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Deep Episodic Memory for
Verbalization of Robot Experience

Leonard Bärmann, Fabian Peller-Konrad, Stefan Constantin, Tamim Asfour, Alex Waibel

Abstract—The ability to verbalize robot experience in natural
language is key for a symbiotic human-robot interaction. While
first works approached this problem using template-based ver-
balization on symbolic episode data only, we explore a novel way
in which deep learning methods are used for the creation of an
episodic memory from experiences as well as the verbalization
of such experience in natural language. To this end, we first
collected a complex dataset consisting of more than a thousand
multimodal robot episode recordings both from simulation as
well as real robot executions, together with representative natural
language questions and answers about the robot’s past expe-
rience. Second, we propose and evaluate an episodic memory
verbalization model consisting of a speech encoder and decoder
based on the Transformer architecture, combined with an LSTM-
based episodic memory auto-encoder, and evaluate the model on
simulated and real data from robot execution examples. Our
experimental results provide a proof-of-concept for episodic-
memory-based verbalization of robot experience.

Index Terms—Learning from Experience, AI-Enabled
Robotics, Natural Dialog for HRI, Sensorimotor learning

I. INTRODUCTION

HUMANS have the ability to retain information over
time by encoding, storing and retrieving information

in a complex memory model. In humans, episodic memory
is concerned with the recollection, organisation and retrieval
of episodes, i. e. personally experienced events or performed
activities occurring at a particular time, place and context.
Such recollection of events and activities plays a key role for
the acquisition of semantic knowledge in a cognitive system.
Our episodic memory allows us to reason about past events, to
argue why we acted in a particular way, or to recall what prob-
lems occurred in the past. The externalization of experienced
episodes, i. e. the content of the episodic memory, is key for
interaction and communication between humans and robots as
this strongly influences usability, transparency and acceptance
of the robot by the user [1]. In this work, we present an
episodic-memory-based verbalization of a humanoid robot’s
experience using natural language (Fig. 1). We consider daily
household activities where a humanoid robot performs tasks
in a kitchen environment such as cleaning the table or loading
dishes into the dishwasher. Using the developed verbalization
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Did you see the 
red cup?

I last saw it at 
the table ten 
minutes ago.

EMV Model

Fig. 1. Episodic memory verbalization

model, the robot should be able to answer questions asked by
the user about tasks performed by the robot during the day,
e. g. “Did you see the red cup?”, or describe important events
and failures that happened, e. g. “I tried to put the juice into
the fridge, but the door was blocked by the chair”.

To perform the aforementioned tasks, the robot needs to
have a component comparable to the human episodic memory,
encoding, storing and recalling experiences [2], [3]. In this
context, an experience can be seen as a snapshot of the internal
state of the robot consisting of the robot’s camera images
in ego-centric view, the current configuration of the robot,
the estimated robot position as well as all detected objects
and their estimated poses, detected human poses, the current
executed action with its status and arguments and the current
task of the robot as given by the symbolic planner. Every
experience is enriched with corresponding timestamps. Thus,
an episode can be seen as a temporally ordered collection of
such experiences concerned with achieving a single planner
goal.

To address the problem of robot experience verbalization,
we propose a data-driven method employing deep neural
architectures for both creating an episodic memory from
experiences as well as the verbalization of such experience
in natural language.

Our first main contribution is the collection of a multi-
modal dataset of robot experiences, consisting of the afore-
mentioned information (both symbolic and sub-symbolic).
In an automated way, we collected more than a thousand
episode samples from simulation. Further, we performed a
data collection on the humanoid robot ARMAR-III [4] in
a real kitchen environment in order to evaluate our method
on realistic data. For training, recordings are annotated with
natural language questions and answers using a grammar-
based dialog generator, while this annotation is performed by
humans for final system evaluation.
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Second, we propose a novel neural architecture for episodic
memory verbalization (EMV). The inherent sequential nature
of episode data suggests the use of an LSTM [5] encoder [6]
network to process the stream of robot experiences. Latent
representations of this stream, referred to as the episodic
memory (EM), are then used to provide contextual information
to the verbalization task, handled by a Transformer network
[7]. Specifically, we employ the pretrained T5 architecture [8]
for natural language processing. We open-source our dataset,
code and models1.

The remainder of this paper is structured as follows: We
discuss related work in section II. In section III, we introduce
our approach and explain the details of the Episodic Memory
Verbalization Model. In section IV, we describe the require-
ments and procedure for data collection. In section V, we
present evaluation results of the EMV model. Finally, section
VI draws a conclusion and describes future work.

II. RELATED WORK

We first discuss previous work on the implementation of
verbalization and episodic memory systems in robotics and
then proceed with the relation of this work to the area of
video question answering and task-oriented dialog.

A. Robot Experience Verbalization

The first work to introduce the concept of verbalization for
autonomous robots was [1]. The authors propose a system
that allow the “CoBot” robots to narrate navigation routes
through a building using natural language. To achieve context
adaptability, the authors define the concept of verbalization
space, constituted of the (discrete) dimensions abstraction,
locality and specificity. The variable verbalization algorithm
is a rule-based procedure that receives the route and map
information as well as a point in verbalization space as input
and generates a natural language description of the route ac-
cording to the given verbalization preferences. In their follow-
up work [9], the authors address the automatic determination
of the requested point in verbalization space from a given
user query. For example, the request “Please tell me exactly
how you got here.” would map to detailed narrative, semantic
abstraction level and global locality. For this purpose, a corpus
of 2400 queries was collected using online crowdsourcing.
Then, classic machine learning algorithms like Naive Bayes
classifier were used, with results showing a classification
accuracy of about 70 %, which is stated to be sufficient
since the model can also be used to refine the verbalization
parameters.

Both previously introduced works are concerned with ver-
balization, but do not explicitly address the connection to an
episodic memory system. To address this problem, [10] con-
struct an experience-based verbalization system for navigation
and manipulation tasks using the ARMAR-III kitchen robot
[4]. Here, episodic memory is realized as a Log File Generator,
which records significant events during robot program execu-
tion at different levels of abstraction. To narrate past episodes,

1https://gitlab.com/lbaermann/verbalization-of-episodic-memory

the rule-based variable verbalization algorithm introduced in
[1] is adapted to the given scenario. Eventually, the system is
able to give narrations like “I picked up the green cup on the
sink with my right hand. It took 4 seconds.”.

B. Episodic Memory
Verbalization of robot experiences requires an episodic

memory that allows encoding and recalling of experienced
events and performed activities. Since the introduction of term
in 1972 [2], various works in robotics dealt with transferring
the concept of EM to robotics. For instance, the CRAMm
system [11] approaches the problem using a semantic database.
On the one hand, plan events (including time information)
are asserted to the predefined, information-rich KnowRob
ontology [12] when actions are executed. On the other hand,
low-level perceptual data is recorded in a NoSQL database,
including camera images as well as robot pose information
captured at important points during plan execution. Projecting
the sub-symbolic data into the ontology enables the combined
system to answer various queries about past episodes; however,
these questions need to be given as Prolog queries.

Recently, we introduced an EM based on deep neural
networks to encode a robot’s action experience [3]. This Deep
EM learns latent space representations from videos in an
unsupervised manner using an encoder-decoder architecture.
First, an input sequence of video frames is passed to a
convolutional LSTM network, yielding its final hidden and
cell state as latent vector V . In the following, two inverse
convolutional LSTM decoders receive V , one with the goal of
reconstructing the input sequence and another one predicting
the next few frames of the video. The network is trained with
a combination of image reconstruction and gradient difference
loss using two large-scale video datasets containing videos of
human manipulation activities. The resulting multi-functional
EM, i. e. the collection of latent space vectors, can be used to
group similar episodes, perform action recognition (if existing
EM entries are labeled), predict the next frame, or learn object
manipulation.

Similarly, in [13], a MaskRCNN-based deep learning model
called RobotVQA is trained on robot-perspective images in-
cluding a depth channel, however with the goal of inferring
semantic scene information instead of constructing episodic
memories. With the focus on learning robot actions from
demonstration, [14] use a deep adaptive resonance theory
(ART) neural model instead of a sequence-to-sequence model
to learn an EM model. The EM in [15] is also based on an
ART neural model and enables efficient information retrieval
using various types of cues, with the memory consumption
controlled by a mechanism of gradual forgetting. In the ART-
based neural model of [16], time is explicitly modeled and
information can also be retrieved given a time interval.

Furthermore, video embeddings using temporal cycle con-
sistency learning, as constructed in [17], can be seen as
episodic memories of a video.

C. Question Answering
EMV is related to Question Answering (QA) as it is a

special case thereof. For instance, Video Question Answering
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(VQA) systems can be seen as constructing an EM from
video experiences. A video sequence as well as a natural
language question about an episode is provided and the model
is supposed to output the corresponding answer. VQA task
complexity varies from choosing among a multiple-choice-set
of answer sentences [18] to choosing a single output word
[19] up to open ended answers sentences constructed using a
decoder network [20].

If the episodic memory is made up of symbolic data only,
similarities to fact-based QA like in [21] arise. Here, the EM
is constructed from a set of natural language facts, which is
then used to respond to a question. Similarly, in Task-Oriented
Dialog (TOD), recent works like [22] present differentiable
architectures to understand natural language questions and
access symbolic knowledge bases to give appropriate answers.

While hidden representations of such (V)QA networks
might be considered implicit episode representations, the ma-
jor difference to EMV is question timing. In QA, the video
(or supporting facts or knowledge base) and the corresponding
query are given to the model simultaneously, so that e.g.
attention mechanisms [23] can attend to parts of the video
specifically relevant to the question. However, in an EMV
system, the user’s question about an episode might occur at
an arbitrary point later in time (e.g. consider the query “What
did you do yesterday?”). Thus, the input to EM cannot be
analyzed with respect to the question directly. Instead, explicit
episode representations have to be constructed and stored in
advance, while the raw input stream of episodic experiences
is discarded.

Furthermore, the field of language command grounding for
Human-Robot-Interaction, as in [24], [25], is related since it
tries to connect natural language content with multi-modal
representations of the robot’s environment.

This work differs to the existing literature by 1) using deep-
learning methods for both understanding natural language
questions and generating answers (in contrast to [9], [10]),
2) requiring an explicit, question-independent representation
of EM (in contrast to the QA works, as explained above), 3)
using a temporal stream of episode data in contrast to a static
knowledge-base in TOD works and 4) combining different
modalities to build up and verbalize an episodic memory (in
contrast to and as an extension of [3], [10]).

III. APPROACH

We present the Episodic Memory Verbalization (EMV)
model architecture, which is constituted of three major com-
ponents, see Fig. 2. The EM encoder processes a multi-modal
stream of episodic data and creates a latent representation
of episodic memory (EM) from raw experiences. A compact
representation of the robot’s past experience is achieved as
the model significantly compresses the EM content to a low-
dimensional latent representation compared to the extremely
high-dimensional, multi-modal input. Ideally, the EM would
be constrained to a constant size. However, for the sake of
simplicity, we allow the EM to grow linearly with the number
of key frames fed into the episode encoder, and we will report
on the more complex “O(1) EM” task, which additionally

requires controlled forgetting of irrelevant information in the
EM, in future work.

The second major component is the speech encoder, re-
ceiving a natural language question about the robot’s past
as well as the timestamp of this question. We simplify the
following explanations by defining a query to be a natural
language question prepended with a textual representation of
the question timestamp, e.g. “2020 12 10 4 14 56 07 What did you
do yesterday before noon?”.

Resulting activations from the speech encoder are then
passed to the third component, the speech decoder, which
combines the query encoding with the EM content and outputs
the natural language answer. In the following, we describe
each model component, as also depicted in Fig. 2.

A. EM Encoder

The inherent sequential nature of episode data given as a
temporal sequence of key frames suggests the use of an LSTM
network [5] for creating the EM. Each key frame corresponds
to one input time step for the LSTM. However, key frames
contain highly multi-modal information, and therefore first
have to be converted to a vector encoding and embedded into
a common space. For this purpose, we define four different
data parts for one key frame:

1) Timestamp. It is encoded as a seven-dimensional vector,
with the dimensions corresponding to year, month, day,
day-of-week, hour, minute and second, respectively.

2) Symbolic information. Using a dictionary built up
during pre-processing, we represent this data as a vector,
where each dimension corresponds to one of the fol-
lowing entries: task goal provided by the planner, task
execution status (success, failure, abort), action, action
arguments, action execution status (started, success or
failure), object name (ID) and detection status. Unfilled
entries are set to a special padding token.

3) Subsymbolic information. These numeric values are
simply concatenated to form a long vector. Included data
are: detected object positions for up to two objects (in
the robot’s root coordinate system), platform position
(world coordinate system), human pose data as provided
by OpenPose [26] (camera coordinate system), and kine-
matic data of the robot’s joints (angles, velocities and
currents). Every dimension of this subsymbolic vector
is normalized with respect to its mean and standard
deviation in the training set.

4) Pre-Encoded Latent vector. We create a latent repre-
sentation of the image associated with each key frame
as produced by the Deep EM network of [3]. This auto-
encoder model is trained as described in the original
paper and fine-tuned using our recordings. However, it
is not trained together with the EMV model, i. e. the
produced representations are ordinary input data to our
model.

Each of the four data parts defined above is passed to a
fully connected layer separately to either expand (for symbolic
data) or reduce (for subsymbolic data) the dimensionality. All
resulting embeddings are then concatenated and serve as the
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Fig. 2. An overview of the Episodic Memory Verbalization system. The EMV model continuously receives episode data consisting of multi-modal data
streams. This sequence of episode key frames is passed through the EM encoder network to build a latent representation to be stored in the episodic memory.
The EM is the collection of latent representations produced by the EM encoder. At some point later in time, a user asks a question about the robot’s past,
which is then given to the speech encoder, including the date and time at which the question is asked. In the following, the decoder attends to both the query
encoding as well as the latent EM content to produce the natural language response, which is finally sent to the robot’s text-to-speech component. The model
is trained end-to-end, with two supplementary decoders to provide auxiliary contributions to the overall loss function.

input for the episode encoder LSTM. The hidden states of this
encoder are again passed through a fully connected layer to
produce the latent EM vector for each time step (see the right
part of Fig. 2).

The EM itself is the list of all latent representations pro-
duced by the EM encoder, given a sequence of input key
frames. While this behaves like an end-to-end model during
training (and batched evaluation), it does not do so when
deployed to a robot (where there might be an indefinite
amount of time between an experience and a question, i. e.
the EM vectors are stored long-term and retrieved when a
question occurs). Thus, our contribution is not the direct
creation of a large EM from the training data. Instead, our
contribution is to create a learned model which can produce
latent representations of EM when deployed to a real robot.

B. Speech Encoder and Decoder

For the natural language processing part of the EMV model,
we use the Transformer architecture as introduced in [7]. This
sequence-to-sequence model is based on repeatedly applying
attention to its own hidden states. For mathematical details
on the model, please refer to [7]. Specifically, we make use
of the “small” T5 model, as proposed by [8], pretrained on
both an unsupervised fill-in-the-gap task as well as supervised
sequence-to-sequence language tasks (e. g. translation). The
speech encoder of the EMV model, which receives the input
query, is identical to the original encoder of the T5 network.
Its resulting activations, referred to as the query encoding, are
then passed to the decoder, which additionally receives the
sequence of latent EM vectors. This means, the T5 decoder,
which itself is also unchanged as defined in [8], receives
a longer sequence of hidden states, through which it can
attend to both query and EM content simultaneously. Finally,
the decoder yields a distribution over the vocabulary, thus
generating the response word by word.

C. Supplementary Decoders & Loss Function

With the components described above, the model could be
trained with cross-entropy loss based on the natural language
generation (NLG) output, as usual in sequence-to-sequence
tasks [8]. However, to facilitate and analyze learning of the
EMV task, we add additional decoders and additive loss
contributions.

Inspired by the auto-encoder loss for Deep EM in [3],
the model is enriched with an episode decoder. It receives
the output of the EM encoder, i. e. the sequence of latent
EM vectors, to map it back to its original input, i. e. the
sequence of key frames. For this purpose, we use a straight-
forward approach, with four separate linear layers all receiving
the latent EM vectors (step-by-step). The first two map to a
probability distribution over all possible date-time values or
EM tokens (symbolic tokens from dictionary), respectively,
separately for each date-time or symbolic episode entry. These
two parts are trained as a classification task, i. e. with cross-
entropy loss. The third and fourth linear layer directly try to
regress the sub-symbolic and latent part of the episode data,
using MSE and L1 loss functions, respectively. Experiments
were performed for training the complete model with NLG
and episode auto-encoder (EAE) loss simultaneously, as well
as pretraining the EAE separately before integrating it into the
EMV model.

To analyze the model’s capability to properly detect and
extract date-time references in query strings, we add an
additional time-reference decoder to the model. It attends to
the hidden states from the query encoder (using a primitive
version of attention mechanism as introduced in [23]), and
is supposed to output the date-time referenced in the query.
The target values, i. e. the correct timestamp references, are
available because we generated our training dialog dataset
automatically, as explained in section IV.

To summarize, the complete loss function L for training the
EMV model is L = α1LNLG + α2LEAE + α3LTREF with
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LNLG, LEAE and LTREF being the loss from natural lan-
guage generation, episode auto-encoder and time-reference re-
construction, respectively. The EAE loss is LEAE = β1LDT+
β2LSym + β3LSub where LDT is the loss of the date-time
reconstruction (classification), LSym is the classification loss
on the symbolic information entries and LSub is the regression
loss on the subsymbolic key frame content. αi and βi are
hyperparameters, with

∑
i αi =

∑
i βi = 1.

D. Training Procedure

The first step of training is to learn a simple dimensionality
reduction for the latent image vectors as produced by the
Deep EM [3]. We use a non-linear neural network with a
single hidden bottleneck layer, trained as an auto-encoder, for
this purpose. The latent vectors are then pre-processed to the
reduced dimension and thereafter treated as a regular part of
the input and target data.

Second, the episode dataset is used to pre-train the EM
encoder and decoder as an episode auto-encoder (i. e. using
only LEAE from above). During that, the data is regenerated
after each few epochs, choosing new random date-times for
the episodes. This way, the variety of date-time inputs the
model has seen is increased, preventing overfitting and aiding
to generalization.

As a third and last step, the complete EMV model is trained,
initializing the EM encoder and decoder with the weights
from episode auto-encoder pre-training. We apply a curriculum
learning strategy during this step, starting with histories of
one episode, and increasing to histories of up to five episodes.
Because of the large number of parameters of the pre-trained
T5 speech model, we train only the speech encoder and the
first layer of the decoder. Most importantly, we avoid training
T5’s output (fully-connected) layer, making up the biggest
number of parameters.

IV. DATASET COLLECTION

We collected a dataset for the EMV task consisting of
1) robot episode recordings (RER) and 2) natural language
questions and answers corresponding to the RERs.

An RER is defined as a stream of symbolic information
(task, goal, action and action arguments as stated by the
symbolic planner), action execution status (started, running,
interrupted, finished with success or failure) and detected
objects IDs as well as subsymbolic data (camera images, robot
configuration, estimated platform position, estimated object
poses, detected human poses) and timestamp. To prevent
overwhelming our model by high-frequency data streams, we
extract key frames from an RER. For this, we subsample
from the subsymbolic data stream with a time window of five
seconds, e. g. we keep only the latest robot pose and position
for each five seconds. However, whenever a new symbolic
action has been triggered or the action state changes, a new
time window starts immediately (i. e. all data available to the
memory at that moment will be stored). As already described
in section I, we define a single episode to be a contiguous
sequence of key frames, concerned with achieving a single

planner goal. This implies that an RER corresponds to a
sequence of one or more episodes.

For training a deep neural model, gathering large amount
of data is crucial. Therefore, we use the simulation com-
ponent of the ArmarX robot framework [27] to randomly
create scenes with different objects at different places in a
kitchen environment. Then, an episode recorder component is
used to capture single-episode RERs, automatically iterating
over all created scenes and possible planner goals. For our
exploration study, the goals were of the form objectAt(oi, ln),
objectAt(oi, ln) ∧ objectAt(oj , lm) or grasped(hk, oi) with
hand hk ∈ {left, right}, objects oi, oj ∈ O, |O| = 3, oi 6= oj
and locations ln, lm ∈ L, |L| = 5. To further increase the size
of our dataset, we employ three data augmentation techniques:

• Each single-episode RER is copied multiple times, adding
random noise to subsymbolic data where appropriate
(joint angles, human pose data, object and robot position).

• Each episode can be moved to any point in time by simply
adjusting all contained timestamps uniformly. This step
is crucial for building a representative training dataset
containing a wide variety of possible date and time
values.

• Multi-episode RERs are built by concatenating random
combinations of the simulated single-episode RERs. This
also includes moving each to a different timestamp, again.
In the rest of this paper, the term history will refer to such
a multi-episode RER, and the length of a history is the
number of episodes it is constructed from.

We split the set of simulated RERs into train, valid and
test split randomly before performing dataset augmentation
separately on each split to avoid any systematic error.

In addition to episodic data, natural-language QA pairs have
to be acquired. To efficiently make use of our large number of
simulated RERs (1011 in total), we implemented a grammar-
based QA generation script, creating thousands of possible
questions and answers per episode. The script considers the
symbolic information in the recordings, randomly chooses a
question timestamp (after the last episode), and then condi-
tionally generates possible dialogs, spanning different levels of
complexity from “What did you do? – I moved the green cup
to the round table” to “How long exactly did it take to release
the red cup at 03 PM? – It took 26 seconds”. The hand-written
grammar is inspired by the results of a precedent small-scale
human QA data collection (Using grammars to generate dialog
datasets is a common approach, see e. g. [28]).

As mentioned before, the collected dataset also includes
a test set to evaluate the performance of our model. We
will refer to this test set of simulated RERs with grammar-
generated dialogs as simulated-robot-grammar-generated. To
assess various levels of generalization capability, we use
several additional test sets: 1) The simulated-robot-grammar-
generated test set also includes histories with a larger number
of episodes than seen during training. This way, we can check
how well the EM generalizes to longer sequences. 2) Using
an independently collected, small set of simulated RERs, we
asked humans to annotate the data by entering questions and
answers related to the EMV task, given the video of the
recording and randomly chosen timestamps of the episode and
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the question via a newly created web interface2. This serves for
assessing how well the language model generalizes to dialog
constructs unseen during training. We refer to this test set of
simulated RERs with human-entered questions and answers as
simulated-robot-human-annotated. 3) To evaluate generaliza-
tion ability beyond robot simulation, we additionally collected
a small sample of RERs on a real robot, using the same
episode recorder component already employed in simulation.
QA-annotation was done using the dialog generator as well
as by employing human annotators, yielding the real-robot-
grammar-generated and real-robot-human-annotated test sets,
respectively.

V. RESULTS

A. Evaluation Metrics

Evaluating the performance of the EMV model is not trivial,
e. g. as there are many ways to phrase the correct natural
language answer to a given question and questions might also
be ambiguous. To assess the quality of the model, we define
the following output categories:

• Correct: Correct answer, no additional information.
• TMI correct: Correct answer with additional, correct

information given (“tmi” = “too much information”).
• TMI wrong: All information contained in the target ut-

terance is given in the hypothesis, but some additional,
wrong information is given, too.

• Partially correct: Some information contained in the
target utterance is given in the hypothesis, some part is
missing or wrong.

• Partially correct, only action: Every target fact is missing
or wrong in the hypothesis, except for the action the robot
talks about. This is a separate category because of the
very limited number of actions in our simulated dataset.

• Wrong: Wrong answer given, but correct answer intent.
• Inappropriate: The answer is not even related to the

question (e. g. “what did you do?” → “it is tuesday”).
Furthermore, for each utterance, we count the number of facts
contained therein. For example, the sentence “I moved the
green cup to the sink” contains the three facts move, green
cup and sink. By counting this contained information both in
the model output as well as in the target utterance, we can
calculate information precision and recall.

For the test datasets with grammar-generated dialog data,
the structure and information content of possible questions
and answers is known. Therefore, we developed a heuristic
evaluation script, which categorizes a model response and
calculates information precision and recall. The validity of this
script was ensured by manually checking the script outputs for
all possible types of grammar-generated questions (which is
possible, since the grammar is known).

However, for the human-annotated QA data, the known
question structure cannot be assumed anymore. Therefore,
we do not use the scripted evaluation, but report human
assessment (using the same categories as mentioned above)
for these test sets.

2https://em.dataforlearningmachines.com/emv-data-collection/introduction
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Fig. 4. Classification of answers by history length.

B. Experimental Results

To test generalization capability of our model to histories
of different length, we evaluated on simulated-robot-grammar-
generated test sets with histories of different numbers of
episodes, including histories of length 10, i. e. double of
the maximum length seen during training. The result of
these assessments is presented in Fig. 3, which shows the
percentage of correct answers over the length of the history.
The EMV models trained and evaluated on episode data with
or without images, respectively, are compared to the guess
baseline model, which is the same model trained without
using episode data at all, i. e. it receives only the question
and needs to guess the answer. With this strategy, we account
for the effect of the generated dataset, which is highly regular,
therefore making the performance of text-only guessing quite
high (about 20 % of correct answers). The results show the
EMV models receiving episode data significantly outperform
the guessing baseline. However, performance rapidly decreases
with increasing history length, indicating the ability to resolve
date-time references correctly and look up the correct entry in
EM is very hard to learn. For a discussion of the with/without
images performance in Fig. 3, see section V-C.

Fig. 4 shows a more detailed view on the answer classi-
fication results of the model with images after evaluation on
histories of different lengths on the simulated-robot-grammar-
generated test set. While the performance decline with in-
creased history length is still evident, the graph additionally
demonstrates that about three quarters of answers are at least
partially correct, with only very few inappropriate answers at
all. To compare, the guess baseline model reaches a perfor-
mance of about 20 % correct, 4 % TMI wrong, 52 % partially
correct and 20 % of wrong answers, independent of the history
length. It gives nearly no inappropriate answer (< 0.1 %).

When taking a look at Fig. 5 showing information precision
and recall as defined above, further observations can be made:
Compared to the guess baseline, all EMV models have a
better precision. However, the recall of guessing is very high,
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Fig. 6. Human evaluation results on the test set with human-annotated
questions (absolute numbers). The two lines differ with respect to the number
of trained parameters in the T5 speech network, with the lower one having
less trained parameters.

which is explained by the uninformed training favoring longer
outputs containing many facts. Indeed, an analysis of the guess
outputs shows that 59 % of all answers are equal to “I tried to
but failed to move the multivitaminjuice and the redcup to the
countertop”, thus leading to a high recall but low precision.
The episode-informed EMV models have no such overfitted
peak answer.

To avoid the limitations of evaluation on the grammar-
generated Q&A data, performance was also measured on sim-
ulated episodes annotated by human questions, as explained
in section IV. The result of (manual) answer categorization
on this generalization test set is shown in Fig. 6. Concerning
the performance on human question, we can observe that the
common language capabilities (which in theory should come
from the pre-trained transformer network) are mostly lost and
the model is not able to generalize well to unseen utterances.
We additionally did tests on real robot recordings (also see
the accompanying video). Here, the results are twofold: On
the real-robot-grammar-generated set, answers are acceptable
with a percentage of 39.3 % correct, 29.9 % partially correct,
28.7 % wrong and 0.4 % inappropriate answers on episodes
of length one. For the real-robot-human-annotated set, despite
its very small sample size, we can observe a similar result as
for the simulated-robot-human-annotated data, with 2 correct,
1 TMI but correct, 1 wrong and 9 inappropriate answers. To
conclude, the model mostly fails to transfer to new natural
queries, while using real instead of simulated episodes has no
such impact on performance.

C. Ablation Study

To further analyze the model, we performed additional
ablation experiments. Fig. 3 already shows a comparison
of a model trained including episode image data and one
trained without these. The numbers show that adding the
visual modality is not beneficial for performance, and for
some history lengths even hurts. This can be explained by
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Fig. 7. Results of different ablation experiments. Each experiment compares
the answer classification results on the simulated-robot-grammar-generated
test set between a model without (w/o) and with (w/) the corresponding option.
The numbers for each row (1, 5, 10) indicate the history length used for
evaluation. This graph shares its legend with Fig. 6.

the generated dialog training data, which cannot leverage the
information content of the images, therefore causing the model
to ignore this modality.

While, due to the limitations by the generated train data, the
multi-modal data cannot be properly exploited, we additionally
analyzed other aspects of the EMV model training strategy.
The first question is whether the complex loss function with
its multiple contributions is actually useful. To investigate
this, we compared training the EMV model (receiving all
episode modalities) once with the complete loss function L
as described in III-C, and once using only LNLG (i. e. setting
α2 = α3 = 0). Experimental results (see Fig. 7a) show that
the additional loss functions provide a benefit concerning the
percentage of correct answers on the evaluation on histories of
up to length five (which is the maximum history length seen
during training). However, this benefit vanishes when looking
at the generalization to histories of length ten.

Another design aspect of the EMV model training is the use
of curriculum learning with respect to the number of episodes
in one history. Fig. 7b shows a comparison of two models,
one trained directly on a dataset with histories of up to five
episodes, and one with curriculum learning as described above,
both excluding the episode modality of images. The results
show that the proposed strategy is indeed useful, improving
both the performance on histories of known length, as well as
generalization to longer histories.

Concerning language generalization capability, we also ex-
perimented with a reduced number of trained parameters
in the T5 speech encoder part of the model. While the
results on the simulated-robot-grammar-generated set show
no improvement, a slight improvement on unseen utterances in
the simulated-robot-human-annotated test set can be observed.
However, this effect (as shown in Fig. 6) is barely limited to
moving some of the “inappropriate” answers to be categorized
as “wrong”.
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VI. CONCLUSION & DISCUSSION

We presented a deep-learning-based system for verbaliza-
tion of a robot’s experience encoded in an episodic memory.
First, a dataset with episode recordings from simulation and
real robot executions as well as question-answer pairs both
grammar-generated and annotated by humans was collected.
Second, we introduced the Episodic Memory Verbalization
neural architecture, consisting of a speech encoder and decoder
based on the Transformer network architecture, as well as
an LSTM-based episodic memory encoder and some supple-
mentary loss modules. Our experimental results show that the
model is able to use content from episodic memory to answer
natural language questions about past events and activities, but
this ability shrinks with the amount of episodes in the memory.

While the presented results are promising, they can only be
seen as a first step into the field of episodic-memory-based
verbalization of robot experience. As outlined in section II,
we are aware of other approaches that could solve the given
problem, e.g. a symbolic episode database with rule-based
verbalization. However, we chose to explore a deep learning
approach for the following reasons: 1) When more human-
annotated training data becomes available, we hope for a better
generalization to variations in natural language, especially
with the use of pre-trained language models. Hence, we plan
to perform a large-scale crowd-sourced question and answer
data collection to gather more realistic conversation data. 2)
Using neural models enables a straight-forward combination of
the highly multi-modal stream of episodic data and therefore
does not require manually grounding symbolic information
on subsymbolic recordings. 3) Future extension to other tasks
requiring creation of and access to an EM might benefit from
our findings, reuse the general architecture, or even be trained
into the same model. Eventually, our vision is a model able
to learn a full-featured, multi-functional EM integrated into a
broader cognitive architecture.
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