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Recurrent Networks 

•  Networks in which units may have 
connections to units in the same or preceding 
layers 

•  Also connections to the unit itself possible 
•  Already covered: 

•  Hopfield Nets (no general RNN) 
•  Boltzmann Machines 
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Recurrent Networks 

•  Arbitrary connection weights 
•  As seen in Hopfield Nets / Boltzmann: 

•  Symmetric weights: Networks will settle 
down to a stable state 

•  But nets with non symmetric weights are not 
necessarily unstable 

•  Unstable nets can be used to recognize or 
reproduce time sequences 
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Recurrent  
Back-Propagation 

•  Back-Propagation can be extended to 
arbitrary networks if they converge to stable 
states (we use continuous valued units, so 
states are called points) 

•  Use a modified version of the network itself to 
calculate the weights 
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Recurrent  
Back-Propagation 

•  Consider N continuous-
valued units Vi 

•  With weights wij and 
activation function g(h) 

•  Some units are input units 
with input ξµi specified in 
patterns µ 

•  All other units input is 0 
•  Also some units are output 

units with output value 
denoted with ςµ

i 

V1 V3 V2 

V4 V5 

ξ1 ξ2 ξ3 ξ4 

ς1 ς2 
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Recurrent  
Back-Propagation 

•  Consider the net to apply the following evolution rule 

 which is the differential equation for continuous 
valued nets that also update continuously 

•  Then stable points are where                  : € 

τ
dVi

dt
= −Vi + g wijV j + ξi

j
∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

€ 

dVi /dt = 0

€ 

Vi = g wijV j + ξi
j
∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
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Recurrent  
Back-Propagation 

•  We assume at least one stable point 
•  As error measure we use: 

 with 

€ 

Ek =
ςk −Vk if k is an output
0 otherwise

⎧ 
⎨ 
⎩ 

€ 

E =
1
2

Ek
2

k
∑
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Recurrent  
Back-Propagation 

•  The delta-rule for recurrent back-propagation is* 

 where hi is the net input to a unit I and g’ is the 
derivative of h 

•  To find the Y’s the following differential equation has 
to be solved 

 which can be done by evolution of a new error-
propagation network 

€ 

Δwij =ηg'(hi)YiV j

€ 

τ
dYi
dt

= −Yi + g g'(h j )w jiV j + Ei
j
∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
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Recurrent  
Back-Propagation 

•  The error-propagation has 
the same topology as the 
original net 

•  Weights: 

•  Transfer function:  

•  Inputs: Errors Ei of the units i 
in the original network 

Y1 Y3 Y2 

Y4 Y5 

€ 

˙ w ij = g'(hi)wij

€ 

˙ g (x) = x

E1 E2 
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Recurrent  
Back-Propagation 

•  Training procedure: 
•  Relax original net to find Vi’s 
•  Compute Ei’s 
•  Relax error-propagation network to find 

Yi’s 
•  Update the weights using 

€ 

Δwij =ηg'(hi)YiV j
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Recurrent  
Back-Propagation 

•  Recurrent Back-Propagation scales with N2 
with N units in the net 

•  The use of recurrent nets gives a large 
improvement in performance over normal 
feed-forward for a number of problems as 
pattern completion 
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•  So far only fixed patterns 
•  Extension: Sequence of patterns 

•  No stable state, but go through a 
predetermined sequence of states. 

Temporal Sequences  
of Patterns 
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Temporal Sequences  
of Patterns 

•  Simple Example of sequence generation: 
•  Synchronous updating and equal weights 
•  Just turn on the first unit 
•  Only simple sequences and not very robust 

t1 t2 t3 
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Temporal Sequences  
of Patterns 

•  For more arbitrary sequences using asynchronous 
updating we need asymmetric connections 

•  Instead of using: 

 add an additional term: 

•  Uses information from the next pattern 

€ 

wij =
1
N

ξiξ j
µ

∑

€ 

wij =
1
N

ξi
µξ j

µ

µ

∑ +
λ
N

ξi
µ +1ξ j

µ

µ

∑
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Temporal Sequences  
of Patterns 

•  Asynchronous updating tends to dephase the 
system  

•  Net reaches states that overlap several 
consecutive patterns 

•  Method only usable for short sequences 
•  Possible solution: 

•  Fast and slow connections 

€ 

hi(t) = wij
SV j (t)

µ

∑ + λwij
LV j (t)
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Temporal Sequences  
of Patterns 

•  Conclusion: 
•  No feed forward net nor nets with 

symmetric weights are capable of pattern 
sequences 

•  Sequences are calculated not learned 
•  How can a recurrent net learn a pattern 

sequence? 
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Learning Time Sequences 

•  3 distinct tasks 
•  Sequence Recognition: Produce output 

pattern from input pattern sequence 
•  Sequence Reproduction: ≈ Pattern 

completion with dynamic patterns 
•  Temporal Association: Produce output 

pattern sequence from input pattern 
sequence 
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Tapped Delay Lines 

•  Easiest way of 
sequence 
recognition (not 
recurrent) 

•  Turn time pattern 
into spatial pattern 

•  So several time 
steps are presented 
to the net 
simultaneously 
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Tapped Delay Lines 

•  Widely applied to speech 
recognition task 

•  Time-Delay Neural Networks 
[Waibel et. al. ‘89] 

•  Vectors of spectral 
coefficients as time signal (2 
dimensional time-frequency 
plane) 

•  Train network with spectra of 
phonemes 



Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel 

Tapped Delay Lines 

•  General approach yields several drawbacks 
to sequence recognition 

•  Maximum length of possible sequence 
has to be chosen in advance 

•  High number of units = slow 
computation 

•  Timing has to be very accurate 



Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel 

Tapped Delay Lines 

•  Solution to timing problem: 
•  Use filters that broaden the time signal instead 

of fixed delay 
•  The longer the delay, the broader the filter 
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Context Units 

•  Partially recurrent networks 
•  Mainly feed-forward, but carefully chosen 

set of feedback connections 
•  Mostly fixed feedback weights 

•  Does not complicate training 
•  Synchronous updating (one update for all 

units at a discrete time step) 
•  Also referred to as Sequential Units  
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Context Units 

•  Different architectures with a whole or part of a layer 
being Context Units 

•  Context units receive some signals from the net at a 
time t and forward them at t+1 

•  Net remembers some aspects of previous time steps 
•  State of the net depends on past states and current 

input 
•  Net can recognize sequences based on its state at 

the end of a sequence (and generate in some cases)  
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Context Units 
Elman Nets 

Output 

Hidden 

Input Context 

•  Hidden Units hold a 
copy of the output of the 
hidden layer 

•  Modifiable connections 
all feed-forward 
(Backpropagation) 

•  Usable for recognition 
and short continuations 

•  Also can mimic finite 
state machines 

€ 

1
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Context Units 
Jordan Nets 

Output 

Hidden 

Input Context 

•  Context Units hold a 
copy of the output layer 
and themselves 

•  Self connection gives 
individual memory or 
inertia 

•  With fixed outputs 
context units would 
decay exponentially 
(Decay Units) 

€ 

1

€ 

α
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Context Units 
Jordan Nets 

Output 

Hidden 

Input Context 

€ 

1

€ 

α

€ 

Ci(t +1) = αCi(t) +Oi(t)
=Oi(t) +αOi(t −1) + ...

= α t− t 'Oi(t')
t '=0

t

∑

cont. = e− logα ( t− t ' )Oi(t ')dt '
0

t

∫

•  Weighted moving 
average or trace 



Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel 

Context Units 
Jordan Nets 

Output 

Hidden 

Input Context 

€ 

1

€ 

α

•  Usable for: 
•  Generating a set 

sequences with 
different fixed inputs 

•  Recognizing different 
input sequences 
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Context Units 
More Architectures 

Output 

Hidden 

Input 

Context 

€ 

α i

Output 

Hidden 

Input 

Context 

€ 

α

•  Input gets to the 
net only via context 
units 

•  Acts as an IIR Filter 
with transfer 
function 

€ 

1
1−αz−1
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Context Units 
More Architectures 

Output 

Hidden 

Input 

Context 

€ 

α i

Output 

Hidden 

Input 

Context 

€ 

α

•  Right: modifiable 
feedback weights 

•  Comparable to 
“real-time recurrent 
networks” 

•  Both work better on 
recognizing than on 
generating or 
reconstruction 
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Back-Propagation  
Through Time 

•  Use fully connected units (also each to itself) 
•  Units are updated synchronous 
•  Every unit may be input, output, both or 

neither 

V1 V2 

w12 

w21 

w22 
w11 

ξ1(t) ξ2(t) 
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Back-Propagation  
Through Time 

•  For each time step update all units synchronous 
depending on the current input and state of the net 

•  Final output will be the classification result 
•  How to train the weights? 

V1 V2 

w12 

w21 

w22 
w11 

ξ1(t) ξ2(t) 
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Back-Propagation  
Through Time 

•  For a time sequence of length T copy all units T times 

•  Net will behave identically for T time steps 
•  Weights need to the same (so time independent) 

V1 V2 

w12 

w21 

w22 w11 

V1 V2 

V1 V2 

V1 
V2 

w11 

w11 w22 

w22 w12 

w12 

w21 

w21 
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Back-Propagation  
Through Time 

•  Train weights on the equivalent feed-forward 
net and use them in the recurrent network 

•  Problem: Backpropagation would not get to 
equal weights for each time step 

•  Add up all      ‘s and change all copies of 
the same weight by the same amount 

€ 

Δwij
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Back-Propagation  
Through Time 

•  Needs very much resources in training and 
also much training data 

•  Completely impractical for large or even 
unknown length of sequences 

•  Largely superseded by the other approaches 
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Real-Time Recurrent Learning 

•  Learning rule for pattern sequences in 
recurrent networks (Recurrent Back-
Propagation) 

•  One version can be run online (while 
sequences are presented, not after they are 
finished) 

•  Can deal with arbitrary length 
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Real-Time Recurrent Learning 

•  Assume same dynamics as in Back-Propagation 
through time 

•  With target outputs ζk(t) for some units at some time 
steps, we get the following error measure 

€ 

Vi(t) = g(hi(t −1)) = g wijV j (t −1) + ξi(t −1)
j
∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

€ 

Ek (t) =
ςk (t) −Vk (t) if k is an output at t

0 otherwise
⎧ 
⎨ 
⎩ 
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Real-Time Recurrent Learning 

•  The cost function is then the sum of the cost function per time 
step over all time steps 

•  Due to the time dependency we get a time dependent Δwij 

€ 

E = E(t)
t=0

T

∑ =
1
2

Ek (t)
2

k
∑

t=0

T

∑

€ 

Δwij (t) =η Ek (t)
k
∑ ∂Vk (t)

∂wij

€ 

∂Vk (t)
∂wij

= g'(hk (t −1)) δkiV j (t −1) + wkp

∂Vp (t −1)
∂wijp

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
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Real-Time Recurrent Learning 

•  No stable points in general so derivatives depend on 
the derivatives of the preceding time step 

•  But net is time discrete so we can calculate the 
derivatives iteratively 

•  Just need to the initial condition € 

∂Vk (t)
∂wij

= g'(hk (t −1)) δkiV j (t −1) + wkp

∂Vp (t −1)
∂wijp

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

€ 

∂Vk (0)
∂wij

= 0
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Real-Time Recurrent Learning 

•  Since all derivatives can be computed iteratively the 
time dependent Δwij(t) can be found 

•  Just iterate through all time steps 
•  Sum up all partial weight changes to get the total 

changes 
•  Repeat until net remembers the correct sequence 
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Real-Time Recurrent Learning 

•  Algorithm needs very much computation time and 
memory 

•  For N fully recurrent units there are N3 
derivatives to be maintained 

•  Updating is proportional to N 
•  So algorithm’s complexity is N4 

•  But updating weights can be done after each time 
step if η is small 

•  =Real-Time Recurrent Learning 
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Real-Time Recurrent Learning 

•  Works well for sequence recognition but simpler nets 
can do that as well 

•  Can learn a flip-flop net 
•  Output a signal only after a symbol A has 

occurred until another symbol B has occurred 
•  Can learn Finite State Machine 
•  With some modifications (teacher forcing) algorithm 

can be used to train a square wave or sine wave 
oscillator 
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Time-Dependent Recurrent 
Back-Propagation 

•  Related algorithm for time-continuous recurrent nets 

•  Sum over time steps in error function becomes an integral 

•  Again a second DGL 

€ 

τ i
dVi

dt
= −Vi + g wijV j

j
∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + ξi(t)

€ 

E =
1
2

Vk (t) − ξk (t)[ ]2dt
k∈O
∑

0

T

∫

€ 

dYi
dt

= −
1
τ i
Yi +

1
τ j

w jig'(h j )Yj + Ei(t)
j
∑
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Time-Dependent Recurrent 
Back-Propagation 

•  Integrate DGL of the original net from t=0 to T to get 
the Vi’s 

•  Integrate the second DGL from t=T to 0 to get the Yi’s 
•  Get weight changes with 

 since 

€ 

Δwij = −η
∂E
∂wij

€ 

∂E
∂wij

=
1
τ i

Yig'(hi)V jdt
0

T

∫
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Time-Dependent Recurrent 
Back-Propagation 

•  Was used to train a net with 2 outputs to follow a 2 
dimensional trajectory, including circles and figure 
eights 

•  Net was capable of returning to the trajectory even 
after disturbance 

•  Best approach unless online learning is needed 
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Radial Basis  
Function Networks 

•  Networks that use Radial 
Basis Functions as activation 
functions 

•  Used for function 
approximation, time series 
prediction, and control 

•  Typically have a hidden layer 
with Radial Basis Functions 
as activation functions and a 
linear output layer 
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Models for 
Function Approximation 

•  Train a model to approximate a function f(x) by a 
linear combination of a set of fixed functions (basis 
functions) 

•  Model is linear if parameters of basis functions are 
fixed and only linear parameter w (weights) are 
trained € 

f (x) = w jh j (x)
j=1

m

∑
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Radial Basis Functions 

•  Functions which monotonic decrease in response 
with the distance to a central point 

•  Most common: Gaussian  

  

€ 

h(x) = e
−

 
x −
 
µ 

2

σ 2

 : Mean  
 : Variance 

  

€ 

 
µ 

€ 

σ
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Radial Basis Functions 

•  Lead to a hyperelliptic decision surface instead of hyperplane 
•  So we get local units 

  

€ 

y j = e
−

 
x −
 
µ j

2

σ j
2

€ 

y j = tanh wij xi
i
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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Local Activation  
with linear units 

•  Possible but needs 
multi layer perceptron 
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Tile the Input Space 

•  Receptive fields overlap a bit, 
so there is usually more than 
one unit active. 

•  But for a given input, the total 
number of active units will be 
small. 

•  The locality property of RBFs 
makes them similar to Parzen 
windows. 
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Training RBF Nets 

•  Training Scheme for RBF Nets is hybrid 
•  Use unsupervised learning for the center points and 

perhaps also the variances 
•  Use k-means algorithm, intialized from randomly 

chosen points from the training set. 
•  Use a Kohonen SOFM (Self-Organizing Feature Map) 

to map the space.  Then take selected units' weight 
vectors as our RBF centers 

•  Least Mean Square algorithm to train the output weights 
•  First step can be skipped if input space is split equidistant and 

variances are fixed 
•  Maybe the number of units is unnecessarily high 



Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel 

Example I: Input Space 
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Example I: While Training 
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Example I: After Training 
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Example II: Input Space 
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Example II: After Training 
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RBF Nets 

•  In low dimensions we can also use a Parzen window 
(for classification) or a table-lookup interpolation 
scheme 

•  But in higher dimensions RBF Nets are much better 
since units can be placed only where they are needed 


