Neural Nets, Background Back-propagation

Neuronale Netze u. Anwendungen, 19. 11. 2011

Linear Discriminant Function I

Linear Discriminant Functions II

Hyperplane H:
$$g(\vec{x}) = \sum_{i=1}^{n} w_{1}x_{1} + w_{0} = \vec{w}^{T}\vec{x} + w_{0} = 0$$

 $\Rightarrow \vec{x} = q \frac{\vec{w}}{\|\vec{w}\|} + r \frac{\vec{w}}{\|\vec{w}\|} + \vec{x}_{p}$
Vector $q \frac{\vec{w}}{\|\vec{w}\|}$ equals: $g\left(q \frac{\vec{w}}{\|\vec{w}\|}\right) = 0 = q \|\vec{w}\| + w_{0} \Rightarrow \boxed{q = -\frac{w_{0}}{\|\vec{w}\|}}$
And with $g(\vec{x}) = \vec{w}^{T}q \frac{\vec{w}}{\|\vec{w}\|} + \vec{w}^{T}r \frac{\vec{w}}{\|\vec{w}\|} + \vec{w}\vec{x}_{p} + w_{0} = -w_{0} + r \|\vec{w}\| + w_{0}$
We get $\boxed{r = \frac{g(\vec{x})}{\|\vec{w}\|}}$

D b Kognitive Systeme - Prof. Waibel

Using Neural Nets

- Classification
- Prediction
- Function Approximation
- Continuous Mapping
- Pattern Completion
- Coding

Design Criteria

- Recognition Error Rate
- Training Time
- Recognition Time
- Memory Requirements
- Training Complexity
- Ease of Implementation
- Ease of Adaptation

Network Specification

- What parameters are typically chosen by the network designer:
 - Net Topology
 - Node Characteristics
 - Learning Rule
 - Objective Function
 - (Initial) Weights
 - Learning Parameters

Neural Models

- Back-Propagation
- Boltzman Machines
- Decision Tree Classifiers
- Feature Map Classifiers
- Learning Vector Quantizer (LVQ, LVQ2)
- High Order Networks
- Radial Basis Functions
- Modified Nearest Neighbor
- ART
- etc.

Applications

- Space Robot*
- Autonomous Navigation*
- Speech Recognition and Understanding*
- Natural Language Processing*
- Music*

- Gesture Recognition
- Lip Reading
- Face Recognition
- Household Robots
- Signal Processing
- Banking, Bond Rating,...
- Sonar
- etc....

Advanced Neural Models

- Time-Delay Neural Networks (Waibel)
- Recurrent Nets (Elman, Jordan)
- Higher Order Nets
- Modular System Construction
- Adaptive Architectures

Neural Nets - Design Problems

- Local Minima
- Speed of Learning
- Architecture must be selected
- Choice of Feature Representation
- Scaling
- Systems, Modularity
- Treatment of Temporal Features and Sequences

Neural Nets - Modeling

- Neural Nets are
 - Non-Linear Classifiers
 - Approximate Posterior Probabilities
 - Non-Parametric Training
- The Problem with Time
 - How to Consider Context
 - How to Operate Shift-Invariantly
 - How to Process Pattern Sequences

Time Varying Patterns

- Detect B in Context A
 - AAABAAA ----> 1
 - AAABCAA ---> 0
- Detect B Independent of Point in Time
 - AAAABAAAAAAA ---> 1
 - AAAAAAAABAAA ---> 1
 - AAAAAAAAAAAA ----> 0
- Detect Sequence ABC
 - AAAAABBCCCC ---> 1
 - ABBBBBBBCCC ---> 1
 - CCAAABB ---> 0

D Kognitive Systeme - Prof. Waibel

Time-Delay Neural Networks

- Multilayer Neural Network Nonlinear Classifier
- Time-Delays on Connections
 - At Input Layer
 - At all Layers
- Shift-Invariant Learning
 - All Units Learn to Detect Patterns Independent of Location in Time
 - No Presegmentation or Prealignment Necessary
 - Approach: Weight Sharing

The Perceptron

Pattern recognition

Pattern recognition

Pattern recognition

The XOR-Problem

The Multi-Layer Perceptron

• Many interconnected simple processing elements:

Training the MLP by Error-Back-Propagation

- Choose random initial weights
- Apply input, get some output
- Compare output to *desired* output and compute error
- Back-propagate error through net and compute $E \,/\, w_{_{ij}},$ the contribution of each weight to the overall error
- Adjust weights slightly to reduce error

Back-Propagation of Error

Derivative dy/dx

$$\frac{y_{i}}{x_{j}} (1)(1 e^{x_{j}})^{2} (1)e^{x_{j}}$$

$$\frac{e^{x_{j}} 1}{(1 e^{x_{j}})(1 e^{x_{j}})}$$

$$\frac{e^{x_{j}}}{1 e^{x_{j}}} y_{j}$$

$$y_{j}(1 y_{j})$$

$$\frac{y_{i}}{(1 y_{j})} = \frac{1}{1 + e^{-x_{j}}}$$

Statistical Interpretation of MLP's

- What is the output of an MLP?
- Output represents a Posteriori Propabilities P(w|x)
- Assumptions:
 - Training Targets: 1, 0
 - Output Error Function: Mean Squared Error
 - Other Functions Possible

Statistical Interpretation of MLP's

- What is the output of an MLP?
- Using MSE, for two class problem, $c_1 \uparrow 1$, $c_2 \uparrow 0$

E
$$\frac{1}{N} \sum_{x c_1} [f(x) \ 1]^2 \sum_{x c_2} [f(x)]^2$$

if N large and reflects prior distribution

E
$$\int (f(x) \ 1)^2 p(x, c_1) dx \ \int (f(x))^2 p(x, c_2) dx$$

Statistical Interpretation of MLP's

 $E \int f^{2}[p(x_{1}c_{1}) \quad p(x_{1}c_{2})]dx \quad 2\int f(x)p(x_{1}c_{1})dx$ $1 \int p(x_{1}c_{1})dx$

 $\int f^2(x)p(x)dx \quad 2\int f(x)p(x_1c_1)dx \quad \int p(x_1c_1)dx$

 $\int [f^{2}(x)p(x) \quad 2f(x)p(x_{1}c_{1}) \quad p(x_{1}c_{1})]dx$

 $\int [f^{2}(x) \quad 2f(x)p(c_{1} / x) \quad p(c_{1} / x)]p(x)dx$

E
$$\int [f(x) \quad p(c_1 / x)]^2 p(x) dx \quad \int p^2(c_1 / x) p(x) dx \quad P(c_1)$$

net aprox. posterior

What does the sigmoid do?

$$y_{j} \quad \frac{1}{1 e^{x_{j}}}$$

$$e^{x_{j}} \quad \frac{1}{y_{j}} \quad 1$$

$$e^{x_{j}} \quad \frac{y_{j}}{1 y_{j}}$$

$$x_{j} \quad \log[\frac{y_{j}}{1 y_{j}}]$$

What does the sigmoid do?

log. likelihood ratio or "odds"

Use of Neural Nets

- Classification
 - Output Units Represent Classes
 - 1 of N bits is Switched on
 - Network trained to Produce Correct Output Pattern
 - Output Values are A Posteriori Probabilities
- Function Approximation
 - Output Units Represent Function Values
 - Network Learns to Behave like Function
 - Often Sigmoid Removed on Output
- Coding
 - Train Net to Reproduce Input Pattern at Output
 - Hidden Units Learn Code
 - Example: 4-2-4 Encoder

Using Neural Nets

- Classification
- Prediction
- Function Approximation
- Continuous Mapping
- Pattern Completion
- Coding

Neural Network for Motor Testing

Neural Network for Motor Testing (32-10-3)

Neural Network for Motor Testing

Output Unit Responses after 13000 training passes

32

Lippmann, Vowel Classification

Decision regions formed after 16000 training examples from Peterson and Barney's data. Data samples are also shown. The Legend shows vowels in Arpabet notation.

Spectrograms of the Network Input and Output -Example 1-

(Speaker: Training, Word: Training, Noise: Training)

Neuronale Netze – Prof. Waibel

Design Criteria

- Recognition Error Rate
- Training Time
- Recognition Time
- Memory Requirements
- Training Complexity
- Ease of Implementation
- Ease of Adaptation

Network Specification

What parameters are typically chosen by the network designer:

- Net Topology
- Node Characteristics
- Learning Rule
- Objective Function
- (Initial) Weights
- Learning Parameters

Neural Nets - Design Problems

- Local Minima
- Speed of Learning
- Architecture must be selected
- Choice of Feature Representation
- Scaling
- Systems, Modularity
- Treatment of Temporal Features and Sequences

Neural Nets - Modeling

- Neural Nets are
 - Non-Linear Classifiers
 - Approximate Posterior Probabilities
 - Non-Parametric Training
- The Problem with Time
 - How to Consider Context
 - How to Operate Shift-Invariantly
 - How to Process Pattern Sequences

Applications

- Space Robot*
- Autonomous Navigation*
- Speech Recognition and Understanding*
- Natural Language Processing*
- Music*
- Gesture Recognition
- Lip Reading
- Face Recognition
- Household Robots
- Signal Processing
- Banking, Bond Rating...
- Sonar
- etc

Neural Models

- Back-Propagation
- Bolzman Machines
- Decision Tree Classifiers
- Feature Map Classifiers
- Learning Vector Quantizier (LVQ, LVQ2)
- High Order Networks
- Radial Basis Functions
- Modified Nearest Neighbor
- ART
- etc.

Time Varying Patterns

- Detect B in Context A
 - AAABAAA ----> 1
 - AAABCAA ---> 0
- Detect B Independent of Point in Time
 - AAAABAAAAAA ---> 1
 - AAAAAAABAAA ---> 1
 - AAAAAAAAAAA ----> 0
- Detect Sequence ABC
 - AAAAABBCCCC ---> 1
 - ABBBBBBBCCC ---> 1
 - CCAAABB ---> 0

Advanced Neural Models

- Time-Delay Neural Networks (Waibel)
- Recurrent Nets (Elman, Jordan)
- Higher Order Nets
- Modular System Construction
- Adaptive Architectures

Time-Delay Neural Networks

- Multilayer Neural Network Nonlinear Classifier
- Time-Delays on Connections
 - At Input Layer
 - At all Layers
- Shift-Invariant Learning
 - All Units Learn to Detect Patterns Independent of Location in Time
 - No Presegmentation or Prealignment Necessary
 - Approach: Weight Sharing

