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Traditional Feedforward ANNs

@ Classification

® Information fed
forward

] Output patterns
® No fixed number
of layers
Internal
Representation

& No relation
amongst output
units

Units

Input Patterns
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Biological Systems

W Spatial organization of
information

® Topological mapping of
sensory and motor
phenomenon on surface
of brain

® More space dedicated
to more frequent
patterns W v 7

® e.x. Mapping of visual
field onto cortex

terior cortex visual field of the
(lobus occipitalis) right eye
0

visual field and corresponding cortex region



Kohonen Maps

B Self-organization
® Unsupervised
competitive learning

® Produces a low-
dimensional
representation of the
Input space

® Maps the organization
of relationships among
patterns in input
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® Paradigm introduced by
Kohonen

® Precursors appear in
work of Grossberg,
Rosenblatt, von der
Malsburg, others
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® Neural networks serve as function which map an input in space A to an
output space B

Input and Output Spaces

®a

A

® |In a Kohonen map, those points close in A are also close in B
® Preservation of the topological properties of the input space

® A Kohonen map is such that for a given input vector a, only one neuron
in the network fires



Basic Structure

® Two layers
® Input Layer

® Competitive Layer @0 O -9
(KOhonen Layer) WinningNeuron\? ....... ° ........ o-‘ sl

® Each input unit is
connected to all units in U -
the competitive layer

® Kohonen Maps operate & NN N e e
in two modes: training Ry T T
and mapping



Training ﬂ(“.

m Weights U=[u,,...,u, ]
® Input X=[x,,...,x,]
0. Begin iteration t

1. Initialization - Assign weights
randomly

2. Sampling — Draw input X¥ from

input space

3. Matching - Find winning neuron
® Compute matching value for each

unit > W;;
HX,U _U — Z(x,u _u) < O O Y@ wulaper
l J y X . Feature Vector (Pattern)
j J
® Unit ¢ w/ lowest matching value wins
(BMU)

|

l

c(u)= argmin{HX“ ~U.



Training pt. I

4. Updating

a. ldentify neighborhood N, around
unit ¢ within distance d

b. Update weights in N,
Od(t)(xjf‘ —uij) Vie N

Winning Neuron BT .

C

0 otherwise

w;(t+1)=u,;(1)+ Au,
5. Continuation U;
a. t=t+1 < o W°° ¢ Input Layer

. X. Feature Vector (Pattern)
b. Decrease learning rate and
neighborhood with iterations

oc(t):(xo(l—%) d(z):{do(l—%)—l



Training pt. Il (alternative) ﬂ(".

4b. Use a smoother neighborhood

function
— : uo
Au, @(l,c,t)a(t)(xj uij) R ——
Winning Neuron e
— -’ O ° o XY |
ul'j (t + 1) - ul] (t) + Aulj nghbourhood\‘\\jt. Q J -~ fgf::aen
@99 @
Typical choice for O is a gaussian: L2
¢ @ 9 @ d
. 2 )
O(i,c,t)= exp(—|rl. —-r.| /20 ) U;
- © @ Pc°° b Input Layer
Where 0) |S gradua”y decreased to X] Feature Vector (Pattern)

increase the size of the
neighborhood
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Derivation of the training rule

® Cost function: 1 , 2
E{ui,j} = EZM,f@(z,k)(xJ‘.‘ —ul.j)
ijkut
= %ZQ(i,c)‘x“ - ui‘z
® Gradient descent oﬁl cost function:

<ul.j> = —a;TE = aZM,f@(i,k)(xj‘ — ul.j)
) ”

® (Sum of Kohonen learning rule over all input indices p)
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Example

Competitive Layer




Example

Competitive Layer




Training Phase

® Two steps:
1. Unfolding phase
2. Convergence phase

® Local minima possible

® More likely with higher
complexity of input
space

® Ordering of input
patterns can lead to
local minima




Input Drawn from Uniform Distributions

2D to 1D

40 neurons

)

(b)

(d)

Karlsruher

Institut fur Technologie
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Mapping Mode + Dimensionality Reduction

Mapping Mode Dimensionality Reduction

m (After training) m Dimension of input is
number of coefficients in E
® [n order to map an

_ ® Dimension of map is
new input to the number of axes
network

B Interest is often in reducing

® Simply find the best- g high-dimensional
matching unit problem to a low-

dimensional one



SKIT

Input Drawn from Uniform Distributions
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® Density of inputs higher
INn grey region
B Greater number of

neurons will be drawn
to this region

Nonuniform Probability Densities
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3D Feature Map

DEMO 1
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Colors

DEMO 2
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Visualizing a dataset

DEMO 3
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Organization of an SOM

DEMO 4
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How does an SOM produce organization?

® Propositions:
® Ordering and Convergence
® From Kohonen (1D case):

W Assumptions: Let x be a stochastic
variable. Starting with randomly

chosen initial values for the weights (4) ||x — U ” - m,-m{”x - ”z”}

u,, the set of numbers

{Ul=(uy,uy,...u) (B) N, :{max(l,c—1),c,min(l,c+1)}
® Proposition 1: {U} will become

ordered with t-> through the du,/dt=a(x—u,) forieN,

process defined by (A), (B), and (C) (€) du, /di =0 otherwise

® Proposition 2: Once ordered, the
set remains Sso.

® Proposition 3: The density of the u;

will finally approximate some
monotonic function of the pdf p(x)




Informal Proof of Ordering

® 1D example:

® Assume no unit is near
an edge

® Compare values of
weights [ u, ... Ug ]

W 4 pairs of adjacent units

® Two possible orderings
of weight values

® 24=16 orderings for 5
units

Karlsruher Institut fur Technologie
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- ® We will examine for three of
the 16 cases what happens
when an input is presented
to the middle unit (to avoid
edge effects)

i ® Define a measure of
LR disorder:

Informal Proof of Ordering

[ o

WEIGHT VALUE U
N N IS S - RN ©
T T T T T T T T

i v p-3

U, _ui—l‘_‘ut _ul‘

| | i=2 .
| ® Assume ¢ isaRV €|0,1]
| ® Assume c is center unit,
af J
| d=1

COMPETITIVE UNIT i



Informal Proof of ordering ﬂ(".
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Proof of Ordering (More Rigorous)

B Assume neurons
1,2,...,1

Bletu=uf(t)inR

BLet x=x(f) INR

® With prob. dens. p(x) on
[a,b]

B Assume equations (A),
(B), (C)

® Assume winning unit ¢
IS unique in all cases
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(A) [lx—u]|=min{]x -]}
(B) NC:{max(l,c—l),c,min(l,c+1)}

du,/dt =0 (x—u;,) forieN,

()

du./dt =0 otherwise
t
D= z U —u._, —‘ut _“1‘
=2
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Proof of Ordering (More Rigorous)

W Assume:

I. X(t) is almost surely
integrable on finite

intervals (A) |x—u|=min{|x—u|}
ii. p(x)is independt of t and ’
>0 on [a,6] only (B) N, ={max(Lc—1),c.min(l,c+1)}
jii. x(t) attains all values on
[a,b] almost surely during du,/dt =c(x—u) forieN,
all time intervals [t,o0) (C) dufdi=0  otherwise

Iv. The initial values for u;
are choes randomly from t
a distribution on [a,b] D= 2
® Theorem: In a process =
defined by (A), (B), and (C), u
{U} will become almost
surely ordred asymptotically

U, — U,

—‘ut—ul‘
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Proof of Ordering (More Rigorous)

® Partial Proof:
| Step 1:

® Consider only the case for3 <c</-2

® Define the partial sum S(c): 2
= —u_|for3<c<[-2
® For any t, the sign of S(c) i;1|”z u, | for 3<¢
|lu-u,_,| attains one of at most 16 combinations

® Consider dS/t in two cases

Case wu.—u, , u,—u u., —Uu

l/.l — c+ c c+ c+1
c=2
. >
uc—1:05(x_uc1) a0 >0 >0 >0
_ al >0 >0 <0
Uu.=
. S,=—u_,+u S,=0
uc+1 = a('x—uc+l) a0 c—2 c+2 a0

S =—u_,+2u , —u, S =20((x—u )<O



Proof of Ordering (More Rigorous)
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@ Step 1 (Cont.’d) w Step 2:

® In view of step 1, D(t) must tend
to some limit

® For all 14 other
cases, S<0

B S<0 also for
other values of ¢
not considered
here

® Partial sum
dS/dt<s0 - D is
monotonically
decreasing

b =limbU)

® D*=0: Proof by contradiction:

Since D*is constant, dD*/dt=0 for all t

Assume D*>0 and a certain ordering
of {U} without loss of generality

Examining a series of cases, we are
inevitably led to contradictions

Therfore D* must equal 0
Thus the asymptotic state is ordered
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Convergence Analysis in 1-D Case

| |
| X I
a u b

ne

LtW=u+a@%wO
® 1 neuron, 1 input

Weboundedin[a, b]
BIfO<a<1,thenuisboundedin[a, b]
@ Therefore E(u) is bounded

® Therefore Cdu |

E<— =0
\dt)
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Convergence Analysis in 1-D Case
LS T S T L

T .

a b
® Assume a<u,<u,<...<u.<b
® The average attraction on each weight is zero Iin

its domain
® Therefore the weights stay bounded
® Therefore du,
ore { dul } 0
t

® This is true only if E(u;) are distributed
homogenously (the attraction from the left
balances that of the right)




Convergence Analysis in 2D Case

® Assume
monotonic
ordering of
network weights
In two
dimensions:
w{7<wfk ifj<k

wi<wy ifi<k

@ 2D problem
breaks down into
two 1D problems

nn



Convergence Analysis in 2D Case

® Consider one column:

® Define the average value of weights

in the j. column:
1 n

® These averages are monotonically
arranged:
a<w, <w <..<w'<b

® > E(w,) will reach a homogenous
distribution on [a,b ]

o w7, w2, ... w," will oscillate around
E{w,}

® Analogous reasoning for each ¢
column and each of the rows a w b

® - Convergence to a stable state
(with small enough «)




Convergence Analysis in 2D Case

® Condition for arrival at

stable state:

® Unfolding of the randomly
intialized map

® Can fail in early stages

® No general solution for
conditions which can guarantee

this unfolding
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Measurement of Quality

Quantization Error Topographic Error

® There will always be some m Proportion of all vectors for

difference between a given  \hjch the first and second
input pattern and its closest  gmuUs are not adjacent

neuron
D e | 13
o TE—N;u(Ei)
j — argmin”ek — CIH u(E) :{ 1 if 1.and 2. BMUare adjacent
l l 0 else

® Gives notion of quality of
mapping



Representations

U-matrix

@ Distances between the
weights of each node are
represented as shades of
grey on the map

® Clusters of similiar data
appear white
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Component Planes

® Each plane represents the
value assigned by each
neuron for each component
In the vector



Representations ﬂ(".
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Clusters Unified Distance Matrix { Party BankruptcyAbusePrevent

m = R - .
0.00 1.00|1.32 48.90( 0.00 1.00

BroadcastDecencyEnforce | ClassActionFairnessAct [ContinuityinRepresentation




Best Practices for Generating Good SOMs

B Scaling of input
coefficients

® Orientation of ref. vectors
In input space depends on
scaling of vector
components

® No simple rule for
rescaling

® With high input Dim.,
normalize variance of

each component over
trainin data

® Try heuristic rescaling and
check quality with
guantization error
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® Forcing representations

to desired map location

B Sometimes we may
want to map « normal »
data to a specific place
on the map

® Use copies of this data
for the initial values of
the weights at these
locations

@ Keep learning rate low
for these locations
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Best Practices for Generating Good SOMs

® Learning with a small ® SOM for sequential
number of training signals
samples

® Number of iterations may
be much greater than
number of samples
@ Alternatives:
@ Cyclical presentation
® Random presentation
® Bootstrap learning

® Results:

® Ordered cyclic application
« not noticeably worse
than other methods »



Optimal Dimension?

Considerations
® Consider case of points on
a sphere
® Inputis 3D
® However, best Kohonen
map is 2D
® Some suggest to compute
effective dimension of data
before selecting dim. of
SOM
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Computing dimension of

data experimentally

® Measure variation in N(g)
with varying €

® N(¢) is the number of data

points closer to another
data point than ¢

® Ex. Points on a 2D plane in
3D

® N(¢)=e? > Two dimensions

® Plot log(N(¢)) vs log(e)

® Slope of regression line is
fractal dimension of data



Some ldeas for Modifications of the SOM ﬂ(".

® Different matching criteria m Tree-search
® Different metrics
® Other criteria for matching

® Traditional optimization
methods to accelerate
searching

® Hierarchical searching

® Tree-search SOM
® Hierarchy of SOMs

® Hypermap

® Use subset of input to find
candidate nodes

® Select winner with other
input

® Worst-case linear
search: N

® Worst-case binary tree
search: log,N+1




Use of SOMs for Sequential Data
® Original SOM idea based

® Dynamic resizing of the
map depending on
results (i.e. quantization
error during learning)

® Enhancement of rare
cases
B SOM represents p(x)

® Many important cases
may occupy no space on
the map

® Enhancement through
increased value of a for
these input samples
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on matching of static
signal patterns

® Asymptotic state not
steady unless topological
relationships between
patterns are steady

® For sequential patterns

® Use of time window

® Concatenation of
successive samples into
pattern vector of higher
dimension
® Time dependence
reflected in order of
elements in input vector



Some ldeas for Modifications of the SOM ﬂ(".

® Linear Initialization
® Begin weights in ordered state

® 1. Determine the two eigenvectors of the autocorrelation
matrix of x that have the largest eignvalues

B 2. Let these eigenvectors span a two-dimensional linear
subspace

B 3. Define a rectangular array along this subspace
® Centroid coincides with mean of x(t)

B 4. Intial values of weights are then identified with the array
points

® 5. Number of cells in horizontal / vertical should be
proportional to the two largest eigenvalues
® One may directly start the learning with the
convergence phase thereafter



Applications — Phoneme Recogntion ﬂ(".

® Kohonen built a system
for recognizing Finnish
phonemes

B 21 distinct phonemes

B Speech sampled at 8ms

® FFT-> 15-component
vector

® Two-layers
® 15 input units
B 96 competitive units

® Result: Similarity map of
phonemes

Activation path of phonemes in
Finnish word humppila



Applications — Approximation of Functions —
Pole-balancing system ﬂ(".

0

® Cart with pivoting pole
® Goal: Keep pole vertical

. do
f(®)=asin6+p—-

B Let:
m x=6 F )
w y=do/dt
n z=f

® We have a three-dimensional surface in (x,y,z)
Adapt two-dimensional SOM to surface

® Control aspect:

® Foragiven x and y, find neuron U, for which weights u,, and u,, are
closest to x and y

® Then f(z) can be taken as u,4
® Map can be updated incrementally as new data arrives
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® Understanding and modeling of complex, interrelated
variables in large systems is problematic (factory,
manufacturing, distribution, industry, etc.)

® Automated measurement produces large amounts of
data

@ Convert measurements to some simple &
comprehensible display
® Reduce dimensionality
® Preserve relationships between system states
® Allow operators to visually follow system state
® Help understand future behavior
® Enable fault identification

Applications — Analysis of Large Systems



Applications — Analysis of Large Systems ﬂ(".

® Consider system with
several real measurements
® Normalize dynamic ranges

® Include some control
variables

® Once trained on the
system, the SOM can
be used Iin two modes:

1. Trajectory tracking on
original SOM

2. Trajectory tracking on
component planes




Applications — Analysis of Large Systems
-- Fault Identification ﬂ(".

® Fault detection can be based on quantized error:
® Compare input vector to all weights

® When distance exceeds a given threshold, we probably have a fault
situation

® (Operation point in a space not covered by the training data)
® Fault visualization
® Faults may be rare & true measurements for training may not be possible
® - Simulate faults
® If measures of most typical faults available / simulated
® SOM can be used as monitor

W If operating conditions vary greatly or one cannot define « normal »
conditions

® SOM must be used on two levels
®m 1stlevel map — fault detection map with quantization error
m 2nd Jevel map — more detailed — identify reason of fault
®m Store sequence of input before & during occurence



Applications — Inverse Kinematics

® Inverse kinematics is a
concept in robotics
describing the process of
translating the position of a
robot’s end effector into the
angles of its joints

® Move end effector to
various random locations
on grid

® Store corresponding angles
at corresponding coordinate
In map

® Result: Approximation of
the function relating

position to angles /

(x(x,y),B(x,y))

> <

L4
=

——

>

-
f’



Applications — Inverse Kinematics

® Motion from point A to y o
point B: A ’
® Use table as lookup and
interpolate values HB__--
® Inclusion of obstacles in &
workspace is possible —x
y 2
A
/ [
(0t (X,y),B(X,y))




SKIT

Applications — Traveling Salesman Problem e i

LH

= W Salesman must visit N
Sea _J/ .

- cities

® Wishes to minimize
"0l trajectory length

® NP-hard problem in
combinatorial
optimization

Leipzig .‘ S

D usseldorf *Kasssl
Koln

CZECH
REPUBLI
LUX.

“RANCE

AUSTRIA

0 50 100 km
_
¢ 50 100
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Applications — Traveling Salesman Problem

48> s mKohonen Maps can
eyl ' solve this problem

approximately
] o/ m Assume map is ring of
' {agdebyrg
< DU gt neurons
Dusseldorf *kaegg|

Kéln

® 1 neuron per city

. m2 dimensions —
REPUBLI . g
coordinates of cities

L
8

AUSTRIA
0 &0 100 km
_
0 50 100




Applications — Traveling Salesman Problem ﬂ(".

<5 -

Baltic ) ® Drawbacks:

Sea
® No cost function
associated with the

- process

Q@gdeb
Leipzig 1\

D usseldoﬁ *Kasssl
oln

CZECH
REPUBLI

AUSTRIA

0 50 100 km
]
6 % 1
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Applications — Traveling Salesman Problem

DEMO 5



Preprocessing of Line Figures ﬂ(".

® ANNSs act as classifiers which work well if input data elements represent static
properties
® Natural signals are often dynamic
® Sub-elements are mutually dependent

® Most ANNs do not tolerate even insignficant transformations of patterns
(rotation, translation, or scale)

® One should never use ANN methods for classification of images without
preprocessing

® Preprocessing should select a set of features invariant with respect to
transformations of input

Feature
Vector )

Pattern
Vector )

Transducers

Physical

Identific-
Vaﬂablesr [

ation )

Preprocessing Recognition




