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Abstract

Audio-Visual Speech Recognition (AVSR) offers a robust
solution for speech recognition in challenging environments,
such as cocktail-party scenarios, where relying solely on au-
dio proves insufficient. However, current AVSR models are of-
ten optimized for idealized scenarios with consistently active
speakers, overlooking the complexities of real-world settings
that include both speaking and silent facial segments. This
study addresses this gap by introducing a novel audio-visual
cocktail-party dataset designed to benchmark current AVSR
systems and highlight the limitations of prior approaches in re-
alistic noisy conditions. Additionally, we contribute a 1526-
hour AVSR dataset comprising both talking-face and silent-face
segments, enabling significant performance gains in cocktail-
party environments. Our approach reduces WER by 67% rela-
tive to the state-of-the-art, reducing WER from 119% to 39.2%
in extreme noise, without relying on explicit segmentation cues.
Index Terms: audio-visual speech recognition, cocktail-party

1. Introduction

The visual information obtained from observing a person speak
can alter the way auditory signals are perceived, a phenomenon
known as the McGurk effect [1]. In cocktail-party environ-
ments, even strong ASR models [2, 3] which mark a significant
advance over early efforts [4] in conversational speech, still ex-
perience significant performance degradation. In such challeng-
ing conditions, combining visual cues, like facial movements,
with auditory input significantly improves speech comprehen-
sion [5, 6]. Inspired by this interplay, AVSR systems have been
developed to leverage visual cues for enhancing speech recogni-
tion, particularly in noisy environments. This concept has been
explored and validated over the past several decades since its
introduction in 1976 [7, 8, 9, 10, 11].

Recent advancements in AVSR have been largely propelled
by deep learning models, including the adoption of end-to-
end architectures like Transformer [12] and Conformer [13].
These models have been enhanced by improved data utiliza-
tion, such as pre-training with self-supervised methods like AV-
HuBERT [12], or by leveraging pre-trained ASR models to gen-
erate transcriptions for unlabeled AV datasets, as demonstrated
in [13, 14]. While the combination of audio and visual modali-
ties is expected to make these models robust to noise, our exper-
iments reveal a significant performance decline in cocktail-party
environments. For instance, the state-of-the-art (SOTA) AVSR
model, Auto-AVSR, achieves an impressive 1.5% Word Error
Rate (WER) on the LRS2 dataset [13], but when background
speech noise is added, its WER rises drastically to 69%. This
performance drop is similarly observed in other SOTA models,
as discussed in the experiment section, highlighting critical con-

cerns about their practicality in real-world noisy scenarios.

Applying AVSR to the cocktail-party problem is an active
area of research. Studies such as [15, 16, 17] utilize visual in-
formation as a query to isolate the target speaker in a mixed
audio signal, leveraging the visual modality to focus on and
transcribe the speech of a specific individual. Rather than di-
rectly outputting the target speaker’s transcription, other ap-
proaches, like [18, 19, 20], use visual features to extract the
target speech signal. A common characteristic of these stud-
ies is their reliance on datasets such as LRS2 [21], LRS3 [22],
and VoxCeleb2 [23], which are augmented by mixing utterances
to create training and evaluation data with perfect alignment.
In these datasets, the speech consistently originates from the
speaker shown in the video, or the visual input always depicts
a talking face. This alignment allows models to reliably iden-
tify the target speaker and generate outputs based on the visi-
ble speaker. Recent work, such as [24], has attempted to intro-
duce out-of-sync audio-visual pairs to simulate more challeng-
ing scenarios. However, even in these cases, evaluations are
typically conducted on datasets like LRS3, which do not reflect
the complexity of real-world cocktail-party environments.

A key limitation of commonly used audio-visual datasets
like LRS2 and LRS3 is that they fail to capture the complex-
ities of cocktail-party scenarios. Firstly, these datasets pre-
dominantly feature single-speaker samples, which do not reflect
the multi-speaker interactions typical of cocktail-party environ-
ments. Secondly, in noisy environments, a critical challenge
is determining whether a visible speaker is actively talking or
not. This necessitates the inclusion of both talking face and
silent face within an utterance, a factor largely overlooked in
current datasets. For the first issue, simulating multi-speaker
noise, has been partially addressed through methods such as
randomly mixing utterances or adding artificial noise to samples
[15, 16, 17, 24]. However, the second issue, involving scenar-
ios with silent face and ambiguous speech activity, remains un-
derexplored. A notable exception is the Chinese multi-channel
audio-visual conversation dataset, MISP [25], which attempts
to fill this gap. Nevertheless, studies utilizing the MISP dataset
[26, 27] predominantly focus on tasks like audio-visual speaker
diarization or audio-visual target speaker extraction (AVTSE)
prior to conducting AVSR. While valuable, these approaches
address only specific challenges and fall short of tackling the
broader set of obstacles faced by AVSR models in realistic
cocktail-party environments.

In this study, we focus on developing end-to-end AVSR
models tailored to handle cocktail-party scenarios. Our con-
tributions are as follows: (1) we define a novel audio-visual
cocktail-party dataset that differs significantly from MISP in
three key aspects—it is an English dataset, includes multiple
overlapping conversations, and features single-channel audio
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Figure 1: Schematic overview of AVCocktail’s recording scene.

data. The inclusion of overlapping conversations and single-
channel audio makes our dataset more challenging and closer
to real-world scenarios compared to MISP, which primarily
consists of single conversations per recording and uses multi-
channel audio [25]. (2) We introduce a 1526-hour AVSR dataset
that addresses the limitations of previous datasets by incorporat-
ing silent-face utterances, which are crucial for distinguishing
active speech. (3) We propose a robust data pipeline for aug-
menting AVSR datasets, improving their suitability for training
models capable of handling cocktail-party environments. (4) Fi-
nally, we train a strong baseline AVSR model that demonstrates
effective performance on our cocktail-party dataset.

2. Cocktail-Party AVSR
2.1. Task definition

Given an input sequence of audio A = {a1,as,...,ar} and
video V. = {v1,v2,...,vr}, where T is the total number of
time steps, a. represents the audio feature and v, represents the
visual feature at time step ¢. The task is to predict the tran-
scription Yiygee = AVSR(A, V) = {y1,¥2,...,y~n}, where N
is the length of the target speech transcription, AVSR denotes
the model that takes both audio and visual features as input to
generate the transcription. While the video captures the target
speaker, the audio may include overlapping speech, background
noise, and uncertainty in speech activity when the target speaker
is visible but not speaking.

2.2. Baseline

We adopt two off-the-shelf architectures to evaluate the effec-
tiveness of the proposed method through fine-tuning. The first
model, AV-HUBERT CTC/Attention (AV1), uses AV-HuBERT
[12] as the encoder and the decoder integrates a projection layer
and a Transformer decoder with joint CTC/Attention training
[29]. The second model is the Conformer CTC/Attention archi-
tecture (AV2) proposed by [30], where the encoder consists of
two Conformer blocks: one for audio and one for visual feature
extraction. The decoder is identical to AV1, employing joint
CTC/Attention training.

In addition to fine-tuning the above architectures, we di-
rectly evaluate recent AVSR models that have achieved SOTA
performance on the LRS2 and LRS3 datasets as strong base-
lines. These include Auto-AVSR (denoted as AV3) [13], which
uses a Conformer with CTC/Attention and is trained on 3448
hours of AVSR data. Two additional variants of AV3 are in-
cluded for benchmarking: a visual-only model (V1) and an
audio-only model (A2). Another baseline is the Muavic-EN
(AV4) model [2], which employs AV-HuBERT as the encoder
and a Transformer decoder, trained exclusively on the LRS3
dataset with various types of additive noise. Whisper-Flamingo
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Figure 2: Pipeline to generate AVYT dataset

(AVS) [14] combines AV-HuBERT with Whisper-large and is
trained on LRS3, Vox2, and augmented noisy data. Lastly,
Whisper-large (A1), trained on SM hours of diverse audio data,
serves as a strong baseline for benchmarking audio-only perfor-
mance.

3. Data Preparation

In this study, we utilize four datasets. For training, we use LRS2
(train and pretrain sets), Vox2 (train set), and AVYT. For testing,
we evaluate on the LRS2 test set (including a modified version)
and AVCocktail. Details of LRS2 test set, AVYT, and AVCock-
tail are provided in the following subsections. About Vox2, we
simple employ Whisper-large [2] to transcribe the audio and re-
tain only the English segments.

3.1. Lip Reading Sentences 2 (LRS2)

LRS2 [21] is a widely used AVSR dataset commonly utilized
for benchmarking'. To evaluate the performance of SOTA
AVSR models in cocktail-party settings, we augment LRS2 by
randomly adding interfering speakers in the background with
varying signal-to-noise ratios (SNR). Specifically, we introduce
up to two interfering speakers, with SNR levels controlled at
—5, 0, 5, and 10 dB. The original LRS2 dataset, without any
interfering speakers, corresponds to an SNR of oo and zero in-
terferer.

3.2. AVCocktail

In our AVCocktail dataset, we focus on a scenario where peo-
ple gather around a table, forming small groups of 2 to S in-
dividuals, each group engaged in a discussion topic. Figure 1
illustrates a recording scene with two such groups. A single
360-degree camera is placed at the center of the table to capture
all participants’ faces. From the 360-degree footage, we extract
224 x 224 cropped video clips and a single audio channel for
each speaker. Each recording session lasts 5 to 7 minutes, re-
sulting in a total evaluation set of approximately 6.1 hours of
video from 45 speakers. All individual video then been seg-
mented and transcribe by human.

3.3. Automatic AVSR dataset from Youtube (AVYT)

Due to the limitations of existing AVSR datasets, as described
in Section 1, we identified the need for an additional dataset
to better train AVSR models for cocktail-party scenarios. To
address this, we introduce AVYT, derived from the 6,533 hours
of YouTube content introduced in [31]. AVYT consists of two
subsets: a silent-face set with 77 hours spanning 79k clips, and
a talking-face set containing 1449 hours across 666k clips.
Figure 2 illustrates the processing pipeline for construct-
ing the AVYT dataset. The first step, inspired by the LRS2
data processing pipeline [21], involves shot detection, face de-
tection, and face tracking. This process yields cropped video
clips containing a single speaker. In the second step, an active

ILRS3 was unavailable at the time of this study



Table 1: WER (%) of models on the LRS2 dataset. % denotes our fine-tuned model. "AV” (in the modality column) indicates models

that utilize both audio and visual features.

SNR (dB)

Model ID Model Modality  Train dataset  Interferer 3 0 3 10 = Avg
0 2.1
AV1 AV-HuBERT CTC/Attention* AV Irs2,vox2,avyt 1 6.4 3.5 34 2.8 4.1
2 9.0 4.4 3.2 2.8
0 10.9
AV2 Conformer CTC/Attention® AV Irs2,vox2,avyt 1 19.6 17.1 180 15.7 17.0
2 20.1 17.6 18.2 16.1
Irs2,vox2 0 1.7
AV3 Auto-AVSR [13] AV Irs3 1 56.6 166 103 4.2 21.7
avspeech 2 69.6 218 11.7 35
0 7.2
AV4 Muavic-EN [2] AV Irs3 1 189 10.8 9.7 8.5 12.4
2 254 121 9.8 8.8
0 6.1
AVS Whisper-Flamingo [14] AV Irs3,vox2 1 969 374 262 121 40.1
2 99.6 38.6 30.6 134
0 3.7
Al Whisper large-v3 [28] Audio 5M hours 1 97.7 309 132 65 33.8
2 999 31.1 148 6.5
0 1.5
A2 Auto-AVSR [13] Audio same as AV3 1 939 305 227 53 34.7
2 95.8 33.0 237 62
Vi1 Auto-AVSR [13] Visual same as AV3 0 15.7 15.7

speaker detection model [32] identifies talking-face segments
and silent-face segments, assigning them to separate sets. The
third step further refines the talking-face clips: AV sync [33] en-
sures proper audio-video synchronization, and the synchronized
clips are then transcribed using Whisper-large [2] to create the
final talking-face set.

3.4. Data augmentation pipeline

Algorithm 1 Data Augmentation Pipeline

1: Function generate_sample(dialog, silent_face, interferer)
2: for video in [Vox2, LRS2, AVYT-talking-face] do
3:  videos = [video]

4:  if dialog then
5: videos += n_rand([Vox2, LRS2, AVYT-talking-face])
6: if silent_face then
7: videos += n_rand(AV Y T-silent-face)
8: end if
9:  endif
10:  avsr_sample = concat(shuffle(videos))
11:  if interferer then
12: avsr_sample = augment_speech_noise(avsr_sample)
13:  endif
14:  avsr_sample = video_transform(avsr_sample)
15:  yield avsr_sample
16: end for

Algorithm 1 outlines the data augmentation pipeline de-
signed to construct samples for fine-tuning our AVSR model.
The pipeline incorporates three key augmentation strategies: di-
alog augmentation, adding silent-face video clips, and introduc-
ing interfering speakers. These strategies can be applied indi-
vidually or combined, with the option to enable or disable each
one as needed. Dialog augmentation merges multiple video
clips to simulate conversational scenarios, a technique proven
effective in prior studies [34, 35]. This approach is particularly
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crucial when combined with the second augmentation strategy,
which integrates silent-face video clips. Since silent-face clips
are labeled with < unk > transcripts, merging multiple clips
into a dialog-like structure prevents the model from relying
solely on visual cues (frame sequence differences) to infer tran-
scripts for silent-face segments. The third strategy introduces
interferer speakers in the background at varying SNR. Finally,
the pipeline applies video transformations, including horizon-
tal flipping, random cropping, and adaptive time masking for
both visual and audio streams, to further diversify the training
data. The video frames are cropped to the mouth region of in-
terest (ROI) using a 96 x 96 bounding box, while the audio is
sampled at a 16 kHz rate, similar to [12, 30].

4. Experimental setup

As described in Section 2.2, we fine-tune two model ar-
chitectures. The AV-HuBERT CTC/Attention (AV1) model
uses the AV-HuBERT large [12] as the encoder, which has
24 transformer blocks, each with 16 attention heads. The
CTC/Attention decoder is a 6-layer Transformer with the same
dimensions and number of attention heads as the encoder. The
Conformer CTC/Attention (AV?2) [30] consists of 12 encoder
layers for both audio and visual inputs, each with 16 attention
heads. The decoder CTC/Attention in this model is similar to
the first, consisting of a 6-layer Transformer.

The data pre-processing pipeline used to train our model
is detailed in Section 3.4. We then conduct several evaluations.
First, we compare the performance of our fine-tuned model with
current SOTA AVSR models on the LRS2 test set (including a
modified version), as described in Section 3.1. This benchmark
evaluates how model performance degrades under data distor-
tions, similar to the challenges posed by cocktail-party scenar-
ios. The second experiment assesses these models on the real
cocktail-party dataset, AVCocktail. Since each recording lasts 5
to 7 minutes, a segmentation step is required before inference.



Table 2: WER (%) of models on the AVCocktail dataset

Recognition Segmentation
Model Active Speaker Fixed Gold
ID Detection [32]  chunk (10s)
AV1 22.6 39.2 18.2
AV2 48.4 89.5 419
AV3 74.6 133.2 67.8
AV4 35.6 119.0 26.1
AV5 70 .8 133.3 583
Al 67.4 143.9 54.7
A2 75.8 131.7 70.3
V1 56.0 167.9 49.9

We employ three segmentation strategies. (1) a model-based
approach using Active Speaker Detection [32], which leverages
both audio and visual cues to determine speaking segments. (2)
a fixed 10-second chunk-based approach with a sliding window
and no overlap and (3) manual segmentation, where segments
are labeled by humans. Finally, we conduct an ablation study
on the data augmentation techniques introduced in Section 3.4
to identify the most influential factors in AVSR model perfor-
mance.

5. Results

Table 1 presents the WER (%) of baseline models and our fine-
tuned models on the LRS2 test set, including both the original
and modified versions. The WERs for models evaluated on the
original LRS2 test set are shown in the column where SNR =
oo. Overall, all models perform well on the original clean LRS2
dataset. The best-performing model in this setting is A2, the
Conformer CTC/Attention audio-only model, which is expected
since the dataset consists of clean speech, and A2 is well-trained
with in-domain data.

However, performance degrades significantly as SNR de-
creases and the number of interfering speakers increases.
Audio-only models are the most affected by noise, with Al’s
WER rising from 3.7% to 99.9% and A2’s WER increasing
from 1.5% to 95.8%. In contrast, the Conformer CTC/Attention
visual-only model (V1) remains unaffected by noise, maintain-
ing a constant WER of 15.7%. Among the baseline audio-visual
models (AV3, AV4, AVS), despite leveraging visual features
and noise augmentation during training, performance still dete-
riorates significantly under noisy conditions. Notably, AV3 and
AVS5 suffer the most, with WERs rising from 1.7% and 6.1% to
69.6% and 99.6%, respectively. AV4 demonstrates the highest
noise robustness among the baselines, likely due to its augmen-
tation with both speech noise and additional noise types beyond
”natural,” “music,” and ”babble,” which were used in AV3. Al-
though AVS5 employs the same augmentation strategy as AV4, it
appears to rely more on audio than visual information, leading
to the worst performance under extreme noise conditions.

AV1 and AV2 are our fine-tuned models, trained with in-
domain data as described in Section 3.4. AV2 is initialized
from AV3’s parameters. After fine-tuning, AV2 achieves over-
all better performance than AV3 (17.0% WER vs. 21.7%), but
its WER on the original LRS2 test set increases significantly
from 1.7% to 10.9%. AV1, which employs AV-HuBERT as the
encoder and a CTC/Attention decoder, achieves the best perfor-
mance among all models, with a WER of 2.1% on the original
LRS2 test set and an average WER of 4.1% overall.

Unlike LRS2, AVCocktail consists of long video record-
ings that contain both talking-face and silent-face segments.
The choice of segmentation method influences the proportion of
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Table 3: Ablation study on the impact of data factors on AV-
HuBERT CTC/Attention performance in AVCocktail dataset.

Dataset Interferer Dialog  Silent-face = WER
Irs2,vox2 58.8
Irs2,vox2 v 32.5
+AVYT-talking Ve 30.2
+AVYT-talking v v 294
+AVYT v v 28.5
+AVYT v v v 22.6

silent-face segments included in the inference data. In the AV-
Cocktail dataset, the total speaking duration accounts for 46.3%
of the recordings. Active Speaker Detection (ASD) achieves a
precision of 84.4%, recall of 97.8%, and F1-score of 90.6% in
detecting speaking segments. This means that with ASD-based
segmentation, nearly all talking-face segments are retained,
though some silent-face segments are incorrectly detected as
speech. In contrast, fixed-length segmentation inherently in-
cludes both talking-face (46.3%) and silent-face (53.7%) seg-
ments, as it processes the video in uniform chunks without con-
sidering whether the target speaker is speaking or silent.

Table 2 presents the performance of different models on the
AVCocktail dataset. In general, a higher proportion of silent-
face segments leads to worse WER. For baseline models (AV[3-
5], A[1-2], and V1), the WER in the extreme case of fixed-
length segmentation exceeds 100%, while our AV1 model still
achieves a WER of 39.2% in this scenario. When using a seg-
mentation model like ASD, the WER improves significantly. As
expected, the best performance is achieved with gold segmenta-
tion. Our AV 1 model demonstrates strong robustness, achieving
the best performance among all baseline models across all types
of segmentation.

Table 3 presents the ablation study on the impact of differ-
ent data factors on AV-HuBERT CTC/Attention performance in
the AVCocktail dataset, using ASD for segmentation. A total
of six experiments were conducted. Training with only con-
ventional AVSR datasets (LRS2 and Vox2) results in a WER of
58.8%. Adding speech noise improves performance by 44.7%
relative (WER reduced to 32.5%). Incorporating the AVYT-
talking-face dataset further reduced the WER by 7.1%, reach-
ing 30.2%. Dialog augmentation alone had a minimal impact,
slightly decreasing the WER to 29.4%. Using full AVYT (both
talking-face and silent-face sets) without dialog augmentation
led to a WER of 28.5%. The most substantial improvement
was achieved by combining dialog augmentation with the full
AVYT dataset, achieving a significantly lower WER of 22.6%.

6. Conclusion

In this study, we benchmarked SOTA AVSR models, which per-
form impressively on conventional datasets like LRS2/LRS3
but struggle with cocktail-party scenarios. We highlighted
the gap between conventional datasets and real-world cocktail-
party scenarios, where target speakers are not always ac-
tive. The presence of silent-face segments significantly im-
pacts AVSR model performance, as the model tends to hallu-
cinate output. To address this gap, we introduced the AVYT
dataset and a data augmentation pipeline to improve model ro-
bustness. Additionally, we created AVCocktail, the first En-
glish audio-visual cocktail-party benchmark, to evaluate AVSR
performance in realistic multi-speaker settings. All datasets
and models are publicly available for further research at:
https://github.com/nguyenvulebinh/AVSRCocktail
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