits 40.wdl yes P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII EMG2 was sup-
posed to be 35-
38 but was 38-
35; subject felt
exhausted dur-
ing whole ses-
sion.

008 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

009 digits 40.wdl yes P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

010 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -

011 digits 40.wdl no P22-P23
P35-P38
P17
P42
P28
P46-P47
P51-P52

DIGITS VIII -
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