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Kohonen Maps 


   Central question: 

   Can we find a lower-dimensional representation of the data which 

preserves the relations between patterns in the input? 

   Method: 


   Unsupervised competitive learning in a two-dimensional neural network 

   Results: 


   Line, square, or cube providing a mapping of the data 

   Emphasis on visual presentation of data 

   Applications in classification, automatic control, image and speech 

processing 

   Do there exist other methods for doing this? 
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DEMO 1 
Dutch-English Word Mapping 
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PRINCIPAL COMPONENTS 
ANALYSIS 
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Motivating Example 


  Consider hundreds of 100x100-pixel images 
variable in displacement, scale, and rotation 
(latent variables) 


  Dimension of latent variables much smaller than 
image dimension 


  How to recover latent variables? 
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Illustration
Theory

Algorithm

Continuous Latent Variables

“True” latent variable is the displacement, scale and rotation.

Affect is approximately linear if the rotation is small.

Note dimensions of the latent variables (4) much smaller than
dimensions of the image (10000).

Can we reconstruct the latent variables from the copies? One copy?
Several?

Buntine K-Means
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Curse of Dimensionality 


   Consider p-dimensional unit hypercube containing observations 

   Suppose a neighborhood capturing a fraction r of observations 


   i.e. a fraction r of the unit volume 

   Expected edge length will be e(r)=r1/p 


   In ten dimensions: 

   e10(0.01)=0.63 

   e10(0.1)=0.80 
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Curse of Dimensionality 


  Distance functions lose 
their usefulness in high 
dimensionality 
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Principal Components Analysis 


   Invented by Karl Pearson in 1901 

   Also known as: 


   Karhunen-Loève transform in information theory 

   Hotelling transform in image analysis 

   Latent Semantic Analysis in text processing 


   Linear transformation to a new coordinate system  

   New variables -- principal components 


   linear functions of the original variables 

   Uncorrelated 

   Greatest variance by any projection of the data comes to lie 

on the first coordinate 

   Second greatest variance on the second coordinate etc. 
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Principal Components Analysis 


   Aims 
1.  Find a set of K orthogonal vectors in data space accounting for as 

much of the data’s variance as possible 
2.  Projection of data from original D-dim space to K-dim space 

spanned by these vectors 
3.  Retain as much of the intrinsic information in the data as possible 


   Results 

   Typically M<<N  reduced data much easier to handle in 

searching for clusters 

   Guarantees in terms of minimizing least squares error in the 

new approximation 
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Why preserve variance of data? 


   Selecting for vectors spanning the data in the directions of highest 
variance 


   Equivalent to maximizing the information content of output projection 
where it has a gaussian distribution 


   Information Theory 

   Shannon entropy quantifies the expected value of information contained in 

a message 


   Which for a gaussian is: 


   Entropy or information content depends on variance of data 
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Example 
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Derivation 


   Consider N data points x1,…,xN in RD 

   D x N matrix X 


   We wish to find an orthogonal linear mapping onto a lower dimensional 
subspace RK: RD RK such that the variance in of the data in the new 
space is maximal 


   Mapping given by D x K matrix U with UTU = Ik  

   Columns of U are orthogonal and have unit length 


   Mapping is given as y = UTxn
 


   Mean of projected data given by  

   Variance of projected data is: 


   Total variance: 
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Derivation (Cont.’d) 


   We can also find the projection U onto RK s.t. the mean squared 
distance between data and its projection back from the new space is 
minimum 


   Center the data first by subtracting a matrix of columns of means 

   Then minimize: 


   This measure is equivalent to: 


   Using trace(AB) = trace(BA) and UUT being idempotent 

   Thus maximize 
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PCA Algorithm (Informal) 


  First principal component u1 taken along direction 
of maximum variance 


  Second principal component u2 lies in 
subspaceperpendicular to the first 

   Taken as direction of maximum variance in this 

subspace 

  Third principal component taken in direction of 

max. variance in subspace perpendicular to both 
u1 and u2 
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PCA Algorithm 


   Computation of principal components ui 

   The minimization of (1) and maximization of (2) are equivalent to setting 

the principal components to the K eigenvectors corresponding to the K 
largest eigenvalues of the sample covariance matrix S 


   For centered data this reduces to finding the eigenvectors of C: 
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PCA Algorithm Proof 

   Proof for kth principal component: 


   Variance along direction of a unit vector x: 


   Where xα is the component of x along the eigenvector cα belonging to the 
eigenvalue λα of C 


   Take eigenvalues in decreasing order: 

   λ1≥λ2≥…≥λN  where λ1=λmax 


   Assume princpal components 1 to k-1 are along the first k-1 eigenvector 
directions (Induction) 


   uk is constrained to be perpendicular to these directions 

   Therefore x1…xk-1 = 0 

   Maximize σx

2 subject to this condition with |x|=1 and thus Σαxα2=1 


   Therefore the kth principal component is along the kth eigenvector 

   Further, σx

2=λk when x is along uk 
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Time for computation 


  Principal computational cost is from computation of 
eigenvectors 


  We could compute a full singular value 
decomposition (SVD) giving all eigenvectors 

   ~O(D3) 


  We could iteratively calculate each next largest  
eigenvector: 

   ~O(KD2) 
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DEMO 2 
Dimensionality Reduction with PCA 
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K-MEANS CLUSTERING 
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Cluster Analysis 


  Group collections of objects into subsets such that those 
within each cluster are more closely related to one another 
than objects assigned to different clusters 


   Used to form descriptive statistics 

   Ascertain whether or not data consists of a set of distinct 

subgroups 


   Depends on notion of degree of similarity between objects 

   i.e. a way to find similarities in data 

   Types of clustering algorithms*: 


   Combinatorial 

   Mixture Modeling 

   Mode seekers 
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Combinatorial Clustering 


   Assume N observations x1,…xN 


   Suppose a fixed number of clusters K < N 

   Each cluster assigned a label: k in {1, … , N} 

   (Typically) each observation belongs to only one cluster 


   This implies a mapping k=C(i) 

   We seek the mapping C*(i) that minimizes a loss function based on 

dissimilarities 


   Aim is to partition the data into K clusters 

   Result is a partitioning of the data space into Voronoi cells 
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Loss Functions for Clustering 


   Within-cluster or intra-class scatter 

   Characterizes closeness of 

observations within the same 
cluster 


   Total scatter: 


   Decomposes to:  


   Interclass scatter: 


   Minimize W(C) is equivalent to 
maximizing B(C) 
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508 14. Unsupervised Learning

required goal (details below), based on the dissimilarities d(xi, xi′) between
every pair of observations. These are specified by the user as described
above. Generally, the encoder C(i) is explicitly delineated by giving its
value (cluster assignment) for each observation i. Thus, the “parameters”
of the procedure are the individual cluster assignments for each of the N
observations. These are adjusted so as to minimize a “loss” function that
characterizes the degree to which the clustering goal is not met.

One approach is to directly specify a mathematical loss function and
attempt to minimize it through some combinatorial optimization algorithm.
Since the goal is to assign close points to the same cluster, a natural loss
(or “energy”) function would be

W (C) =
1

2

K∑

k=1

∑

C(i)=k

∑

C(i′)=k

d(xi, xi′). (14.28)

This criterion characterizes the extent to which observations assigned to
the same cluster tend to be close to one another. It is sometimes referred
to as the “within cluster” point scatter since
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where dii′ = d(xi, xi′). Here T is the total point scatter, which is a constant
given the data, independent of cluster assignment. The quantity
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is the between-cluster point scatter. This will tend to be large when obser-
vations assigned to different clusters are far apart. Thus one has

W (C) = T − B(C)

and minimizing W (C) is equivalent to maximizing B(C).
Cluster analysis by combinatorial optimization is straightforward in prin-

ciple. One simply minimizes W or equivalently maximizes B over all pos-
sible assignments of the N data points to K clusters. Unfortunately, such
optimization by complete enumeration is feasible only for very small data
sets. The number of distinct assignments is (Jain and Dubes, 1988)

S(N,K) =
1

K!

K∑

k=1

(−1)K−k

(
K

k

)
kN . (14.30)

For example, S(10, 4) = 34, 105 which is quite feasible. But, S(N,K) grows
very rapidly with increasing values of its arguments. Already S(19, 4) "
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K-means algorithm (Lloyd’s Algorithm) 


   Finding C*(i) by enumeration is too time-consuming 

   Instead use iterative greedy descent 


   Convergence to a local optima 

   Dissimilarity measure  


   Choose Euclidean distance: 


   Minimize 


   Where:  

   i.e. minimize W(C) by assigning observations to clusters to minimize 

average dissimilarity of observations from cluster mean 
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1010, and most clustering problems involve much larger data sets than
N = 19. For this reason, practical clustering algorithms are able to examine
only a very small fraction of all possible encoders k = C(i). The goal is to
identify a small subset that is likely to contain the optimal one, or at least
a good suboptimal partition.

Such feasible strategies are based on iterative greedy descent. An initial
partition is specified. At each iterative step, the cluster assignments are
changed in such a way that the value of the criterion is improved from
its previous value. Clustering algorithms of this type differ in their pre-
scriptions for modifying the cluster assignments at each iteration. When
the prescription is unable to provide an improvement, the algorithm ter-
minates with the current assignments as its solution. Since the assignment
of observations to clusters at any iteration is a perturbation of that for the
previous iteration, only a very small fraction of all possible assignments
(14.30) are examined. However, these algorithms converge to local optima
which may be highly suboptimal when compared to the global optimum.

14.3.6 K-means

The K-means algorithm is one of the most popular iterative descent clus-
tering methods. It is intended for situations in which all variables are of
the quantitative type, and squared Euclidean distance

d(xi, xi′) =
p∑

j=1

(xij − xi′j)
2 = ||xi − xi′ ||2

is chosen as the dissimilarity measure. Note that weighted Euclidean dis-
tance can be used by redefining the xij values (Exercise 14.1).

The within-point scatter (14.28) can be written as

W (C) =
1

2

K∑

k=1

∑

C(i)=k

∑

C(i′)=k

||xi − xi′ ||2

=
K∑

k=1

Nk

∑

C(i)=k

||xi − x̄k||2, (14.31)

where x̄k = (x̄1k, . . . , x̄pk) is the mean vector associated with the kth clus-

ter, and Nk =
∑N

i=1 I(C(i) = k). Thus, the criterion is minimized by
assigning the N observations to the K clusters in such a way that within
each cluster the average dissimilarity of the observations from the cluster
mean, as defined by the points in that cluster, is minimized.

An iterative descent algorithm for solving
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K-means algorithm (Cont.’d) 


   Minimize W(C) with respect to class assignement C(i) and means 

   Perform cyclic descent: 

1.  Fix means, optimize W(C) w.r.t. C(i) 
2.  Fix C(i), minimize W(C) w.r.t. means 
3.  Repeat until no change in class assignment or means 


   Lloyd’s Algorithm: 
1.  Classify: Assign each observation i  to the nearest mean: 

2.  Recenter: For each class k, compute a new centroid as the mean of the 
updated class assignments: 

3.  Repeat until stopping criteria fulfilled 
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DEMO 3 
K-Means 
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DEMO 3B 
K-Means Matlab Demo 
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Analysis 
Figure 6 – Mélange de deux gaussiennes concentriques
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Figure 7 – Classification par l’algorithme CEMI (initialisation avec loi uniforme)
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   K-means seeks to make the size of each cluster 
approximately the same  


  Membership based on location of centroids 

   Number of centers fixed in advance – what number? 


   Minimize Schwarz Criterion: W(C)+λmklog(R) 

également, toujours avec l’exemple de l’algorithme CEMIV, que la diminution de perfor-
mance entre le cas volumes semblables et le cas volumes très différents est d’autant plus
faible que les proportions sont très différentes.

–

Classification par algorithme Kmeans - illustration
On visualise des exemples de classification par algorithme kmeans,
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(c) Chevauchement fort

Figure 17 – Quatre exemples de classification par algorithme Kmeans - chevauchement faible
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Convergence 


   Theorem: During the course of the k-means algorithm, the 
loss function monotonically decreases 


   Proof 

   Let µ1

(t),…, µk
(t) be the k centroids at iteration t 


   Let C1
(t),…,Ck

(t) be the clusters at iteration t 

   Step 1 assigns each data point to its closest center, therefore: 


   loss(C1
(t+1),…,Ck

(t+1); µ1
(t),…, µk

(t)) ≤ loss(C1
(t),…,Ck

(t); µ1
(t),…, µk

(t))  

   Step 2 re-centers the data at its mean, giving another reduction in 

loss: 

   Because loss(C;µ) = loss(C;mean(C)) + |C|||µ-mean(C)||2 


   loss(C1
(t+1),…,Ck

(t+1); µ1
(t+1),…, µk

(t+1)) ≤loss(C1
(t+1),…,Ck

(t+1); µ1
(t),…, µk

(t))  
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Extension – Fuzzy K-Means 


  Developed by Dunn in 
1973 


  Continuous degrees of 
belonging to classes 


  Minimize fuzzy intra-
class distances 


   Algorithm*: 
1.  Choose initial cluster 

prototypes 
2.  Compute degree of 

membership for all x in all 
clusters k: 

3.  Compute new centers 

4.  Repeat 2 & 3 
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DEMO 4 
Fuzzy k-means 
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GMM vs K-Means 


  Replace means (centroids) with gaussian mixtures 

   (µk,Σk) 


  Expectation-maximization algorithm for training 

   Similar to k-means algorithm 

   Solve problem with hidden information 


  Classification may be done by assigning sample to 
closest mean 


  No strict sense of cluster membership 

  K-means equivalent to using spherical covariance 

matrices of equal size for centroid 

  K-means could be used to initialize clusters for GMM 
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EM Algorithm for GMM 


   Coordinate ascent 

   Related idea of partial membership (think fuzzy k-means) (class 

membership probability) 

   Intialization: Assume initial  

p(k|i)(0), µk
(0), and Σk

(0) 


   E-Step: Update membership probabilities 


   M-Step: Update Gaussians and prior probabilites 
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GMM Example 
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VECTOR QUANTIZATION 
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Vector Quantization (VQ) 


  VQ Theory: 

   Approximate the data space with a smaller number of 

vectors  

   Categorize a set of input vectors x into M classes 

   Each class has an associated prototype vector 


   Set of all prototype vectors is called a codebook 

   Represent any vector by its class 


   Finding appropriate class: 

   Identify nearest prototype vector 


   Similar to competitive learning: 

   Ui are prototype vectors 

   Find class by winner: 
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Applications of VQ 


  Multimedia 
compression for 
storage and 
transmission 


  Dimensionality 
reduction 


  Classification 

   Ex.: Tokenization of 

speech frames 

Encoder-Decoder Model 

Neuronale Netze - Prof. Waibel 

Encoder 

Input vector 
x 

Reconstructed Vector 
x’(c) 

Decoder 
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Basic VQ Training and Classification 
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Clustering 
Algorithm 
(k-means) 

Codebook 
M=2B 

vectors 

Quantizer 

Training 
vectors 

(v1, v2, …, vL) 

d( . , . ) 

d( . , . ) 

Input vectors Codebook 
indices 
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Voronoi Regions 
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Derivation of VQ Algorithm 


   Distortion measures d 
1.  Most common is squared-error: 

2.  Itakura, Saito, and Chaffee 


   Optimality 

   Let X = (X0, … , Xk) 

   Expected distortion with respect to underlying distribution: 


   D(q) = E{ d(X,q(X)) } 

   Given quantizer q with codebook vectors U = { ui ; i=1, …, M } yielding a 

partition S = { Si ; i= 1, …, M } 


   N-level quantizer is optimal if it minimizes the expected distortion 

   Result is k-means algorithm 
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Iterative VQ Algorithm 


   Can design M-vector codebook in 
stages 


   Procedure 

   First a 1-vector codebook 

   Split to initialize search for 2-

vector 

   Continue splitting until M-vector 

codebook 

   Algorithm 

1.  Design a 1-vector codebook U1 = 
u1 

2.  Double size of codebook by 
splitting Un according to the rule: 
1.  Un

+=Un(1+ε) 
2.  Un

-=Un(1-ε) 
3.  Use the K-means algorithm to 

get the best centroids for the two 
codebooks 

4.  Merge Un
+ and Un

- to make Un+1
 

5.  Repeat steps  2 through 4 
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Find Centroid 

Split each centroid 
D’=0 

Classify 
vectors 

Find centroids 

Compute D 

D’=D 

D-D’<δ 

m<M m=1 

YES NO 

NO 

STOP 

YES 
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Supervised SOM 


  SOM is typically an unsupervised process 

  Classification accuracy can be improved if class 

information used in the learning phase: 

  Form input vectors of two parts: 


   xs the data 

   xu the class information 

   x = [ xs

T , xu
T ]T then used as input to SOM 


  Enhanced class-separation 

  Recognition phase: 


  Only the xs part is compared with weights 
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LEARGNING VECTOR 
QUANTIZATION 
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Learning Vector Quantization 


   Kohonen suggested a supervised form of VQ called LVQ 

   Class of related algorithms: LVQ1, LVQ2, LVQ3, and 

OLVQ 

   VQ and SOM are unsupervised clustering and learning 

   LVQ uses supervised learning, but with no spatial order of 

codebook vectors 
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Optimal Decision 


  Optimal decision discussed in framework of Bayes theory 
of probability 


   Assume all samples of x are derived from a finite set of 
classes { Sk } with overlapping distributions 


   P(Sk) : a priori  probability of classes Sk 


   p(x | x in Sk) : conditional prob. Density of x on Sk 


   Discriminant functions: 


   Rate of misclassification minimized if a sample x is 
classified by: 
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LVQ Approach 


  Approach: 

  We assign a subset of codebook vectors to each 

class Sk 

  Then we search for the codebook vector mi closest 

to x 

  x is classified as same class as closest mi 

  Only codebook vectors near edge of class borders 

are important 

  A good approximation of p(x | x in Sk) is not necessary 

everywhere 

  Place the mi into signal space to minimize average 

expected misclassification probability 
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LVQ1 


   Assume several codebook vectors assigned to each class of x values 
and that x is assigned the class of the nearest mi 


   Let the index of the winning codebook vector c be: 


   Let x(t) be an input sample 

   Let mi(t) be the sequential values of the mi in the discrete-time domain 

   Start with properly defined initial values 

   Apply reward-punishment 

learning rule for each x: 

   Samples applied 

cyclically 
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LVQ1 – Derivation 


  Assume we want to 
approximate a density 
function f(x) with the LVQ 


  Let optimal decision 
(Bayesian) borders be 
defined by equations (I) 
and (II) (previous slide) 

   These borders divide 

signal space into class 
regions Bk s.t. 
misclassification is 
minimized 


   f(x) has the form: 
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LVQ1 – Derivation 


   Use VQ to define point density of m approximating f(x)  

   Optimal values found by minimizing average expected quantization 

error E 


   Only winner should be updated: 

   Gradient step: 


   Replace f(x) with p(x) 

   With some derivation: 


   Where r is the runner-up class 
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LVQ1 – Derivation 


   Rewrite α(t)=2λ: 


   Notes: 

   In (III) the « punishment » correction made every time x miscalssified 

   In (IV) it is made only if x is in the runner-up class 

   If x in neither class, no change is made 

   LVQ2 and LVQ3 are closer to (IV) than LVQ1 
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OLVQ1 


   Determine the optimal learning correction factor α(t) for fastest 
convergence 


   Derivation 

   Express (III) in the form 

   mc(t+1) = [ 1 – s(t)αc(t) ]mc(t)+s(t)αc(t)x(t) 


   where s(t)=+1 if classification is correct, and s(t)=-1 if incorrect 

   mc(t+1) contains a trace of x(t) 

   Traces of earlier x(t) are contained in the term mc(t) 

   Magnitude of last trace of x(t) scaled by factor αc(t) 

   During this step the trace of x(t-1) has become scaled down by 

[ 1 – s(t)αc(t) ] αc(t-1) 

   Stipulate identical scaling: αc(t) = [ 1 – s(t)αc(t) ] αc(t-1) 

   Hold for all t, induction: all traces collected up to time t of earlier x(t) will be 

saceld by an equal amount at the end 

   Optimal values of α(t) determined by recursion: 
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LVQ2 


   Differentially shift the decision borders toward the Bayesian 
limits 


   Identical classification decision with LVQ1 

   Difference(s): 

1.  Two codebook vectors mi and mj updated simultaneously 
1.  mi and mj are nearest neighbors of x 

2. x must fall into a « window » defined around midplane of mi and mj 

   Assume di and dj are Euclidean distances of x from mi and mj 

   x falls in a window w if 


   Window of 0.2 to 0.3 is recommended 
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LVQ2.1 


   Improvement over LVQ2 

   Allows either mi or mj to be the closes codebook vector 


   Where:  

   mi and mj are the two closest codebook vectors to x, 

   x and mj belong to the same class 

   x and mi belong to different classes 

   x must fall into the ‘window’ 
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LVQ3 


   Improvement over LVQ2 

   Introduce correction to ensure that mi continue approximating the class 

distributions (f(x)), at least roughly 

   Algorithm: 


   Where: 

   mi and mj are the two closest codebook vectors to x 

   x and mj belong to the same class 

   x and mi belong to different classes 

   x falls into the window 
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Differences between LVQ1, LVQ2, and LVQ3 


   LVQ1 and LVQ3 are more robust 

   Codebook vectors assume stationary values over extended 

learning periods 


   LVQ1 can be optimized for quick convergence 

   LVQ2: Relative distances of codebook vectors from class 

borders optimized 

   No guarantee of optimal vector placement to describe forms of 

class distributions 

   Therefore use a small value of learning rate and limited number of 

training steps 
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Initialization of Codebook Vectors 


   Iterative assignment 

   Due to fact that class distributions are unknown 

   Final placement of codebook vectors not known until end of learning 

   Distance and optimal numbers cannot be pre-determined 


   Practical step: 

   Start with same number of codebook vectors in each class 

   Upper limit to total number of codebook vectors: time and compute power 

available 

   Determine min. number for codebook vectors per class: 


   Medians of shortest distances between codebook vectors should be 
somewhat smaller than the standard deviations of input samples in all 
respective classes 


   Initial values of codebook vectors: 

   Use first samples of training data picked from respective classes 

   These samples must pass a K-Nearest-Neighbor test of tentaive 

classification 
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Learning & Stopping 

Optimal Learning 

   Begin learning with OLVQ1 

for fast convergence 

   # steps: ~30 to 50 times total 

number of codebook vectors 


   Continue with other 
algorithms with a low initial 
learning rate 

Stopping Rule 

   NN algorithms may 

« overlearn » 

   Over-specialization to the 

data 

   As with NN: 

   Divide data into training, 

validation, and test sets 

   Test against validation set 

after every training iteration 

   Stop training using some 

heuristic on the performance 
on the validation set 
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SUMMARY 
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Summary 


  SOM 

   Dimensionality Reduction 

   Spatial Representation 

   Unsupervised Competitive 

Learning 


  PCA 

   Dimensionality Reduction 

   Spatial Representation 


  VQ 

   Uses K-Means algorithm 

   Finding prototypes from 

data 


  K-Means 

   Constrained case of EM 

algorithm for GMM 

  Supervised SOM 


   Unsupervised learning 
using labels 


  LVQ 

   Supervised learning 

for VQ 

   Finding prototypes from 

data 
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APPLICATIONS 
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Application: Transcription of Continuous 
Speech 


   Computation of Short-time Cepstrum 

   Elimination of peaks due to harmonics 


   Conversion of Cepstra to Quasiphonemes 

   LVQ 


   Used to assign an acoustic label every 10ms 

   Correct for coarticulation effects 


   Use context-depended quasiphoneme grammar 

   DFC --- Dynamically Focusing Context 


   Merge quasiphones to phonemes / Decoding Quasiphone Sequences into 
Phones 

   Voting 


   Consider n successive labels 

   Determine meta-label by majority of these n labels 

   Label the n labels with this meta-label 

   Heuristic rules to ensure no overlap of decision, proper number of phonemes 


   HMM 

   Dynamically Expanding Context 


   Symbolic method for correcting phonemic errors and translate phonemes to 
orthographic text 
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Application: Transcription of Continuous 
Speech 
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Cepstrum LVQ 

DFC Voting DEC 

HMM 


   Results: 

   Three Finnish speakers 

   Four repetitions of a set of 311 words 


   Three repetitions for training, one for testing (leave-one-out principal) 

   95.6% Correctness 
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Application: VQ For Speech Compression 


  Assume we require a 
codebook with about 
1024 unique spectral 
vectors 

   25 variants for each of the 

40 basic speech units 

   Need 10-bit number to 

represent an arbitrary 
spectral vector 


  Assume a rate of 100 
spectral vectors per 
seond 


  Then a total bit rate of 
1000 bps is required to 
transmit a speech 
signal 


  This is about 1/16th the 
rate for a non-
compressed signal 


  VQ Representation of 
speech can be very 
efficient 
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Application: VQ for Speech Compression 

Advantages 

   Reduced storage space 

   Reduced computation for 

determining spectral 
similarity (lookup table) 


   Recognition through 
discrete representation 
possible 

Disadvantages 

   Inherent spectral distortion 


   Quantization error 
decreases with size of 
codebook 


   Storage for codebook 
vectors is often non-trivial 
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Application: Spoken Language Identification 


  Design a system for 
identifying the language 
of a clip of speech 
based on prior 
examples of languages 


  Supervised learning: 
train classifier with 
speech representing 
two or more languages 


  Tokenize speech (VQ) 

  Create « spoken 

documents » 

  Use text categorization 

techniques to classify 
each document (PCA) 

   Projection into lower-

dimensional « concept 
space » 


  Classification 
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Example Application: Spoken Language 
Identification 
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Classification (ANN) 
Determine language of testing documents 

LSA  (PCA) 
Create “spoken documents,” use SVD to project data into “concept space” 

Tokenization (VQ) 
Convert speech clips to sequences of symbols 

Data Collection 
Divide speech data into training and testing, create speech clips 
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Example Application: Spoken Language 
Identification 


   Division of data into training and testing set 

   Creation of spoken documents 


   Creation of 30-second clips (documents) 

   45 millisecond frames 

   Computation of linear prediction coefficients (LPC) cepstrum 

   6-bit VQ: 64 centroids  64 symbols 


   K-means clustering on 5 minutes of randomly selected speech from each language 

   Computation of symbolic co-occurrence statistics 


   4094 Bigrams 

   Term document matrix 


   Training: 4094x1400 

   Testing: 4094x400 

   Weighting 


   Principal Components Analysis  projection into concept space 

   Reduces noise and sparsity 

   Eases comparisons 


   Training of classifiers and testing 

   Artificial Neural Network, K-nearest neighbor, Mean-similarity 
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