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Organisation

® Literatur:

® |Introduction to The Theory of Neural Computation
Hertz, Krogh, Palmer, Santa Fe Institute

® Neural Network Architectures — An Introduction,
Judith Dayhoff, VNR Publishers

® Andere Publikationen, TBD
® Papers On-Line

® Sprechstunde:
® Dienstag, 12:00, oder Anmeldung Sekretariat

® Link im Studienportal, und

lectures -> neuronale netze
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Neural Nets

* Terminology:
— Artificial Neural Networks
— Connectionist Models
— Parallel Distributed Processing (PDP)
— Massive Parallel Processing
— Multi-layer Perceptron (MLP)



The brain 1s:

~ 1000 supercomputers
~ 1/10 pocket calculator

The brain 1s very good for some problems:
vision, speech, language, motor-control.

It 1s very poor at others: arithmetic
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Von Neumann Computer - ==
Neural Computation

Processing: Sequential - Parallel

Processors: One - Many

Interaction: None - A lot

Communication: Poor - Rich

Processors: Fast, Accurate - Slow, Sloppy
Knowledge: Local - Distributed
Hardware: General Purpose - Dedicated
Design: Programed - Learned



Why Neural Networks

Massive parallelism.

Massive constraint satisfaction for ill-defined
input.

Simple computing units.
Many processing units, many interconnections.
Uniformity (-> sensor fusion)

Non-linear classifiers/ mapping (-> good
performance)

Learning/ adapting
Brain like ??



History I
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McCollough & Pitts, 1943
Perceptrons, Rosenblatt ~1960
Minsky, 1967

PDP, Neuro Rennaissance ~1985
Since then

® Bio, Neuro, Brain-Science
® Machine Learning, Statistics
® Applications, Part of the Toolbox
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Using Neural Nets

Classification
Prediction

Function Approximation
Continuous Mapping
Pattern Completion

Coding
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Design Criteria

Recognition Error Rate
Training Time
Recognition Time
Memory Requirements
Training Complexity
Ease of Implementation

Ease of Adaptation
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Neural Models

Back-Propagation

Boltzman Machines

Decision Tree Classifiers

Feature Map Classifiers

Learning Vector Quantizer (LVQ, LVQ?2)
High Order Networks

Modified Nearest Neighbor

Radial Basis Functions

Kernels

SVM

etc.
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Network Specification

* What parameters are typically chosen by the
network designer:
— Net Topology
— Node Characteristics
— Learning Rule
— Objective Function
— (Initial) Weights

— Learning Parameters
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Applications

Space Robot*

Autonomous
Navigation™

Speech Recognition and
Understanding™®

Natural Language
Processing™

Music*

Gesture Recognition

Lip Reading

Face Recognition
Household Robots
Signal Processing
Banking, Bond Rating,...
Sonar

etc....



Advanced Neural Models

Time-Delay Neural Networks (Waibel)
Recurrent Nets (Elman, Jordan)

Higher Order Nets

Modular System Construction

Adaptive Architectures

Hybrid Neural/Non-Neural Architectures

Karlsruher Institut fur Technologie



Karlsruher Institut fur Technologie

Neural Nets - Design Problems

Local Minima
Speed of Learning
Architecture must be selected

Choice of Feature Representation
Scaling

Systems, Modularity

Treatment of Temporal Features and Sequences
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Neural Nets - Modeling

e Neural Nets are

— Non-Linear Classifiers
— Approximate Posterior Probabilities

— Non-Parametric Training

e The Problem with Time
— How to Consider Context
— How to Operate Shift-Invariantly

— How to Process Pattern Sequences



Pattern Recognition Overview =~

» Static Patterns, no dependence on Time or Sequential
Order

« Important Notions
— Supervised - Unsupervised Classifiers
— Parametric - Non-Parametric Classifiers

— Linear - Non-linear Classifiers

e (lassical Methods

— Bayes Classifier
— K-Nearest Neighbor

 (Connectionist Methods
— Perceptron

— Multilayer Perceptrons



Pattern Recognition

SKIT
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Pattern
Recognition
\/ L/
statistical syntactic

\/ v

supervised unsupervised

\/ v
parametric nonparametric
\/ |/
linear nonlinear




Supervised - Unsupervised KIT

e Supervised training:
Class to be recognized 1s known for each sample
in training data. Requires a priori knowledge of
useful features and knowledge/labeling of each
training token (cost!).

e Unsupervised training:
Class 1s not known and structure is to be
discovered automatically.
Feature-space-reduction

example: clustering, autoassociative nets
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Unsupervised Classification

F2

e C(Classification:
— Classes Not Known: Find Structure

v

F1
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Unsupervised Classification

F2

v

F1

« Classification:
— Classes Not Known: Find Structure
— Clustering
— How? How many?
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Supervised Classification

Income

O o .
Tt o o ° o credit-worthy
(o]
°8% 5o 0 %0 + non-credit-worthy

[
»

Age

« Classification:
— Classes Known: Creditworthiness: Yes-No
— Features: Income, Age
— Classifiers
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Classification Problem

Income
++ o o° .
Tt o o ° o credit-worthy
(e} (@)
e o 0o 00 + non-credit-worthy
(@] (@]
ooooooooo-|—+++ :
o o e+ Is Joe credit-worthy ?
Op © ° _|_+_'_+ -
+ TH, o+
+ + ——i_|-+—|—+:tj +
o T

Agje
Features: age, income m

Classes: creditworthy, non-creditworthy
Problem: Given Joe's income and age, should a loan be made?
Other Classification Problems: Fraud Detection, Customer Selection...
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Classification Problem
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Parametric - Non-parametric

SKIT
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Number bad loans
A \
good loans
an \{

\ /

\\ \
V
X N

/ S ~

- == p |ncome

« Parametric:

minimum error criterium

— assume underlying probability distribution;
— estimate the parameters of this distribution.

— Example: "Gaussian Classifier"

* Non-parametric:

— Don't assume distribution.
— Estimate probability of error or error citerion directly from training

data.

— Examples: Parzen Window, k-nearest neighbor, perceptron...



Bayes Decision Theory

p(x/ w)P(w,)
p(x)

Bayes Rule: P(w,/x)=

where p(x) =Y p(x/ ®,)P(w,)
1
A priori probability P(w;)
observation of x

A posteriori probability P(w;/ x)

Class-conditional Probability Density p(x/w;)

Karlsruher Institut fur Technologie



Two classes case:

P(error/ x) ={ Eg i Xg |flwe deOlqe
> [ x else

Error is minimized, if we:

Decide w, if P(w,/x)> P(w, /x);
@, otherwise

Decide w, if p(x/w,)P(w,)>p(x/w,)P(w,);

W, otherwise

For the multicategory case:

Decide o, if P(w, /x)>P(w,/x) forall j #1i
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PROBABILITY OENSITY

Hypothetical class-conditional ANKIT
probability density function

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

P(w,)=2/3
P(w,)=1/3

BRIGHMTNESS — x



PROBABILITY

1.0
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0.6

0.4
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D.0

A posteriori probabilities

P‘U|ll’
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BRIGHTNESS — X



Classifier Discriminant Functions ﬂ(“

Assign x to class w, , if g;x)>g,x) forall j =1

g (x)=P(w, / x)

_ p(x/ ©)P(,)

;P(X/‘“j)(wj) “— independent of class i

gi(X) = p(X / (DI)P((D]_)

g (x) =log(p(x/ w))+ log(P(cgi))
*
| .

class conditional probability density function A priori probability




Examples Decision boundaries | ===

pixfeo, i, )

pix|wsi Piasy)
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Classifier Design in Practice =~ i

Need a priori probability P(w,) (not too bad)
Need class conditional PDF p(x / w,)

Problems:

— limited training data

— limited computation

— class-labelling potentially costly and errorful
— classes may not be known

— good features not known

Parametric Solution:

— Assume that p(X / ®,) has a particular prametric form
— Most common representative: multivariate normal density



GaussianClassifier = e

2
Univariate Normal Density: p(x)= o exp[ —i X M) ]

Multivariate Density:

1
O
NN(Maoz)
p(R)= — eXP[ Ly 2w )
(2m)* |2/ 2 J
< N(L,E)

2.60= = ()3 Y log2m)

+logP(w,)

1

1
——logl>
) g
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Gaussian Classifier ot

 For each class i, need to estimate from trainingdata:
* covariance matrix X,

* mean vector Y,



Estimation of Parameters = e

« MLE, Maximum Likelihood Estimation

 For Multivariate Case:

.1 &
=— )X
MN;k

lN

2 =ﬁ;(£k - @)(x, - )
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Decision Boundaries fora  NCIT
Minimum-Distance Classifier
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Problems of Classifier Design =~ S

* Features:
— What and how many features should be selected?
— Any features?
— The more the better?

— If additional features not useful (same mean and
covariance), classifier will automatically ignore them?



Curse of Dimensionality =~ e

Generally, adding more features indiscriminantly leads to
worse performance!

Reason:

— Training Data vs. Number of Parameters
— Limited training data.

Solution:

— select features carefully

— reduce dimensionality

— Principle Component Analysis



Principal Component Analysis (PCA%(IT

X2 N Assumption:

Single dimensions
are correlated

o O o
5 Aim:

0O Reduce number
of dimensions
— with minimum loss
X1 of information




Principal Component Analysis (PCA%(IT

Xo A Find the axis
along the highest
variance




Principal Component Analysis (PCA%(IT

Xo A Rotate the space
along the axis




Principal Component Analysis (PCA) K

X 2/,\ Dimensions are
uncorrelated now




Principal Component Analysis (PCA%(IT

X9 A Remove
dimensions with
low variance

=> Reduction of

dimensionality
° ©  with minimum loss

of information




Problems T
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f(x)

/ \\\

T~/
/

 Normal distribution does not model this situation well.

« other densities may be mathematically intractable.
—>non-parametric techniques



Non-Parametric Techniques: ﬂ("
Parzen Windows

No Assumptions about the distribution are made
estimate p(x) directly from data

XZ .o';';:’
LA o,
R & Vv
N KT /
'“lo ' 1
Fd : ¢
. X,
« Choose a window of volume V

Count the number of samples that fall inside the window.

p(x)~m  :k =count

V :n = number of samples
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Parzen Windows

* Problem:
Volume too large -> loose resolution

Volume too small -> erratic, poor estimate

|
¢ set V, =ﬁ

limV =0

n—o

limk, = tp,,.(x)=>p(x

n—>x

limk /n=0

n—o J




K-Nearest Neighbors (KNN) == S

 |dea: Let the volume be a function of the data. Include k-

nearest neighbors in estimate.
set k = «/; k-nearest neighbor rule for classification

To classify sample x:
— Find k-nearest neighbors of x.

— Determine the class most frequently represented
among those k samples (take a vote)

— Assign x to that class. 4 o
N o
k — 9 C)+o "o > § o
70 5 © o/ Px
2 + Y40 o Yo o3
(@)
=> classify o ° oo O ?




KNN-Classifier: Problem

For finite number of samples n,

we want k to be:

large for reliable estimate

small to guarantee that all k neighbors

are reasonably close.

Need training database to be larger.

"There is no data like more data.”
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Pattern Recognition

\

parametric

Pattern
Recognition
i
Y Y
statistical syntactic
i
\/ v
supervised unsupervised
i
v
nonparametric
i
\] v
linear nonlinear

SKIT

Karlsruher Institut fur Technologie



Karlsruher Institut fur Technologie

+++
_|_
i
_|_
+++-|—
+ ++_|_
+++++ +
o+t
- ++++i +
o+

F1
e (lassification:
— (Classes Not Known: Find Structure
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Unsupervised Classification
F2

. F1
e (lassification:

— (Classes Not Known: Find Structure
— Clustering

— How? How many?
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Unsupervised Learning

® Data collection and labeling costly and time consuming
® (Characteristics of patterns can change over time

® May not have 1nsight into nature or structure of data

- Classes NOT known



Mixture Densities

® Samples come from c classes
® A priori probability P (w,)

® Assume: The forms for the class-conditional
PDF'sP (X / @,,0,) are known (usually normal)

® Unknown parameter vector 9 ... ©
A
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Mixture Densities

Problem: Hairy Math

Simplification/ Approximation:

Look only for means -> Isodata

1. Choose initial PRI
Classify n samples to closest mean

Recompute means from samples in class

> L

Means changed? Goto step 2, else stop

Karlsruher Institut fur Technologie



Mixture Densities XIT
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Isodata, problems:

 Choosing initial means w
* Knowing number of classes

* Assuming distribution

 What is "closest"?



Clustering

Similarity
Criterion function

Samples in same class should extremize
criterion function, that measures cluster quality

Example: sum of error criterion

T=3Slx-m,|P

i=]l max
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Hierarchical Clustering XIT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

e Need not determine c

e Need not guess initial means

1. Initialize ¢ :=n

2. Find nearest pair of distinct clustés  Zdnd
3. Merge them and decrement c

4. If c= C stop, otherwise goto step 2

stop



Dendrogram for hierarchical ==
clustering

Xy Xy X, Xs X5 X,
Level1 — @ ® ® ® — 100
Level 2 — ‘ . | —90
—80
Level 3 — |
—H70 2
J 3
Level 4 — —60 >
=
— h'd
Level 5 — 50 <
= et
Level 6 ® N
v — s
—20
—10




Similarity SKIT
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What constitutes "nearest cluster"?

T - ~——
f - - . - \'l.. - - -k\l
- L -
- - - F



Three 1llustrative examples

c)

b) *".
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Results of the nearest-neighbor ==
algorithm

O D /Ij/




Results of the furthest-neighbor SKIT

algorithm




Parametric - Non-parametric

Number bad loans

good loans

p |ncome

e Parametric:

minimum error criterium

— assume underlying probability distribution;

— estimate the parameters of this distribution.

— Example: "Gaussian Classifier"

e Non-parametric:

Don't assume distribution.

SKIT
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— Estimate probability of error or error criterion directly from training data.

— Examples: Parzen Window, k-nearest neighbor, perceptron...



Decision Function g(x) = e

gx)>0 = Class A
g(x)<0 = Not class A
gx)=0 = No decision

n
- o
g(x)=2wl.xi+w0 =W X+ W,
I=

= (%505 X,)" Feature vector
T
= (W55 W,) Weight vector
Threshold weight



Linear Discriminant Functions = o

No assumption about distributions (non-parametric)

Linear Decision Surfaces

Begin by supervised training (given classes of training data)
Discriminant function:

n n
g(X)=w, + 2W1Xi = éwixi; X, =1
1= 1

g(x) gives distance from decision surface
Two category case:

g (x)>0 = class1

g (x)<0 = class?2



SKIT

Linear Separable

%

« Each class can be surounded by a convex polygon
« Maximum ,safety” area is half of the distance of the polygons



Goal: find an orientation of the line, were the projected

samples are well separated.

X2
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Fisher-Linear Discriminant =~ s

« Dimensionality Reduction;
 Project a set of multidimensional points onto a line y = wx

 Fisher Discriminant is function that maximizes criterion

i, = ity
g(x)=—-—
S1+S2

m, = 1 E y  Where sample mean for projected
n; i,

E;z = E (y- n?l.)zsamples scatter for projected samples
VEY



Fisher Linear Discriminant = e
Fisher's linear discriminant:

—_

1, — -
W=Sw (ml _mZ)

S, =S8 +8, (within-class scatter matrix)

— — — — T
S; = E(x —m;)(x —m,)
=X,
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The Perceptron

1 Age Income
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Decision Function g(x)

g(x)>0 = Class A
g(x)<0 = Not class A
gx)=0 = No decision

n
_ . —>T—> _ —>.—>
gx)= Ewlleer— w X+ w,=w-x+w,
i=1

X=(x,.,x ) Feature vector
w=w,..w) Weight vector
Wy Threshold weight

denotes scalar product
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¥

&

i \@ Do)
"/

vty

Three common non-linearities f(%):

0 0 ﬁ
__1 —-1 '1 1

Hard Limiter Threshold Logic sigmoid Y, =

l+e¢



The Perceptron = 1]
Linear Decision Element:
f W,
10 @
f') - I n
_? %V% 2 — g(X) = WO + E Wixi
o %V2 / threshold 1=l
W,0
@V‘io
C; n
o @1 D — g(x) = ;Wixi;
% x, =1
f o @ /



Assign x to class w,, 1t
g, (x)>g,(x) forallj°i
g (x)=P(w, / x)

_ p(x/ ©)P(,)

E p(x/ @, )(®W,) «— independent of class i
=1

gi(X) = p(X / (Dl)P((Dl)

g (x) =log(p(x/ w))+ log(P(uzi))
+
| N

class conditional probability density function A priori probability




Linear Discriminant Functions =+

No assumption about distributions (non-parametric)
Linear Decision Surfaces

Begin by supervised training (given classes of training data)
Discriminant function:

n n
g(X)=w, + 2W1X1 = éwixi; X, =1
1= 1

g(x) gives distance from decision surface

Two category case:

g (x)>0 = class1

g (x)<0 = class?2



Karlsruher Institut fur Technologie

Perceptron

g(x) = iwixi; X, =1

—

find w

All vectors X, are labelled correctly, if for all j
wx>0 X if  lawelled
w-x,<0 x if lalsolled

Now we set all samples belonging to @, to their
negative (- X).

Then all vectors are classified correctly, if w-x,>0 for all j
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Perceptron Criterion Function
J, ()= > (=i 5)

X 1s the set of misclassified tokens

Since W* X is negation for misclassified tokens, J (W) 1s positive
When J . is zero a solution vector w is found.

J, 1s proportional to the sum of distances of misclassified samples to
decision boundary

—

VJ, =;X(_)_é) Wiy =V_‘>k+§k2x

xeX



Linearly Separable Samples and the SKIT
Solution Region 1n Weight Space

02 02
Solution - / Solution\
> -/ ~=Solution Vector

S /N Solution

Vector
Region

Region

a; o
/ [ = i
y / Separating / ! Separating
,/ I P'One // II Plone
/
/ {
O -- Clgss | samples
[0 -- Class 2 samples

{(a) Unnormalized (b) Normalized



The Perceptron Criterion

Function

(a) WEIGHT SPACE (b) CRITERION FUNCTION
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Finding a Solution Region by SXIT
Gradient Search
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Perceptron Learning

e [ssues:

— How to set the Learning Rate
— How to set initial weights

e Problems:
— Non-Separable Data

— Separable Data, but Which Decision Surface
— Non-Linearly Separable
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Variations

Relaxation Procedure

J, () =3 (%)’

Gradient 1s continuous -> smoother surface

Margin
1w (F—by
Jr (W) = E;X ”55”2 margin b




Effect of the Margin on the Solution ﬂ("
Region

a2

" Solution . 4

- Solution 37,
7 Region siimoe ks,

2

ta} b2D (b) b =11 y, Il
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Nonseparable behavior

e Minimize MSE

JS(»T/)=2(W-5C'J.-1))2



The Perceptron: = 2

* The good news:
— Simple computing units

— Learning algorithm

 The bad news:

— Single units generate linear decision surfaces (The infamous
XOR problem).  f ¢

\X o

O >
f

— Multilayered machines could not be learned.
Local optimization.

1



Networks of Neurons/ - A
Multi-Layer Perceptron

e Many interconnected simple processing elements:

Output patterns

Internal
Representation

Units

Input Patterns




Connectionist Units

X = E YWy
X. y. 1

T e

YA

Backpropagation of error:

1 )
E==->(y,—-d)
25
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Training the MLP by Error SKIT
Back-Propagation

Choose random 1nitial weights
Apply 1input, get some output
Compare output to desired output and compute error

Back-propagate error through net and compute
dE/ ow, , the contribution of each weight to the

i 9

overall error.

Adjust weights slightly to reduce error.



Backpropagatlon of Error=
OS0-d)Y Y=o 5T

l1+¢
oE
. —=y -d
dy, Y,
\Wij
JE O0E 9y, OE
2 = = —v. X
) ox, dy, 9x, dy. y,l -y —O-
y, 2B _9E 9% _JE, A0
Cdw,  9X, dw, X 4
0E 9X, oE
4). —-E =25 W

oxX, 9y,

SKIT
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Dernvative dy/dx

+14 Iy, )2 -
—L =(-DA+e")* - (-De

C X,

|
| | o e -1
sigmoid ¥; = 75 T (Q+e ) (I+e)

— e_xj
l+e™ 7

= y](l _y]')



Statistical Interpretation of ==
MLP’s

* What 1s the output of an MLP?

* Output represents a Posterior1 Probabilities P(w|x)

e Assumptions:
— Training Targets: 1, 0
— Output Error Function: Mean Squared Error
— Other Functions Possible
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Statistical Interpretation of MLP’s

« What 1s the output of an MLP?
It can be shown, that the output units represent the
a posterior1 probability

— Provided certain objective functions (e.g. MSE, ..)
— Sufficiently large training database



1
Pol+e”
€ j=l—1

Y,
<Y,

1-y,
x, = log[ )
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What does the sigmoid do?

If y. = p(q/x) then

1oorP(A/ %)
& Og[p(ﬁ / x)]
oo P&/ D)y 1 rP(D)
% s qfiog[p(a)]l
iinlts B{as

log. likelihood ratio or "odds"
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Statistical Interpretation of MLP’s

« What 1s the output of an MLP?
« Using MSE, for two class problem,c, £1, ¢, 20

Eel {E[f(x) -1 + BTG }

Xt

if N large and reflects prior distribution

E= [(f(x)- 1)’ p(x,¢,)dx +f(f(x))2 p(x,c,)dx



Statistical Interpretation of MLP’s

E = ffz[p(xlcl) + p(x,c,)]dx - 2ff(X)p(chl)dX
+1- [p(x,c,)dx

= ffl(x)p(x)dx = 2[f(x)p(x,c,)dx +[p(x,c,)dx
= [If* (x)p(x) - 2f(X)p(x,c,) +p(x,c,)]dx

= [If*(x) - 2f(x)p(c, / x) +p(c, / x)]p(x)dx

E = [[f(x)- p(c, / x)I p(x)dx - [p”(c, / x)p(x)dx + P(c,)

Y .
net approx. posterior




