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Traditional Feedforward ANNs 

!  Classification 
!  Information fed 

forward 
!  No fixed number 

of layers 
!  No relation 

amongst output 
units 
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Input Patterns 

Internal 
Representation 
Units 

Output patterns 
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Biological Systems 

! Spatial organization of 
information 
! Topological mapping of 

sensory and motor 
phenomenon on surface 
of brain 

! More space dedicated 
to more frequent 
patterns  

! e.x. Mapping of visual 
field onto cortex 
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Kohonen Maps 

! Self-organization 
! Unsupervised 

competitive learning 
! Produces a low-

dimensional 
representation of the 
input space 

! Maps the organization 
of relationships among 
patterns in input 

! Paradigm introduced by 
Kohonen 

! Precursors appear in 
work of Grossberg, 
Rosenblatt, von der 
Malsburg, others 
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Input and Output Spaces 

!   Neural networks serve as function which map an input in space A to an 
output space B 
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!   In a Kohonen map, those points close in A are also close in B 
! Preservation of the topological properties of the input space 

!   A Kohonen map is such that for a given input vector a, only one neuron 
in the network fires 
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Basic Structure 

! Two layers 
!   Input Layer 
! Competitive Layer 

(Kohonen Layer) 
! Each input unit is 

connected to all units in 
the competitive layer 

! Kohonen Maps operate 
in two modes: training 
and mapping 
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Training 

! Weights Ui=[ ui1,…,uin ] 
!   Input X=[ x1,…,xn ] 
0. Begin iteration t  
1. Initialization - Assign weights 
randomly 
2. Sampling – Draw input Xµ from 
input space 
3. Matching - Find winning neuron 

! Compute matching value for each 
unit 

 
!   Unit c w/ lowest matching value wins 

(BMU) 
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uij 

Ui 

xj 
X µ !Ui = x j

µ ! uij( )2
j
"

c µ( ) = argmin
i

X µ !Ui{ }
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Training pt. II 

4. Updating 
a.  Identify neighborhood Nc around 

unit c within distance d 
b.  Update weights in Nc 

5. Continuation 
a.  t = t + 1 
b.  Decrease learning rate and 

neighborhood with iterations 
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Training pt. II (alternative) 

4b. Use a smoother neighborhood 
function 
 
 
 
 
Typical choice for Θ is a gaussian: 
 
 
Where σ is gradually decreased to 
increase the size of the 
neighborhood 
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uij 

Ui 

xj 

!uij =" i,c, t( )! t( ) x
j

µ # uij( )
uij (t +1) = uij (t)+ !uij

! i,c, t( ) = exp " ri " rc
2 / 2! 2( )
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Derivation of the training rule 

! Cost function: 

!   Gradient descent on cost function: 

!   (Sum of Kohonen learning rule over all input indices μ)
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E ui, j{ } = 12 Mk
µ! i,k( ) x jµ " uij( )2

ijkµ
#

= 1
2

! i,c( ) xµ " ui
iµ
# 2

uij = !! "E
"uij

=! Mk
µ# i,k( ) x jµ ! uij( )

kµ
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=! # i,c( ) x jµ ! uij( )
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Example 
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Competitive Layer 



Institut für Anthropomatik, Interactive Systems Lab 

Example 
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Competitive Layer 

c 
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Example 
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Competitive Layer 

c 
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Training Phase 

! Two steps: 
1.  Unfolding phase 
2.  Convergence phase 

!  Local minima possible 
!  More likely with higher 

complexity of input 
space 

! Ordering of input 
patterns can lead to 
local minima 
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Input Drawn from Uniform Distributions 

2D to 1D 
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40 neurons 

e1 e2 
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Mapping Mode + Dimensionality Reduction 

Mapping Mode 
!  (After training) 

!  In order to map an 
new input to the 
network 
! Simply find the best-

matching unit 

Dimensionality Reduction 
!   Dimension of input is 

number of coefficients in E 
!   Dimension of map is 

number of axes 
! Interest is often in reducing 

a high-dimensional 
problem to a low-
dimensional one 

Neuronale Netze - Prof. Waibel 
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Input Drawn from Uniform Distributions 
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398 15 Kohonen Networks

Kohonen networks can be arranged in multidimensional grids. An inter-
esting choice is a planar network, as shown in Figure 15.7. The neighborhood
of radius r of unit k consists, in this case, of all other units located at most r
places to the left or right, up or down in the grid. With this convention, the
neighborhood of a unit is a quadratic portion of the network. Of course we
can define more sophisticated neighborhoods, but this simple approach is all
that is needed in most applications.

Figure 15.7 shows the flattening of a two-dimensional Kohonen network in
a quadratic input space. The four diagrams display the state of the network
after 100, 1000, 5000, and 10000 iterations. In the second diagram several
iterations have been overlapped to give a feeling of the iteration process. Since
in this experiment the dimension of the input domain and of the network are
the same, the learning process reaches a very satisfactory result.
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Fig. 15.7. Mapping a square with a two-dimensional lattice. The diagram on the
upper right shows some overlapped iterations of the learning process. The diagram
below it is the final state after 10000 iterations.

Settling on a stable state is not so easy in the case of multidimensional
networks. There are many factors which play a role in the convergence process,
such as the size of the selected neighborhood, the shape of the neighborhood
function and the scheduling selected to modify both. Figure 15.8 shows an
example of a network which has reached a state very difficult to correct. A knot
has appeared during the training process and, if the plasticity of the network

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996
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Nonuniform Probability Densities 

! Density of inputs higher 
in grey region 

! Greater number of 
neurons will be drawn 
to this region 

Neuronale Netze - Prof. Waibel 
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DEMO 1 
3D Feature Map 
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DEMO 2 
Colors 
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DEMO 3 
Visualizing a dataset 
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DEMO 4 
Organization of an SOM 

Neuronale Netze - Prof. Waibel 
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How does an SOM produce organization? 

!   Propositions:  
! Ordering and Convergence 

! From Kohonen (1D case): 
! Assumptions: Let x be a stochastic 

variable. Starting with randomly 
chosen initial values for the weights 
ui, the set of numbers  
{U}=(u1,u2,…ul) 

! Proposition 1: {U} will become 
ordered with tà∞ through the 
process defined by (A), (B), and (C) 

! Proposition 2: Once ordered, the 
set remains so. 

! Proposition 3: The density of the ui 
will finally approximate some 
monotonic function of the pdf p(x) 
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A( ) x ! uc =min
i

x ! ui{ }

B( ) Nc = max 1,c !1( ),c,min l,c +1( ){ }

C( ) dui dt =! x ! ui( ) for i"Nc

dui dt = 0 otherwise
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Informal Proof of Ordering  

!  1D example: 
!  Assume no unit is near 

an edge 
!  Compare values of 

weights [ u1 … u5 ] 
!  4 pairs of adjacent units 

! Two possible orderings 
of weight values 

!   24=16 orderings for 5 
units 

Neuronale Netze - Prof. Waibel 

u1 u2 u3 

e1 

u4 u5 
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Informal Proof of Ordering 

! We will examine for three of 
the 16 cases what happens 
when an input is presented 
to the middle unit (to avoid 
edge effects) 

! Define a measure of 
disorder: 

!   Assume  
!   Assume c is center unit, 

d=1 

Neuronale Netze - Prof. Waibel 

D = ui ! ui!1 !
i=2

t

" ut ! u1
e is a RV ! 0,1[ ]
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Informal Proof of ordering 

Neuronale Netze - Prof. Waibel 
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Proof of Ordering (More Rigorous) 

!  Assume neurons 
1,2,…,l 

!  Let ui=ui(t) in R 
!  Let x=x(t) in R 

! With prob. dens. p(x) on 
[a,b] 

!  Assume equations (A), 
(B), (C) 

!  Assume winning unit c 
is unique in all cases 
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A( ) x ! uc =min
i

x ! ui{ }
B( ) Nc = max 1,c !1( ),c,min l,c +1( ){ }

C( ) dui dt =! x ! ui( ) for i"Nc

dui dt = 0 otherwise

D = ui ! ui!1 !
i=2

t

" ut ! u1
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Proof of Ordering (More Rigorous) 

!   Assume: 
i.  x(t) is almost surely 

integrable on finite 
intervals 

ii.  p(x) is independt of t and 
>0 on [a,b] only 

iii.  x(t) attains all values on 
[a,b] almost surely during 
all time intervals [t,∞)	
 

iv.  The initial values for ui 
are choes randomly from 
a distribution on [a,b] 

! Theorem: In a process 
defined by (A), (B), and (C), 
{U} will become almost 
surely ordred asymptotically 
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A( ) x ! uc =min
i

x ! ui{ }
B( ) Nc = max 1,c !1( ),c,min l,c +1( ){ }

C( ) dui dt =! x ! ui( ) for i"Nc

dui dt = 0 otherwise

D = ui ! ui!1 !
i=2

t

" ut ! u1
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Proof of Ordering (More Rigorous) 

!  Partial Proof: 
! Step 1: 

! Consider only the case for 3 ≤ c ≤ l-2 
! Define the partial sum S(c): 
!   For any t, the sign of  

|ui-ui-1| attains one of at most 16 combinations 
! Consider dS/dt in two cases 

Neuronale Netze - Prof. Waibel 

S c( ) = ui ! ui!1
i=c!1

c+2

"  for 3# c # l ! 2

!uc!2 = 0
!uc!1 =! x ! uc!1( )
!uc = 0
!uc+1 =! x ! uc+1( )
!uc+2 = 0

Case uc ! uc!1 uc+1 ! uc uc+2 ! uc+1
a0 > 0 > 0 " 0
a1 > 0 > 0 # 0

Sa0 = !uc!2 + uc+2 !Sa0 = 0

Sa1 = !uc!2 + 2uc+1 ! uc+2 !Sa1 = 2! x ! uc+1( ) < 0
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Proof of Ordering (More Rigorous) 

! Step 1 (Cont.’d) 
!   For all 14 other 

cases, S≤0 
!   S≤0 also for 

other values of c 
not considered 
here 

!   Partial sum  
dS/dt≤0 à D is 
monotonically 
decreasing 

! Step 2: 
!   In view of step 1, D(t) must tend 

to some limit 

!   D*=0: Proof by contradiction: 
! Since D* is constant, dD*/dt=0 for all t 
!   Assume D*>0 and a certain ordering 

of {U} without loss of generality 
! Examining a series of cases, we are 

inevitably led to contradictions 
! Therfore D* must equal 0 
! Thus the asymptotic state is ordered 
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D* = lim
t!"

D t( )



Institut für Anthropomatik, Interactive Systems Lab 

Convergence Analysis in 1-D Case 

!  1 neuron, 1 input 
!  e bounded in [ a, b ] 
!  If 0 < α < 1, then u is bounded in [ a, b ] 
! Therefore E(u) is bounded 
! Therefore 

Neuronale Netze - Prof. Waibel 

a b u 

unew = u +! e ! u( )

E du
dt

!
"
#

$
%
&
= 0
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Convergence Analysis in 1-D Case 

!  Assume a<u1<u2<…<un<b 
!  The average attraction on each weight is zero in 

its domain 
! Therefore the weights stay bounded 
! Therefore  

!  This is true only if E(ui) are distributed 
homogenously (the attraction from the left 
balances that of the right) 

Neuronale Netze - Prof. Waibel 

a b 

u1 

E dui
dt

!
"
#

$
%
&
= 0

u2 u3 un … 
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Convergence Analysis in 2D Case 

15.3 Analysis of convergence 403

is taken into account, a small difference arises at both ends of the chain, be-
cause the attraction from one side of the neighborhood is not balanced by the
corresponding attraction from the other. This can be observed during training
of Kohonen networks, for example in the lower right diagram in Figure 15.7.

15.3.2 The two-dimensional case

Stable states for the two-dimensional case can be analyzed in a similar way.
Assume that a two-dimensional Kohonen network with n× n units is used to
map the interval [a, b] × [c, d]. Each unit has four immediate neighbors, with
the exception of the units at the borders (Figure 15.13).

w1
n1

w2
n1

Nn1

w2
11

w1
11

w1
nn

w2
nn

N11

Nnn

a b
c

d

Fig. 15.13. Two-dimensional map

Denote the unit in the lower left corner by N11 and the unit in the upper
right corner by Nnn. Unit N ij is located at row i and column j of the network.
Consider a monotonic ordering of the network weights, i.e.,

wij
1 < wik

1 if j < k (15.3)

and
wij

2 < wkj
2 if i < k, (15.4)

where wij
1 and wij

2 denote the two weights of unit N ij .
Kohonen learning is started with an ordered configuration of this type.

It is intuitively clear that the weights will distribute homogeneously in the
input domain. The two-dimensional problem can be broken down into two
one-dimensional problems. Let

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996
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!  Assume 
monotonic 
ordering of 
network weights 
in two 
dimensions: 

!  2D problem 
breaks down into 
two 1D problems 

w1
ij < w1

ik if j < k

w2
ij < w2

kj if i < k
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Convergence Analysis in 2D Case 

15.3 Analysis of convergence 403
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R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996
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! Consider one column: 
! Define the average value of weights 

in the j. column: 

! These averages are monotonically 
arranged: 

!   à E(w1
i) will reach a homogenous 

distribution on [ a,b ] 
!   w1

11, w1
21,… w1

n1 will oscillate around 
E{w1

1} 
! Analogous reasoning for each 

column and each of the rows 
!   à Convergence to a stable state 

(with small enough α) 

w1
j = 1

n
w1
ij

i=1

n

!

a < w1
1 < w1

2 <…< w1
n < b
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Convergence Analysis in 2D Case 
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R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996
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!   Condition for arrival at 
stable state: 
! Unfolding of the randomly 

intialized map 
!   Can fail in early stages 
!   No general solution for 

conditions which can guarantee 
this unfolding 
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Measurement of Quality 

Quantization Error 
!   There will always be some 

difference between a given 
input pattern and its closest 
neuron 

! Gives notion of quality of 
mapping 

Topographic Error 
!   Proportion of all vectors for 

which the first and second 
BMUs are not adjacent 

ek ! cj
k"K
#

j = argmin ek ! cl
l

TE = 1
N

u Ei( )
i=1

N

!

u Ei( ) = 1 if 1. and 2. BMUare adjacent
0 else

"
#
$

%$
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Representations 

U-matrix 
!   Distances between the 

weights of each node are 
represented as shades of 
grey on the map 

!   Clusters of similiar data 
appear white 

Component Planes 
! Each plane represents the 

value assigned by each 
neuron for each component 
in the vector 

Neuronale Netze - Prof. Waibel 
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Representations 

Neuronale Netze - Prof. Waibel 
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Best Practices for Generating Good SOMs 

! Scaling of input 
coefficients 
!   Orientation of ref. vectors 

in input space depends on 
scaling of vector 
components 

!   No simple rule for 
rescaling 

! With high input Dim., 
normalize variance of 
each component over 
trainin data 

! Try heuristic rescaling and 
check quality with 
quantization error 

!  Forcing representations 
to desired map location 
! Sometimes we may 

want to map « normal » 
data to a specific place 
on the map 

!   Use copies of this data 
for the initial values of 
the weights at these 
locations 

! Keep learning rate low 
for these locations 

Neuronale Netze - Prof. Waibel 
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Best Practices for Generating Good SOMs 

!  Learning with a small 
number of training 
samples 
! Number of iterations may 

be much greater than 
number of samples 

!   Alternatives: 
! Cyclical presentation 
! Random presentation 
! Bootstrap learning 

! Results: 
! Ordered cyclic application 

« not noticeably worse 
than other methods » 

!  SOM for sequential 
signals 

Neuronale Netze - Prof. Waibel 
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Optimal Dimension? 

Considerations 
! Consider case of points on 

a sphere 
!   Input is 3D 
! However, best Kohonen 

map is 2D 

! Some suggest to compute 
effective dimension of data 
before selecting dim. of 
SOM 

Computing dimension of 
data experimentally 
! Measure variation in N(ε) 

with varying ε 
!   N(ε) is the number of data 

points closer to another 
data point than ε 

!   Ex. Points on a 2D plane in 
3D 
!   N(ε)≈ε2 à Two dimensions 

!   Plot log(N(ε)) vs log(ε) 
! Slope of regression line is 

fractal dimension of data 

Neuronale Netze - Prof. Waibel 



Institut für Anthropomatik, Interactive Systems Lab 

Some Ideas for Modifications of the SOM 

! Different matching criteria 
! Different metrics 
! Other criteria for matching 

! Traditional optimization 
methods to accelerate 
searching 

! Hierarchical searching 
! Tree-search SOM 

! Hierarchy of SOMs 
! Hypermap 

!   Use subset of input to find 
candidate nodes 

!   Select winner with other 
input 

! Tree-search 
! Worst-case linear 

search: N 
! Worst-case binary tree 

search: log2N+1 

Neuronale Netze - Prof. Waibel 
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Use of SOMs for Sequential Data 

! Dynamic resizing of the 
map depending on 
results (i.e. quantization 
error during learning) 

! Enhancement of rare 
cases 
!   SOM represents p(x) 
! Many important cases 

may occupy no space on 
the map 

! Enhancement through 
increased value of α for 
these input samples 

!  Original SOM idea based 
on matching of static 
signal patterns 
! Asymptotic state not 

steady unless topological 
relationships between 
patterns are steady 

!   For sequential patterns 
!   Use of time window 

! Concatenation of 
successive samples into 
pattern vector of higher 
dimension 

!   Time dependence 
reflected in order of 
elements in input vector 

Neuronale Netze - Prof. Waibel 



Institut für Anthropomatik, Interactive Systems Lab 

Some Ideas for Modifications of the SOM 

! Linear Initialization 
!   Begin weights in ordered state 
!   1. Determine the two eigenvectors of the autocorrelation 

matrix of x that have the largest eignvalues 
!   2. Let these eigenvectors span a two-dimensional linear 

subspace 
!   3. Define a rectangular array along this subspace 

!   Centroid coincides with mean of x(t) 
!   4. Intial values of weights are then identified with the array 

points 
!   5. Number of cells in horizontal / vertical should be 

proportional to the two largest eigenvalues 
!  One may directly start the learning with the 

convergence phase thereafter 
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Applications – Phoneme Recogntion 

! Kohonen built a system 
for recognizing Finnish 
phonemes 

!  21 distinct phonemes 
!  Speech sampled at 8ms 

!   FFTà 15-component 
vector 

! Two-layers 
!   15 input units 
!   96 competitive units 

! Result: Similarity map of 
phonemes 
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Activation path of phonemes in 
Finnish word humppila 



Institut für Anthropomatik, Interactive Systems Lab 

Applications – Approximation of Functions – 
Pole-balancing system 

! Cart with pivoting pole 
!   Goal: Keep pole vertical 

 
!   Let: 

!   x= θ 
!   y = dθ/dt 
!   z=f 

! We have a three-dimensional surface in (x,y,z) 
! Adapt two-dimensional SOM to surface  
!   Control aspect: 

!   For a given x and y, find neuron Uk for which weights uk1 and uk2 are 
closest to x and y 

! Then f (z) can be taken as uk3 

! Map can be updated incrementally as new data arrives 
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Applications – Analysis of Large Systems 

! Understanding and modeling of complex, interrelated 
variables in large systems is problematic (factory, 
manufacturing, distribution, industry, etc.) 

! Automated measurement produces large amounts of 
data 

! Convert measurements to some simple & 
comprehensible display 
! Reduce dimensionality 
! Preserve relationships between system states 
! Allow operators to visually follow system state 
!   Help understand future behavior 
! Enable fault identification 
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Applications – Analysis of Large Systems 

! Consider system with 
several real measurements 
! Normalize dynamic ranges 
! Include some control 

variables 

!  Once trained on the 
system, the SOM can 
be used in two modes: 
1.  Trajectory tracking on 

original SOM 
2.  Trajectory tracking on 

component planes 
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Applications – Analysis of Large Systems 
-- Fault Identification 

! Fault detection can be based on quantized error: 
!   Compare input vector to all weights 
! When distance exceeds a given threshold, we probably have a fault 

situation 
!   (Operation point in a space not covered by the training data) 

! Fault visualization 
! Faults may be rare & true measurements for training may not be possible 

!   à Simulate faults 
!   If measures of most typical faults available / simulated 

!   SOM can be used as monitor 
!   If operating conditions vary greatly or one cannot define « normal » 

conditions 
!   SOM must be used on two levels 

!   1st level map – fault detection map with quantization error 
!   2nd level map – more detailed – identify reason of fault 

!   Store sequence of input before & during occurence 
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Applications – Inverse Kinematics 

!   Inverse kinematics is a 
concept in robotics 
describing the process of 
translating the position of a 
robot’s end effector into the 
angles of its joints 

!  Move end effector to 
various random locations 
on grid 

!   Store corresponding angles 
at corresponding coordinate 
in map 

! Result: Approximation of 
the function relating 
position to angles 
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Applications – Inverse Kinematics 

!  Motion from point A to 
point B: 
!   Use table as lookup and 

interpolate values 
!  Inclusion of obstacles in 

workspace is possible 
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Applications – Traveling Salesman Problem 
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! Salesman must visit N 
cities 

! Wishes to minimize 
trajectory length 

!  NP-hard problem in 
combinatorial 
optimization 
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Applications – Traveling Salesman Problem 
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! Kohonen Maps can 
solve this problem 
approximately 

!  Assume map is ring of 
neurons 

!  1 neuron per city 
!  2 dimensions – 

coordinates of cities 
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Applications – Traveling Salesman Problem 
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!  Drawbacks: 
!   No cost function 

associated with the 
process 
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DEMO 5 
Applications – Traveling Salesman Problem 
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Preprocessing of Line Figures 

! ANNs act as classifiers which work well if input data elements represent static 
properties 

!   Natural signals are often dynamic 
! Sub-elements are mutually dependent 

!   Most ANNs do not tolerate even insignficant transformations of patterns 
(rotation, translation, or scale) 

!   One should never use ANN methods for classification of images without 
preprocessing 

! Preprocessing should select a set of features invariant with respect to 
transformations of input 
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