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Abstract
In the area of multi-domain speech recognition, research in the
past focused on hybrid acoustic models to build cross-domain
and domain-invariant speech recognition systems. In this pa-
per, we empirically examine the difference in behavior between
hybrid acoustic models and neural end-to-end systems when
mixing acoustic training data from several domains. For these
experiments we composed a multi-domain dataset from pub-
lic sources, with the different domains in the corpus covering a
wide variety of topics and acoustic conditions such as telephone
conversations, lectures, read speech and broadcast news. We
show that for the hybrid models, supplying additional training
data from other domains with mismatched acoustic conditions
does not increase the performance on specific domains. How-
ever, our end-to-end models optimized with sequence-based
criterion generalize better than the hybrid models on diverse
domains. In term of word-error-rate performance, our experi-
mental acoustic-to-word and attention-based models trained on
multi-domain dataset reach the performance of domain-specific
long short-term memory (LSTM) hybrid models, thus result-
ing in multi-domain speech recognition systems that do not suf-
fer in performance over domain specific ones. Moreover, the
use of neural end-to-end models eliminates the need of domain-
adapted language models during recognition, which is a great
advantage when the input domain is unknown.
Index Terms: multi-domain, end-to-end, hybrid model, speech
recognition

1. Introduction
Automatic speech recognition (ASR) systems based on a naive
Bayes classifier have been widely studied in the past. Tradition-
ally, given a pre-processed audio signal, i.e. the feature vector
sequence X , these systems search for the word sequence W
with the highest posterior probability P (W | X) by maximiz-
ing the product P (X | W )P (W ). The class conditional prob-
ability P (X | W ) is called the acoustic model and is realized
with Hidden Markov Models (HMMs) [1]. The prior probabil-
ity P (W ) is called the language model and generally computed
using n-gram language models [2].

While in the past the emission probabilities in the HMMs
of the acoustic model were calculated using Gaussian Mixture
Models, lately the use of artificial neural networks (ANNs) has
given significant performance boosts. Many different kinds
of ANNs have been studied for this purpose, e.g., deep feed-
forward networks, time-delay neural networks (TDNN) [3], or
long short-term memory (LSTM) [4] networks. These hybrid
HMM/ANN systems currently achieve state-of-the-art perfor-
mance on many tasks.

However, experience has shown that these systems usually
work best when trained for a specific domain on domain specific
data. This is true for both, the acoustic model and the language
model. When mixing training data from multiple domains, per-

formance may decrease on specific domains compared to mod-
els that were only trained on in-domain data.

Lately new types of recognition systems have been devel-
oped that directly map the acoustic feature vector sequence X
to a symbol sequence by utilizing neural networks, without us-
ing the naive Bayes classifier network, that is without the dis-
tinction between the two models, the acoustic model and the
language model. These systems perform the mapping either
in a sequence-labeling fashion, or, alternatively, theses systems
work in a sequence-to-sequence classification fashion. The
symbols in the output sequence can be phones, letters or directly
words. In the case of letters and phones as output symbols, fur-
ther processing, such as a squashing function or a decoding on
top of the output symbol sequence is necessary. These so called
end-to-end systems have recently come close in performance to
the hybrid systems, sometimes matching performance.

In this paper we will show, that the performance of these
end-to-end systems, unlike with hybrid systems, even improves
on individual domains when trained in a multi-domain fashion
compared to the performance of their domain specific variants.
We do so by systematically examining the behaviour of a vari-
ety of hybrid and end-to-end models on a multi-domain training
set, that we composed several freely-available corpora that fea-
ture a variety of different topics and acoustic conditions, such
as telephone conversations, lectures, read speech and broadcast
news.

2. Prior Work
Previous studies on multi-domain and domain-invariant speech
recognition can be roughly divided into two general approaches.
The first approach focuses on exploiting additional speech data
to train acoustic models which then become invariant to specific
acoustic conditions, resulting in domain-invariant speech recog-
nition systems. E.g., [5, 6] used simulated noisy utterances to-
gether with clean training data to achieve invariance to back-
ground noise. Similar to that, the authors in [5] used a mixed
bandwidth training dataset to help the acoustic model general-
ize to multiple sampling rates. In [7], far-field speech recog-
nition is significantly improved by exploiting large-scale simu-
lated data for training deep neural networks. [8] build a multi-
domain speech recognition system by pooling a huge amount of
training data from several sources and simulated conditions like
background noise, codecs and sample rates.

The second general approach utilizes adaptation techniques
to adapt speech recognition models trained on one domain with
a lot of data to other domain with limited data. In [9], the au-
thors utilize a student-teacher framework to adapt from clean to
noisy environments and from adults to children. The transfer
learning in [10] is used to adapt a neural network model trained
on Switchboard [11] to different domains with smaller training
sizes.

So far, most studies on multi-domain speech recognition
are based on conventional hybrid acoustic models. [12] re-



Table 1: The training and test datasets for cross-domain speech
recognition.

Dataset Domain Hours #Utt

Switchboard Telephone Conversation 318 263K
TED-LIUM Lecture Presentation 453 268K
Libri Read Speech 363 104K
Hub4 Broadcast News 148 125K

Multi-Set Multiple 1282 760K

Hub5-2000 (Hub5’00) Telephone Conversation 3.79 4458
TED-LIUM test (TED) Lecture Presentation 2.61 1155
Libri test (Libri) Read Speech 5.4 2620
Hub4 eval (Eval98) Broadcast News 2.81 825

cently tried to understand how a recurrent neural network with
letter-based CTC criterion learns to produce domain-invariant
features from a small meeting dataset with different far-field
conditions.

3. Multi-domain Dataset
3.1. Dataset

Several public speech corpora have been released for speech
recognition research. However, to the best of our knowl-
edge, there has not been such a common corpus for the study
of multi-domain speech recognition. We composed a multi-
domain training dataset which consists of four well-known cor-
pora: Switchboard [11], TED-LIUM [13], Libri Speech [14]
and Hub4 (LDC97S44 & LDC98S71). The statistics of the
multi-domain set are described in Table 1. Basically, it in-
cludes 1,282 hours of speech data coming from different do-
mains such as telephone conversations, talks and lectures, read
speech and broadcast news. Compared to an internal multi-
domain set reported in [8], our composed multi-domain set is
fairly distributed in which there is no disproportionally large
sub-set.

To evaluate the performance of our models, we use the
Hub5’00 test set (LDC2002S09), the TED-LIUM test set, the
Libri test-clean set and the Hub4 eval set (LDC97S66) as the
evaluation sets for the corresponding domains.

Since the audio from Switchboard and Hub5’00 corpora
was originally sampled at 8kHz, we converted it to 16kHz to
have an uniform format. We do not reconstruct missing bands
since neural network training can handle multiple sample rates
simultaneously as shown in [5].

3.2. Domain Analysis

First we describe the difference in the domains of the speech
corpora through long-term and short-term characteristics. The
long-term characteristics refer to speaker accents or speaking
styles while the short-term characteristics are more related to
acoustic conditions such as microphone, background noises,
sample rate, codec, etc. While long-term characteristics can be
efficiently identified by humans, short-term characteristics are
more difficult to measure and describe. To better understand the
acoustic similarities of the speech corpora in the multi-domain
dataset, we have performed the following experiment.

We trained a classification model to discriminate among the
speech frames from different corpora. The classifier is imple-
mented as a feed-forward neural network with 3 layers of 500

Table 2: The confusion matrix for the similarities between the
domains. The columns of the table indicate the groups for dif-
ferent ground-truth domain labels.

Switchboard TED-LIUM Libri Hub4

Switchboard 0.99945 0.00015 0.00008 0.00072
TED-LIUM 0.00016 0.95965 0.02425 0.06569
Libri 0.00006 0.01985 0.96635 0.03500
Hub4 0.00033 0.02035 0.00932 0.89859

units, and with a softmax layer for 4 different domains. Sup-
plying a window of several consecutive frames as input, the
network model learns to classify domain labels. When using
a window size of 11 frames, the network model trained well on
Multi-Set and eventually achieved an accuracy of 92.6% on the
heldout set. We achieved an accuracy of 96.5% when increas-
ing the window size up to 31 frames. This gives an initial idea
that the 4 speech corpora used in the multi-domain set are easy
to distinguish by short-term acoustic features.

To further explore the similarities between the specific do-
mains, we used the heldout data to generate a confusion matrix
as shown in Table 2. The confusion matrix is presented with
the percentages of correct and incorrect predictions that the do-
main classifier assigns for the samples of the same ground-truth
domain labels.

As can be observed, the domain classifier can detect Switch-
board with very high accuracy (probably because of missing
bands), followed by Libri. It has more confusion when detect-
ing TED-LIUM and Hub4, roughly indicating that these two
domains are closer.

4. Hybrid Acoustic Model
Conventional speech recognition systems with artificial neural
network (ANN) based acoustic models using the hybrid Hid-
den Markov Models (HMM) / ANN approach [15, 16] have
achieved state-of-the-art performance and are widely used in
many research and application areas. In this section, we dis-
cover the abilities as well as the limitations of these models
when performing on the multi-domain dataset.

4.1. Setup of Hybrid models

From a bootstrap system built on a part of Multi-Set, we used a
common cluster-tree of 8,000 context-dependent phonemes and
the same forced-alignment system to provide frame-based la-
bels for all domain-specific and multi-domain training sets. We
then trained hybrid acoustic models using both a feed-forward
neural network (FFNN) and a long short-term memory (LSTM)
network. The FFNN models consist of 7 layers of 2,000 units
while bidirectional LSTM models have 5 layers with 320 units
each. 40 log mel filter-bank features which are mean and vari-
ance normalized per utterance are used for all models. For
FFNNs, we used a window of 15 consecutive frames as the
input, while for LSTMs, we generated sub-sequences of 50
frames with a moving step of 25 frames from the training ut-
terances.

The hybrid acoustic models were decoded with domain-
adapted language models (LM) for individual test sets. Specif-
ically, the LM for Hub5’00 was built from the transcripts of
the Switchboard and Fisher corpora, while the standard LM for
Libri is described in [14]. We used the same Cantab LM [17]
for TED and Hub4. To investigate the influence of the domain-



adapted language models on recognition performance, we used
an additional LM which was built from the transcripts of the
Multi-Set set.

4.2. Results of Hybrid models

In the first 4 rows of Table 3, we present the WER performance
of the hybrid acoustic models trained on individual domain-
specific training sets and evaluated with all the test sets. As
can be observed, the domain-specific models only perform well
on the test sets that match the training domain conditions, and
can be very poor on out-of-domain test sets. On Eval98 the
recognizer trained on an in-domain dataset with much smaller
size still outperforms other training sets. At the worst case of
mismatching, the recognition performance hugely drops shown
on TED. These observations substantiate the importance of in-
domain data in building hybrid speech recognition. The cross
comparisons also reveal the similarities between the individual
training sets. For example, Switchboard and Libri are very dif-
ferent from the others while TED-LIUM and Hub4 are closer
corpora. These results are consistent with the analysis in Sec-
tion 3.2.

We evaluated the multi-domain model with all the test sets
as in the last three rows of Table 3. The WER performance
of the multi-domain model shows two interesting facts for the
combination of speech corpora of different domains. First,
when two training corpora are close enough (e.g. TED-LIUM
and Hub4), they can supplement each other so that the hybrid
acoustic model can benefit from the mixed data training. Sec-
ond, for the case of Switchboard and Libri, the recognition
performance is hardly improved when the additional training
datasets are diverse.

These results also reveal the abilities as well as the limita-
tions of the hybrid speech recognition approach. On one hand,
the hybrid models are capable of modeling short windows of
frames from a mixed domain dataset and actually produce no
performance loss in comparison to specific domain modeling.
However, on the other hand, when acoustic conditions are too
diverse, the hybrid models cannot generalize well which show
their limitations in exploiting multi-domain speech data.

The other limitation of a conventional hybrid model is that
it always requires a domain-adapted language model for infer-
ence. We investigated the influence of domain-adapted lan-
guage models by decoding the multi-domain model with two
different LMs. As can be seen, the performance of the multi-
domain model clearly degrades when switching to the Multi-Set
LM which partly includes in-domain data, and largely drops for
the Cantab LM which does not match the domains of the test
sets.

5. End-to-End Models
The end-to-end speech recognition models have received sig-
nificant interest in recent years due to the simplification of the
recognition process by using a single neural network to estimate
the direct mapping from acoustic signals to textual transcrip-
tion. One of the biggest advantages of end-to-end systems is to
learn both acoustic and language modeling with a unified neu-
ral network in a single training process, which then avoids the
need of language models for inference as in conventional hybrid
systems. This advantage is very attractive for the application of
multi-domain speech recognition in which the domain of input
speech is unknown or difficult to determine.

In this paper, we investigate the construction of end-to-

Table 3: The WER performance of hybrid systems with FFNN
and LSTM (in brackets) acoustic models. The columns of the
table indicate the different test sets while the rows show the used
training sets.

Hub5’00 TED Libri Eval98

Switchboard 23.3 (18.3) 65.7 22.5 63.1
TED-LIUM 54.3 12.0 (10.5) 8.1 17.6
Libri 61.6 18.8 6.5 (5.9) 22.0
Hub4 37.1 15.0 9.7 14.5 (12.8)

Multi-Set 23.2 (18.3) 11.1 (9.6) 6.4 (5.8) 13.6 (11.6)
+Multi-Set LM 24.2 (19.2) 12.3 (11.1) 10.1 (8.4) 14.0 (11.8)
+Cantab LM 27.5 (22.5) - 10.7 (8.6) -

end systems for the cross-domain speech recognition task. The
two investigated end-to-end systems, acoustic-to-word [18] and
attention-based models [19], do not require additional language
models during inference.

5.1. Acoustic-to-word

The acoustic-to-word (A2W) model based on the Connectionist
temporal classification (CTC) [20] criterion was first introduced
in [21] as a natural end-to-end model directly targeting words as
output. In [18], the authors have successfully built a direct A2W
system that achieves state-of-the-art speech recognition perfor-
mance by leveraging 125,000 hours of training data collected
from Youtube videos. Later on, [22, 23] proposed training op-
timization to train A2W models on the standard Switchboard
300 hours training set which results in competitive performance
with other end-to-end approaches.

One of the major difficulties of training A2W system is the
data sparsity problem. While [18] has alleviated this problem
by using exceptionally large training data, [22, 23] have used
pre-trained CTC-phone models and and used GloVe word em-
beddings [24] to initialize acoustic-to-word models on a mod-
erately sized training data. We use the multi-task training ap-
proach proposed in [25] to directly train A2W models on the
domain-specific and cross-domain data sets.

Specifically, to build A2W models we use 5 LSTM lay-
ers of 320 units. We also keep the same feature extraction as
for the hybrid acoustic models. For each training set, we find
words appearing more than 5 times in the transcripts to build
target units for the corresponding A2W model. The second
task of the multi-task network is always the framewise classi-
fication of 8000 context-dependent phonemes. We adopted a
down-sampling on acoustic features performed by stacking two
consecutive frames followed by the drop of one frame. Stochas-
tic gradient descent (SGD) with New-bob training schedule are
used for model optimization. Initial learning rates are set as
high as possible for individual training, and then is decayed by
a factor of 0.8 after 12 epochs.

5.2. Sequence-to-sequence

Sequence-to-sequence attention-based speech recognition mod-
els [19, 26, 27] use a single neural network that consists of an
encoder recurrent neural network (RNN) and a decoder RNN,
and uses an attention mechanism to connect between them. The
decoder is analogous to a language model due to attention-based
model being trained to provide a probability distribution over
sequences of labels (words or characters). The encoder convert-
ing low level acoustic features into higher level representation



Table 4: The performance of acoustic-to-word and sequence-to-
sequence models trained on domain-specific and multi-domain
data sets.

Hub5’00 TED Libri Eval98

Char Seq2Seq Model
Switchboard 22.9 45.4 35.5 *60.2
TED-LIUM 60.1 13.0 17.0 *29.0
Libri 72.7 34.3 10.3 *52.1
Hub4 42.2 25.7 23.8 *25.5
Multi-Set 18.2 10.6 7.6 *20.8

Word Seq2Seq Model
Domain-Specific 22.4 12.8 11.2 23.9
Multi-Set 18.5 10.6 8.5 11.9

Acoustic-to-word Model
Domain-Specific 23.8 14.2 12.2 19.4
Multi-Set 19.4 11.3 8.9 11.9

is analogous to the RNN of an CTC model.
We follow the approach in [25] in which we took the pre-

trained LSTM layers from the A2W network (trained with the
same data set) to initialize the encoder of attention-based mod-
els. For the decoder, we used only one uni-directional LSTM
layer. Adam [28] and New-bob schedules are used to optimize
the attention-based models. We experimented with sequence-
to-sequence models using characters and words as target units.
For both label units, we use a beam search with the beam size
of 12 for decoding.

5.3. Results of end-to-end models

As done for the hybrid acoustic systems, we trained individ-
ual end-to-end models for different domain-specific and multi-
domain training sets and evaluated them with the proposed test
sets. For character-based models, we used an unified label set of
52 characters while the word-based sequence-to-sequence and
acoustic-to-word models share the same vocabularies for indi-
vidual training sets. Following the training approach in 5.1 and
5.2, all end-to-end models trained well. During inference, we
observed that the character-based sequence-to-sequence models
have confusion when decoding with very long utterances (e.g.
60-120 seconds) so that it performs worse for the Eval98 test
set. The word-based models do not have this issue, however it
is theoretically encountered with out-of-vocabulary words.

As shown in Table 4, the end-to-end models trained on the
domain-specific sets are also very poor at handling the domain
mismatches between training and testing conditions. However,
when switching to the multi-domain dataset, all of the end-to-
end models behave differently from the hybrid models. As can
be seen, the performance of the multi-domain models outper-
form all the domain-specific models with clear margins. The
improvements on the Hub5’00 and Libri test sets clearly indi-
cate that the end-to-end models can exploit the additional train-
ing data which come from different domains. This observation
also reveals the advantage of the end-to-end approaches over
the hybrid approach in multi-domain speech recognition.

In our multi-domain setup, the performance of the multi-
domain end-to-end systems are still lacking behind the multi-
domain hybrid systems using domain-adapted LMs, but it al-
ready surpasses the hybrid systems when the LMs do not match
the target test sets, and is at par with the hybrid domain-specific
systems.

Table 5: The performance of the domain-conditioned end-to-
end models.

Hub5’00 TED Libri Eval98

DAC 99.84 94.02 97.79 97.93
WER 18.5 10.8 8.4 11.9

Table 6: The performance of the hybrid acoustic models with
different LM and the domain-conditioned models with different
conditioning domain identifiers on MSLT test set.

Hybrid +LM SWB+Fisher Cantab Libri Multi-Set
24.2 25.8 30.2 25.2

Seq2seq +Domain ID SWB TED Libri Hub4
23.3 23.6 23.5 23.8

6. Domain-conditioned Model
As previously shown, the end-to-end models can exploit multi-
domain data better than the hybrid models. This is probably
due to the ability to learn better long-term features. Consider-
ing domain identifier (ID) as an abstraction of several long-term
features, we investigate an end-to-end model which recognizes
the domain of input speech and utilize it during inference. To
build such a model, we condition a domain ID for every la-
bel sequence in the multi-domain training set before feeding it
to a word-based sequence-to-sequence model. This approach
is similar to [29] in which the authors utilize the language ID
for building sequence-to-sequence models with a multilingual
training set.

Table 5 shows the WER performance and as well as the ac-
curacy of domain recognition (DAC) of the domain-conditioned
model on all the test sets. The DAC is calculated by the percent-
age of the utterances with correct predictions. Surprisingly, the
model recognizes the domain very well on all the test sets while
keeping the same WER performance as the end-to-end models
in Section 5.

Since the domains were recognized with a very high accu-
racy for the test sets having similar conditions with the train-
ing set, conditioning the domain-conditioned model with in-
correct domain ID lead to worse performance. We addition-
ally evaluated this model on the English part of the Microsoft
speech language translation (MSLT) corpus which includes
3,000 recorded utterances over Skype conversations. As the
MSLT corpus is an out-of-domain set, we tried to decode the
multi-domain LSTM hybrid model using different language
models. As shown in Table 6, the best performance is achieved
when using SWB+Fisher LM which indicates that it is a closer
text domain. Interestingly, the domain-conditioned model also
achieved better performance when conditioning with the SWB
domain.

7. Conclusions
We have shown that end-to-end speech recognition models op-
timized with a sequence-based criterion can generalize better
across domains than hybrid acoustic models on a multi-domain
setup with diverse domains. We have further shown that a
domain identifier can be extracted with high accuracy with a
sequence-to-sequence end-to-end model and possibly used to
condition the model for performance improvements. These re-
sults will lead us to investigating in more detail the question
why end-to-end models can learn from diverse acoustic condi-
tions while frame-based hybrid models cannot.
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