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Abstract. Human language carries various kinds of information. In human computer
interaction the detection of the emotional state of a speaker as reected in his or her
utterances is crucial. In this investigation we will explore how acoustic and prosodic
information can be used to detect the emotional state of a speaker. We will show
how prosodic information can be combined and integrated with acoustic information
within a hidden Markov model architecture, which allows one to make observations
at a rate appropriate for the phenomena to be modeled. Using this architecture, we
will demonstrate that prosodic information adds discriminative power to the overall
system.
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1 Introduction

Human language carries various kinds of information. Merely considering strings of words
without regard to the manner in which they are spoken, one might miss important aspects of
an utterance. Additional information which can carry cues to the underlying emotional state
of the speaker is encoded on the acoustic level (Scherer et al. (1984) and Scherer and Banse
(1996)). Within human computer interaction, a system's ability to sense the emotional state
of a speaker within a dialogue is crucial for several reasons. Depending on the emotional state
of the speaker, any of the following might be true:

{ the sentence uttered might have a meaning di�erent from the meaning as derived by only
considering the words uttered,

{ the system might allocate special resources to process the input, or
{ the system's output behavior might adapt.

While there is some research which attempts to detect emotions given visual cues (Kaiser
and Scherer (to appear), Kaiser and Wehrle (1992), and Takeuchi and Nagao (1992)), the
usage of acoustic cues for the detection of emotions in speech has not been widely explored
(Frick (1985) and Dellaert et al. (1996)). The focus of most of the research to date has em-
phasized the synthesis of emotional speech (Murray and Arnott (1996)).

When studying emotions in speech one needs to make the following distinctions:

{ the emotional attitude of the speaker towards the hearer,
{ the emotional attitude of the speaker towards the message, or
{ the emotional state of the speaker (Halliday (1970)).

Our investigation will focus on the emotional state of a speaker. This has been widely studied
in psychology and psycho-linguistics in an attempt to determine which acoustic and prosodic
features (e.g. speaking rate, intonation, intensity) encode the emotional state of a speaker
(Scherer et al. (1991)). In this investigation we will show how both acoustic and prosodic
information can be used to detect the underlying emotional state of a speaker.



In the next section, we will describe how acoustic information can be combined with
prosodic information and integrated into a hidden Markov model (HMM) architecture, in
which additional suprasegmental states allow dynamic observation rates depending whether
we consider acoustic or prosodic information. This suprasegmental hidden Markov model
(SPHMM) architecture permits observations at a time scale appropriate for the phenomena
to be modeled. We will make use of this property of SPHMMs and introduce prosodic infor-
mation into the overall processing.

In Sect. 3 we will describe two experiments we conducted with our system to detect the
emotional state of a speaker. For these experiments we used a corpus in which we asked drama
students to utter sentences pretending to be in one of �ve emotional states: happy, sad, angry,
afraid, or neutral.

We will conclude this investigation with a summary, describe extensions to the system
we intend to incorporate in the near future, and discuss the potential of an SPHMM based
architecture to integrate information from di�erent modalities.

2 Suprasegmental Hidden Markov Models

Suprasegmental hidden Markov Models (SPHMM) permit the summarization of several states
within a hidden Markov model into what we will call a suprasegmental state. These supraseg-
mental states allow the consideration of the observation sequence spanned by their constituent
states, i.e., these suprasegmental states can look at the observation sequence through a larger
window. Suprasegmental states allow observations at rates appropriate for the phenomena
they are intended to model. For example, prosodic information can not be observed at a rate
which is used for acoustic modeling. Prosodic information applies, for example, to syllables,
words, or phrases but can not be observed within a time window of 10ms, the time frame in
which acoustic events are usually looked at. In our application acoustic events are modeled
using conventional hidden Markov states, while prosodic events at the phone, syllable, word,
and utterance level are modeled using suprasegmental states. The basic idea of an SPHMM
is given in Fig. 1. To combine acoustic and suprasegmental information we use the following
formula:

logP (acoustic model; suprasegmental model j speech signal) = (1)

(1� �) � logP (acoustic model j speech signal) +

� � logP (suprasegemental model j speech signal):

That is, each time we leave a suprasegmental state (e.g. a phone or syllable) we add the
log probability of this suprasegmental state given the respective suprasegmental observations
within the speech signal to the log probability of the current acoustic model given the re-
spective acoustic observations within the speech signal. The weight factor, �, is determined
empirically. For more details on the theory of SPHMMs see Polzin (to appear).

2.1 Suprasegmental Observations

We use suprasegmental states to capture the prosodic properties of phones, syllables, words,
and utterances because they allow us to make observations at a time scale suitable for prosodic
phenomena. Suprasegmental observations comprise information about the duration of the re-
spective segment, information about fundamental frequency (pitch), and intensity. While it
is possible to determine intensity and fundamental frequency for any given time point in
the speech signal, this information becomes far more meaningful if we can observe intensity
and fundamental frequency over the duration of, say, a syllable or word. This observation



Fig. 1. Suprasegmental Hidden Markov Model. The hidden Markov states q1, q2, and q3 form a
suprasegmental state p1 (e.g. a phone). The states q4, q5, and q6 form a di�erent suprasegmental
state p2. These two suprasegmental states themselves constitute another suprasegmental state p3,
e.g. a syllable. Transition probabilities between hidden Markov states are represented by aij where i

indicates the state we are leaving and j the state we are going to. Transition probabilities between
suprasegmental states are represented with bij where i denotes the suprasegmental state we are
leaving and j denotes the suprasegmental state we are going to.

then allows the derivation of additional observations, such as mean and variance, the corre-
lation between intensity and fundamental frequency, and whether intensity or fundamental
frequency is steady, falling, or rising over the segment in question. Note that within a conven-
tional HMM, observations have to be at a constant rate and, thus, it is not possible to look
at the dynamic behavior of intensity and fundamental frequency over the course of a syllable
or word if, at the same time, we want to observe acoustic events at a much smaller time scale.

The choice of suprasegmental observations has to reect two issues:

1. In principle, these observations have to be computed for every possible segmentation
within the Viterbi. In order to get an acceptable run time behavior, computing these
observations should not be unreasonably computationally expensive.

2. These observations have to be robust with respect to noise and idiosyncrasies of speakers.

3 Experiments

3.1 The Corpus

We hand generated 50 sentences for the corpus. These sentences were comprised of questions,
statements, and orders. The sentence length varied from 2 to 12 words; the mean sentence
length was 5.8 words. The corpus was comprised of 291 word tokens (87 types).

We asked 5 drama students to pronounce the sentences according to the emotional label
given in square brackets at the beginning of the sentence on a computer screen. The students
were asked to portray each of these sentences in each emotional mood (happy, sad, angry,



and afraid). In addition, we asked for a neutral pronunciation for all 50 sentences. Thus we
have a maximum of 250 sentences for a given student.

SennHeiser HMD 410 or SennHeiser HMD 414 microphones were used for all recordings.
The recording system used was the Gradient Desklab Model 14, with a sampling rate of 16
khz. All recordings were transcribed by hand.

3.2 Human Performance

We conducted a small informal experiment to determine the human performance on detecting
the underlying emotional state of the speaker. The subjects had to listen to the utterances of
one speaker played back in random order. The task of the subject was to choose one emotion
out of four (happy, sad, angry, or afraid). Human performance was at about 70% accuracy.
Note that the baseline is 25% (random guessing).

3.3 Baseline

For the following experiments we used the Janus speech recognition system (Zeppenfeld et al.
(1997)) which was trained independently on a di�erent corpus of spontaneous speech (English
Spontaneous Scheduling Task, ESST). The word accuracy (WA) on this corpus was about
80%. We used this recognition system to determine the inuence of emotional speech on word
accuracy. The resulting word accuracy is given in Table 1. The word accuracy dropped about
10% for all emotions except for \angry" when compared with the neutral pronunciation.

Table 1. Word accuracy depending on the emotional state of the speaker in percent

Emotion Happy Afraid Angry Sad Neutral

WA 55.8% 54.0% 65.9% 55.6% 65.9%

3.4 Training

Training of the SPHMMs is very similar to training of conventional HMMs. The only addition
is that it is necessary to train suprasegmental models on top of acoustic models.

For this investigation, we derived emotion-dependent models, i.e., emotion-dependent
acoustic and suprasegmental models. For example, for a word, we had four di�erent supraseg-
mental word models: \happy" , \sad" , \angry", and \afraid". We used about 70% of the
corpus for training acoustic and suprasegmental models. The rest of the corpus was used for
testing.

3.5 Testing

The underlying emotional state was determined the following way:

1. The utterance was recognized using an emotion-independent recognition system as de-
scribed in Sect. 3.3.



2. Using an emotion-dependent recognition system, i.e. a system based on emotion-dependent
acoustic or suprasegmental models, we looked for the highest probability that the sen-
tence as recognized in step 1 was produced by the emotion-dependent models (forced
alignment), i.e.,

P (speech signal j sentence;modelsi); (2)

where h; s; af; and an stand for happy, sad, afraid, and angry, respectively. We tested for
all four emotions and, thus, obtained four probabilities, one for each emotion.

3. The four probabilities as returned in step 2 were compared. We took the highest prob-
ability to be indicative of the actual emotional state of the speaker, i.e. we maximized
(2):

emotional State = arg max
i2fh;s;af;ang

P (speech signal j sentence;modelsi): (3)

Experiment 1 (AcousticModels). In the �rst experiment we developed emotion-dependent
acoustic models to obtain four emotion-dependent speech recognition systems. Based on these
models, we determined the emotional state of the speaker following the procedure as outlined
in the section above, where:

emotional State = (4)

arg max
i2fh;s;af;ang

P (speech signal j sentence; acoustic modelsi):

The emotion detection accuracy is given in Table 2. The overall emotion detection accuracy

Table 2. Emotion detection accuracy in percent using emotion dependent acoustic models

Emotion Happy Afraid Angry Sad
Emotion Accuracy 60.0% 73.0% 83.0% 46.0%

is 65.4%. Using acoustic models enabled the system to detect the correct emotional state
well above chance level. The high accuracy with which the underlying emotion of utterances
spoken in an angry state were recognized seems to correlate with the high word accuracy for
these utterances as given in Table 1.

Experiment 2 (Suprasegmental Models). Starting with emotion-dependent acoustic
models we included emotion-dependent suprasegmental models to see whether prosodic in-
formation would add discriminative power to our system. The inuence of suprasegmental
information on the overall probability computation was regulated by a weight factor, �, men-
tioned in Sect. 2. We determined � empirically on an independent development set. Using
emotion-dependent acoustic and suprasegmental models we detected the emotional state fol-
lowing the procedure as described in Sect. 3.5, where:

emotional State = (5)

arg max
i2fh;s;af;ang

P (speech signal j sentence; acoustic modelsi; suprasegmental modelsi):

The resulting emotion detection accuracy is given in Table 3.
The overall emotion detection accuracy is 72.25% which amounts to an absolute improve-

ment of about 7%. In particular, using prosodic information appears to help the detection of
\happy" and \sad".



Table 3. Emotion detection accuracy in percent using emotion dependent suprasegmental models

Emotion Happy Afraid Angry Sad

Emotion Accuracy 93.8% 60.0% 77.9% 59.6%

4 Conclusions

Our investigation shows how acoustic and prosodic information can be combined and inte-
grated into a HMM-based speech recognition system using suprasegmental states. Using both,
acoustic and prosodic information the system nearly achieves human performance levels when
trying to detect the emotional state of a speaker. We show that prosodic information is es-
sential for a reliable detection of the underlying emotional state of a speaker (7% absolute
improvement).

To test our system's capabilities to detect the emotional state of a speaker we certainly
have to test it on additional real world data. We intend to apply these techniques to human-
to-human telephone conversations.

The choice of words is most probably another indication of a speaker's emotional state. A
straightforward extension to our system would be to use emotion-dependent language mod-
els. Another extension which comes to mind is to combine audio and visual information.
This combination proved to be quite useful in speech recognition where information about lip
movements was combined with acoustic information and successfully reduced the word error
rate of the overall system (Bregler et al. (1993) and Stiefelhagen (1997)).

We consider SPHMMs to be a suitable tool to integrate observations from di�erent modal-
ities because they allow for observation at a rate appropriate for each modality. We demon-
strated this possibility by the way we integrated prosodic information into the overall process-
ing using an SPHMM architecture. Following up on this approach, it is conceivable to integrate
additional modalities, such as gestures, facial expressions, heartbeat, or body temperature.
The SPHMM architecture allows the consideration of each modality at an appropriate rate
and synchronizes it with observations from other modalities. For example, we could develop
word models which have access to information about the dynamic behavior of the fundamental
frequency (pitch) and intensity, about accompanying hand gestures, and facial expressions.
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