

Institut für Anthropomatik

Grundlagen der Automatischen Spracherkennung

Neuronale Netze

18.1.2012

Interactive Systems Labs

Formants

The resonance frequencies of the vocal tract transfer function are called formants. In practice, only the first few formants are of interest.
The Vowel-Triangle 4000 $F2(Hz)$ beat ο 3500 3000 bit **D** 2000 obet 2500 FREQUENCY OF F2 (Hz) **o** bat 2000 1600 $\mathsf{bird}_{\mathsf{o}}$ 1500 1200 \bullet _{but} 1000 foot bob σ Toot 800 500 1000 1200 1400 600 800 `F1 (Hz) 200 400 600 800 Ω 200 400 FREQUENCY OF F₁(Hz)

Neural Net Classifiers

- **Back-Propagation, Multilayer Perceptrons**
- **Boltzman Machines**
- Decision Tree Classifiers
- **-** Restricted Coulomb Energy
- **Feature Map Classifiers**
- **LVQ, LVQ2**
- **High Order Networks**
- Radial Basis Functions
- **-** Modified Nearest Neighbor

Phoneme Recognition by Classification

Lippmann, Vowel
Classification

Phoneme Models

Tasks

- **Speaker Independence Fast and Slow Adaptation**
- **-** Continuous Speech
- Phoneme Spotting

Research Questions

- **-** Objective Functions Probabilistic Outputs and Improved Classification Rate
- **-** Modular Nets, Connectionist Glue, Multiplicative Units
- **Adaptive Time-Delays**
- **Ninimal Nets**
- **Predictive Nets**
- **Recurrent Nets**

Design Criteria

- Recognition Error Rate
- **Training Time**
- Recognition Time
- **EXECUTE Memory Requirements**
- **Training Complexity**
- Ease of Implementation
- Ease of Adaptation

Lippmann, Vowel **Classification**

Decision regions formed after 16000 training examples from Peterson and Barney's data. Data samples are also shown. The Legend shows vowels Arpabet notation.

Elman, Vowels, Voiced **Stops**

Graphs of examples of the nine sounds [ba], [bi], [bu], [da], [di], [ga], [gi], [gu].

LPC time-frequency plots

LPC time-frequency plots for representative tokens of the E-set words.

Time-frequency plots (cont.)

Time-frequency plots of weight values connected to each output neuron "B" through "Z" in a trained perceptron.

Time-Delay Neural Network

- Multilayer Neural Network nonlinear decision surfaces
- An appropriate architecture Integration of speech knowledge. Minimize learning time and amount of training data
- Time-Delay Arrangement Networks can represent temporal structure of speech
- **Translation-Invariant Learning Hidden units of the** network learn features independent of precise location in time

-> Freedom from precise alignment of segmentation

Output Layer

Hidden Layer 1

Hidden Layer 2

Input Layer

Caution:

• HMM - Standard Model;

more advanced models have been reported

• Different Front End Signal Processing

• Learned Acoustic-Phonetic Features: Formant Transitions, Segment Boundaries

• Learned Alternate Internal Representations Link Different Acoustic Realizations to the Same Concept (Trading Relations)

•Shift Invariance (in time)

CONSONANT RECOGNITION PERFORMANCE RESULTS

FROM BDG TO BDGPTK: MODULAR SCALING METHODS

CONSONANT RECOGNITION PERFORMANCE RESULTS

Word Models

Full word Templates:

Perceptron, Neural Net applied to input coefficient matrix

- **Problems:**
	- **Time Alignment**
	- **Endpoint Detection**
	- Large Vocabularies (Training Data, Time)

Word Models (cont.)

Time Alignment, Endpoint Detection

- Dynamic Neural Net (Sakoe)
- Word Level TDNN (Bottou)
- **Time Delay (Tank & Hopfield)**
- **Preprocessing Time Alignment (Burr)**
- **Neural Prediction Model (Iso)**
- **Hidden control Neural Network (Levin)**

Large Vocabularies:

- **Nodel/Classify Atomic Subword Units** (Phonemes, Phones, States)
- **If** Integrate while Optimizing for Word Recognition

Multi-Layer Perceptron

Phoneme Classification (b,d,g) with a **fully connected** MLP

Problem: **static** network, **dynamic** input

Time Delay Neural Network

Training on Letter Level

Error Function

Hybrid MLP/HMM

Motivations

- **Discriminative training**
- Combine multiple features without assuming independence
- Sharing and flexible allocation of representational resources
- Model correlations

MLPs can compute posterior class probabilities (Bourlard & Wellekens)

Use MLP to estimate HMM observation likelihoods in DECHIPHER

Initial context-independent integration:

$$
P(Y_t | q_j) = \frac{P(q_j | Y_t)P(Y_t)}{P(q_j)}
$$

NN-HMM Hybrid Methods

- ldea:
	- Neural Net for classification of phones/states
	- HMM for alignment and integration into words
- Approach:
	- Output activations => Maximum a posteriori probabilities (Bourlard)
	- Log [Word Probability] => Σ log [Output Activations] along best alignment path
	- Alignment path is determined by DTW or Viterbi alignment

Network Topology (1991)

The non-recurrent CVT network

Network Topology

The recurrent CVT network

Performance on TI Digit Task A Comparison of Various **Systems**

Results Hybrids

NN-HMM Hybrid Improvements

Doddington, Bourlard, Wellekens

Viterbi Training; Iterative Alignment and Training

Normalized by Priors

Word Transition Penalties

Cross Validation Set

Franzini

Connectionist Viterbi Training

Recurrence

Phone Modeling, Word Modeling

Word Corrective Training

Multiple Models

Institut für Anthropomatik

Speaker Independence

Neuronale Netze u. Anwendungen, 15. Juni 2004

Interactive Systems Labs Neuronale Netze – *Prof. Waibel*

Speaker and Environmental Variability

- Robust Objective Functions
	- Mean Square Error (MSE)
	- Classification Figure of Merit (CFM)
	- Cross Entropy
- **Model Invariance**
	- **Frequency Shift Invariance**
	- **Invariance towards Tilt, Compression, etc.**

Speaker and Environmental Variability (cont.)

- Adaptation
	- Human Perception (1,2 Syllables)
	- **Slow Adaptation Modify Weights**
	- Fast Adaptation Select (Mix of) Pretrained Specific **Submodels**
- **Normalization**
	- **Environment- Correcting for Signal Noise**
	- **Speaker- Mapping New Speaker to Standard Speaker**

Two standard TDNNs

One trained with MSE objective function, the other with the CMF objective function.

The MSE-trained network yields an ambiguous classification, but the CFMtrained network yields a confident, unambiguous classification.

Through a simple arbitration scheme, the combined classifiers yield the correct classification.

Scatter plot of arbitrated **MSE/CFM classifier** outcomes

- Indicates post arbitration miss \Box correctly classified by MSE
- Indicates post arbitration miss \circ correctly classified by CFM

Comparison of /b, d, g/ recognition rates for TDNN

Trained with MSE, CFM and arbitrated MSE/CFM objective function (CFM parameters: $\alpha = 1.0$, $\beta = 4.0$, $\zeta = 0.0$)

TDNN 3-Way arbitrated output

Speaker Independence

Shift Invariance in Frequency

So far, no improvements in performance

Multi-Speaker Reference Model

A speaker-specific reference model is composed from several well trained reference models

Neuronale Netze – *Prof. Waibel* phoneme specific reference model selection networks

Multi-Speaker Results

1. Average performance of 6 speaker dependent nets²

2. Performance of multi-speaker TDNN; trained on all 6 speakers, evaluated on different test data, but one of the speakers:
95.9%

3. Meta-Pi Net: 98.4%

Spectrograms of the **Network** Input and Output - Example

(Speaker: Training, Word: Training, Noise: Training)

AKI

Speaker Normalization Results

- **Speaker-dependent models (2400)**
- The error rate for the other speakers is 41.9%
- With 40 text-dependent training sentences, the error rate is reduced to 6.8%

Speaker normalization error rates

Feature Extraction in ASR

- Input: real world audio signal
- \triangleright Goal: output a sequence of vectors that contain only the most useful information
- \blacktriangleright Problems:
	- \triangleright What is useful information?
	- \triangleright What vector rate should we choose?
	- \triangleright What size should the feature vectors be?
- \blacktriangleright For detailed answers see ASR lecture
- Some techniques lead to large vectors
	- Stacking, multi-resolutions, Δ , $\Delta\Delta$, ...
- \blacktriangleright => Problematic for the ASR system
	- \blacktriangleright speed, resource requirements, data, ...
- Dimensionality reduction required

Dimensionality Reduction

- \blacktriangleright Remove redundant, superfluous and harmful information
- Linear Dimensional Reduction
	- Principal Component Analysis (PCA)
	- Linear Discriminant Analysis (LDA)
- \triangleright Nonlinear Dimensional Reduction
	- ► Kernel PCA, Multi-linear PCA, Kernel PCA
	- Maximum Variance Unfolding (semidefinite embedding), **Isomap**
	- Multilayer Perceptrons (MLP), Bottleneck Features (BNF)

Linear Discriminant Analysis

3dim LDA example: Image credits: Ivica Rogina

- Real World example:
- ▶ 20 dim features \times 15 frame window
- \blacktriangleright => 300 input vectors
- ▶ 40 phonemes (target classes)
- desired output: 42 dim

MLP Features

- Input Layer: input vectors
- Output Layer: phonemes
- \blacktriangleright Hidden Layers: 1+ large hidden layers
- \blacktriangleright Learn MLP with back-propagation
- use output layer as feature vector
- Problem: reduced dim size same as $#$ phonemes

Bottleneck Features Example

Bottleneck Features

- Input Layer: input vectors
- Output Layer: phonemes (sub phonemes, phone-states)
- \blacktriangleright Hidden Layers: 2+ hidden layers
- Bottleneck Layer: small hidden layer
- \blacktriangleright Learn MLP with back-propagation
- ► use bottleck layer as feature vector

Bottleneck Features Example

The MLP architecture (4kx4k) that performed best in our experiments: A 15 frame context window, with 13 MFCCs each, was used as the input feature; the 136 node target layer (one node per sub-phone) and the 4k 3rd hidden layer were discarded after the MLP was trained. A 9 frame context window of the MLP output at the 42 node bottleneck layer is then used as the new 378 dim BNF feature. (LDA reduces the dimension to 42 again)

Bottleneck Features Evaluation

- MFCC Baseline: 20.04%
- \triangleright MVDR Baseline: 19.95%
- inal MFCC+MVDR system: 18.03%

Comparison of different bottleneck features. The EM Training column refers to a single BNF system trained to that stage. The System Combination column displays the WER of the final CNC of all 3 2nd pass systems, either self adapted or adapted on the CNC of the first pass.