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The resonance frequencies of the vocal tract transfer function 
are called formants.  In practice, only the first few formants are of 

interest.                                                                                                                                                                                               
The Vowel-Triangle 



  Back-Propagation, Multilayer Perceptrons 
  Boltzman Machines 
  Decision Tree Classifiers 
  Restricted Coulomb Energy 
  Feature Map Classifiers 
  LVQ, LVQ2 
  High Order Networks 
  Radial Basis Functions 
  Modified Nearest Neighbor 







Tasks 
  Speaker Independence - Fast and Slow Adaptation 
  Continuous Speech 
  Phoneme Spotting 

Research Questions 
  Objective Functions - Probabilistic Outputs  

  and Improved Classification Rate 
  Modular Nets, Connectionist Glue, Multiplicative Units 
  Adaptive Time-Delays 
  Minimal Nets 
  Predictive Nets 
  Recurrent Nets 



  Recognition Error Rate 
  Training Time 
  Recognition Time 
  Memory Requirements 
  Training Complexity 
  Ease of Implementation 
  Ease of Adaptation 



Decision regions formed after 16000 training examples  
from Peterson and Barney’s data. Data samples are also shown.  
The Legend shows vowels Arpabet notation. 



Graphs of examples of the nine sounds  
[ba], [bi], [bu], [da], [di], [ga], [gi], [gu].  



LPC time-frequency plots for representative tokens of the E-set words. 



Time-frequency plots of weight values connected to each  
output neuron “B” through “Z” in a trained perceptron. 





  Multilayer Neural Network - nonlinear decision surfaces 
  An appropriate architecture - Integration of speech 

knowledge. Minimize learning time and amount of 
training data 

  Time-Delay Arrangement - Networks can represent 
temporal structure of speech 

  Translation-Invariant Learning - Hidden units of the 
network learn features independent of precise location in 
time 
 -> Freedom from precise alignment of segmentation 



       15 frames  
 10 msec frames rate 
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Caution: 
•  HMM - Standard Model;  

more advanced models have been reported 
•  Different Front End Signal Processing 



•  Learned Acoustic-Phonetic Features: 
  Formant Transitions, Segment Boundaries 

B  D G 

DA DO 

B  D G 



•  Learned Alternate Internal Representations  
  Link Different Acoustic Realizations to the  
  Same Concept (Trading Relations) 

“GA” (word middle) “GA” (word initial) 



• Shift Invariance (in time) 

“DO” <- 30 msec 30 msec -> “DO” 

B  D G B  D G 





BDGPTK-net trained from hidden 
units from a BDG- and PTK-
net 
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Combination of a BDG-net, a PTK-
net, and class-distinctive Voiced/
Unvoiced-net 
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Combination of a BDG-net and a 
PTK-net using 4 additional 
units in hidden layer 1 as free 
conncetionist „Glue“ 



Modular construction of an 
all consonant network 
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  Full word Templates: 
 Perceptron, Neural Net applied to input coefficient 
matrix 

  Problems: 
  Time Alignment 
  Endpoint Detection 
  Large Vocabularies (Training Data, Time) 



Time Alignment, Endpoint Detection 
  Dynamic Neural Net (Sakoe) 
  Word Level TDNN (Bottou) 
  Time Delay (Tank & Hopfield) 
  Preprocessing Time Alignment (Burr) 
  Neural Prediction Model (Iso) 
  Hidden control Neural Network (Levin) 

Large Vocabularies: 
  Model/Classify Atomic Subword Units  

 (Phonemes, Phones, States) 
  Integrate while Optimizing for Word Recognition 
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Phoneme Classification 
(b,d,g) with a fully 
connected MLP 

Problem:   
 static network,   
 dynamic input 

Input Layer 

Hidden Layer 

Phoneme Layer 

Speech Input 

b 
d 
g 



Neuronale Netze – Prof. Waibel 

Time Delay Neural 
Network (TDNN) 

Properties: 
- shift invariant 
- temporal context (time 
delays) 
- temporal integration 

Output Layer 

Phoneme Layer 

Hidden Layer 

Input Layer 
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b   b-eh  eh 

=> Multi-State TDNN 

Letter 'B': 

Output Layer 

Phoneme Layer 

Hidden Layer 

Input Layer 

DTW Layer 
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Error Function 

- mean square error (MSE) 
- cross entropy (CE) 
- classification figure of merit 
(CFM) 



Computing output 
probabilities  
in a typical discrete 
HMM 

Computing output probabilities in  
a hybrid connectionist/HMM system 

SPEECH 

VQ 

LOOKUP TABLE 

bij 

SPEECH 

CONNECTIONIST  
FRAMEWORK 

bij 



Motivations 
  Discriminative training 
  Combine multiple features without assuming 

independence 
  Sharing and flexible allocation of representational 

resources 
  Model correlations 

MLPs can compute posterior class probabilities  
(Bourlard & Wellekens) 

Use MLP to estimate HMM observation likelihoods in 
DECHIPHER 

Initial context-independent integration: 



  Idea: 
  Neural Net for classification of phones/states 
  HMM for alignment and integration into words 

  Approach: 
  Output activations => Maximum a posteriori probabilities 

(Bourlard) 
  Log [Word Probability] => Σ log [Output Activations] along 

best alignment path 
  Alignment path is determined by DTW or Viterbi alignment 



One unit for every output distribution 

34 units (2nd hidden layer) 

H(t) current hidden values 

I(t) Current 70 ms input window 

The non-recurrent CVT network 



One unit for every output distribution 

34 units (2nd hidden layer) 

H(t) current hidden values 

I(t) Current 70 ms input window H(t-10) H(t-1) H(t-2) 

The recurrent CVT network 



Doddington 1990 99.5% 98.6% 

Franzini 
Waibel 
Lee 

1991 99.1% 98.0% 

1990 98.5% 95.0% 

1989 97.0% 91.0% 

Levin 1990 99.1% 

Rabiner 1990 97.0% 

Sphinx 1988 97% 92% 



word acc. string acc. ∆error rate 

Feb ’90 98.5% 95.0% 

-  recurrence 98.0% 94.7% +6% 

+ word models 98.7% 96.8% -40% 

+ corrective 
training 

98.8% 97.0% -6% 

+ multiple 
models 

99.1% 98.0% -33% 
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Doddington, Bourlard, Wellekens 
 Viterbi Training; Iterative Alignment and Training 
 Normalized by Priors 
 Word Transition Penalties 
 Cross Validation Set 

Franzini 
 Connectionist Viterbi Training 
 Recurrence 
 Phone Modeling, Word Modeling 
 Word Corrective Training 
 Multiple Models 
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Neuronale Netze u. Anwendungen, 
15. Juni 2004 
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F2 

F1 

A B 
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F2 

F1 
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  Robust Objective Functions 
  Mean Square Error (MSE) 
  Classification Figure of Merit (CFM) 
  Cross Entropy 

  Model Invariance 
  Frequency Shift Invariance 
  Invariance towards Tilt, Compression, etc. 
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  Adaptation 
  Human Perception (1,2 Syllables) 
  Slow Adaptation - Modify Weights 
  Fast Adaptation - Select (Mix of) Pretrained Specific 

Submodels 

  Normalization 
  Environment- Correcting for Signal Noise 
  Speaker- Mapping New Speaker to Standard Speaker 
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Correct Output 
 is D: O(D)-O(B) O(D)-O(G) 

O O O 
B D G 

Output 
 units 

CFM plotted for representative  
parameter values 
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MSE classifier outcome CFM classifier outcome 

Indicates MSE miss  
correctly classified by CFM 

Indicates CFM miss  
correctly classified by MSE 
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One trained with MSE 
objective function, the other 
with the CMF objective 
function. 
The MSE-trained network 
yields an ambiguous 
classification, but the CFM-
trained network yields a 
confident, unambiguous 
classification. 
Through a simple arbitration 
scheme, the combined 
classifiers yield the correct 
classification. 

MSE CFM 
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Indicates post arbitration miss  
correctly classified by MSE 

Indicates post arbitration miss  
correctly classified by CFM 
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Network Speaker MSE CFM MSE/CFM Mod MSE/CFM 
TDNN MAU 98.3 98.9 98.8 98.8 

MHT 99.7 99.5 99.7 99.7 
MNM 97.4 97.2 98.3 97.8 
FKN 97.6 97.8 98.1 98.3 
FSU 98.2 98.5 98.4 98.4 
MMS 97.7 98.5 98.5 98.6 

TDNN 1 st 3 97.3 97.5 98.1 98.3 
all 6 95.9 95.9 96.5 96.5 

Trained with MSE, CFM and arbitrated MSE/CFM objective function  
(CFM parameters: α = 1.0, β = 4.0, ζ= 0.0) 
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F2 

F1 
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F2 

F1 

A B 
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Shift Invariance in Frequency 

So far, no improvements in performance 
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spkr 1 

A speaker-specific reference model is composed  
from several well trained reference models 

spkr 2 

spkr k 

spkr N 

/a/ /I/ /O/ /z/ 
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phoneme specific 
reference model selection networks 

… 
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1. Average performance of 6 speaker dependent 
nets 

       98.7% 
2. Performance of multi-speaker TDNN; trained 

on all 6 speakers, evaluated on different test 
data, but one of the speakers: 

       95.9% 
3. Meta-Pi Net: 

       98.4% 
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(Speaker: Training, Word: Training, Noise: Training) 
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13 output units 

…….. 
39 input units 

20 hidden units 

20 hidden units 
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  Speaker-dependent models (2400) 

  The error rate for the other speakers is 41.9% 

  With 40 text-dependent training sentences, the error rate is 
reduced to 6.8% 

Speakers Without Norm With Norm 
JLS 8.5% 6.8% 
BJW 62.1% 4.2% 
JRM 55.3% 9.5% 

Average 41.9% 6.8% 

Speaker normalization error rates 




















