Karlsruher Institut fur Technologie

Neuronale Netze

Hopfield Networks and Boltzmann
Machines

Christian Mohr
22.11.2011

Artificial Neural Networks™

« Based on a simplified model of biological
neural nets

* Network of interconnected simple
processing units (neurons)

« Summarize activity of preceding units

 “Fire” if sum exceeds a certain
threshold

 Firing is seen by subsequent units as
activity

Artificial Neural Networks<IT
Weights

Influence of neurons on each other differs

« Absolute value

» Positive or negative (excitatory/inhibitory)
Modeled as weights in ANNs
Knowledge of neural nets is within the weights
Learning means changing the weights

Artificial Neural Networks=XIT
Types of neurons

« 3 Types of neurons in a network:
* Input Units
« Hidden Units
« Output Units

« Hidden Units can’t interact with the outside
world (internal representation units)

Artificial Neural Networks<IT

Connectionist Units

Decision Function

g(x)>0 = Class A
g(x)<0 = Not class A
g(x)=0 = No decision

n
_ _ —PT—P _ —P.—P
gx)= Ewlleer— W X+ w,=w-Xx+w,
=1

X=(x,.x) Feature vector
w=(w,...w,) Weight vector
W, Threshold weight

denotes scalar product

a(x)

Karlsruher Institut fur Technologie

Karlsruher Institut fur Technologie

Decision Function g(x)

Three common non-linearities f(*):

) 0 f
-1 —-1 -1 1

Hard Limiter Threshold LogiC S|9m0|d yj = 1

_Xj

+C

Networks of Neurons/ =<IT

Multi-Layer Perceptron

« Many interconnected simple processing elements:

Output patterns

Internal
Representation
Units

Input Patterns

Artificial Neural Networks=XIT
Learning Principles

* Depends on the actual type of network
« Common Principles:
« Hebb Rule (biological adequate)
« Delta Rule
« Back Propagation (for Hidden Units)

« Competitive Learning (unsupervised
Learning)

Hopfield Nets T

e Literatur:

* Introduction to The Theory of Neural
Computation

Hertz, Krogh, Palmer, Santa Fe Institute

« Neural Network Architectures — An
Introduction,
Judith Dayhoff, VNR Publishers

Hopfield Nets T

Introduced by John Hopfield in 1982

Not very efficient but good to show principle of
neural nets

Corresponds to statistical mechanics
(dynamics of magnets)

Possible applications
» Associative memory
« Optimization

Binary Hopfield Nets =XIT

Basic Structure

» Single layer of processing units

« Each unit i has an activity value or “state” u,
« Binary: 0 or 1 (alternatively -1 or 1)
* Denoted as + and - respectively

* Vector of unit states is the networks’ state

U=u,u,,.,u)=H,+—,....+)

Binary Hopfield Nets =XIT

Example

Processing Unit 1

i
\G/

Processing Unit 3

Processing Unit 4 Processing Unit 2

Network State: U = (—,+,+,+)

Binary Hopfield Nets =XIT

Connections

Processing units fully interconnected
Recurrent network topology

Network can relax into stable states (without
external input)

Weights from unit j to unitiis 7

Hopfield Nets: Weights between a pair of
units are symmetric

T.=T

Ji ij

Binary Hopfield Nets =XIT

Convergence

Symmetric weights lead to the fact that the
network will converge (relax in stable state)

Some networks with T, = T, can converge

Convergence is condition for the network to
perform useful computational tasks

Weights are set in the beginning but the
method depends on the application

Binary Hopfield Nets =XIT
Updating Procedure

Network state is initialized in the beginning
Update one unit at a time

Updating effects the state of the unit
depending on the states of the remaining
units and their weights to the unit being
updated

Continue updating until the network state
does not change anymore

Binary Hopfield Nets =XIT

Processing Units

xf{z%ﬂi
]

U =g()€j)=

1 if x=0;

0O otherwise

Binary Hopfield Nets =XIT
Updating Procedure

« Evaluate the sum of the weighted inputs

« Set state 1 if the sum is greater or equal 0
and O if sum is lower O

 Previous state is not taken into account

Binary Hopfield Nets =XIT

Example

« Example on blackboard

Processing Unit 1

TN
=
S

Processing Unit 3

Processing Unit 2

%
Processing Unit 4(+),
‘k

Binary Hopfield Nets =XIT
Order of Updating

* Could be sequentially

 Random order (Hopfield networks)
 Same average update rate
» Advantages in implementation

« Advantages in function (equiprobable
stable states)

 Randomized asynchronous updating is a
closer match to the biological neuronal nets

Binary Hopfield Nets =XIT

Energy Function

Assign a numerical value to each possible
state of the system (Lyapunov Function)

Corresponds to the “energy” of the net
Energy Function: v 1

Obijective function that is optimized by the net

Binary Hopfield Nets =XIT

Proof of Convergence

It can be shown that each updating step leads
to lower or same energy in the net

Simple case: No changes in state; Energy
stays the same

Only one unit j is updated at a time
* Energy changes only for unit j

1
Ej = _EzuiujTﬁ

i# J

Binary Hopfield Nets =XIT

Proof of Convergence

« Given a change in state, the difference in E is

1
AEJ.=E].W—E. =——Auj2uT Au =u;, —U,

Jold 2 i~ ji? Jold
]
i# j

* Change from 0 to 1:
=1, ETu >0 = AE <0

Ji Tl

« Change from 1 to O:
=-1, Y T,u,<0 = AE, <0

JiTi

Binary Hopfield Nets =XIT

Graphical Interpretation

Stable states are minima of the energy
function

» Can be global or local minima

Analogous to finding a minimum in a
mountainous terrain

Depending on the starting point the state “rolls
down” to a “valley”

The landscape has as many dimensions as
there are processing units in the network

Binary Hopfield Nets =XIT

Energy Function

Equilibrium

ﬁ System energy

Attractor Region

Z
Unstable §

Binary Hopfield Nets =XIT

Stable States as Attractors

¢'s: Stable states

Binary Hopfield Nets =XIT

Application: Associative Memory

 QOriginal purpose
« Basic Scheme:

 A"memory” is represented by a state
vector

 Each memory vector is a stable state

* When starting at an initial state the net
converges to the most similar/most
accessible memory state

Associative Memory =XIT

Example
« Storing information for different persons
ﬁl = (+9+9_9+9_9_9_9+9_9+9_9+)
l I |
l Name : Color (e.g. eyes) I

* |dea: Get information by taking name and
random values for color (unknown) as initial
state

* Network will converge to the corresponding
stable state representing the right color

Associative Memory =XIT
Noisy/incomplete Pattern Retrieval

Each Pixel is represented
by a processing unit
Regular pattern is stored
as a stable state

Can be retrieved by
taking noisy/incomplete
pattern as initial state
Only if initial state is

laying In the attractors
region of the stable state

Associative Memory =XIT
Setting the weights

Select m patterns that have to be stored

Number of units is equal to the entries in the
patterns

For each pattern p there is a Vector
A =(a,.a,,...a,,)

For all T; N
T,=»(Qa,-2a,-1)
p=1

Associative Memory =XIT
Setting the weights

Loop over all m patterns

T; is incremented if two entries (of one
pattern) j and i are the same and
decremented if the entries are different

Compare all entries of a pattern with i#j
2a-1Tis1ifais1and-1ifais 0

T,=»(Qa,-1Q2a,-1)
p=1

Associative Memory =XIT
Setting the weights

« Example on blackboard

Processing Unit 1

()

A\
v/
o7

Processing Unit 3

Processing Unit 2

Processing Unit 4(+),

Binary Hopfield Nets =XIT

Limitations

Found stable state (memory) is not
guaranteed the most similar pattern to the
input pattern

* Not all memories are remembered with
same emphasis (attractors region is not

the same size)
Spurious states can occur
Efficiency is not good

Binary Hopfield Nets =XIT

Limitations: Wrong pattern derived

Binary Hopfield Nets =XIT

Limitations: Spurious States

Retrieval States

Reversed States mixture states
Mixture States: Any linear W
combination of an odd number

of patterns

“Spinglass” states: Stable states that are no
linear combination of stored patterns (occur
when too many patterns are stored)

3 & 4 are spurious states

Binary Hopfield Nets =XIT

Limitations: Efficiency

In a net of N units, patterns of length N can be
stored

Assuming uncorrelated patterns, the capacity
C of a hopfield net is C ~0.15N

Tighter bound N N
<(C<
4InN 2InN

So 100 neurons can reliably store about 8
patterns

Karlsruher Institut fur Technologie

 States can attain continuous values

* No hard threshold function, but sigmoid
function as activity function (soft threshold)

8(x) = (1+e™)

Karlsruher Institut fur Technologie

Also update times are continuous, so differential
equation

Processing units j comply with Cc,— du, ET V. - 4, I,
dt ; R,

Therefore the energy N T, — >ul
equation is EE E

C;: constant > 0

R;: decay resistance (>0)
;- external input

V.. output if u; (sig. applied)

Continuous Hopfield Nets=XIT
Traveling Salesman

. Matrix representation of the trip 12 3
* Row: City A 0 1 O
« Col: Position on the tour B 0 0 1
* Minimize the total distance travelled C 1 0 O

n
dei ’Xi+1
i=1

* Minimize Energy

Continuous Hopfield Nets=XIT
Traveling Salesman

Energy Function E=(AI2)Y Y Y ViV,

Parts are restrictions R

on the tour +(B/2) Y > D ViVy

1: Small, if one entry per T

row (only one visit) * (C/2)(;2VXZ. -n)

2: Small, if one entry per N (D/Z)EEEdXYMXi(Vx,,-H +V,)
column (only one city per time) xora

3: Small, if only n entries in matrix
4: Proportional to the total distances of the tour
A,B,C,D: Constants (tune for performance)

Continuous Hopfield Nets=XIT
Traveling Salesman

« Weights are set in the beginning according to

TXi,Xj =—A0,,(1- él'j)
~ B3, (1-3y,)
-C

- DdXY((SJ. + (5].,1._1)

J+1

e with poe
1 _
5 { if i=]

710 otherwise

Traveling Salesman

Set random initial state

Perform updating procedure, until the network
converges

Stable state gives the optimal route for the
salesman

« Solution is good but not optimal

« Does not work well for more than 10
cities

Continuous Hopfield Nets=XIT
Traveling Salesman

Pro’s and Con'’s

* Asynchronous updating is more related to the
biological neurons behavior

» Can also be helpful in designing fast
hardware implementations (parallelize)

* Limited performance
* spurious states
« Complex computation
* Only capable of optimization in specific
domains

Karlsruher Institut fur Technologie

Boltzmann Machines

Named after Boltzmann Distribution in statistical
mechanics (used for the probability of a state)

Basic structure similar to (binary) Hopfield Nets, but
stochastic processing units

Hidden units
Visible units can be divided into in- and output
Not fully interconnected
* No direct connections between in- and output
Weights are still symmetric
Still no connections to the unit itself

Boltzmann Machines =XIT
ldea: Simulated Annealing

Define some cost function C we want to minimize
Try to make moves that lower C

But allow moves that raise C some probability
that depends on a “temperature” parameter 7.

Start out at high 1; “anneal” by slowly lowering T.
Can escape from local minima!

Boltzmann Machines =XIT
Simulated Annealing in BM

Energy gap:
AE. = E(u, =1)- E(u, =0)
= —E ul'; =-net,

J

Energy gap is the change in E when u, turns
on

In Hopfield nets the change in state is only
done when energy is lowered

Boltzmann Machines =XIT
Stochastic Units

» Stochastic selection of state 1 or 0
P(u; =1)=g(x))
P(u;=0)=1-g(x,)

* g(x) is the Boltzmann Distribution

1

= , =1/
8(x) |+ e P

* X is still the sum of weighted inputs from other

units
X, = EuiTﬁ

l

Boltzmann Machines =XIT
Stochastic State Change

* |In Hopfield nets states change deterministic
* Probability of changing states in BM

| |
P(ui — _ui) = 1+ eAEiﬂ -

—net;

l+e

« Use randomness to
jump out of local
minima

Boltzmann Machines =XIT
Stochastic Search

Start with high temperature

* Plu>-uj]is close to 0.5. Units fluctuate a
lot.

Gradually cool to lower temperatures.

 Units fluctuate less as P moves closer to 1
or 0.

At zero temperature, we have a Hopfield net

Annealing schedule:
7., =097,

Boltzmann Machines =XIT
Structure

Hidden Units

Output Units

* Input is set and fixed (clamped)

* Annealing is done

 Answer is presented at the output
« Hidden units add extra representational power

Boltzmann Machines
Learning Algorithm

. Clamp inputs, anneal, measure <u;,u;>"

. Unclamp inputs, anneal, measure <u;,u>"

. Weight update (gradient descent):

AT, = n[<ui,uj>+ - <ui,uj>_]

<*>:= Average
<* *> := Correlation

SXIT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Boltzmann Machines =XIT
Stochastic Search

A Boltzmann machine with enough hidden units can
compute any computable function.

But annealing may have to be very slow.
Mean field approximation to Boltzmann machine:
+ Replace 1 by<ﬁ>

Faster than regular Boltzmann since we don't have to
wait a long time to reach equilibrium state.

But not as good as avoiding local minima.

