

Neuronale Netze Intro

Kevin Kilgour, Alex Waibel Institute of Anthropomatics - KIT

October 25, 2011

Computation

Computation

Computation

 $\sqrt[3]{7964053973}$

The brain is:

- A Supercomputer
 - speed estimated from 100TFlops to over 10000TFlops
 - ▶ largest Cluster: 8000 TFlops
- contains:
 - ▶ 100 billion neuron
 - ▶ 100000 billion connections
- ▶ small (1400g), low powered (20W)
- ▶ good at:
 - Vision, Speech, Memory
 - Language, Moter control, Adaption
- poor at:
 - Arithmetic, risc assessment, Memory

- ► Cell body
- Dendrites
- ► Node of Ranvier
- Axon
- Synapse

Neuron

Diagram of neurons (nerve cells). Image thanks to: wikimedia.org

Neural Networks

- Terminology
 - Artificial Neural Networks
 - Perceptron
 - Connectionist Models
 - Parallel Distributed Processing (PDP)
 - units, connection schematic, rules, enviroment
 - ► Massive Parallel Processing
 - Multi-layer Perceptron (MLP)

Von Neumann PC - Neural Computation

	Von Neumann PC	Neural Computation
Processing:	Sequential	Parallel
Processors:	One	Many
Communication:	Poor	Rich
Processors:	Fast, Accurate	Slow, Sloppy
Knowledge:	Local	Distributed
Hardware:	General Purpose	Dedicated
Design:	Programed	Learned

Why Neural Networks

- Massive parallelism.
- Massive constraint satisfaction for ill-defined input.
- Simple computing units.
- Many processing units, many interconnections.
- Uniformity (-> sensor fusion)
- Non-linear cassifiers/ mapping (-> good performance)
- Learning/ adapting
- Brain like ??

Why Neural Networks

- Classification
- Prediction
- ► Function Approximation
- Continuous Mapping
- ▶ Pattern Completion
- ▶ (nonlinear) Dimensionality Reduction