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Artificial Neural Networks 

•  Based on a simplified model of biological 
neural nets 

•  Network of interconnected simple 
processing units (neurons) 
•  Summarize activity of preceding units 
•  “Fire” if sum exceeds a certain 

threshold 
•  Firing is seen by subsequent units as 

activity 
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Artificial Neural Networks 
Weights 

•  Influence of neurons on each other differs 
•  Absolute value 
•  Positive or negative (excitatory/inhibitory) 

•  Modeled as weights in ANNs 
•  Knowledge of neural nets is within the weights 
•  Learning means changing the weights 
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Artificial Neural Networks 
Types of neurons 

•  3 Types of neurons in a network: 
•  Input Units 
•  Hidden Units 
•  Output Units 

•  Hidden Units can’t interact with the outside 
world (internal representation units) 
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Artificial Neural Networks 
Connectionist Units 
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Class A 
Not class A 
No decision 

Feature vector 
Weight vector 
Threshold weight 
denotes scalar product 
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 x = (x1, ..., xn )T
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Decision Function g(x) 
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Decision Function g(x) 

Three common non-linearities        : 
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Networks of Neurons/  
Multi-Layer Perceptron 

•  Many interconnected simple processing elements: 

Input Patterns 

Internal 
Representation 
Units 

Output patterns 

Neuronale Netze - Prof. Waibel 
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Artificial Neural Networks 
Learning Principles 

•  Depends on the actual type of network 
•  Common Principles: 

•  Hebb Rule (biological adequate) 
•  Delta Rule 
•  Back Propagation (for Hidden Units) 
•  Competitive Learning (unsupervised 

Learning) 
•  … 
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Hopfield Nets 

•  Literatur: 
•  Introduction to The Theory of Neural 

Computation 
Hertz, Krogh, Palmer, Santa Fe Institute 

•  Neural Network Architectures – An 
Introduction, 
Judith Dayhoff, VNR Publishers 
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Hopfield Nets 

•  Introduced by John Hopfield in 1982 
•  Not very efficient but good to show principle of 

neural nets 
•  Corresponds to statistical mechanics 

(dynamics of magnets) 
•  Possible applications 

•  Associative memory 
•  Optimization 
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Binary Hopfield Nets 
Basic Structure 

•  Single layer of processing units 
•  Each unit i has an activity value or “state” ui 

•  Binary: 0 or 1 (alternatively -1 or 1) 
•  Denoted as + and - respectively 

•  Vector of unit states is the networks’ state 

€ 

U = (u1,u2,...,un ) = (+,+,−,...,+)
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Binary Hopfield Nets 
Example 

Processing Unit 4 + + 

- 

+ 

Processing Unit 1 

Processing Unit 3 

Processing Unit 2 
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 u = (−,+,+,+)Network State: 
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Binary Hopfield Nets 
Connections 

•  Processing units fully interconnected 
•  Recurrent network topology 
•  Network can relax into stable states (without 

external input) 
•  Weights from unit j to unit i is 
•  Hopfield Nets: Weights between a pair of 

units are symmetric 
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Binary Hopfield Nets 
Convergence 

•  Symmetric weights lead to the fact that the 
network will converge (relax in stable state) 

•  Some networks with            can converge 
•  Convergence is condition for the network to 

perform useful computational tasks 
•  Weights are set in the beginning but the 

method depends on the application 
€ 

Tji ≠ Tij
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Binary Hopfield Nets 
Updating Procedure 

•  Network state is initialized in the beginning 
•  Update one unit at a time 
•  Updating effects the state of the unit 

depending on the states of the remaining 
units and their weights to the unit being 
updated 

•  Continue updating until the network state 
does not change anymore  
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Binary Hopfield Nets 
Processing Units 
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Binary Hopfield Nets 
Updating Procedure 

•  Evaluate the sum of the weighted inputs 
•  Set state 1 if the sum is greater or equal 0 

and 0 if sum is lower 0 
•  Previous state is not taken into account 
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Binary Hopfield Nets 
Example 

•  Example on blackboard 

Processing Unit 4 - + 

+ 

- 

Processing Unit 1 

Processing Unit 3 

Processing Unit 2 

-1 

1 

1 

1 

-1 
-1 
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Binary Hopfield Nets 
Order of Updating 

•  Could be sequentially 
•  Random order (Hopfield networks) 

•  Same average update rate 
•  Advantages in implementation 
•  Advantages in function (equiprobable 

stable states) 
•  Randomized asynchronous updating is a 

closer match to the biological neuronal nets 
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Binary Hopfield Nets 
Energy Function 

•  Assign a numerical value to each possible 
state of the system (Lyapunov Function) 

•  Corresponds to the “energy” of the net 
•  Energy Function: 

•  Objective function that is optimized by the net 
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Binary Hopfield Nets 
Proof of Convergence 

•  It can be shown that each updating step leads 
to lower or same energy in the net 

•  Simple case: No changes in state; Energy 
stays the same 

•  Only one unit j is updated at a time 
•  Energy changes only for unit j 
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Binary Hopfield Nets 
Proof of Convergence 

•  Given a change in state, the difference in E is 

•  Change from 0 to 1: 

•  Change from 1 to 0: 
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ΔE j = E jnew
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Binary Hopfield Nets 
Graphical Interpretation 

•  Stable states are minima of the energy 
function 

•  Can be global or local minima 
•  Analogous to finding a minimum in a 

mountainous terrain 
•  Depending on the starting point the state “rolls 

down” to a “valley” 
•  The landscape has as many dimensions as 

there are processing units in the network 
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Binary Hopfield Nets 
Energy Function 

Lokal Minima Global Minimum 

Equilibrium  

Attractor Region 

Unstable States 
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Binary Hopfield Nets 
Stable States as Attractors 

ξ‘s: Stable states 



Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel 

Binary Hopfield Nets 
Application: Associative Memory 

•  Original purpose 
•  Basic Scheme: 

•  A “memory” is represented by a state 
vector 

•  Each memory vector is a stable state 
•  When starting at an initial state the net 

converges to the most similar/most 
accessible memory state 
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Associative Memory 
Example 

•  Storing information for different persons 

•  Idea: Get information by taking name and 
random values for color (unknown) as initial 
state 

•  Network will converge to the corresponding 
stable state representing the right color 
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 u 1 = (+,+,−,+,−,−,−,+,−,+,−,+)
Name Color (e.g. eyes) 
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Associative Memory 
Noisy/incomplete Pattern Retrieval 

•  Each Pixel is represented 
by a processing unit 

•  Regular pattern is stored 
as a stable state 

•  Can be retrieved by 
taking noisy/incomplete 
pattern as initial state 

•  Only if initial state is 
laying in the attractors 
region of the stable state 
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Associative Memory 
Setting the weights 

•  Select m patterns that have to be stored 
•  Number of units is equal to the entries in the 

patterns 
•  For each pattern p there is a Vector 

•  For all Tji 
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Ap = (ap1,ap2,...,apn )
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Tji = (2api −1)(2apj −1)
p=1
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Associative Memory 
Setting the weights 

•  Loop over all m patterns 
•  Tji is incremented if two entries (of one 

pattern) j and i are the same and 
decremented if the entries are different 

•  Compare all entries of a pattern with i≠j 
•  2a-1 is 1 if a is 1 and -1 if a is 0 
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Associative Memory 
Setting the weights 

•  Example on blackboard 

Processing Unit 4 + + 

- 

+ 

Processing Unit 1 

Processing Unit 3 

Processing Unit 2 
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Binary Hopfield Nets 
Limitations 

•  Found stable state (memory) is not 
guaranteed the most similar pattern to the 
input pattern 

•  Not all memories are remembered with 
same emphasis (attractors region is not 
the same size) 

•  Spurious states can occur 
•  Efficiency is not good 
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Binary Hopfield Nets 
Limitations: Wrong pattern derived 

€ 

Δ1 > Δ 2
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Binary Hopfield Nets 
Limitations: Spurious States 

•  Retrieval States 
•  Reversed States 
•  Mixture States: Any linear               

combination of an odd number                       
of patterns 

•  “Spinglass” states: Stable states that are no 
linear combination of stored patterns (occur 
when too many patterns are stored) 

•  3 & 4 are spurious states 
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Binary Hopfield Nets 
Limitations: Efficiency 

•  In a net of N units, patterns of length N can be 
stored 

•  Assuming uncorrelated patterns, the capacity 
C of a hopfield net is  

•  Tighter bound 

•  So 100 neurons can reliably store about 8 
patterns  

€ 

C ≈ 0.15N

€ 

N
4 lnN

< C <
N

2lnN
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Continuous Hopfield Nets 
•  States can attain continuous values 
•  No hard threshold function, but sigmoid 

function as activity function (soft threshold) 

€ 

g(x) =
1

(1+ e−x )
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Continuous Hopfield Nets 
•  Also update times are continuous, so differential 

equation 
•  Processing units j comply with 

•  Therefore the energy  
 equation is 

•  Cj: constant > 0 
•  Rj: decay resistance (>0) 
•  Ij: external input 
•  Vi: output if ui (sig. applied) 
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Continuous Hopfield Nets 
Traveling Salesman 

•  Matrix representation of the trip 
•  Row: City 
•  Col: Position on the tour 

•  Minimize the total distance travelled 

•  Minimize Energy 
€ 

1 2 3
A 0 1 0
B 0 0 1
C 1 0 0
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dXi ,X i+1
i=1
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Continuous Hopfield Nets 
Traveling Salesman 

•  Energy Function 
•  Parts are restrictions 

 on the tour 
•  1: Small, if one entry per 

 row (only one visit) 
•  2: Small, if one entry per 

 column (only one city per time) 
•  3: Small, if only n entries in matrix 
•  4: Proportional to the total distances of the tour 
•  A,B,C,D: Constants (tune for performance) 
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Continuous Hopfield Nets 
Traveling Salesman 

•  Weights are set in the beginning according to 

•  with 

€ 

TXi,Xj = −AδXY (1−δij )
− Bδij (1−δXY )
−C
−DdXY (δ j ,i+1 + δ j ,i−1)
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Continuous Hopfield Nets 
Traveling Salesman 

•  Set random initial state 
•  Perform updating procedure, until the network 

converges 
•  Stable state gives the optimal route for the 

salesman 
•  Solution is good but not optimal 
•  Does not work well for more than 10 

cities 
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Continuous Hopfield Nets 
Traveling Salesman 
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Continuous Hopfield Nets 
Pro’s and Con’s 

•  Asynchronous updating is more related to the 
biological neurons behavior 

•  Can also be helpful in designing fast 
hardware implementations (parallelize) 

•  Limited performance 
•  spurious states 
•  Complex computation 

•  Only capable of optimization in specific 
domains 
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Boltzmann Machines 
•  Named after Boltzmann Distribution in statistical 

mechanics (used for the probability of a state) 
•  Basic structure similar to (binary) Hopfield Nets, but 

stochastic processing units 
•  Hidden units  
•  Visible units can be divided into in- and output 
•  Not fully interconnected 

•  No direct connections between in- and output 
•  Weights are still symmetric 
•  Still no connections to the unit itself 
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Boltzmann Machines 
Idea: Simulated Annealing 

•  Define some cost function C we want to minimize 
•  Try to make moves that lower C 
•  But allow moves that raise C  some probability 

that depends on a “temperature” parameter τ. 
•  Start out at high τ; “anneal” by slowly lowering τ. 
•  Can escape from local minima! 



Institut für Anthropomatik, Interactive Systems Lab Neuronale Netze - Prof. Waibel 

Boltzmann Machines 
Simulated Annealing in BM 

•  Energy gap: 

•  Energy gap is the change in E when ui turns 
on 

•  In Hopfield nets the change in state is only 
done when energy is lowered 

€ 

ΔEi = E(ui =1) − E(ui = 0)

= − u jTji = −neti
j
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Boltzmann Machines 
Stochastic Units 

•  Stochastic selection of state 1 or 0 

•  g(xj) is the Boltzmann Distribution 

•  xj is still the sum of weighted inputs from other 
units 

€ 

P(u j =1) = g(x j )
P(u j = 0) =1− g(x j )
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g(x) =
1

1+ e−2βx
, β =1/τ
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Boltzmann Machines 
Stochastic State Change 

•  In Hopfield nets states change deterministic 
•  Probability of changing states in BM 

•  Use randomness to  
 jump out of local  
 minima 
€ 

P(ui →−ui) =
1

1+ eΔEiβ
=

1
1+ e−netiβ
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Boltzmann Machines 
Stochastic Search 

•  Start with high temperature 
•  P[uj-uj] is close to 0.5.   Units fluctuate a 

lot. 
•  Gradually cool to lower temperatures. 

•  Units fluctuate less as P moves closer to 1 
or 0. 

•  At zero temperature, we have a Hopfield net 
•  Annealing schedule:  

€ 

τ t+1 = 0.9τ t
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Boltzmann Machines 
Structure 

•  Input is set and fixed (clamped) 
•  Annealing is done 
•  Answer is presented at the output 
•  Hidden units add extra representational power 
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Boltzmann Machines 
Learning Algorithm 

1.  Clamp inputs, anneal, measure <ui,uj>+ 

2.  Unclamp inputs, anneal, measure <ui,uj>- 

3.  Weight update (gradient descent): 

•  <*> := Average 
•  <*,*> := Correlation € 

ΔTji =η ui,u j

+
− ui,u j

−[ ]
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Boltzmann Machines 
Stochastic Search 

•  A Boltzmann machine with enough hidden units can 
compute any computable function. 

•  But annealing may have to be very slow. 
•  Mean field approximation to Boltzmann machine: 

•  Replace     by 

•  Faster than regular Boltzmann since we don't have to 
wait a long time to reach equilibrium state. 

•  But not as good as avoiding local minima. 
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