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Pattern Recognition

v

Static Patterns, no dependence on Time or Sequential Order

v

Important Notions

» Supervised - Unsupervised Classifiers
» Parametric - Non-Parametric Classifiers
» Linear - Non-linear Classifiers

Classical Methods

» Bayes Classifier
» K-Nearest Neighbour

v

Connectionist Methods

» Perceptron
» Multilayer Perceptrons

v
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Supervised vs Unsupervised

» Supervised training:
» Class to be recognized is known for each sample in training
data.
» Requires a priori knowledge of useful features and
» knowledge/labeling of each training token (cost!).
» Unsupervised training:
» Class is not known and structure is to be discovered
automatically.

» Feature-space-reduction
» example: clustering, autoassociative nets
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Unsupervised Classification
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Figure: Classes Unknown
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Unsupervised Classification
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Figure: Classes Unknown: Find Structure.

» How? How many?
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Supervised Classification
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» Classes Known: Creditworthiness: Yes-No
> Features: Income, Age

» Classifiers
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Classification Problem
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v

Features: age, income

v

Classes: creditworthy, non-creditworthy

v

Problem: Given Joe's income and age, should a loan be made?

v

Other Classification Problems: Fraud Detection, Customer
Selection...
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Classification Problem
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Parametric - Non-parametric
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minimum error criterium

» Parametric:

» assume underlying probability distribution;
> estimate the parameters of this distribution.
» Example: " Gaussian Classifier”

» Non-parametric:

» Don’t assume distribution.

» Estimate probability of error or error citerion directly from
training data.

» Examples: Parzen Window, k-nearest neighbour, perceptron...
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Bayes Decision Theory

_ p(x|wj)P(w;)
- p(x)

where: p(x) = 3 p(x|w;) P(w))
» A priori probability P(w;)

v

Bayes Rule: P(wj|x)

v

v

A posteriori probability P(wj|x) (after observing x)

v

Class-conditional Probability Density p(x|w;)
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Example

...the use of repeatedly reactive enzyme immunoassay followed by confirmatory Western blot or
immunofluorescent assay remains the standard method for diagnosing HIV-1 infection. A large
study of HIV testing in 752 U.S. laboratories reported a sensitivity of 99.7% and specificity of
98.5% for enzyme immunoassay...

> P(aidsge) = 0.001 P(aidstrans) = 0.05

> P(aids) = 0.00005 P(~aids) = 0.0005

> P(c]aids) = 0.997 P(©|aids) = 0.003

> P(|-aids) = 0.015 P(c)|aids) = 0.985

> P(aids|@) = PEIZRIEEE) — 0,016

> P(®) = P(®|aids)P(aids) + P(®|—aids)P(—aids) = 0.0030

Neuronale Netze - Classification | Alex Waibel, Kevin Kilgour



AT

e Institute of Technology

Maximum a Posteriori

» Often: set of observations O
» Goal: best hypothesis h given O

» assume: best h = most probable h (called hpjap)

hypap = argmax P(h|O)
h

g PLOINP(E)
h p(0)
= arglr;nax p(O|h)P(h)
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2 Classes Example

X) = 1

» Goal: Minimum Error

» choose wy if:

P(wz[x) > P(w1|x) p(x|w2) P(w2) > p(x|w1)P(w1)
» and wy if
P(w2|x) < P(wi]x) p(x|w2)P(w2) < p(x|w1)P(w1)
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Example

...the use of repeatedly reactive enzyme immunoassay followed by confirmatory Western blot or
immunofluorescent assay remains the standard method for diagnosing HIV-1 infection. A large
study of HIV testing in 752 U.S. laboratories reported a sensitivity of 99.7% and specificity of
98.5% for enzyme immunoassay...

> P(aidsge) = 0.001 P(aidstrans) = 0.05
> P(aids) = 0.00005 P(~aids) = 0.0005
> P(®|aids) = 0.997 P(©|aids) = 0.003
> P(®|-aids) = 0.015 P(G|aids) = 0.985
> P(®]aids)P(aids) = 0.00004985

> P(®|—aids)P(—aids) = 0.00299985

> hpap = —aids
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Multiclass Example

» choose w; if: P(wi|x) > P(wj|x) vy
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Example

P(w)=2/3
P(w,)=1/3

PAOBABILITY OENSITY

BRIGHTNESS — =
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Example- A posteriori probabilities

PROBABILITY

Fleagix

BRIGHTNESS — X
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Example - Decision Boundaries |
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Example - Decision Boundaries I
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Classifier Design in Practice

v

Need a priori probability P(w;) (not too bad)
Need class conditional PDF p(x|w;)

v

Problems:

v

> limited training data

> limited computation

class-labelling potentially costly and errorful
classes may not be known

good features not known

vV vy

Parametric Solution:

» Assume that p(x|w;) has a particular prametric form
» Most common representative: multivariate normal density

v
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Gaussian Classifier

Univariate Normal Density:

Multivariate Density:

Estimate using: MLE (Maximum Likelihood Estimation)
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Example - Scatter Diagram
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Problems of Classifier Design

> Features:
» What and how many features should be selected?
> Any features?
» The more the better?

» If additional features not useful, classifier will automatically
ignore them?
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Curse of Dimensionality

» Generally, adding more features indiscriminantly leads to
worse performance!
» Reason:
» Training Data vs. Number of Parameters
» Limited training data.
» Solution:

» select features carefully

Reduce dimensionality

Principle Component Analysis (PCA)
Linear Discriminant Analysis (LDA)

vV vy
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Problems

> Normal distribution does not model this situation well.
» Other densities may be mathematically intractable.

» — non-parametric techniques
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K-Nearest Neighbours (KNN)

> To classify sample x:

» Find k-nearest neighbours of x.

» Determine the class most frequently represented among those
k samples (take a vote)

> Assign x to that class.

» Similar: Parzen Window
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KNN-Classifier: Problem

» For finite number of samples n, we want k to be:

» large: for reliable estimate
» small: to guarantee that all k neighbours are reasonably close.

> Need training database to be larger.
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