
Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Christian Mohr
20.12.2011

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Recurrent Networks

•  Networks in which units may have
connections to units in the same or preceding
layers

•  Also connections to the unit itself possible
•  Already covered:

•  Hopfield Nets (no general RNN)
•  Boltzmann Machines

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Recurrent Networks

•  Arbitrary connection weights
•  As seen in Hopfield Nets / Boltzmann:

•  Symmetric weights: Networks will settle
down to a stable state

•  But nets with non symmetric weights are not
necessarily unstable

•  Unstable nets can be used to recognize or
reproduce time sequences

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Recurrent
Back-Propagation

•  Back-Propagation can be extended to
arbitrary networks if they converge to stable
states (we use continuous valued units, so
states are called points)

•  Use a modified version of the network itself to
calculate the weights

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Recurrent
Back-Propagation

•  Consider N continuous-
valued units Vi

•  With weights wij and
activation function g(h)

•  Some units are input units
with input ξµi specified in
patterns µ

•  All other units input is 0
•  Also some units are output

units with output value
denoted with ςµ

i

V1 V3 V2

V4 V5

ξ1 ξ2 ξ3 ξ4

ς1 ς2

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Recurrent
Back-Propagation

•  Consider the net to apply the following evolution rule

 which is the differential equation for continuous
valued nets that also update continuously

•  Then stable points are where : €

τ
dVi

dt
= −Vi + g wijV j + ξi

j
∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

€

dVi /dt = 0

€

Vi = g wijV j + ξi
j
∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Recurrent
Back-Propagation

•  We assume at least one stable point
•  As error measure we use:

 with

€

Ek =
ςk −Vk if k is an output
0 otherwise

⎧
⎨
⎩

€

E =
1
2

Ek
2

k
∑

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Recurrent
Back-Propagation

•  The delta-rule for recurrent back-propagation is*

 where hi is the net input to a unit I and g’ is the
derivative of h

•  To find the Y’s the following differential equation has
to be solved

 which can be done by evolution of a new error-
propagation network

€

Δwij =ηg'(hi)YiV j

€

τ
dYi
dt

= −Yi + g g'(h j)w jiV j + Ei
j
∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Recurrent
Back-Propagation

•  The error-propagation has
the same topology as the
original net

•  Weights:

•  Transfer function:

•  Inputs: Errors Ei of the units i
in the original network

Y1 Y3 Y2

Y4 Y5

€

˙ w ij = g'(hi)wij

€

˙ g (x) = x

E1 E2

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Recurrent
Back-Propagation

•  Training procedure:
•  Relax original net to find Vi’s
•  Compute Ei’s
•  Relax error-propagation network to find

Yi’s
•  Update the weights using

€

Δwij =ηg'(hi)YiV j

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Recurrent
Back-Propagation

•  Recurrent Back-Propagation scales with N2
with N units in the net

•  The use of recurrent nets gives a large
improvement in performance over normal
feed-forward for a number of problems as
pattern completion

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

•  So far only fixed patterns
•  Extension: Sequence of patterns

•  No stable state, but go through a
predetermined sequence of states.

Temporal Sequences
of Patterns

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Temporal Sequences
of Patterns

•  Simple Example of sequence generation:
•  Synchronous updating and equal weights
•  Just turn on the first unit
•  Only simple sequences and not very robust

t1 t2 t3

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Temporal Sequences
of Patterns

•  For more arbitrary sequences using asynchronous
updating we need asymmetric connections

•  Instead of using:

 add an additional term:

•  Uses information from the next pattern

€

wij =
1
N

ξiξ j
µ

∑

€

wij =
1
N

ξi
µξ j

µ

µ

∑ +
λ
N

ξi
µ +1ξ j

µ

µ

∑

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Temporal Sequences
of Patterns

•  Asynchronous updating tends to dephase the
system

•  Net reaches states that overlap several
consecutive patterns

•  Method only usable for short sequences
•  Possible solution:

•  Fast and slow connections

€

hi(t) = wij
SV j (t)

µ

∑ + λwij
LV j (t)

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Temporal Sequences
of Patterns

•  Conclusion:
•  No feed forward net nor nets with

symmetric weights are capable of pattern
sequences

•  Sequences are calculated not learned
•  How can a recurrent net learn a pattern

sequence?

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Learning Time Sequences

•  3 distinct tasks
•  Sequence Recognition: Produce output

pattern from input pattern sequence
•  Sequence Reproduction: ≈ Pattern

completion with dynamic patterns
•  Temporal Association: Produce output

pattern sequence from input pattern
sequence

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Tapped Delay Lines

•  Easiest way of
sequence
recognition (not
recurrent)

•  Turn time pattern
into spatial pattern

•  So several time
steps are presented
to the net
simultaneously

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Tapped Delay Lines

•  Widely applied to speech
recognition task

•  Time-Delay Neural Networks
[Waibel et. al. ‘89]

•  Vectors of spectral
coefficients as time signal (2
dimensional time-frequency
plane)

•  Train network with spectra of
phonemes

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Tapped Delay Lines

•  General approach yields several drawbacks
to sequence recognition

•  Maximum length of possible sequence
has to be chosen in advance

•  High number of units = slow
computation

•  Timing has to be very accurate

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Tapped Delay Lines

•  Solution to timing problem:
•  Use filters that broaden the time signal instead

of fixed delay
•  The longer the delay, the broader the filter

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Context Units

•  Partially recurrent networks
•  Mainly feed-forward, but carefully chosen

set of feedback connections
•  Mostly fixed feedback weights

•  Does not complicate training
•  Synchronous updating (one update for all

units at a discrete time step)
•  Also referred to as Sequential Units

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Context Units

•  Different architectures with a whole or part of a layer
being Context Units

•  Context units receive some signals from the net at a
time t and forward them at t+1

•  Net remembers some aspects of previous time steps
•  State of the net depends on past states and current

input
•  Net can recognize sequences based on its state at

the end of a sequence (and generate in some cases)

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Context Units
Elman Nets

Output

Hidden

Input Context

•  Hidden Units hold a
copy of the output of the
hidden layer

•  Modifiable connections
all feed-forward
(Backpropagation)

•  Usable for recognition
and short continuations

•  Also can mimic finite
state machines

€

1

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Context Units
Jordan Nets

Output

Hidden

Input Context

•  Context Units hold a
copy of the output layer
and themselves

•  Self connection gives
individual memory or
inertia

•  With fixed outputs
context units would
decay exponentially
(Decay Units)

€

1

€

α

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Context Units
Jordan Nets

Output

Hidden

Input Context

€

1

€

α

€

Ci(t +1) = αCi(t) +Oi(t)
=Oi(t) +αOi(t −1) + ...

= α t− t 'Oi(t')
t '=0

t

∑

cont. = e− logα (t− t ')Oi(t ')dt '
0

t

∫

•  Weighted moving
average or trace

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Context Units
Jordan Nets

Output

Hidden

Input Context

€

1

€

α

•  Usable for:
•  Generating a set

sequences with
different fixed inputs

•  Recognizing different
input sequences

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Context Units
More Architectures

Output

Hidden

Input

Context

€

α i

Output

Hidden

Input

Context

€

α

•  Input gets to the
net only via context
units

•  Acts as an IIR Filter
with transfer
function

€

1
1−αz−1

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Context Units
More Architectures

Output

Hidden

Input

Context

€

α i

Output

Hidden

Input

Context

€

α

•  Right: modifiable
feedback weights

•  Comparable to
“real-time recurrent
networks”

•  Both work better on
recognizing than on
generating or
reconstruction

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Back-Propagation
Through Time

•  Use fully connected units (also each to itself)
•  Units are updated synchronous
•  Every unit may be input, output, both or

neither

V1 V2

w12

w21

w22
w11

ξ1(t) ξ2(t)

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Back-Propagation
Through Time

•  For each time step update all units synchronous
depending on the current input and state of the net

•  Final output will be the classification result
•  How to train the weights?

V1 V2

w12

w21

w22
w11

ξ1(t) ξ2(t)

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Back-Propagation
Through Time

•  For a time sequence of length T copy all units T times

•  Net will behave identically for T time steps
•  Weights need to the same (so time independent)

V1 V2

w12

w21

w22 w11

V1 V2

V1 V2

V1
V2

w11

w11 w22

w22 w12

w12

w21

w21

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Back-Propagation
Through Time

•  Train weights on the equivalent feed-forward
net and use them in the recurrent network

•  Problem: Backpropagation would not get to
equal weights for each time step

•  Add up all ‘s and change all copies of
the same weight by the same amount

€

Δwij

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Back-Propagation
Through Time

•  Needs very much resources in training and
also much training data

•  Completely impractical for large or even
unknown length of sequences

•  Largely superseded by the other approaches

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Real-Time Recurrent Learning

•  Learning rule for pattern sequences in
recurrent networks (Recurrent Back-
Propagation)

•  One version can be run online (while
sequences are presented, not after they are
finished)

•  Can deal with arbitrary length

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Real-Time Recurrent Learning

•  Assume same dynamics as in Back-Propagation
through time

•  With target outputs ζk(t) for some units at some time
steps, we get the following error measure

€

Vi(t) = g(hi(t −1)) = g wijV j (t −1) + ξi(t −1)
j
∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

€

Ek (t) =
ςk (t) −Vk (t) if k is an output at t

0 otherwise
⎧
⎨
⎩

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Real-Time Recurrent Learning

•  The cost function is then the sum of the cost function per time
step over all time steps

•  Due to the time dependency we get a time dependent Δwij

€

E = E(t)
t=0

T

∑ =
1
2

Ek (t)
2

k
∑

t=0

T

∑

€

Δwij (t) =η Ek (t)
k
∑ ∂Vk (t)

∂wij

€

∂Vk (t)
∂wij

= g'(hk (t −1)) δkiV j (t −1) + wkp

∂Vp (t −1)
∂wijp

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Real-Time Recurrent Learning

•  No stable points in general so derivatives depend on
the derivatives of the preceding time step

•  But net is time discrete so we can calculate the
derivatives iteratively

•  Just need to the initial condition €

∂Vk (t)
∂wij

= g'(hk (t −1)) δkiV j (t −1) + wkp

∂Vp (t −1)
∂wijp

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

€

∂Vk (0)
∂wij

= 0

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Real-Time Recurrent Learning

•  Since all derivatives can be computed iteratively the
time dependent Δwij(t) can be found

•  Just iterate through all time steps
•  Sum up all partial weight changes to get the total

changes
•  Repeat until net remembers the correct sequence

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Real-Time Recurrent Learning

•  Algorithm needs very much computation time and
memory

•  For N fully recurrent units there are N3
derivatives to be maintained

•  Updating is proportional to N
•  So algorithm’s complexity is N4

•  But updating weights can be done after each time
step if η is small

•  =Real-Time Recurrent Learning

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Real-Time Recurrent Learning

•  Works well for sequence recognition but simpler nets
can do that as well

•  Can learn a flip-flop net
•  Output a signal only after a symbol A has

occurred until another symbol B has occurred
•  Can learn Finite State Machine
•  With some modifications (teacher forcing) algorithm

can be used to train a square wave or sine wave
oscillator

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Time-Dependent Recurrent
Back-Propagation

•  Related algorithm for time-continuous recurrent nets

•  Sum over time steps in error function becomes an integral

•  Again a second DGL

€

τ i
dVi

dt
= −Vi + g wijV j

j
∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ + ξi(t)

€

E =
1
2

Vk (t) − ξk (t)[]2dt
k∈O
∑

0

T

∫

€

dYi
dt

= −
1
τ i
Yi +

1
τ j

w jig'(h j)Yj + Ei(t)
j
∑

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Time-Dependent Recurrent
Back-Propagation

•  Integrate DGL of the original net from t=0 to T to get
the Vi’s

•  Integrate the second DGL from t=T to 0 to get the Yi’s
•  Get weight changes with

 since

€

Δwij = −η
∂E
∂wij

€

∂E
∂wij

=
1
τ i

Yig'(hi)V jdt
0

T

∫

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Time-Dependent Recurrent
Back-Propagation

•  Was used to train a net with 2 outputs to follow a 2
dimensional trajectory, including circles and figure
eights

•  Net was capable of returning to the trajectory even
after disturbance

•  Best approach unless online learning is needed

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Radial Basis
Function Networks

•  Networks that use Radial
Basis Functions as activation
functions

•  Used for function
approximation, time series
prediction, and control

•  Typically have a hidden layer
with Radial Basis Functions
as activation functions and a
linear output layer

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Models for
Function Approximation

•  Train a model to approximate a function f(x) by a
linear combination of a set of fixed functions (basis
functions)

•  Model is linear if parameters of basis functions are
fixed and only linear parameter w (weights) are
trained €

f (x) = w jh j (x)
j=1

m

∑

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Radial Basis Functions

•  Functions which monotonic decrease in response
with the distance to a central point

•  Most common: Gaussian

€

h(x) = e
−


x −

µ

2

σ 2

 : Mean
 : Variance

€


µ

€

σ

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Radial Basis Functions

•  Lead to a hyperelliptic decision surface instead of hyperplane
•  So we get local units

€

y j = e
−


x −

µ j

2

σ j
2

€

y j = tanh wij xi
i
∑
⎛

⎝
⎜

⎞

⎠
⎟

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Local Activation
with linear units

•  Possible but needs
multi layer perceptron

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Tile the Input Space

•  Receptive fields overlap a bit,
so there is usually more than
one unit active.

•  But for a given input, the total
number of active units will be
small.

•  The locality property of RBFs
makes them similar to Parzen
windows.

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Training RBF Nets

•  Training Scheme for RBF Nets is hybrid
•  Use unsupervised learning for the center points and

perhaps also the variances
•  Use k-means algorithm, intialized from randomly

chosen points from the training set.
•  Use a Kohonen SOFM (Self-Organizing Feature Map)

to map the space. Then take selected units' weight
vectors as our RBF centers

•  Least Mean Square algorithm to train the output weights
•  First step can be skipped if input space is split equidistant and

variances are fixed
•  Maybe the number of units is unnecessarily high

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Example I: Input Space

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Example I: While Training

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Example I: After Training

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Example II: Input Space

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

Example II: After Training

Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel

RBF Nets

•  In low dimensions we can also use a Parzen window
(for classification) or a table-lookup interpolation
scheme

•  But in higher dimensions RBF Nets are much better
since units can be placed only where they are needed

