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ABSTRACT

Sequence-to-Sequence (S2S) models recently started to show
state-of-the-art performance for automatic speech recognition
(ASR). With these large and deep models overfitting remains
the largest problem, outweighing performance improvements
that can be obtained from better architectures. One solution
to the overfitting problem is increasing the amount of avail-
able training data and the variety exhibited by the training
data with the help of data augmentation. In this paper we ex-
amine the influence of three data augmentation methods on
the performance of two S2S model architectures. One of the
data augmentation method comes from literature, while two
other methods are our own development – a time perturbation
in the frequency domain and sub-sequence sampling. Our ex-
periments on Switchboard and Fisher data show state-of-the-
art performance for S2S models that are trained solely on the
speech training data and do not use additional text data.

Index Terms— Sequence-to-sequence, Self-attention,
Data Augmentation, Speed Perturbation, Sub-sequence

1. INTRODUCTION

In automatic speech recognition (ASR), data augmentation
has been used for producing additional training data in order
to increase the quality of the training data, i.e. their amount
and variety. This then improves the robustness of the models
and avoids overfitting. As in [1, 2], both unsupervised and
artificial training data has been augmented to improve model
training in low-resource conditions. The addition of training
data with perturbation of the vocal tract length [3] or audio
speed [4] helps ASR models to be robust to speaker vari-
ations. Simulated far-field speech [5] and noisy speech [6]
have been used to supplement clean close-talk training data.

Sequence-to-sequence attention-based models [7, 8] were
introduced as a promising approach for end-to-end speech
recognition. Several advances [9, 10, 11] have been proposed
for improving the performance of S2S models. While many
works focus on designing better network architectures, the au-
thors in [12] have recently pointed out that overfitting is the
most critical issue when training their sequence-to-sequence
model on popular benchmarks. By proposing a data augmen-

tation method together with a long training schedule to reduce
overfitting, they have achieved a large gain in performance su-
perior to many modifications in network architecture.

To date, there have been different sequence-to-sequence
encoder-decoder models [12, 13] reporting superior perfor-
mance over the HMM hybrid models on standard ASR bench-
marks. While [12] uses Long Short-Term Memory (LSTM)
networks, for both encoder and decoder, [13] employs self-
attention layers to construct the whole S2S network.

In this paper, we investigate three on-the-fly data aug-
mentation methods for S2S speech recognition, two of which
are proposed in this work and the last was recently discov-
ered [12]. We contrast and analyze both LSTM-based and
self-attention S2S models that were trained with the proposed
augmentation methods by performing experiments on the
Switchboard (SWB) and Fisher telephone conversations task.
We found that not only the two models behave differently
with the augmentation methods, but also the combination of
different augmentation methods and network architectures
can significantly reduce word error rate (WER). Our final
S2S model achieved a WER of 5.2% on the SWB test set and
10.2% WER on the Callhome (CH) test set. This is already
on par with human performance. We made our source code
available as open source1, as well as the model checkpoints
of the experiments in this paper.

2. DATA AUGMENTATION

We investigated three data augmentation methods for sequence-
to-sequence encoder-decoder models. The first two modify
the input sequences from different inspirations and aim to
improve the generalization of the log-mel spectrogram en-
coder. The third approach improves the decoder by adding
sub-samples of target sequences. All of the proposed methods
are computationally cheap and can be performed on-the-fly
and can be optimized together with the model.

2.1. Dynamic Time Stretching

Many successful S2S models adopt log-mel frequency fea-
tures as input. In the frequency domain, one major difficulty

1The source code is available at https://github.com/thaisonngn/pynn



for the recognition models is to recognize temporal patterns
which occur with varying duration. To make the models more
robust to temporal variations, the addition of audio data with
speed perturbation in the time domain such as in [4] has been
shown to be effective. In contrast, in our work we manipulate
directly the time series of the frequency vectors which are the
features of our S2S models, in order to achieve the effect of
speed perturbation. Specifically, given a sequence of consecu-
tive feature vectors seq, we stretch every window of w feature
vectors by a factor of s obtained from an uniform distribution
of range [low, high], resulting in a new window of size w ∗ s.
There are different approaches to perform window stretching,
in this work we adopt nearest-neighbor interpolation for its
speed, as it is fast enough to augment many speech utterances
on a CPU while model training for other utterances is being
performed on a GPU. The dynamic time stretching algorithm
is implemented by the following python code:

def t i m e s t r e t c h ( seq , w, low = 0 . 8 , h igh = 1 . 2 5 ) :
i d s = None ; t i m e l e n = l e n ( seq )
f o r i in range ( t i m e l e n / / w + 1 ) :

s = random . un i fo rm ( low , h igh )
e = min ( t i m e l e n , w∗ ( i + 1 ) )
r = numpy . a r a n g e (w∗ i , e−1, s )
r = numpy . round ( r ) . a s t y p e ( i n t )

i d s = numpy . c o n c a t e n a t e ( ( i d s , r ) )
re turn seq [ i d s ]

2.2. SpecAugment

Recently [12] found that LSTM-based S2S models tend to
overfit easily to the training data, even when regularization
methods such as Dropout [14] are applied. Inspired by the
data augmentation from computer vision, [12] proposed to de-
form the spectrogram input with three cheap operations such
as time warping, frequency and time masking before feeding
it to their sequence-to-sequence models. Time warping shifts
a random point in the spectrogram input with a random dis-
tance, while frequency and time masking apply zero masks
to some consecutive lines in both the frequency and the time
dimensions. In this work, we study the two most effective
operations which are the frequency and time masking. Ex-
perimenting on the same dataset, we benefit from optimized
configurations in [12]. Specifically, we consider T ∈ [1, 2, 3]
– the number of times that both, frequency and time masking,
are applied. For each time, f consecutive frequency channels
and t consecutive time steps are masked where f and t are
randomly chosen from [0, 70] and [0, 7]. When T = 2, we
obtain a similar setting for 40 log-mel features as the SWB
mild (SM) configuration in [12]. We experimentally find T
for different model architectures in our experiments.

2.3. Sub-sequence Sampling

Different from other S2S problems, the input-output of
speech recognition models are the sequences of speech fea-
ture vectors and label transcripts which are monotonically
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Fig. 1. Sub-sequence Sampling.

aligned. The alignment can be also estimated automatically
via the traditional force-alignment process. Taking advantage
of this property, we experiment with the ability to sub-sample
training utterances to have more variants of target sequences.
Since the approach of generating sub-sequences with arbi-
trary lengths does not work, we propose a constraint sampling
depicted in Figure 1. Basically, given an utterance, we allow
three different variants of sub-sequences with equal distribu-
tions. The first and second variants constraint sub-sequences
to having either the same start or end as the original sequence
while the third variant needs to have their start and end point
within the utterance. All sub-sequences need to have at least
half the size of the original sequence. During training, we
randomly select a training sample with probability alpha
and replace it with one of the sampled sub-sequence vari-
ants. We also allow static mode in which only one fixed
instance of sub-sequence per utterance per variant is gener-
ated. This mode is equivalent to statically adding three sets
of sub-sequences to the original training set.

3. MODEL

We use two different S2S models to investigate the on-the-fly
data augmentation methods proposed in Section 2. In the first
model, we use LSTMs and a new approach for building the
decoder network. For the second model, we follow the work
in [13] to replace LSTMs with deep self-attention layers in
both the encoder and decoder.

3.1. LSTM-based S2S

Before the LSTM layers in the encoder, we place a two-layer
Convolutional Neural Network (CNN) with 32 channels and a
time stride of two to down-sample the input spectrogram by a
factor of four. In the decoder, we adopt two layers of unidirec-
tional LSTMs as language modeling for the sequence of sub-
word units and the approach of Scaled Dot-Product (SDP) At-
tention [15] to generate context vectors from the hidden states
of the two LSTM networks. Specifically, our implementation
for LSTM-based S2S works as follows:

enc = LSTM(CNN(spectrogram))

emb = Embedding(subwords)

dec = LSTM(emb)

context = SDPAttention(dec, enc, enc)

y = Distribution(context+ dec)

Different from previous works [16, 9, 10, 11], we adopt a



simpler recurrent function in the decoder (i.e. without Input-
feeding [11]), and a more complicated attention module.
The adopted attention function learns an additional linear
transformation for each input parameter (known as query,
key and value) and use the multi-head mechanism together
with Dropout and LayerNorm for efficiently learning content-
based attention [15]. In fact, the implementation of the atten-
tion function is shared with the deep self-attention network
from Section 3.2. In addition to that, we share the parameters
between Embedding and Distribution to improve the word
embedding. Because this implementation does not require us
to customize LSTM cells (which is needed by Input-feeding),
we can achieve high parallelization 2 to speed up training.

3.2. Self-Attention S2S

We follow [13] to build an encoder-decoder model with deep
self-attention layers. Specifically, we use many stochastic
self-attention layers (e.g., 36 and 12) for the encoder and the
decoder for better generalization of the deep architecture. In-
stead of using a CNN for down-sampling the input spectro-
gram, we stack four consecutive feature vectors after applying
the augmentation methods. Compared to [13], we use BPE
sub-word units instead of characters for target sequences. For
more details refer to [13].

4. EXPERIMENTAL SETUP

Our experiments were conducted the Switchboard (300
hours) and the Fisher+Switchboard (2000h) corpora. The
Hub5’00 evaluation data was used as the test set. For input
features, we use 40 dimensional log-mel filterbanks normal-
ized per conversation. For labels, SentencePiece was used for
generating 4,000 BPE sub-word units from all the transcripts.
We use Adam [17] with an adaptive learning rate schedule
defined by (lr, warm-up, decay) in which the learning rate
lr increases for the first warm-up steps and then decreases
linearly. We adopted the approach in [13] for the exact cal-
culation of the learning rate at every step. In addition to that,
we further decay the learning rate exponentially with a factor
of 0.8 after every decay step. We save the model parameters
of 5 best epochs according to the cross-validation sets and
average them at the end.

5. RESULTS

5.1. Baseline Performance

Using the SWB material and an unique label set of 4k sub-
words, we trained both of the proposed S2S models for 50
epochs. We adopt a mini-batch size of 8,000 label tokens
which contains about 350 utterances. In our experiments, the
LSTM-based models tend to overfit after 12k updates (i.e.
perplexity increases on the cross-validation set) while the
self-attention models converge slower and saturate at 40k up-
dates. We were able to increase the size of the LSTM-based

2Highly optimized LSTM implementation offered by cuDNN library

Model Size SWB CH Hub5’00

LSTM
4x512 12.9 24.1 18.5

6x1024 12.1 22.7 17.4
6x1024 (SP) 10.7 20.5 15.6

Transformer
8x4 13.2 24.7 19.0

36x12 11.1 21.1 16.1
36x12 (SP) 10.2 19.4 14.8

Table 1. Baseline models using Switchboard 300h.

TimeStretch SpecAugment LSTM Transformer
w T Hub5’00 Hub5’00
50 - 16.1 15.5

100 - 15.9 14.9
200 - 16.0 14.9
∞ - 16.1 15.0
- 1 14.7 14.3
- 2 14.1 14.5
- 3 14.3 14.4

100 1 14.2 13.8
∞ 1 13.9 13.6

100 2 13.7 13.9
∞ 2 13.6 13.7

Table 2. The performance of the models trained with
TimeStretch and SpecAugment augmentation.

as well as the depth of the self-attention models for perfor-
mance improvement. We stop at six layers of 1,024 units for
the encoder of the LSTM-based and 36-12 encoder-decoder
layers of self-attention models, and then use them as base-
lines for further experiments. Table 1 shows the WER of the
baselines. We also include the results of the baseline models
when trained on the speed-perturbed dataset [4].

5.2. Time Stretching and SpecAugment

Both Time Stretching and SpecAugment are augmentation
methods which modify the input sequences aiming to im-
prove the generalization of the encoder network. We trained
several models for evaluating the effects of these methods
individually as well as the combinations as shown in Table 2.

For Time Stretching, WER slightly changed when using
different window sizes. However the 8.6% and 12.4% rel.
improvement over the baseline performance of the LSTM-
based and self-attention models clearly shows its effective-
ness. With a window size of 100ms, the models can nearly
achieve the performance of the static speed perturbation aug-
mentation.

As shown in [12], SpecAugment is a very effective method
for avoiding overfitting on the LAS model. Using this
method, we can also achieve a large WER improvement
for our LSTM-based models. However, our observation is
slightly different from [12], as SpecAugment slows down the
convergence of the training on the training set and signif-
icantly reduces the loss on the validation set (as for Time



Sub-sequence SpecAugment LSTM Transformer
alpha & TimeStretch Hub5’00 Hub5’00

0.3 N 18.6 15.6
0.5 N 18.6 15.4
0.7 N 18.8 15.3

0.7 (static) N 15.4 15.1
0.7 Y 13.5 13.4

0.7 (static) Y 13.0 13.2

Table 3. The performance of the models trained with Sub-
sequence augmentation.

Stretching) but does not change from overfitting to underfit-
ting. The losses of the final model and the baseline model
computed on the original training set are similar.

SpecAugment is also effective for our self-attention mod-
els. However, the improvements are not as large as for the
LSTM-based models. This might be due to the self-attention
models not suffering from the overfitting problem as much as
the LSTM-based models. It is worth noting that for the self-
attention models, we use not only Dropout but also Stochas-
tic Layer [13] to prevent overfitting. When tuning T for both
models, we observed different behaviours. The LSTM-based
models work best when T = 2, but for self-attention, differ-
ent values of T produce quite similar results. This might be
due to the fact that the self-attention encoder has direct con-
nections to all input elements of different time steps while the
LSTM encoder uses recurrent connections.

When combining two augmentation methods within a
single training (i.e. applying Time Stretching first and then
SpecAugment for input sequences), we can achieve further
improvements for both models. This result indicates that
both methods help the models to generalize across different
aspects and can supplement each other. We keep using the
optimized settings (T = 2 and w = ∞ for LSTM-based and
T = 1 for self-attention) for the rest of the experiments.

5.3. Combining with Sub-sequence

Table 3 presents the models’ performance when we applied
Sub-sequence augmentation with different alpha values. We
observe contrary results for different models: improving the
self-attention but downgrading the performance of the LSTM-
based models. These observations are indeed consistent with
the overfitting problems observed with the two models. The
LSTM-based models even overfit more quickly to the dataset
with sub-sequence samples while self-attention models do
not, so that they can benefit from Sub-sequence. However,
when using a static set of sub-sequences, we obtained clear
improvement for LSTM-based models but had comparable
performance for self-attention models. This reveals an inter-
esting observation for the differences between self-attention
and LSTM when interpreting them as language models in the
decoder. The static approach is also better when combined
with other augmentation methods.

Model LM SWB CH
300h Switchboard

Zeyer et al. 2018 [10] LSTM 8.3 17.3
Yu et al. 2018 [10] LSTM 11.4 20.8
Pham et al. 2019 [13] - 9.9 17.7
Park et al. 2019 [12] LSTM 7.1 14.0
Kurata et al. 2019 [18] - 11.7 20.2
LSTM-based - 8.8 17.2
Transformer - 9.0 17.5
ensemble - 7.5 15.3

2000h Switchboard+Fisher
Povey et al. 2016 [19] n-gram 8.5 15.3
Saon et al. 2017 [20] LSTM 5.5 10.3
Han et al. 2018 [21] LSTM 5.0 9.1
Weng et al. 2018 [11] - 8.3 15.5
Audhkhasi et al. 2018 [22] - 8.8 13.9
LSTM-based (no augment.) - 7.2 13.9
Transformer (no augment.) - 7.3 13.5
LSTM-based - 5.5 11.4
Transformer - 6.2 11.9
ensemble - 5.2 10.2

Table 4. Final performance on Switchboard 300h and Fisher
2000h training sets.

5.4. Performance on Full Training Set
We report the final performance of our models trained on the
2,000h in Table 4. Slightly different from 300h, we used a
larger mini-batch size of 12k tokens and do not use the ex-
ponential decay of the learning rate. We also increased the
model size by a factor of 1.5 while keeping the same depth.
We need 7 hours to finish one epoch for the LSTM-based
models, 3 hours for the self-attention models. With the big-
ger training set, the LSTM-based models saturate after 100k
updates while the self-attention models need 250k updates.
Even with the large increase in training samples, the proposed
augmentation is still effective since we observe clear gaps be-
tween the models with and without augmentation. For the
final performance, we found that the ensemble of the LSTM-
based and self-attention models are very efficient for the re-
duction of WER. Our best performance on this benchmark is
competitive compared to the best performance reported in the
literature so far, and it is notable that we did not employ any
additional text data, e.g., for language modeling.

6. CONCLUSION

We have shown the improvements obtained from three data
augmentation techniques when applied to two different ar-
chitectures of S2S modeling. By utilizing these techniques
we were able to achieve state of the art performance on the
Switchboard and CallHome test sets when not utilizing addi-
tional language models 3.

3The project ELITR leading to this publication has received funding from
the European Unions Horizon 2020 Research and Innovation Programme un-
der grant agreement No 825460.
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