Karlsruher Institut fur Technologie

Neuronale Netze

Neural Networks for Image Processing

Joshua Winebarger & Christian Mohr
10.01.2012



Karlsruher Institut fur Technologie

Outline of presentation

® Intro. to Image Processing

® Traditional issues & techniques in image processing

® Fundamental techniques
® Point Processing
® Filtering / Masking
® Transforms
® Applications
® Edge Detection
® Resampling

® Example Systems

® Face detection
® Focus of Attention
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Sources

® Portions of this lecture were taken from the following sources:

® The EECE/CS 253 Image Processing lecture series by Richard Alan
Peters Il at Vanderbilt University School of Engineering (marked with a *)

under a creative-commons license
® The « Visuelle Perzeption fur Mensch-Maschine-Interaktion » lecture

series by Mika Fischer and Rainer Stiefelhagen of the Karlsruhe Institute
of Technology (marked with a 1)
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INTRO TO IMAGE PROCESSING
& UNDERSTANDING



Applications of Image Processing A\‘(IT

® Medical diagnoses
® Object detection
® Edge Detection
® Image restoration
® Denoising

® Robotics

® Scene analysis

® Obiject identification

® Transform-Invariant
features

| Security
® Person detection
® Face recognition

® Photography

® Automatic brightness
and contrast correction

® High-Dynamic Range
Photography

@ Astronomy
& Military

® Target identification
® Forensics



Image Understanding i ot

@ Pattern recognition — ID of objects

@ Conventional pattern recognition:

® Observation vector mapped onto a feature
space

® Decision Process: Partitioning of feature
space



Image Formation e i o

®Image formed is combination of:
® Geometry of object and rotation

B Surface properties of object (color,
texture)

@ Lighting intensity, color, position
® Perspective of viewer
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How is an image formed?*

. Image Formation

projection
through lens

image of object



How is an image formed?>* &= b

real image sampled quantized sampled &

quantized



How is an image formed?>* &= bt

. Image Formation

continuous colors, | I Y\ % |
discrete locations.

discrete real-
valued image
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Composition of a Digital Image*

each square is
called a pixel (for
picture element)

intensity



Fundamental techniques in traditional image \\‘(IT
processing e et

® Point Processing
® Perform operations on each pixel independent of neighboring
pixels
® Filtering / Masking - Convolution in 2D

® Perform operations on pixels, taking into account values of other
pixels

® Applications:
® Edge Detection
® Resampling

® Frequency-Domain Analysis
® Fourier Transform in 2D

® Conversion of image into Frequency Domain representation
® Applications: Feature Extraction



Point Processing i ot

® Perform an operation on a pixel’s value as a
function of this value alone

® Independent of value sof the pixel's neighbors

® Examples:
® Brightness and contrast adjustment
® Gamma correction
® Histogram equalization
® Color correction



Point Processing®

histogram mod - contrast original + contrast histogram EQ
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Histogram of a greyscale image*
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Histogram of a Greyscale Image*

2932 2454 2343 2125 2151 2237 2500 2937 3131 4859 9026 12709 11389 3896 244 603

PIOt Of hiStogram Ml) M2) M3) M4A) AS) M6) MT7) AB) k9) A10) A11) A(12) A(13) A(14) A(15) A(16)
number of pixels with intensity g SR G e el e el i Gl e Sl

g=9 . g=4. =R, 1.° o T
a7 . 7
Pty ot PN et e Black marks
AN B RE A BE pixels with
£ 3 ’ s, €4
+ $93)) 2454 3343 /3125 intensity g
e (Lo (LR [T
e \ "/“" R o GEN
7 /l - 7 i ) -\
VoS _;)_' = :r !E& \‘{ ‘Z:;f \f
3151 2037 € oagsool € Aosy




SKIT

Point Operations via Functional Mappings*
mage: | 1| 520 |17} J=<bm|
Input Output
Pixel: I(I/',C) l—' function, fI—* J(I",C) I If I(r,c) =g
and f(g)=k

The transformation of image I into image J is
accomplished by replacing each input intensity, g, with
a specific output intensity, k, at every location (7,c)
where I(r,c) = g.

. ] . The rule that associates k£ with g is usually
A functional mapping is often specified with a function, f, so that /'(g) = .

implemented by a look-up
table (LUT)



Look-Up Table Operations* e e ot

- E.g.:| index | value
@\

= 101 64

S 102 | 68

5 = 103 | 69

o

§ 104 70

e 105 70
o L 106 71
0 127 255

input value input output
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Point Processing: Increase Brightness*

255

~
a
gl
“ saturation point
o L
0 127 255

transform mapping




SKIT

Point Processing: Increase Contrast*

255

zero point

127

sat. point

0 127 255
transform mapping




Point Processing: Histogram Equalization®* = == b

® Remap image so its histogram is as close to
constant as possible

@ CDF of image is used as conversion LUT

Luminance Histogram of Original Image

1500 -

1000 -

500 -

_— S— — - —l —e
50 100 150 200 250

Luminance Histogram of Equalized Image
T T

100 150 200 250




Point Processing: Histogram Equalization®* = == ot

® Defines a mapping of gray
levels p into gray levels q such
that the distribution of g is
close to being uniform

® Stretches contrast (expands
the range of gray levels)

® Transforms different input
Images so that they have
similar intensity distributions
(thus reducing the effect of
different illumination)

® Fast algorithm exists,

® Transformation can be defined
in terms of the cumulative
histogram




Point Processing: Histogram Equalization® e i et
® The probability of an occurrence n;
of a pixel of level i in the image is plr;)=—,i0,...,L —1
n

p(x;): define c as the cumulative
distribution function:

create a transformation of the
form:

" y=T(x)
will produce a level y for each
level x in the original image, such
that the cumulative probability
function of y will be linearized
across the value range.

L: number of gray levels, n;:
number of occurences of gray
level

c(i) =) p(z;)
j=0

yi = T(z;) = c(7)

(Yi € [091])

/ . - e .
Y; = ¥; - (max — min) + min

(y'; € [min, max])
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Point Processing: Histogram Equalization®

Unequalized image

s

100 150 200

o
g

Equalized image

Corresponding Histograms



Linear Filtering i s

® Modify a pixel’'s value to be some
combination of the values around it

@ Typically done using convolution with a
Kernel



Convolution in 2D A\‘(IT

Karlsruher Institut fur Technologie

J(rc)z I*h 221 r—1i,c— ] (])

i=—s j=

® /is the input image, J is the resulting image
® h is the kernel

® Three methods in practice:

® Moving window
® Shift, multiply, and add
® Frequency domain



Convolution in 2D: Moving Window e e ot

® Consider a 3x3 image

window:

81
84
87

® Convolution Kernel:

8
8s
8s

83
86
89

® Replace center pixel
with weighted average:

9
85 = zgiwi
i=I

@ Slide window over
original image



Convolution in 2D: Shift-Multiply-Add* A\‘(IT

® The image is copied 1 time for each element in the
convolution mask.

® Each copy is shifted relative to the original by the
displacement of its associated mask element.

® Each copy is multiplied by the value of its
associated mask element.

® The set of shifted and multiplied images is
summed pixel wise.
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Convolution in 2D: Convolution by Five Impulses

I%é(r+16,c+16) I%é(r+16,c—16)

Five copies, four moved,
one not moved, averaged.



Convolution Example: 9x9 Blur* =5 b
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® Useful in certain types of noise reduction, deblurring, and image
restoration

® Useful in feature detection and enhancement

Fourier Transform in Image Processing



Fourier Transform in 1D — R E

(® OO

H(f)=| h(1)e’™dr  time — freq

h(t)

® OO

H(f)e?™dr freq — time

o —o0

This 1s a sum of sine and cosine functions extending to infinity

e’™ = cos(27 ft)+isin(27 ft)

H(f)= j:h(t)cos(ant)dt + ij:h(t)sin(znft)dt



DFT in 1D

® DFT for signals in discrete
time and frequency

® n measured complex
values for time or frequency
series

® Transform produces n such
values

® Dot product of data with
sine & cosine

@ Strength of component of
time series which repeats f
times in interval t=[0,n-1]
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n—1 l.27l'tf
H[f]z h[t]e "

=0

n—l —isz
TEY T

£=0



DFT in 1D AT
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@ fwd. & rev. xfm. can be accomplished with same
algorithm
® fwd. xfm. for rev. xfm.:
® cpx. conj. = fwd. xfm. = cpx. conj. = divide by n

®FFT

® DFT: O(n?) multiplications & additions

® FFT (if nis power of 2):
O(n log (n))



Aliasing & Nyquist Frequency A\‘(IT

@ Aliasing & Nyquist limit:
® High-frequency
component takes on
character of non-
existent low-freq

component ‘ \ \

the sampling frequency M U\w J | . U \l:l \_

-> highest frequency
which can be
reconstructed

@ Corresponds to H[n/2]
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Positive & Negative Frequencies @~ =50 bttt

H@)| f=0 /\

H(1) | f=1

:

Positive frequencies

H(n2)| f=n/2

Negative frequencies

—

H(n-Q)H fiz-2

H(n-1)| f=-1 V




Fourier Transform in 2D — R E

® Dealing with values in a plane, we need a two-dimensional Fourier
basis function:

—2 ﬂ(ux+vy)

® Fourier and inverse fourier transform use double integral:

oo o0

F(u,v)= f J.f(x,y)e_ﬂ”(”“vy) dxdy

—00 —0OQ

oo o0

f(x,y)= J J. F(u,v)eiz’r(”my) dudv

—00 —OO

® Assumption that function exists in infinte plane



DFT forimages =5 o

® Assumption that image exists on a torus!

® Image / has the following DFT:

14 _,M(LE)
(v,u)= Zl(r,c)e ko C
RC e
® and inverse DFT
oa{72)
I[(r,c)= =(vu)e €



2D Sinusoids*

® The basis function is a complex 2D sinusoid

iiz—n(vrﬂtc) ii%(r sinB+ccos0)

e N =e
® where
N

v=0sind, u=wcosf, ©=+v’+u’, O=tan”' (%), A=—
0)]
® Dby Euler’s relation:

+i2 71(rsinO+ccos 2 . . . 2 .
ti2malrsindrecosd) =cos[%(rsméwccos@)}izsm[%(rsméHccosQ)}

® The real and imaginary parts are sinusoidal « gratings »
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2D Sinusoids* A“(IT

) \/ ‘\
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| | $ amplitude A4
>

period A



The Fourier Plane and the value of a Fourier ﬂ("‘

Coefficient*
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Fourier Plane

U

- Note that the wave -

front direction =6
only if R=C.
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Example FT of an Image*

I log{|&{L}[*+1} Z[§{1}]



Importance of Magnitude & Phase* =55 b

|/ ) 2 _
W T w
| |

N



Magnitude-Only Reconstruction
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Fourier-Domain Feature Extraction

® Scale and rotation invariant features are very useful in object
recognition
® [dea:
® Sample FT plane with wedge-shaped elements:
® Rotational information captured

® Sample FT plane with ring-shaped elements
® Scale information captured



Karlsruher Institut fur Technologie

TRADITIONAL IMAGE
PROCESSING TECHNIQUES



Edge Detection == b

® [solate edges or make them more visually prominent

® Increase grey-level difference between boundaries of two more
homogenous regions

® Useful in object detection
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Line Edge vs Step Edge
® Line Edge:
wl| /) ® Second derivative
J/_&’ max. at edge )
" m Step edge )

® First derivative max.
at edge point

atx) ® Detect edges in image:
“1 % ® Fix threshold on first —5—

o and second )

derivatives
| ga,nz2T
s?,zu)}‘ g,(l,]) < T jxfz(x)
| ® Directions:

{ f\\//\ x ® Vertical vs. Horizontal _/\

® Vertical & Horizontal \/ x
@ Difficulty with noise




Edge detection operators i e
® Laplacian

g'(i.j)=abs[ 4g(i.j)—g(i+1.j)—g(i+1j)—g(i-1j)-g(i.j—1)]

® Gradient

¢ (i) =[ (i)~ (i i~V +[2(i.))-2(i=1.)T

® Robert

g'(i,j)= abs[g(i,j)—g(i+1,j+1)]




Edge Detection with Convolution
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® Edge detection can be implemented with 2D convolution

_— N

-1
—1

Masks for Sobel edge operator

Masks for Kirsch operator
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Edge Detection: Laplacian Example*




Edge Detection: Laplacian Example*




1 B\
Res a m p I I n g Karlsruher Institut fur Technologie

® Reduce or Englarge size of image

® Process of estimating intermediate values of a
continuous function from discrete samples

® Several Techniques:
® Replication
® Decimation
® Nearest-neighbor resampling
® Bilinear
® Bicubic
® Cubic spline
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Replication & Decimation

Replication by factor of N Decimation by a factor of N
@ Start with blank N times the ® Take every Nth pixel in
linear dimension of the every Nth row
original
@ Fill in every NxN block with
the value of every Nth pixel
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Nearest-Neighbor Resampling®

Nearest
Neighbor
Resampling

The “Nearest Neighbor” algorithm 1s
a generalization of pixel replication
and decimation.

It also includes fractional resizing,
i.e. resizing an image so that it has
p/q of the pixels per row and p/q of
the rows 1n the original. (p and g are
both integers.)
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Nearest-Neighbor Resampling* =\\11
Nearest 3/7 resize |
Neighbor

Resampling

Zoom in for a
better look
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Nearest-Neighbor Resampling* = Z5LARA
Nearest 3/7 resize |
Neighbor
Resampling

puxel squares



Nearest-Neighbor Resampling*
Nearest 3/7 resize
. -] .
Neighbor :
Resampling -
[
e : El[ i |
- 5
%
- O E? ] ?:] =
B[] O .
ahalag “Nap: “=gs ;-
In yellow: 3 pixels | -
s

! iy, R for every 7 rows,
et DL R | B8, 3 pixels for every
7 cols.
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Nearest-Neighbor Resampling*
Nearest 37 st |
Neighbor
Resampling

_Ke_ep T;\e
highlighted
pixels...
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Nearest-Neighbor Resampling* =5 A1
Nearest 3/7 resize |
Neighbor
Resampling

3/7 times the 7
linear dimensions
of the original
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Resampling Example

Size Reduction 3/7

original
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Resampling Example

Size Reduction 3/7 (zoomed)

nearest neighbor
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Resampling Example

S1ze Reduction 3/7 (zoomed)

bilinear



Resampling Example

S1ze Reduction 3/7 (zoomed)

bicubic

rrrrrrrrrrrrrrrr
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NEURAL NETWORKS IN IMAGE
PROCESSING



Why ANNs A\‘(IT
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Most prominent problems in image processing are
already solved by classical methods

So: Why use ANNs in Image Processing?

Useful in problems for which no mathematical
solution exists

« Cheaper and easier to let a ANN find a
solution than to analyze a problem and design
an algorithm

Computational Speed
 ANNSs are often faster themselves
* They are easy to implement in parallel



Why ANNs KIT
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» Harsh reality of real-life problems

Unlikely that there is a solution for the exact
problem

Adaption might destroy optimality

Assumptions might be not realistic (for example
noise follows a particular distribution)

Often not tolerable

ANNs are very tolerant of unusual noise
distributions

So in practice ANNs often outperform their
“mathematically optimal” counterparts



Choosing the ANN A\‘(IT
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* Decisions to make when using ANNs
« Supervised — Unsupervised
» Real-Domain — Complex-Domain



Supervised - Unsupervised = = Dol

* Types most commonly used for IP:
« Supervised nets:
« Multiple-Layer Feedforward Network (MLFN)
» Probabilistic Neural Network (PNN)

« Unsupervised nets:
« Kohonen Network

* Most IP problems (for example visual
component inspection) provide training
samples with labels, so supervised
training is more common
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M I F N P N N Karlsruher Institut fur Technologie

« Rather easy decision, since properties differ a lot

Very long training periods required

Very fast in execution, intrinsically parallel,
often best choice for Real-time applications

Analysis is difficult or sometimes impossible

Good if training data is expensive and
therefor sparse and better in generalizing

Does not provide confidence levels

Very fast training

Execution can be very slow, relatively
memory consuming

A (asymptotically) mathematically optimal
classifier, well understood and mathematically
described method of operation

Needs a quite thorough training set but good
in handling outliers

Byproduct of the computation are the
Bayesian posterior probabilities but limited to
classification problems (no function
approximation, etc.)



Real-Domain — Complex-Domain e N

Traditionally nearly all neural networks operate Iin
the real domain (for complex problems half of the
inputs are real numbers and half are imaginary)

But when application data is inherently complex
(frequency domain or phase plane data)
performance can be significantly increased by
using neurons working in the complex domain

Training speed and reliability usually increase
dramatically

Generalization is almost always better
| Only better when phase information is needed !



Example System Concept

-use of
Fourier Transform
-Moment Invariants

ORI —

Matrix of values
w/ grey levels

-greyscale
manipulation
-noise filtering
-correction
-restoration
-reconstruction
-segmentation
-spatial domain
-frequency domain

Karlsruher

Institut far Technologie




Integrating ANNs with traditional Algorithms
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 Different ways of integrating neural networks

in IP applications. Most common:

Raw Data

Raw Data

Image Data

—
—

Transform to
frequency
domain

Compute
local features

Segment into
regions

-
-

Normalize
and scale

Real MLFN or
PNN

Compute
region
features

-

Complex
MLFN

Real MLFN or
PNN




Complex-Domain Units A\‘(IT

 When application data is complex it is advised to use neurons
that accept complex-valued inputs and produce complex-valued
outputs

* Network architecture is essentially the same as in real domain
« Use complex addition and multiplication in the neurons

(a,b)+(c,d)=(a+c,b+d)
(a,b)e (c,d) =(ac —bd,ad+ bc)

* Fewer hidden layers are needed since there are twice as many
weights for each

« Special considerations for the outputs when the network is a
classifier



Complex-Domain Units — R E

« All inputs and
outputs are
complex

 Butin
classification
tasks real
outputs are
sufficient

e All sums and
multiplications
are complex




T

Complex-Domain Networks Network Topology  “=.obw..

« Strictly feed-forward networks
« Some nets allow skipping of one or more layers
* Mostly only one hidden layer
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Complex-Domain Networks Activation Function =o.oh%5

« Choice of activation function in real domain already discussed
(differentiable for back propagation etc.)

« More difficult in complex domain, for example hyperbolic tangent:

Imaginary part of complex tanh function,

i ‘
Hjfettiolic taHGent finctibn: Real part of complex tanh function,

* Non-differentiable around 0 - Complex hyperbolic tangent not useful!
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Complex-Domain Networks Activation Function

« Properties for an activation function:
* Real and imaginary parts must be differentiable
 Bounded magnitude
* Approximately linear when magnitude is small

« Obvious possibility: apply the function separately, e.g.

f(x+ yi) =tanh(x)+tanh(y)i



Complex-Domain Networks

Activation Function

Better solution:
J(x+yi) = px+ pyi
s(\/x2 +y2)

P= \/x2 +y°

Additional useful
property: preserve
direction of net input
With s(x) being a sigmoid
function with s(0)=0 (like
the hyperbolic tangent
function)

F,.g 29 imaginary part of W function
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APPLICATIONS



Face Detection -- Motivation — R E

« A face provides different functions:
» Person identification
» Perception of emotional expressions
« Mouth as source of speech
 Lipreading
« Perception of intention
« Perception of age
» Perception of gender



Face Detection Motivationt = arE

« Computer-based face perception is
important for:

« Human-Machine Interfaces
 Multimedia

e Survelillance

« Security

« Telephone conferences

« Communication
 Animations






What makes Face Detection so difficult? T A“(IT

 Numerous possible
illuminations:

« The same face looks
different every time

« There is a lot of work
about normalizing shadow
effects and reducing
illumination changes

« Different people’s faces lit
from the same direction
are more similar than the
same person’s face lit
from different directions




What makes Face Detection so difficult?t = s

» Rotation:
» Undoing rotation too expensive

« How to detect rotated faces directly? Different
classifiers for different rotations?




What makes Face Detection so difficult? 1 Q(IT

« Intrinsic variations of facial appearance

Identity

Facial expressions
Speech

Sex

Age

Classification, known-unknown, verification, identification
Inference of emotion

Lip-reading

Deciding whether male or female

Estimating age

« Extrinsic variations of facial appearance

Viewing geometry
[llumination
Image Process

Other objects

Pose
Shading, color, self-shadowing, specular highlights
Resolution, focus, imaging noise, perspective effects

Occlusion, shadowing, indirect illumination



What makes Face Detection so difficult?t —

» Face Detection is comparable to detecting
moving object in noisy scenes

« Face handled as a sub-surface on the
head

* Appearance changes with its parameters!

« Boundaries of faces not clear: depends on
hair styles (although there are approaches
trying to do that)

* |t is Impossible to model intrinsic
parameters analytically



What makes Face Detection so difficult? T A\‘(IT

« Classification face / non face is ver}/ complex
(we can not model the whole world!)

 |ntrinsic and extrinsic parameters do not cover
different make-up styles, glasses, jewelery, ...

» Biggest problem is head pose & lighting

» Face appearance changes dramatically
with its pose !

» Perception of faces is highly dynamic in space,
time and its context

* A person is more likely to be found behind
a desk than on top of a book shelf.



Computerized Face Representationt — R E

« Local feature-based face representation:

Find facial features (such as mouth corners, eyes, nostrils, ...)
and check for well-defined spatial configuration (a priori
knowledge)

Use of relatively high resolution images (> 60x60 pixels)

« Humans can detect faces even within 15x15 pixels and
lower !

Problems with Occlusions: what to do if several parts are not
visible?

Problem of face detection is divided in multiple detection tasks,
each nearly as difficult itself as face detection alone



Computerized Face Representation? e B

« Holistic face representation:
* No a priori knowledge
* No subdivision into single parts
« Relatively low resolution possible
« Occlusions handled as statistical outliers

« Variances handled by different preprocessing steps,
region of interest limitation and statistical learning

» Detection can be achieved by
« Classification between face images / non-face
Images

» Application of generic face model on region of
interests Detect faces by scoring how well models
fit



Different Face Detection Approachest @ =% e

« Skin-color detection

* An elliptical head model

« Using Haar-Filter
cascades (Viola & Jones) M

« Artificial neural networks )/ g



ANN Face Detection Neuron Modelt A“(IT
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Different outputs possible, depending on activation function:




ANN Face Detection Topologies @~ =5 o e
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ANN Face Detection Training®

« Learning the connectionist weights is achieved by descending the
gradient of the resulting output error E (Backpropagation Algorithm)




ANN Face Detection? ﬂ(".




ANN Face Detection? A\‘(IT

« General approach for detecting (upright, frontal) faces with NN:

« Network receives as input a 20x20 pixel region of an image

« oulput ranges from -1 (no face present) to +1 (face present)

« the neural network ,face-filter” is applied at every location in the image

» to detect faces with different sizes, the input image is repeatedly
scaled down

Neural Network Based Face Detection, by Henry A. Rowley, Shumeet Baluja, and Takeo
Kanade. IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 20,
number 1, pages 23-38, January 1998.



ANN Face Detection Network Topology* o s

« ANN Topology:
« 20x20 pixel input
retina
« 4 types of

receptive hidden
fields

« One real-valued
output

Receptive fie ks
Hodder urets



ANN Face Detection Network Topologyt == hoS
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Fige | The basic algorithm used for face detecticn



ANN Face Detection Training Set! A“(IT

« 1050 normalized face

Images o
. 15facq(|ré1%gestt @EEEE
r n
gﬁgesrgaﬁng grlglﬁa:l %Ce EEEEE
Images
* 1000 randomly chosen E@EEE
non-face images Face Samples

Non-Face Samples



ANN Face Detection Preprocessingt @ &5 o s

« Correct for different lighting conditions (overall brightness, shadows)
« Rescale images to fixed size
« Often: extract relevant features (edges, FFT, wavelets, PCA, DCT, ...)

Best fit linear function:

Lighting corvected window:
lioear functisn subtracted )

Histogram egualized window:

- - -
ﬂ!l-

FIE MNP

pis



ANN Face Detection Trainingt =25 hoL-

 Training Procedure:
1. randomly choose 1000 non-face images
2. train network to produce 1 for faces, -1 for non-faces

3. run network on images containing no faces. Collect
subimages in which network incorrectly identifes a
face (output > 0)

4. select up to 250 of these ,false positives” at random
and add them to the training set as negative
examples



ANN Face Detection ResultsT A\‘(IT

Results on 130 images containing 507 faces (83Million subregions exmamined):
« 92.5 % detection rate at false detection rate of 1/96402 (862 false detections)
« 77.9 % detection rate at false detection rate of 1/41Mio. (2 false detections)

Speed:

* best system, using two
networks:383 seconds per
image

« tuned for speed (77%
detection rate): 7.2
seconds per image



ANN Face Detection ResultsT A“(IT




ANN Face Detection Resultst




Karlsruher Institut fur Technologie

Focus of Attention and Head Pose Estimationt

« Tracking Gaze and Focus of Attention

* In meetings:
« to determinetheaddresseeofa speech act
« to tracktheparticipantsattention
« to analyse,whowasinthecenteroffocus
« for meeting indexing/retrieval

» Interactive rooms
« to guide the environments focus to the right application
« to suppress unwanted responses

« Virtual collaborative workspaces (CSCW)

 Human-Robot Cooperation

« Cars (Driver monitoring)



Focus of Attention and Head Pose Estimation? e W

« Attentional signals:
- Eye gaze
« Head orientation
« Body posture
« Gestures
« Head Orientation is a good cue to predict focus of attention !

« Eye-gaze is difficult to track ...



Focus of Attention and Head Pose Estimationt == .

Vision-based Eye Gaze Tracking — Problems:

« Requires the user to wear head gear or position
of the user relative to the camerais rather fixed

« Certainly not acceptabel for everyday use in
multimodal rooms




Head Pose Estimationt = arE

® Model-based approaches:
 Locate and track a number of facial features

 Compute head pose from 2D to 3D correspondences(Gee&Cipolla '94,
Stiefelhagen et.al '96, Jebara & Pentland '97,Toyama '98)

® Appearance-based approaches:

« Estimate new pose with function approximator(such as ANN) (Beymer
et.al.'94, Schiele & Waibel '95, Rae & Ritter '98)

« Use face database to encode images (Pentlandet.al.'94)



Estimating Head Pose with ANNsT ﬂ(".

« Train neural network to estimate head orientation
* Preprocessed image of the face used as input




Estimating Head Pose with ANNs — Network
Topologyt ﬂ(".

o Pan (Tilt)

O ('3 S Hidden Layer:
RS = Ak - 4010 150 units

Input Retina:
up to 3 x 20x30 pixel 1.500 units




Estimating Head Pose with ANNs —
Preprocessingt A\‘(IT

« Automatic extraction of
faces (using a skin-
color model)

* Preprocessing

a) Histogram
normalization of
grayscale images

b) Extracting horizontal-
and vertical edges

c) Down-sampling to
20x30 pixel




Estimating Head Pose with ANNs — Data
Collectiont A“(IT

« Estimate head pan and tilt from the facial image

« Data Collection:
» Perspective views of users are collected with pano-cam
« Labels from a magnetic field pose tracker

« Data from fourteen users, at four positions around table
collected

€
| |




Estimating Head Pose with ANNs — ProblemsT A\‘(IT

* [llumination Changes are problematic
« Retraining / Adaptation is necessary



Estimating Head Pose Using Depth from
Stereot A“(IT

» Using stereo cameras, the distance of a
point on the object from the cameras can
be computed

+ Distance r of a pixel is inversely
related to the difference in projections
of the point in the two camera views
(,disparity)

r= (b« f) /(dL-dR)

*  Disparities are computed for each
pixel by finding correspondences in
the two views

e |dea

*  Disparity (depth) images should be
less affected by illumination changes
than monocular greyscale images

«  Since both camera views share the
illumination change, correspondence
finding should still be robust

*  Use disparity images for pose
estimation

D Coss pieool Il 7ar poaed
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BN\ . Fully connected
. l«Standard back-propagation

“;‘:" “ym Network Output:
‘\‘ ,-”/ Rotation angle (pan, tilt or rol)

k ‘ Hodden Layer (60 1o 80 units)
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Estimating Head Pose Data Collectiont® e et

10 users

« 2 different lighting conditions (day light, artificial light)

« 250-500 images per person and lighting condition

« Reference angles captured with magnetic sensor (FoB)

« Resolution 640x480

» Test persons could move freely in pan, tilt and roll direction

4. 514- (1.5




Estimating Head Pose Results under Changed
llluminationt ﬂ(".
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Tracking Focus of Attention (FoA) T

Focus of Attention tracking:
 To detect a person’s interest
 To know what a user is interacting with
 To understand his actions/intentions
 To know whether a user is aware of something

Human-Human Interaction:
» To determine the addressee of a speech act
« To understand the dynamics of interaction
» For meeting indexing / retrieval

Human-Robot Interaction:
« Was the robot addressed or not?

Smart Environments, Cars, ...

Karlsruher Institut fur Technologie



FoA Tracking in meetingsT A\‘(IT

Why:
« to determine the addressee of a speech act
« to track the participants attention
« to analyse, who was in the center of focus
« for meeting indexing / retrieval, ...

1. Track all participants’ faces (color)
2. Estimate their head orientations (ANNSs)

3. Map head orientations onto likely targets (e.g. the other
participants)



FoA: Detection of likely Targetst = =% b

» Idea: For each person, find the most likely target
person T, given the observed head orientation x
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Modeling Focus from Head Orientation®

 Head Orientation is a strong indicator of social attention
 Eye-Gaze is difficult to measure
« Estimate a persons focus of attention based on his head orientation

« can be formulated with Bayes rule:
p(x | Focus, =T)- P(Focus=T)
p(x)

P(Focus, =T | x) =

X: head pan in degrees,
T € {Person 1, Person 2, ..., Person M }



Head Pan Distributions p(x|Fi) T A\‘(IT

« Head pan distributions are dependent on personal head-turning
“styles” and location of targets

« Distributions should be adapted for each person and each meeting

Person | Person 2 Person 3



Adaptation of the ModelT A\‘(IT

= E=

All observations: p(x) Class-cond. Distr. p(x|F) Posteriors P(F|x)

p(0)= 2 p(x 1 HP())

* Model parameters are found using EM-algorithm

* P(x)is modeled as mixture of Gaussians:

» Individual Gaussian components are used as class-conditionals
p(x|F)
* Priors of the mixture model P(j) are used as focus prior P(F = T)



Focus based on Head Orientationt @ =2 an.

« Results on four meetings
* 4 participants in each meeting
« Participants automatically detected and tracked
« Unsupervised adaptation of model parameters

. |P(Focus | Gazc)
| Meetmg A (4 partlmpants) 68.8 %
.~ Meeting B (4 participants) 73.4 %
- Meeting C (4 participants) 79.5 %
__Meeting D (4 participants) |  69.8 %

B Avg. - 729 %
Percentage of comectly asmgncd focus targets

based on computing P(Focus | Head pan)




Facial Expression AT
Recognition’

 What is Facial Expression?

« Facial Expressions are the facial
changes in response to a person’s
Internal emotion states, intensions, or
social communications



ROIe Of FaCiaI EXpreSSiOnST ..............................

* Almost the most powerful, natural, and
immediate way (for human beings) to
communicate emotions and intentions

* Face can express emotion sooner than
people verbalize or realize feelings

» Faces and facial expressions are an important
aspect in interpersonal communication and
man-machine interfaces
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Facial Expressions’

« Facial expression(s):
* nonverbal communication
 voluntary / involuntary

 results from one or more motions or positions of
the muscles of the face

» closely associated with our emotions

« The fact:

» Most people's success rate at reading emotions
from facial expression is only a little over 50
percent.



Facial Expression Analysis A\KIT
vs. Emotion Analysis’

* Emotion analysis requires higher level
knowledge, such as context information.

« Since, besides emotions, facial expressions
can also express intention, cognitive
processes, physical effort, etc.



Emotions conveyed by ﬂ(“
Facial Expressions’

Happiness  Surprise Sadness Fear Disgust Anger

« Six basic emotions (according to Ekman)
* assumed to be innate



Basic Structure of ﬂ("
Facial Expression Analysis Systems?

Facial Data Extraction Facial Expression
& Representation Recogmtion

{e . .
Face ||Head Pose|| Feature |[[Appearance Frame |[|Sequence
Detectionf|Estimation || -based -based -based -based
(;comctn'c fecatures, e £. (mbor ‘S {'r '\\N'\ C.E. “\1 \1
Shape and location of filters !). 1 Rule-based
Facial components : :(\\\ ;

Rule-based



Facial Action Coding System A\KIT
(FACS)T

Developped by EKman & Friesen (1978)

A human-observer based system designed to
detect subtle changes in facial features.

Viewing videotaped facial behavior in slow
motion, trained observer can manually FACS
code all possible facial displays

These facial displays are referred to as action

units (AU) and may occur individually or in
combinations.
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Interpretation of Facial Actions?

« Facial expressions can be linked with psychological
interpretations, e.g. emotions

« e.g Facial Action Coding System Affect Interpretation Dictionary
(FACSAID) project (Ekman & Friesen)

« Facial expressions are also assumed to reveal something about
sincereness or lying
« Can be used to reveal deception (Ekman)

« E.g. through analysis of microexpressions (very quick involuntary
expression that last lessthen a quartersecond)

« Detection of voluntary vs. involuntary smiles

« insincere and voluntary smile: contraction of zygomatic major alone

« sincere and involuntary (Duchenne) smile: contraction of zygomatic
major and inferior part of orbicularis oculi

« Has also been used for analysis of depression



Action Units (AUs)t = bt

There are 44 AUs

30 AUs related to contractions of special facial
muscles :

« 12 AUs for upper face
18 AUs for lower face

Anatomic basis of the remaining 14 is unspecified.
These are referred to in FACS as miscellaneous
actions.

For action units that vary in intensity, a 5-point ordinal
scale is used to measure the degree of muscle
contraction.
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Upper Face Action Units”

Upper Face Action Units
Al | AU 2 AUd ALT S Tu—&' Al 7
ABEmE®D D S
laner Brow | Ouley Beow Brow I Upper Lid Chevk Lo
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of FACS Action Units?
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Combinations of AUST

« More than 7000 different AU combinations have been observed.
« Additive — appearance of single AUs does not change
« Nonadditive — appearance of single AUs does change
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