
AD-A261 434

Reinforcement Learning for Robots
Using Neural Networks

Long-Ji Lin

January 6, 1993
CMU-CS-93-103

DTIC
School of Computer Science ELECT E
Carnegie Mellon University I M•R o 5 199 E 1

Pittsburgh, PA 15213 0 I93
S E

A Dissertation
Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Copyright © 1993 Long-Ji Lin

This research was supported in part by Fujitsu Laboratories Ltd. and in part by the Avionics Laboratory. Wright
Research and Development Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB,
Ohio 45433-6543 under Contract F33615-90-C- 1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the author and should not be interpreted as

representing the official policies, either expressed or implied, of Fujitsu Laboratories Ltd. or the U.S. Government.

*,&0RWivNjt STATEI4EM

XVPP ed for public 1016054

93- 04660



Keywords: Machine learning, reinforcement learning, artificial neural network, mobile
robot, control, credit assignment, temporal difference, action model, teaching, hierarchical
learning, abstraction, hidden state

J4 ,.



Abstract

Reinforcement learning agents are adaptive, reactive, and self-supervised. The aim of this
dissertation is to extend the state of the art of reinforcement learning and enable its applications
to complex robot-learning problems. In particular, it focuses on two issues. First, learning from
sparse and delayed reinforcement signals is hard and in general a slow process. Techniques for
reducing learning time must be devised. Second, most existing reinforcement learning methods
assume that the world is a Markov decision process. This assumption is too strong for many
robot tasks of interest.

This dissertation demonstrates how we can possibly overcome the slow learning problem
and tackle non-Markovian environments, making reinforcement learning more practical for
realistic robot tasks:

9 Reinforcement learning can be naturally integrated with artificial neural networks to
obtain high-quality generalization, resulting in a significant learning speedup. Neural
networks are used in this dissertation, and they generalize effectively even in the presence
of noise and a large number of binary and real-valued inputs.

* Reinforcement learning agents can save many learning trials by using an action model,
which can be learned on-line. With a model, an agent can mentally experience the effects
of its actions without actually executing them. Experience replay is a simple technique
that implements this idea, and is shown to be effective in reducing the number of action
executions required.

* Reinforcement learning agents can take advantage of instructive training instances pro-
vided by human teachers, resulting in a significant learning speedup. Teaching can also
help learning agents avoid local optima during the search for optimal control. Simulation
experiments indicate that even a small amount of teaching can save agents many learning
trials.

* Reinforcement learning agents can significantly reduce learning time by hierarchical
learning- they first solve elementary learning problems and then combine solutions to
the elementary problems to solve a complex problem. Simulation experiments indicate
that a robot with hierarchical learning can solve a complex problem, which otherwise is
hardly solvable within a reasonable time.

* Reinforcement learning agents can deal with a wide range of non-Markovian environ-
ments by having a memory of their past. Three memory architectures are discussed. They
work reasonably well for a variety of simple problems. One of them is also successfully
applied to a nontrivial non-Markovian robot task.
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The results of this dissertation rely on computer simulation, including (I) an agent operating

in a dynamic and hostile environment and (2) a mobile robot operating in a noisy and non-

Markovian environment. The robot simulator is physically realistic. This dissertation concludes

that it is possible to build artificial agents that can acquire complex control policies effectively

by reinforcement learning.
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Chapter 1

Introduction

This dissertation addresses the problem of automatically acquiring controlpolicies by robots for
task achieving. Much of the previous work on robot learning assumes the availability of either
complete domain knowledge (for example, Mitchell's Theo-agent [45]) or teacher-provided
training instances (for example, Pomerleau's autonomous vehicle based on neural networks
[55]). It is often hard for humans to create a complete (or even sufficiently good) knowledge
base for the robot due to the intractable complexity of the real world. Labeling training data
is often an easier task than creating a knowledge base, but still can be a tremendous task for
humans to do if the amount of data is great.

One way to shift the burden from humans to the robot itself is for the robot to acquire a
model of the effects of its actions. With a predictive model, the robot can employ lookahead
search techniques to make plans to achieve goals [47, 5, 13, 201. Model learning in general
is hard, however. If the environment has many features that are irrelevant to the robot's tasks,
the robot may waste much time modeling the irrelevant aspects of the world. Moreover, if the
environment is nondeterministic, the robot may need to model not only the state transitions
caused by action executions but also the probability distributions of such transitions. It might be
easier for robots to learn optimal control policies directly from interaction with its environment
without learning a model. For instance, through experience a robot may figure out that the best
action to execute in state x is action a rather than action b, simply because action a has been
found empirically to lead to goal states sooner than action b. The robot does not need to know
in detail how actions cause state changes.

Reinforcement learning is an optimization technique for control. It is self-supervised and
does not rely on building models to obtain optimal control policies. Reinforcement learning can
be viewed as a kind of compilation from trial-and-error experience into reactive control rules.
A reinforcement learning agent may receive a reward or punishment after taking an action.
In the most general case, rewards and punishments may be delayed; in other words, action
executions that eventually lead to success or failure may not be rewarded or punished right
away. Reinforcement learning is to construct a control policy that maximizes future rewards
and minimizes future punishments.

I
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1.1 The Thesis

Learning from delayed reinforcement in general is hard and can be a slow process if the agent
begins with little knowledge of its environment, sensors, and actuators. Indeed, the problem of
slow learning was often mentioned in previous studies on reinforcement learning. Slow learning
is just one of the potential problems with reinforcement learning. For instance, most existing
reinforcement learning methods assume that the world is a Markov decision process; that is,
the agent can have direct access to the complete state information. For many robot problems of
interest, this assumption does not hold, however. Because of these potential problems, whether
reinforcement learning will ever be practical for real-world problems is questioned.

The thesis of this dissertation is:

We can scale up reinforcement learning in various ways, making it possible
to build reinforcement learning agents that can effectively acquire complex
control policies for realistic robot tasks.

The aim of this dissertation is to present a series of scaling-up techniques and show empirical
evidence to support this thesis statement. In particular, this dissertation develops various
techniques to overcome the slow learning problem, and presents architectures for reinforcement
learning in non-Markovian environments.

The results of this dissertation rely strongly on computer simulation, including (1) an
agent operating in a dynamic and hostile environment and (2) a mobile robot operating in a
noisy and non-Markovian environment. The robot simulator is physically realistic. For each
issue studied here, various algorithms or ideas are tested and compared through a series of
simulation experiments. Some of the algorithms or ideas are novel, and some are previously
proposed by other researchers. Also, implications of simulation results are discussed, and
possible performance differences between various methods (including some not studied in the
simulation) are speculated.

1.2 Reinforcement Learning Paradigm
Figure 1.1 illustrates the reinforcement learning paradigm. In this paradigm, the learning agent

has:

* sensors, from which it obtains information about the state of its environment,

e effectors, by which it can change its environment,

* a control policy, which maps situations to actions,

9 a reinforcement mechanism, which generates a reinforcement signal after each action
execution, and
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Figure 1.1: The reinforcement learning paradigm.

* a reinforcement learning component, which takes into account the feedback from the
environment (including the state information and the reinforcement signal) and adjusts
the control policy.

The objective of learning is to construct a control policy (or simply policy) that maximizes

the agent's performance. A natural measure of performance is the discounted cumulative
reinforcement or, for short, utility:

00
vt= -y (1.1)

where Vt is the discounted cumulative reinforcement from time t throughout the future, ri
is the reintorcement received after the transition from time t to t + 1, and 0 < -f < I is a
discount factor, which adjusts the importance of long-term consequences of actions. Note that
a reinforcement signal can be positive (reward), negative (punishment), or 0.

In traditional reinforcement learning, we assume that there is a teacher to provide the learner
with reinforcement signals. For example, a person may train an animal by rewarding it when it
has done a good job. To build a truly autonomous learning agent, we can have a reinforcement
mechanism built in to the agent. The reinforcement mechanism specifies what is desirable and
what is undesirable for the agent. In essence, giving an agent a reinforcement mechanism is
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equivalent to giving it a goal. For example, a reinforcement mechanism may simply generate
a reward signal when the agent reaches a goal state and zero reinforcement for all the other
time. An agent may have multiple tasks, and thus may have multiple built-in reinforcement
mechanisms; each one specifies a task.

Reinforcement learning is attractive. First of all, to program a reinforcement learning robot
to carry out a task, we just need to design a reinforcement function specifying the goal of the
task 1, which often takes much less human effort than explicitly programming the robot to
accomplish the task. Second, reinforcement learning agents are:

* adaptive, in that they continually use feedback from the environment to improve their
performance, and

* reactive, in that they compile experience directly into situation-action rules (the control
policy), which can be evaluated in constant time.

In comparison with most other learning systems, reinforcement learning agents are also:

"* less dependent on prior domain knowledge, because they learn inductively, and

"* less dependent on external teachers, because they learn from reinforcement, which can
be generated from a built-in reinforcement mechanism.

It is instructive to note the limitations of reinforcement learning:

e Not every learning task can be easily described in terms of rewards and punishments.
For example, the task of building a map of an unknown environment may not be easily
expressed as a reinforcement learning problem. But it appears that there is a wide range of
tasks that can be expressed as reinforcement learning problems. At least, every problem
that can be solved by search-based planning systems can also be described in terms of
reinforcement.

* A reinforcement learning agent may have to learn a new control policy every time it
is given a new goal. In contrast, traditional search-based planning systems offer the
advantage of being more flexible in handling diverse goals, because they consist of a
general-purpose problem solving mechanism, the planner. This problem, however, can
be addressed in at least two ways. First, a reinforcement learning agent can learn an
action model while it is learning to solve its first task. A new control policy still needs
to be learned for a second task, but it is possible that the second task can be learned
much more quickly than the first one, because the action model can be used and greatly

'Besides designing a reinforcement function, we may have to do extra work such as design an input rep-
resentation. choose a network structure (if we use neural networks to implement the control policy), etc. But
programming a robot in othe approaches may require this extra work as well.
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save the agent's action executions in the real world (Chapter 3). Second, learning skills
hierarchically can greatly reduce the time for learning a new task (Chapter 6). For
example, Task A and Task B consist of common subtasks. Once the agent learned to
carry out Task A, learning to carry out Task B becomes easier, because the agent has
already learned to carry out the common subtasks.

1.3 Scaling-Up Issues

Before reinforcement learning can become a practical learning technique for robots, several
issues must be addressed:

Exploration

Consider the task of finding solution paths from any state to a goal state. To learn a policy for
this task, first the learning agent must find some (possibly suboptimal) solution path from some
initial state. Given no prior knowledge and no teachers, the agent has to find this first solution
by trial and error. If it does this by naive random walks, finding the first solution may take
exponential time in the solution length [79]. More clever exploration strategies will be needed
if the agent is to be efficient. Finding any policy is not enough. Very often we want the agent to
find the optimal policy. To do that, it has to find a diverse set of solution paths and determine the
optimal one. An important issue is therefore how to explore the environment so that the optimal
solution will not be missed and in the meantime the exploration cost will be kept minimal. For
example, in order to collect information, the agent may want to move to an unexplored area
of the state space, which, however, may result in damage to the agent. Basically, there is a
tradeoff between acting to gain information and acting to gain reinforcement.

"Move to an unexplored state" is often a good exploration strategy. But implementation
of this strategy may not be simple. First, if the state space is large, about all states will be
unexplored. The agent has to determine whether a new state is worth exploration depending
on its similarity to states visited before. This opens up the difficult question of how to measure
the similarity of states. Second, if the agent does not have complete state information, it is hard
for the agent to determine whether a state is new or not.

Delayed Reinforcement and Temporal Credit Assignment

Suppose a learning agent performs a sequence of actions and finally obtains certain rewards or
penalties. The temporal credit assignment problem is to assign credit or blame to the situations
and actions involved. Temporal credit assignment is often difficult when the reinforcement
delay is long and the environment is nondeterministic.
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Generalization

To be successful, a learning agent must generalize from its experience. In particular, when
the state space is so large that exhaustive search is impractical, the agent must guess about
new situations based on experience with similar situations. Again, this opens up the question
of how to measure the similarity of states. Hamming distance, for example, may not be a
good measure. For many nontrivial problems, the agent must develop high-order features
for similarity measurement. The generalization problem is also known as structural credit
assignment problem, because the task of generalization is to find out which of the many
input features in the situations must take the credit or blame assigned by the temporal credit
assignment process.

The generalization problem in the reinforcement learning paradigm is more difficult than
that in the supervised learning paradigm, because supervised learning agents (e.g., Pomerleau's
autonomous vehicle [55]) have access to a set of desired situation-action patterns, while
reinforcement learning agents do not.

Using External Knowledge

Learning from trial-and-error can be very slow. For fast learning, reinforcement learning
agents should be able to learn expertise not only from trial-and-error but also directly from
other experts such as humans. External knowledge may come in various forms. For example,
it may be an incomplete action model, a number of desirable stimulus-response patterns, or a
few sample solutions to some task instances.

Hierarchical Learning

By hierarchical planning, a planning system can dramatically reduce the amount of search
to solve a problem [32, 30]. Task decomposition and abstraction are the main ideas behind
hierarchical planning. The same ideas can also apply to reinforcement learning to reduce
learning time. Hierarchical learning can be performed in the following manner: First, a
complex task is decomposed into multiple elementary tasks. Then, the agent learns control
policies for accomplishing the elementary tasks. Finally, ignoring the low-level details, the
agent can effectively learn a high-level policy which selects elementary policies to accomplish
the original complex task.

Hidden state

A robot often cannot have direct access to complete state information due to sensory limitations.
For example, visual sensors cannot identify objects hidden in a box. This problem of incomplete
state information is known as the hidden state problem. When there are hidden states, the real
world state is often difficult to determine, and so is the optimal action.
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Active perception

A robot often cannot afford to sense everything in the world all the time. Fortunately, not all of
the world features are always relevant. For example, a robot may only need sonar information
to avoid obstacles and visual information to pick up an object; it does not need both kinds of
information all the time. An important problem for robots is to choose the most economical set
of sensing operations to apply so that all the needed information will be collected inexpensively.

Other Issues

Most of the reinforcement learning algorithms proposed to date assume discrete time and
discrete actions, but we may like our robots to move continuously and smoothly. Real robots
may have to control multiple sets of motors simultaneously. For example, a robot may want
to run after a moving object and catch it. Doing that requires a proper coordination of two
independent sets of actuators, the wheel and the arm.

1.4 Dissertation Overview and Main Results

Among the issues described in the previous section, this dissertation focuses on:

"* effective and efficient temporal credit assignment,
"* generalization (with artificial neural networks),
"* learning from human teachers,
"• hierarchical learning, and
"* dealing with hidden states.

Whenever possible, the exploration problem is ignored in this dissertation. The problems of
active perception, continuous time, continuous actions, etc, are postponed for future work.

Chapter 2 reviews previous algorithms and ideas that are directly or indirectly related to
reinforcement learning.

Chapter 3 first describes two basic reinforcement learning methods in detail: AHC-learning
[65] and Q-learning [74]. It then presents three extensions to the basic methods:

"* experience replay- experiences are selectively replayed as if they were experienced
again,

"* learning an action model for (shallow) look-ahead planning, and
"* teaching.

Each extension is expected to improve the learning speed. Detailed algorithms are given.
These algorithms use artificial neural networks to obtain generalization, which is also expected
to reduce learning time dramatically.
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Chapter 4 presents the first simulation study in this dissertation. The learning task is for
an agent to survive in a dynamic environment involving obstacles, food, and predators. The
task is moderately complex, and is a good domain for a first study of scaling up reinforcement
learning. The learning algorithms presented in the previous chapter are tested against this
learning task. Some of the main results are as follows:

* Neural networks generalize effectively even in the presence of a large number of binary
inputs.

* In general, the three extensions mentioned above all result in noticeable improvement on
the learning speed.

Chapter 5 presents the second simulation study. The domain used here is a physically-
realistic mobile-robot simulator. Control errors and sensing errors are included. This domain
is more challenging than the previous one in the sense that the robot operates in a noisy
environment with continuous state inputs. Some of the main results are as follows:

* Once again, neural networks generalize effectively even in the presence of noise and a
large number of binary and real-valued inputs.

o A small amount of teaching can save the robot many learning trials.

This chapter also presents an improved version of the experience replay technique, and two
possible ways of combining reinforcement learning and supervised learning.

Chapter 6 presents a novel approach to learning robot skills hierarchically within the rein-
forcement learning paradigm. It first presents a model of hierarchical reinforcement learning,
followed by a complexity analysis for restricted domains. This analysis shows that hierarchical
learning can reduce overall learning complexity under some assumptions. It then presents a
simulation study using the robot simulator. Simulation experiments show that by hierarchical
learning, the robot can solve a difficult learning problem, which as a monolithic problem is
hardly solvable.

Chapter 7 presents three memory architectures that extend Q-learning and enable learning
agents to tackle hidden states. These architectures are tested against several simple non-
Markovian tasks with different characteristics. They all can solve those simple tasks, but have
different shortcomings. This chapter also presents a categorization of reinforcement learning
tasks, and speculates about which architecture might work best for what type of tasks.

Chapter 8 presents the last simulation study of this work, which is once again based on
the robot simulator. The learning task is complex and involves hidden states. By combining
hierarchical learning and one of the memory architectures mentioned above, the robot suc-
cessfully develops skills to accomplish the task. Simulation experiments also indicate that the
developed skills can adapt to small environmental changes without addition training. All of
these simulation results together support the thesis statement; that is, it is possible for artificial
agents to acquire complex skills effectively by reinforcement learning.
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Chapter 9 summarizes the results, discusses the contributions of this dissertation, and
points out areas for future research.
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Chapter 2

Background and Related Work

Samuel's checker player [59], which was first published in 1959, perhaps is the earliest
machine learning research that can be viewed as reinforcement learning. However, it seems
that significant progress in reinforcement learning has only been taking place in the past
decade, possibly due to the important inventions of algorithms for temporal credit assignment
and for generalization. This chapter reviews the recent work that is directly or indirectly
related to reinforcement learning. Detailed comparisons of my approaches with other previous
approaches will be addressed in the coming chapters.

2.1 Temporal Credit Assignment and Temporal Difference

The best-understood learning procedure for temporal credit assignment is probably temporal
difference (TD) methods [66]. TD methods have a solid mathematical foundation [66] [14],
and can be related to dynamic programming [7]. A typical use of TD methods is to predict
the probability of winning a game (such as checker) for each possible board situation. In
reinforcement learning, TD methods can be used to predict the utility of each state (i.e., to
predict the sum of future rewards received from a state throughout the future).

Traditional supervised learning methods for prediction learning are driven by the error
between predicted and actual outcomes, while TD methods are driven by the error between
temporally successive predictions. This may be easily explained by the following example.
Consider playing a simple game such as tic-tac-toe. The learning problem is to predict, for each
board situation, the probability of winning the game starting from that situation. By recording
each game played, training instances can be collected for prediction learning. Consider the
training instance shown in Figure 2.1. Suppose the estimated winning probabilities (hereafter,
WP's) from States A, B, and C are currently 0.8, 0.3, and 0.6, respectively. The player started
from State A, moved to B, to C, and finally won the game.

What a typical supervised learning method, such as Widrow and Hoff's delta rule [82],

11
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WP= 0.8 0.3 0.6 1.0

Figure 2.1: A sequence of state transitions in a game play. The WP for a state is the estimated
probability of winning the game starting from that state.

would do regarding this training instance is the following: It increases the WP's from States A,
B, and C by (1 - 0.8)a, (1 - 0.3)a, and (1 - 0.6)a, where ci is a learning rate. In essence, the
learning changes are proportional to the differences between current predictions and the actual
outcome (in this case 1). Given sufficient training data, repeated presentations of the data, and
a small learning rate, this supervised learning method will eventually find the true WP from
every state [82], assuming WP's are stored in a lookup table.

Unlike supervised learning methods, the simplest TD method, TD(0), attempts to minimiz
the error (called TD error) between successive predictions. Let As be the learning change to
the WP from a state S. TD(O) will make the following learning changes:

AA = (0.3 - 0.8)a
AB = (0.6 -0.3)

Ac = (1.0-0.6)a

Sutton [66] has proved that TD(0) converges to the eotimal estimates under three assum,-
tions: sufficient training data, repeated presentations of training data, and the target system
being linear (or a lookup table representation for the system to be predicted.) Sutton also argued
and empirically showed that on multi-step prediction problems, TD(0) outperforms the kind of
supervised learning discussed above.

There is in fact a family of TD methods called TD(A), where A is called the recency factor
and 0 < A < 1. The TD error computed by TD(0) (called TD(0) error) is the difference between
two successive predictions, -/hile the T) error computed by TD(A) is the sum of TD(0) errors
exponentially weighted by A. For instance, TD(A) will make the following learning changes
for the previous example:

AA = [(0.3 - 0.8) + (0.6 - 0.3)A + (1.0 - 0.6)A21a

AB = [(0.6- 0.3) + (1.0- 0.6)Ala
Ac = [1.0-0.6]a

The convergence of TD(A) has been proved by Dayan [14]. It is instructive to note that
TD(l) makes the same learning changes as the supervised learning method. In fact, as A
approaches 1, TD(A) behaves more like supervised learning. Because TD(A) makes prediction
changes based on not only the information from the immediately successive state but also the
information from all future states, TD(A > 0) often results in faster learning than TD(0) at the
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early stage of learning when the initial predictions are meaningless. For detailed discussions
on TD(A) methods, see Chapter 5.

It is worthwhile to note that Samuel's famous checker-playing program [59] perhaps was
the first system to use a kind of TD method. Samuel's program learned an evaluation function
of board positions. The evaluation of a position was a likelihood estimate of winning the game
from that position. The parameters of the evaluation function were adjusted based in part on
the difference (i.e., TD error) between the evaluations of successive positions occurring in a
game.

Holland's bucket brigade algorithm [25] is anot!-er learning procedure sharing the same
idea of temporal difference. The bucket brigade is used to learn the priorities of rules for
classifier systems, which are rule discovery systems based on genetic algorithms. In a classifier
system, the invocation of a rule is determined by several factors. One of them is the strength
associated with that rule. After a chain of rule invocations, the system may receive a payoff.
The bucket brigade adjusts the strengths of rules so that rules leading to rewards will be more
likely to fire when similar situations occur in the future. The process of strength adjustments is
much like TD(O), except for a distinct difference: In the bucket brigade strengths are propagated
back from rule to rule along the chain of rule invocations, while in TD(O) evaluation values are
propagated back from state to state along the chain of state transitions. Grefenstette [21, 22]
presented a credit assignment method called profit sharing plan, which is a variation of the
bucket brigade.

2.2 Reinforcement Learning Algorithms

Two TD-based reinforcement learning algorithms have been proposed: AHC-learning due
to Sutton [65] and Q-learning due to Watkins [74]. Both algorithms involve learning an
evaluation function. AHC-learning learns an evaluation function of states, while Q-learning
learns an evaluation function of state-action pairs. The convergence of Q-learning has been
proved by Watkins and Dayan [74,75]. In their proof, a set of conditions is needed to guarantee
the convergence:

* the world is a Markov decision process,

* the evaluation function is represented by lookup tables,

* each state-action pair is tried infinitely often, and

e a proper scheduling of the learning rates.

Williams [83] presented a class of reinforcement learning algorithms that is quite different
from those presented in this dissertation. He showed that his algorithms perform a gradient
descent search for expected reinforcement, and can be naturally integrated with the error
back-propagation algorithm [58].
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2.3 Generalization

A common problem in robot learning is approximating a function, such as action models
(mapping states and actions to next states), control policies (mapping situations to actions),
evaluation functions (mapping states to utilities), etc. For example, Q-learning learns an

evaluation function called the Q-function, which predicts the utility of states and actions.
The Q-function can be represented by a lookup table, but this representation is feasible only
when the learning problem has a small state space. For nontrivial problems, some kind of
function approximator should be used to save memory and to generalize. A number of function
approximators can be found in the literature, such as:

e Neural networks (see Section 2.4),
e Decision trees [56],
* Instance-based function approximation by nearest neighbor [47] or by locally weighted

regression [5], and
e CMAC (Cerebellar Model Articulation Computer) [2],

In principle, all of these methods can be applied to approximate an evaluation function
such as the Q-function. A potential difficulty, however, is that these methods were originally
designed to be used in a supervised learning paradigm; in other words, for each training input,
the corresponding desired output is directly known to the learning system. But this is not the
case in the reinforcement learning paradigm. In Q-learning, for example, the real utilities of
states and actions are never directly known to the learning agent, but can only be estimated
through TD methods.

Among those function approximators mentioned above, neural networks appear most pop-
ular in the reinforcement learning community (for example, [3, 34, 36, 83, 70, 43, 6, 60, 78]).
However, some previous attempts to combining the error back-propagation algorithm with TD
methods did not seem very successful. For example, Anderson [3] combined back-propagation
with AHC-learning in solving a pole balancing problem. While his program could solve the
learning problem, it took 5000 trials to learn a good control policy- this is considered im-
practical in the real world. Other researches have also tried the combination and reported
disappointing results [10, 29].

In contrast, the work reported here shows encouraging results on the combination of back-
propagation and TD methods. This combination has successfully learned complex evaluation
functions with a large number of binary and real-valued inputs. For example, Chapter 5
presents a simulated robot, which is able to learn to accomplish various tasks (such as wall
following and door passing) within 150 learning trials. Recently, Tesauro presented interesting
results on the use of the combination [70]. Tesauro's programs learned to play backgammon
better than his previous supervised-learning approach and as well as world-class human players.

Besides neural networks, several other generalization approaches have also been studied
for reinforcement learning. Mahadevan and Connell [41], Nilsson [52] and McCallum [421
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all proposed approaches related to statistical clustering. The basic idea is to cluster the state
space into regions based on some similarity measure. Each region of states is then treated as
an abstract state and reinforcement learning algorithms are applied to this abstract state space.
Another alternative (taken by Nilsson) is to construct a region graph showing the connectivity
of regions by actions. With such a graph, solution paths can be found by graph search.

Chapman and Kaelbling [11] presented a G algorithm to approximate the Q-function. Like
decision tree algorithms [56], the G algorithm incrementally briids tree-structured objects. It
begins by assuming that the Q-function is constant over the entire state space and thereby
collapsing the entire function into a single leaf node. When it collects sufficient statistical
evidence to believe that an input bit plays an important role in the Q-function, the leaf node is
split into two new leaf nodes corresponding to the two subspaces divided by that binary input
bit. The new leaf nodes are candidates for further splitting. Ming Tan [69, 681 presented a
learning method, which also stores evaluation values in decision trees.

Watkins [74] used a CMAC as a function approximator. Moore [48] used a method
which was basically lookup tables but which had variable state resolution. Except for neural
networks, all the generalization approaches mentioned above have only been tested for a few
reinforcement learning tasks. Their utilities hence remain to be fully determined.

2.4 Neural Networks

Artificial neural networks are composed of simple processing elements called units. Each unit
can pass its activation to another through a connection, which is associated with a weight. The
activation of an input unit is simply the input signal. The activation of a non-input unit is
computed as a function of (1) the weights of the incoming connections and (2) the activations
transmitted through the connections. The function involved is called the activation function or
squashing function of the unit. There are many types of artificial neural networks. Some use
linear activation functions, and some nonlinear. Some have feed-back connections, and some
do not.

Figure 2.2 illustrates a multi-layer network composed of input units, output units, and
hidden units. Logistic units are a popular unit type used in networks with multiple layers. A
logistic unit computes its activation as follows:

y = sigmoid(" wjxj) (2.1)
3

where wj is the weight of the jth incoming connection to the unit, xj is the activation passed

from the 1 th connection, and

sigmoid(x) = 1+ (2.2)
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Figure 2.2: A simple multi-layer network with only feed-forward connections.

Stornetta and Huberman [64] advocate using a symmetric version of the sigmoid function:

1
symmetric sigmoid(z) = 1 - 0.5. (2.3)

By replacing Equation (2.2) with the symmetric one, they found speedups ranging from 10%
to 50%. In this dissertation, I use this symmetric activation function.

The error back-propagation algorithm [58] is the most popular training algorithm for multi-
layer networks. Many other network training algorithms can be found in the literature [23];
most of them are variations of back-propagation, while others are new. For example, the
quickprop algorithm [17] and the cascade-correlation algorithm [19] have been empirically
shown to outperform the standard back-propagation algorithm. However, both algorithms in
their current forms are not suited to the increment nature of learning evaluation functions. Both
are specifically designed for batch-mode training- all the training patterns must be available
at once for repeated presentations.

Networks that have feedback connections are called recurrent networks. Recurrent networks
are useful for tasks in which the learning agent needs to recognize or predict temporal sequences
of patterns. Figure 2.3 illustrates a simple type of recurrent networks called Elman network.
The input layer of an Elman network is divided into two parts: the true input units and context
units. The operation of the network is clocked. The context units hold feedback activations
from the network state at a previous clock time. The context units function as short-term
memory, so the output of the network depends on the past as well as on the current input.

The Elman network can be trained by a recurrent version of the back-propagation algorithm
called back-propagation through time (BP'T) or unfolding of time. This BPTI' training
technique is based on the observation that any recurrent network spanning T steps can be
converted into an equivalent feed-forward network by duplicating the network T times. For
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output units

hidden units

context unt input units

Figure 2.3: An Elman recurrent network.

example, the feed-forward network in Figure 2.4 and the recurrent network in Figure 2.3 behave
identically for 3 time steps. Once a recurrent network is unfolded, back-propagation can be
directly applied. (See also Chapter 7.) In addition to BPIT, researchers have developed other
training procedures. For example, Williams and Zipser [84] have developed an algorithm called
real-time recurrent learning (RTRL), which requires no duplication of networks. Fahlman
[18] has developed an incremental construction architecture called the recurrent cascade-
correlation architecture. Because Elman networks are conceptually simple and fit well the
learning problems studied here, they are the type of recurrent networks used in this dissertation
(see Chapter 7).

2.5 Exploration

The purpose of exploration is to acquire information for control learning. A reinforcement
learning agent faces two opposing objectives: act to gain information and act to gain rewards.
To improve its control policy, the agent sometimes has to take actions that appear suboptimal,
because such actions may lead to an unexplored portion of the state space and eventually lead
to the discovery of a better policy. On the other hand, the agent runs a risk of receiving negative
reinforcement when it takes actions that are suboptimal or not taken before. How to control the
tradeoff between gaining information and gaining reinforcement is an important issue.

Many reinforcement learning systems deal with the tradeoff mentioned above by taking
random actions occasionally. For example, the learning agents presented in Chapter 4 choose
actions randomly but favor to choose actions having high utilities. Meanwhile, action selection
gets less random as learning proceeds. This approach is not very effective. Kaelbling [291
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Figure 2.4: A feed-forward network which behaves the same as the Elman recurrent network
for 3 time steps.
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proposed a better approach called the interval estimation (IE) algorithm. The IE algorithm
estimates not only the mean utility of an action but also the uncertainty about that mean. The
agent then chooses the action that has the greatest combination of mean utility and uncertainty.
Inspired by ilia IE algorithm, Sutton used a simple alternative in his DYNA architecture [67]:
The DYNA agent assigns to each state-action pair a time duration indicating how long that
state-action combination has not been attempted. The agent then chooses the action that has
the greatest combination of utility and time duration.

Thrun [71] presented a systematic comparison among several exploration strategies, in-
cluding:

"* counter-based exploration- count the number of visits to each state and go to less
explored states,

"* recency-based exploration- similar to Sutton's method, and
"* counter-based exploration with decay- counter-based exploration with counter values

decaying over time.

Except for the random exploration strategy, all the approaches mentioned above allocate one
counter for each state or state-action pair. To be practical for continuous or large state spaces,
these approaches require some sort of generalization. For example, instead of one counter for
each state, we have to allocate a counter for a group of similar states [52]. The problem of
exploration becomes even more complicated when the agent's environment has hidden states.
This is because we cannot count the number of times each state has been visited before if we
can hardly determine the true world state.

2.6 Using Action Models

Learning in an unknown environment is risky especially when the agent is given no prior
knowledge and must learn by trial and error. One way to reduce the risk is to utilize an
action model, which may come from the agent's previous experience with solving a related
task. By action projection with an action model, the agent can experience the consequence
of an action without the risk of being hurt in the real world. As a matter of fact, if the agent
has a perfect model, it can learn an optimal control policy just from hypothetical experience
generated by the model. This way of using action models has been studied by Sutton in his
DYNA architecture [67]. In Chapters 3 and 4, I present a similar way of using models and
demonstrate that it may be beneficial to use a model even if the model is incomplete and only
roughly correct.

Mitchell and Thrun [46] proposed another way of using action models, which they call
explanation-based neural network learning (EBNN). Consider learning an evaluation function
such as the Q-function. Given a sample point of the target function, EBNN estimates the
slopes of the target function around that sample point and then trains a Q-function to fit not
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only the sample point but also the estimated slopes. The slope information is extracted from
a differentiable action model, which in their case is represented by neural networks. Their
experiments indicated that EBNN required significantly fewer training examples than standard
inductive learning without using slopes. They also found that EBNN worked well even in the
presence of some errors in the model.

Several approaches to control learning in the presence of hidden states are based on building
an action model. The model maintains a short-term memory of the past, and will be able to
uncover hidden states and determine the true world state unambiguously. Once the world state
can be determined, traditional control-learning techniques, such as Q-learning, can be applied
directly. Examples include the work by Schmidhuber [60], Thrun et al [72], Lin and Mitchell
[37], Bachrach [6], and Chrisman [12]. The first four approaches all use recurrent networks
for modeling.

Other ways of using action models can be found in Chapter 7.7.

2.7 Learning Action Models

Model learning is a problem that has been studied for decades. All of the function approximators
mentioned in Section 2.3 can directly apply to learning a deterministic action model. In a
nondeterministic environment, each action may have multiple outcomes, and a precise model
has to predict all the possible outcomes of each action as well as the probability distribution of
outcomes. Some work in modeling nondeterministic environments may be found in [ 13]. A
review of many previous model learning approaches may be found in [4] and [6].

Model learning in general is a very hard problem. It is even more difficult when the
environment has hidden states, in which case the hidden states need to be uncovered. The most
famous and most successful algorithm for learning action models in the presence of hidden
states is probably the diversity-based inference procedure proposed by Rivest and Schapire
[57]. (This procedure cannot learn nondeterministic environments, however.) This learning
procedure is based on a clever representation for finite-state environments called update graphs.

Mozer and Bachrach [51] proposed a connectionist implementation of the update graphs
called the SLUG architecture. Although they found that SLUG failed to infer some finite-state
environments that the Rivest and Schapire's symbolic algorithm could, it does have a useful
property: Connectionist action models can continually make sensible predictions even before
learning is complete. (In contrast, Rivest and Schapire's algorithm can only make sensible
predictions after the update graph is complete.) This property is important, because it allows
an agent to benefit from using a model even before it is perfectly learned. In Chapter 7.4, the
SLUG architecture is studied and related to a family of network architectures called OAON
(One Action One Network) architectures.
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2.8 Active Perception

The goal of active perception is to acquire needed perceptual information in an economical
way. Two active perception approaches for reinforcement learning agents have been developed
by Whitehead and Ballard [81] and Tan [69, 68]. Both approaches rely on a technique to
detect perceptually aliased states (i.e., states that cannot be distinguished by the immediate
sensation). In Tan's approach, once an aliased state is detected, a new perceptual operation
is added to the set of operations previously registered for that aliased state. Insertion of a
new operation takes into account both the information gain and the cost incurred by applying
the new operation. In Whitehead and Ballard's approach, once an aliased state is detected,
a search is conducted to find an operation capable of disambiguating the aliased state. A
common limitation of both approaches, however, is that they do not support generalization and
nondeterministic environments. Relaxation of this limitation may be possible but will demand
substantial efforts.

2.9 Other Related Work

Reinforcement learning has been studied mostly solving tasks with discrete time and discrete
actions. While it seems possible to extend the idea of temporal difference (TD) to handle
continuous time and continuous actions, this in general is an unexplored area. Millan and
Torras [43] presented a reinforcement learning approach to path finding with continuous states
and continuous actions. In their task, reinforcement was not delayed and thus there was no
temporal credit assignment problem involved.

Ackley and Littman [1] presented a simulation study that combined two adaptation pro-
cesses: reinforcement learning (adaptation of individuals) and evolution (adaptation of pop-
ulations). The job of evolution is to discover a good reinforcement function that causes the
simulated agents to survive in an environment involving food and predators. The job of
reinforcement learning, as discussed before, is to discover a good control policy that maxi-
mizes reinforcemnent received with respect to a given reinforcement function. This strategy,
which they call evolutionary reinforcement learning, displayed better performance than that
employing only evolution or only reinforcement learning.

Singh [62] presented a modular reinforcement learning architecture, which could learn
multiple elementary tasks and composite tasks efficiently. By sharing the solutions of elemen-
tary tasks across multiple composite tasks, significant savings of learning time can be obtained.
Singh [63] [61] also proposed to use abstract action models to learn complex tasks efficiently.
An abstract action model is a model for predicting the effects of abstract actions, which span
multiple time steps. Chapter 6 gives more discussions on his work.
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2.10 Integration

In parallel with this dissertation research, there have been many efforts on scaling and extending
reinforcement learning. Some have proposed techniques for generalization, some for utilizing
action models, some for modular learning, etc. But there hase been few efforts attempting to
integrate multiple extensions to reinforcement learning (but see [291). This dissertation makes
a step toward integration.



Chapter 3

Frameworks for Speeding Up Learning

This chapter presents four techniques to speed up reinforcement learning:

e generalization by neural networks,
@ experience replay,
* using action models, and
* teaching.

These techniques are combined with AHC-learning and Q-learning, resulting in eight reinforce-
ment learning frameworks. This chapter presents detailed algorithms for these frameworks,
and the next chapter presents simulation experiments.

3.1 Introduction

Temporal difference (TD) [66] is a popular method for temporal credit assignment. For
example, adaptive heuristic critic (AHC) learning [65] and Q-learning [74] are two well-
known reinforcement learning methods based on TD methods. The error back-propagation
algorithm [58] is a popular training algorithm for multi-layer neural networks. Variations of
this training algorithm have been applied to deal with many real world problems that require a
good generalization capability. Examples include speech recognition [73], autonomous vehicle
control (55], and natural language parsing [27].

Both popular learning procedures (one for temporal credit assignment and one for gener-
alization) in fact can be naturally integrated to solve hard reinforcement learning problems, as
this dissertation will show (also see [70]).

Even when aided by a generalization mechanism, reinforcement learning still can be very
slow. Temporal credit assignment in general is a hard problem, especially when credits must be
propagated through a long action sequence. In addition to generalization, this chapxr presents
three extensions for speedup; two of them are novel. They are experience replay, using action

23
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models, and teaching. These extensions, neural networks, and the basic AHC-learning and
Q-learning methods constitute eight different reinforcement learning frameworks:

* AHCON: connectionist AHC-learning
e AHCON-R: AHCON plus experience replay
9 AHCON-M: AHCON plus using action models
e AHCON-T: AHCON plus experience replay plus teaching
e QCON: connectionist Q-learning
* QCON-R: QCON plus experience replay
* QCON-M: QCON plus using action models
* QCON-T: QCON plus experience replay plus teaching

This chapter describes these frameworks in detail. Empirical evaluation and comparisons of
them are presented in the next chapter.

3.2 V-function and Q-fumction

As discussed in Chapter 1.2, the objective of reinforcement learning is to construct a control
policy that maximizes an agent's performance. A natural measure of performance is the
discounted cumulative reinforcement or utility, which is defined in Equation ( 1.1) and
duplicated here for readers' convenience:

00
Vrk (3.1)

k=O

where Vt is the discounted cumulative reinforcement from time t throughout the future, rt is
the reinforcement received after the transition from time t to t + 1, and 0 < -Y < 1 is a discount
factor.

Both AHC-learning and Q-learning are based on the idea of learning an evaluation function
to predict the discounted cumulative reinforcement to be received in the future. AHC-learning
learns a V-function, while Q-learning learns a Q-function:

a V(x) represents the expected discounted cumulative reinforcement that will be received
starting from world state z, or simply the utility of state x;

* Q (x, a) represents the expected discounted cumulative reinforcement that will be received
after the execution of action a in response to world state x; or simply the utility of the
state-action pair (x, a).

Note that it is only meaningful to estimate the V-function and the Q-function relative to
some control policy, since different policies will result in different reinforcements received.
Unless explicitly mentioned, both functions are assumed to be relative to the current policy.
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Figure 3.1: Framework AHCON. The bold lines indicate a vector of signals and the thinner
lines indicate a scalar signal.

Note also that in a deterministic world, Q(x, a) is equal to the immediate reinforcement r

plus the utility of the next state y, discounted by y:

Q(Xa) = r + -f V(y) (3.2)

Equation (3.2) can be generalized to a nondeterministic world by taking into consideration the
probabilities of multiple action outcomes [74].

For simplicity, I will assume the world is deterministic throughout the discussion of the
learning algorithms in this chapter, although it is straightforward to extend the discussion to
handle nondeterministic worlds [8, 74]. The reinforcement learning algorithms presented here
work for both deterministic and nondeterministic worlds.

Both the V-function and Q-function can be represented by neural networks and learned
by temporal difference and back-propagation. In essence, temporal difference computes the
error between temporally successive predictions, and back-propagation minimizes the error by
modifying the weights of the networks.

3.3 Framework AHCON

Framework AHCON (Figure 3.1) is a connectionist implementation of the adaptive heuristic
critic learning architecture [65, 8]. It consists of three components: an evaluation network
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1. x -- current state; e -- V(x);
2. a select(policy(x),T);
3. Perform action a; (y, r) -- new state and reinforcement;
4. e' #-- r + -f" V(y);

5. Adjust the V-net by back-propagating TD error (e' - e)
through it with input x;

6. Adjust the policy net by back-propagating error A through it

with input , where Ai {e'-e if i=a (i E actions)
0 otherwise

7. go to 1.

Figure 3.2: The algorithm for Framework AHCON.

called V-net, a policy network called policy net, and a stochastic action selector. In essence,
the framework decomposes reinforcement learning into two subtcks. The first subtask is to
construct, using TD methods, a V-net that models the V-function. The policy net takes a world
state I as inputs and assigns to each action a value (called action merit) indicating the relative
merit of performing that action in response to that world state. Thus, the second subtask is to
adjust the policy net so that it will assign higher merits to actions that result in higher utilities
(as measured by the V-net).

Idealy, the outputs of the policy net will approach the extremes, for example, I for the best
action(s) and - I for the others. Given a policy net and a state, the agent's policy is to choose
the action that has the highest merit. In order to learn an optimal policy effectively, the agent
has to take actions that appear suboptimal once in a while so that the relative merits of actions
can be assessed. A stochastic action selector, which favors actions having high merits, can be
used for this purpose.

In the course of learning, both the V-net and policy net are adjusted incrementally. Figure
3.2 summarizes the learning algorithm, in which the simplest TD method, TD(0), is used. 2

To use TD methods to learn an evaluation function, the first step is to write down a recursive
definition of the desired function. By Definition ( 3.1), the utility of a state x is the immediate
payoff r plus the utility of the next state y, discounted by -i (assuming that the current policy
is followed throughout the future). Therefore, the optimal V-function must satisfy Equation
(3.3):

V(x) = r + -y V(y) (3.3)

'Normally an agent's internal description of the world-is obtained from a vectoi of sensory readings, which
may or may not be pre-processed. Here it is assumed that the agent's input adequately represents the external
world and is sufficient to determine the optimal actions. See Chapter 7 for relaxing this assumption.

2See Chapter 5 for using TD(A) with general A
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Figure 3.3: Framework QCON. The bold lines indicate a vector of signals and the thinner lines
indicate a scalar signal.

During learning, the equation may not hold true. The difference between the two sides of
the equation (called TD error) is reduced by adjusting the weights of the V-net using the
back-propagation algorithm (Step 5).

The policy net is also adjusted (Step 6) according to the same TD error. The idea is as
follows: If e' > e, meaning that action a is found to be better than previously expected, the
policy is modified to increase the merit of the action. On the other hand, if e' < e, the policy is
modified to decrease the merit. The policy net is not updated with respect to actions other than
a, since from a single experience we know nothing about the merits of the other actions.

Duing learning, the stochastic action selector (i.e., the select function in the algorithm)
chooses actions randomly according to a probability distribution determined by action merits.
In this work, the probability of choosing action ai is computed as folJows:

Prob(a,) = e~iT/1 erk"I/ (3.4)
k

where mi is the merit of action ai, and the temperature T adjusts the randomness of action
selection.
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1. x 4-current state; for each action i, U,--- Q(xi);
2. a ,--select(U, T);
3. Perform action a; (y, r) +- new state and reinforcement;
4. u' *- r + -y Max{Q(y, k) Ik E actions);
5. Adjust the Q-net by back-propagating error AU(u'- U, if i= a

through it with input x, where AUi = 0 U otherwise

6. goto 1.

Figure 3.4: The algorithm for Framework QCON.

3.4 Framework QCON

Framework QCON is a connectionist implementation of Q-Iearning [74]. QCON learns a
network (called Q-net) that models the Q-function. Given a Q-net and a state x, :he agent's
policy is to choose the action a for which Q(x, a) is maximal over all actions. Therefore, the
Q-net is not only an evaluation function but also used as a policy.

The learning algorithm is depicted in Figure 3.4. In a deterministic world, the utility of an
action a in response to a state x is equal to the immediate payoff r plus the best utility that can
be obtained from the next state y, discounted by -y. Therefore, the optimal Q-function must
satisfy Equation ( 3.5):

Q(z,a) = r + -" Max{OQ(y, k) I k E actions} (3.5)

During learning, the difference between the two sides of the equation is minimized using the
back-propagation algorithm (Step 5). Note that the network is not modified with respect to
actions other than a, since from a single-experience we know nothing about the utilities of the
other actions.

The Q-net can be implemented by a multi-layer network with multiple outputs; one for each
action. This implementvtion, however, might not be desirable, because whenever this network
is modified with respect to an action, no matter whether it is desired or not, the network is also
modified with respect to the other actions as a result of shared hidden units between actions. An
alternative is to use multiple networks to represent the Q-function; one network for each action
and each with a single output. I call this network structure OAON, One Action One Network
(see also Chapter 7.4). A similar argument caza apply to the policy network of Framework
AHCON. In this dissertation, I use OAON to implement Q-nets and policy nets.

Again, a stochastic actiot, seleator can be used to explore the consequences of different



3.5. EXPERIENCE REPLAY AHCON-R AND QCON-R 29

actions. In this work, the probability of choosing action ai is computed as follows:

Prob(a1 ) = eQ(zai)/T/ 2 eQ(r'ah)/T (3.6)
k

where x is the input state and T adjusts the randomness of action selection.

3.5 Experience Replay: AHCON-R and QCON-R

The basic AHC- and Q-learning algorithms described above are inefficient in that experiences
obtained by trial-and-error are utilized to adjust the networks only once and then thrown away.
This is wasteful, since some experiences may be rare and some (such as those involving
damages) costly to obtain. Experiences should be reused in an effective way.

In this dissertation, two terms are often used:

# Experience. An experience is a quadruple, (x, a, y, r), meaning that the execution of an
action a in a state z results in a new state y' and reinforcement r.

* Lesson. A lesson is a temporal sequence of experiences starting from an initial state to a
final state, where the goal may or may not be achieved.

The most straightforward way of reusing experiences is what I call experience replay. By
experience replay, the learning agent remembers its past experiences and repeatedly presents
the experiences to its learning algorithm as if the agent experienced again and again what it had
experienced before. The usefulness of doing this is two-fold:

"* the process of credit/blame propagation is sped up, and
"* an agent would get a chance to refresh what it has learned before.

During training a network, if an input pattern has not been presented for quite a while, the
network typically will forget what it has learned for that pattern and thus need to re-learn it
when that pattern is seen again later. This problem is called the re-learning problem. Consider
the following scenario: The state space consists of two parts, A and B. The agent is now
exploring part A, and has not visited part B for a long period of time. The agent may thus forget
what it has learned for part B. By experience replay, the agent can mentally re-experience part
B and refresh what it has learned.

It is important to note that a condition for experience replay to be useful is that the laws
that govern the environment of the iearning agent should not change over time (or at least
not change rapidly), simply because if the laws have changed, p!st e,;periences may become
irrelevant or even misleading.

Experience replay can be more effective in propagating credit/blame if a sequence of
experiences is replayed in temporally backward order. It can be even more effective if TD(A)
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methods are used with A > 0. With A > 0, the TD error for adjusting network weights is
determined by the discrepancy between not only two but multiple consecutive predictions.
Chapter 5 presents a detailed algorithm and study of using backward replay and nonzero A in
a mooile robot domain. In this chapter and the next chapter, only backward replay and A = 0
are used for simplicity reasons.

3.5.1 Replaying Only Policy Actions

The algorithm for AHCON-R is simply repeated presentation of past experiences to the algo-
rithm for AHCON (Figure 3.2), except that experiences involving non-policy actions (according
to the current policy) are not presented By presenting an experience to the algorithm, I mean
to bind the variables, (x, a, y, r), used in the algorithm with the experience. The reason for
the exception is the following: AHCON estimates V(x) (relative to the current policy) by
sampling the current policy (i.e., executing some policy actions). Replaying past experiences,
which is equivalent to sampling policies in the past, will disturb the sampling of the current
policy, if the past policies are different from the current one. Consider an agent whose current
policy chooses a very good action a in state x. If the agent changes to choose a very bad
action b in the same state, the utility of state x, V(z), will drop dramatically. Similarly, V(x)
will be underestimated if the bad action b are replayed a few times. For experience replay to
be useful, the agent should only replay the experiences involving actions that still follow the
current policy.

The algorithm for QCON-R is simply repeated presentation of past experiences to the
algorithm for QCON (Figure 3.4). Just like AHCON-R but for a different reason, QCON-
R should also replay only the actions that follow the current policy. Consider the previous
example. Even if the agent changes from choosing good action a to choosing bad action b
in state x, the values of both Q(x, a) and Q(x, b) will not change. As a matter of fact, if the
Q-function is represented by look-up tables, Watkins and Dayan [74, 751 have shown that
Q-learning is guaranteed to find the optimal policy as long as all state-action pairs are tried
infinitely often (see Chapter 2.2). In other words, it is not harmful for the tabular version
of Q-learning to replay bad actions. But this does not hold true for connectionist Q-learning,
because whenever the back-propagation a.&gorithm modifies the Q-net with respect to one input
state, it also affects the network with respect to many or all input states. If the Q-net is trained
on bad experiences many times consecutively, the network might come to underestimate the
real utilities of some state-action pairs. If a bad action is never replayed, the Q-net may not
have an accurate estimate of this action's utility. But this may be fine, since the agent has no
need to know the exact utility of bad actions.

In short, AHCON-R and QCON-R should replay only policy actions. If a stochastic policy
is used as suggested, previously, all actions have more or less possibility of being chosen, and
it is thus difficult to say whether an action is a current policy action or not. In this work, an
action is considered as non-policy action, if its probability (see Equations (3.4) and ( 3.6)) of
being chosen (according to the current policy) is lower than some threshold, P1.
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3.5.2 Over-Replay

To be efficient in terms of computational time and memory space, AHCON-R and QCON-R can
keep and replay only recent experiences, because experiences in the far past typically involve
many bad action choices and are thus less worth keeping than recent experiences.

Note that the correctness of Q-learning and AHC-learning relies on the assumption that
next states are visited in proportion to their probabilities. Improper experience replay may
invalidate this assumption, causing an over-replay problem. Consider an agent living in a
nondeterministic world. Whenever the agent is in state x and performs action a, 80% of the
time it will receive a great penalty, while 20% of the time it will receive no penalty. If the agent
experienced only the situation with no penalty and is trained on this experience many times,
the agent will come to believe that it is harmless to perform a in x, which is certainly wrong.

One way to prevent over-replay is to replay each experience roughly the same number of
times except that bad actions need not be replayed.

3.6 Using Action Models: AHCON-M and QCON-M

Another way of reusing past experiences is to use experiences to build an action model and
use it for planning and learning. This way of reusing experiences has been investigated in
Sutton's DYNA architecture [67]. An action model is a function from a state and an action,
(z, a), to the next state and the immediate reinforcement, (y, r). For stochastic worlds, each
action may have multiple outcomes. To be precise, the action model may also need to model
the probability distribution of outcomes- this issue is not addressed in this research, however.

An action model is intended to mimic the behaviors of the environment. Using an accurate
action model (if it is available), the agent can experience the consequences of actions without
participating in the real world. As a result, the agent will learn faster (if projecting is faster than
acting) and more importantly, fewer mistakes will be committed in the real world. Frameworks
AHCON-M and QCON-M to be discussed below are based on this idea.

3.6.1 Framework AHCON-M

Framework AHCON-M is very similar to Framework AHCON, but differs inthat AHCON-M
also learns an action model and uses it to do what Sutton called relaxation planning [67]. Re-
laxation planning is an incremental planning process that consists of a series of shallow (usually
one-step look-ahead) searches and ultimately produces the same results as a conventional deep
search. In Sutton's DYNA architecture, his learning algorithm (similar to the one for AHCON)
is applied to real-world situations faced by the agent and also hypothetical situations randomly
generated. In the former case the next state is obtained by executing an action, while in the
latter case the next state is obtained by applying an action model. His approach has two ineffi-
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1. x +--current state; e - V(x);
2. Select promising actions S according to policy(x);
3. If there is only one action in S, go to 8;
4. Fora E S do

4.a. Simulate action a; (y, r) +- predicted new state and reinforcement;
4.b. E. 4- r + -y,/ V(y);

5. A (-- •X•s Prob(a). E.; max +- Maxf{E E a E S};
6. Adjust the V-net by back-propagating error (max - e)

through it with input x;
7. Adjust the policy net by back-propagating error A through itSE,-pif aES

with input x, where A. 0 otherwise

8. exit.

Figure 3.5: Relaxation planning algorithm for AHCON-M. Prob(.) is the probability function
for stochastic action selection.

ciencies. First, since hypothetical situations are randomly generated, the agent may spend too
much effort planning what to do about hypothetical situations that will never happen in the :eal
world at all. Second, it is not clear how his approach decides when relaxation planning is no
longer necessary and to stop doing it.

The relaxation planning algorithm (see Figure 3.5) proposed here addresses both ineffi-
ciencies by projecting all actions from states actually visited, not from states chosen at random.
Since all actions to a state are examined at the same time, the relative merits of actions can be
more directly and effectively assessed than the kind of policy iteration [26] used in AHCON
and the DYNA architecture. Compared with the DYNA architecture, the disadvantage of this
algorithm, however, is that the number of hypothetical experiences tL at can be generated is
limited by the number of states visitied.

In a deterministic world, the utility of a state x is equal to the immediate payoff r obtained
from executing the best action a plus the discounted utility of the new state y:

V(x) = Max{r + -y V(y) I a E actions} (Note: y is a function of a) (3.7)

Thus, if a correct action model is available, the utility of a state can be effectively estimated
by looking ahead one step. During learning, the V-net is adjusted to minimize the difference
between the two sides of Equation ( 3.7) (Step 6).

The policy net is updated in the following manner: First we compute the average utility of
state x, 1A, assuming that the current policy and stochastic action selector will be used throughout
the future (Step 5). Prob(.) is the probability distribution function for action selection; it is
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1. x +- current state; for each action i, Ui +- Q(x, i);
2. Select promising actions S according to U;
3. If there is only one action in S, go to 6;
4. For a E S do

4.a. Simulate action a; (y, r) +- predicted new state and reinforcement;
4.b. U, +- r + -" Max{Q(y, k) I k E action.s};

5. Adjust the Q-net by back-propagating error AU
-U•-• if aES

through it with input x, where AU. = - otherwise

6. exit.

Figure 3.6: Relaxation planning algorithm for QCON-M.

Equation (3.4) in this work. Next, the policy n&twork is modified to increaseldecrease the
merits of actions which are abovelbelow the average (Step 7).

The algorithm for Framework AHCON-M is similar to that for AHCON, except that
relaxation planning may take place either before Step 2 or after Step 3 (in Figure 3.2)- in the
latter case the agent will be more reactive, while in the former case the agent may make better
action choices because it can benefit directly from the one-step look-ahead. To be efficient,
relaxation planning is performed selectively (Steps 2 & 3 in Figure 3.5). The idea is this: For
situations where the policy is very decisive about the best action, relaxation planning is not
needed. If the policy cannot be very sure about which is the best action, relaxation planning is
performed. In this way, at the beginning of learning, all actions are equally good and relaxation
planning is performed frequently. As learning proceeds, relaxation planning is performed less
and less often. (In this work, promising actions are those whose probability of being chosen is
greater than 2%.)

3.6.2 Framework QCON-M

Framework QCON-M is Framework QCON plus using action models. The algorithm
is similar to that in Figure 3.4. The main difference is that before Step 2 or after Step 3,
the agent can perform relaxation planning by looking one step ahead (see Figure 3.6). For
the same reason that it is harmful for QCON-R to replay non-policy actions (Section 3.5),
experiencing bad actions with a model can be also harmful '. Therefore, relaxation planning
must be performed selectively. For situations where the best action is obvious, no look-ahead
planning is needed. If there are several promising actions, then these actions are tried with the

3AHCON-M does not have this problem, since at each planning step, only the most promising action is used
to determine the amount of change to V(z).
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model. QCON-M is similar to Sutton's DYNA-Q architecture except that only the currently
visited state is used to start hypothetical experiences. (Again, in this work, promising actions
are those whose probability of being chosen is greater than 2%.)

3.7 Teaching: AHCON-T and QCON-T

Teaching plays a critical role in human learning. Very often teaching can shorten our learning
time, and even turn intractable learning tasks into tractable ones. If-learning can be viewed as
a search problem [44], teaching, in some sense, can be viewed as external guidance for this
search. Consider a reinforcement learning agent that attempts to reach a goal state in a large
state space for the first time. If the agent begins with zero knowledge, it has to find a way
to the goal state by trial-and-error, which may take an arbitrarily long time if the probability
of achieving the goal by chance is arbitrarily small. This learning barrier will prevent agents
from shortening learning time dramatically on their own. One way to overcome the barrier is
to learn expertise directly from external experts.

Teaching is useful in three ways:

"* Partial solutions can be readily available from teachers.

" Teaching can direct the learner to first explore the promising part of the search space
which contains the goal states. This is important when the search space is large and
thorough search is impractical.

" Teaching can help the learner avoid being stuck in local optima during the search for
optimal control. Real examples can be found in Chapter 5.4.1.

Frameworks AHCON-T and QCON-T, which are AHCON-R and QCON-R plus teach-
ing, use exactly the experience replay algorithms for AHCON-R and QCON-R, respectively.
Teaching is conducted in the following manner: First, a teacher shows the learning agent how
an instance of the target task can be accomplished from some initial state. The sequence of
the shown actions as well as the state transitions and received reinforcements are recorded
as a taught lesson. Several taught lessons can be collected and repeatedly replayed the same
way experienced (i.e., self-generated) lessons are replayed. In this dissertation, the term lesson
means both taught and experienced lessons.

3.7.1 Comparison with Supervised Learning

It is unnecessary that the teacher demonstrate only optimal solutions in order for the agent to
learn an optimal policy. In fact, the agent can learn from both positive and negative examples.
This property makes this approach to teaching different from supervised learning approaches
such as [50, 54]. In the supervised learning paradigm, a learning agent tries to mimic a
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teacher by building a mapping from situations to the demonstrated actions and generalizing the
mapping. The drawbacks of supervised learning are as follows:

1. The teacher is required to create many many training instances to cover most of the
situations to be encountered by the agent.

2. When a new situation is encountered and the agent does not have a good strategy for it,

a teacher must be available to give the solution.

3. If the teacher is not an expert, we generally do not expect the agent to become an expert.

The third drawback is often neglected by researchers, but it is important when humans want
to build robots using supervised learning techniques. Since humans and robots have different
sensors and hence see different things, an optimal action from a human's point of view may
not be optimal for robots if we take into account the fact that robots may not be able to sense
all the information that humans use to make decisions. Human teachers must teach in terms of
what robots can sense- sometimes this is difficult to do.

Frameworks AHCON-T and QCON-T do not have the first and second drawbacks, because
they can improve performance from reinforcement. They also do not have the third drawback,
because they do not learn by mimicking the teacher. Instead, they determine the real utilities of
the shown actions. On ,L other hand, an expert can give the learner more instructive training
instances than a naive teacher.

3.7.2 Over-Replay

Like experienced lessons, taught lessons should be replayed selectively; in other words, only
policy actions should be replayed. But if the taught actions are known to be optimal, all of
them can be safely replayed.

Recall that improper experience replay may violate the correctness assumption that next
states are visited in proportion to their probabilities, and cause an over-replay problem (Section
3.5.2). Similarly, learning from teaching experiences may also invalidate this assumption, if
teaching experiences are replayed many times in a short period of time. Thus, it is important
for agents not to be over-trained on teaching experiences.

3.8 A Note: AHC-learning vs. Q-learning

While the convergence of Q-learning has been proved by Watkins and Dayan [74,75], it is still
unclear whether AHC-learning will always converge and find the optimal control policy. In
AHC-learning, there are two concurrent learning processes: learning a V-function and learning
a policy. Both processes interact closely- a change to the policy will re-define the target
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V-function, and an update to the V-function will cause the policy to change. It is possible
that these two processes will interact to either prevent convergence or stablize to a suboptimal
policy.

3.9 Stnmary

This chapter discussed two existing reinforcement learning methods; namely, AHC-learning
and Q-learning. Both methods are based on temporal difference methods to learn an evaluation
function of states or state-action pairs. The main idea is to write down a recursive definition
of the target evaluation function and then incrementally construct a function to satisfy this
definition. Here AHC-learning and Q-learning were extended to use neural networks as a
generalization mechanism, which is expected to scale up reinforcement learning for problems
with a large state space. As we have seen, the integration of neural networks and temporal
difference methods is quite natural.

In addition to neural networks, three scaling-up extensions were also discussed:

9 Experience replay. Sequences of experiences are stored and repeatedly replayed in tem-
porally backward order. For good performance, experiences involving non-policy actions
should not be replayed. For nondeterministic domains, the sampling of experiences for
replay should reflect the actual probability distribution of multiple action outcomes.

* Using action models. Experiences are reused to build an action model. When the model is
sufficiently good, it can replace the real world and allow an agent to mentally experience
the effects of its actions without actually executing them.

9 Teaching. Instructive training examples are generated by a human teacher, and replayed
by the learning agent just like self-generated experiences.



Chapter 4

Scaling Up: Survival Task

This chapter reports simulation experiments of the learning frameworks presented in the previ-
ous chapter. The learning task studied here is for an agent to survive in an unknown environment
consisting of obstacles, food, and predators. The environment is nondeterministic and mod-
erately complex. By testing the frameworks against such a hard learning task, we expect to
see whether reinforcement learning can scale up and which framework may work Detter than
another.

4.1 A Dynamic Environment

The learning domain used here to evaluate the various frameworks is a 25x25 cell world.
A sample environment is shown in Figure 4.1. L There are four kinds of objects in the
environment: the agent (C'V), food ("$"), enemies ("F"), and obstacles ("0"). The perimeter
of the world is considered to be occupied by obstacles. The bottom of the figure is an energy
indicator ("HW). At the start, the agent and four enemies are placed in their initial positions as
shown in Figure 4.1, and fifteen pieces of food are randomly placed on unoccupied cells. On
each move, the agent has four actions to choose from; it can walk to one of the four adjacent
cells. If the agent attempts to walk into obstacles, it will remain at the same position.

After the agent moves, each of the enemies is allowed to stay or move to an adjacent cell
that is not occupied by obstacles. To allow the agent to escape from chasing enemies, the
enemy speed is limited to 80% of the full speed of the agent. The enemies move randomly,
but tend to move toward the agent; the tendency becomes stronger as the agent gets closer.
Appendix A. 1 gives the algorithm for choosing enemy actions.

SIt may appear that the learning task is too simplified by making the obstacles symmetric. That is not completely
true, because there are also other objects in the world- enemies and food pieces are positioned randomly and with
no symmetrical pattern. The number of different input patterns that the agent is likely to come across is estimated
to be greater than 210.

37
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Figure 4.1: A dynamic environment involving an agent(I), enemies(E), food($), and obsta-
cles(O). The H's indicate the agent's energy level.

The agent has two goals: to get as much food as possible and to avoid being caught by
enemies. Note that the two goals conflict in some situations, and the agent must learn to
arbitrate between them. A play ends when the agent gets all of the food or dies. The agent
dies when it either collides with an enemy or runs out of energy. At the start of a new play, the
agent is given 40 units of energy. Each piece of food provides the agent 15 units of additional
energy, and each move costs the agent I unit. These parameter values were empirically chosen
so that survival in the environment would not be too easy or too difficult.

To make the learning task more interesting and realistic, the agent is allowed to see only
a local area surrounding it. From the agent's point of view, the world is nondeterministic,
not only because the enemies behave randomly, but also because the world is only partially
observable (thus, what will be seen after a move is not completely predictable). Although a
human player with the same field of view can avoid the enemies and get all of the food most
of the time, survival in this environment is not trivial. To survive, the agent must learn to (1)
approach food, (2) escape from enemies, (3) avoid obstacles, (4) identify and stay away from
certain dangerous places, (e.g., corridors), where it can be easily seized, and (5) seek food when
food is out of sight.
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4.2 Learning Agents

This section presents the implementation of four AHC-agents (i.e., Agents AHCON, AHCON-
R, AHCON-M, and AHCON-T) and four Q-agents (i.e., Agents QCON, QCON-R, QCON-M,
and QCON-T), which learn to survive in the environment. The agents are named after the
learning frameworks on which they are based. In order to compare their performance, the
agents use exactly the same reinforcement signals and sensory inputs as described below. Note
that once the agents die, they get re-incarnated to try again, and in the meanwhile their learned
networks are preserved.

All of the connectionist networks are trained using a symmetrical version of the error
back-propagation algorithm; the squashing function is a variation of the sigmoid function:
f(x) = 1/(I + e-) -0.5.

4.2.1 Reinforcement Signals

After each move, each learning agent receives one of the following reinforcement signals:

- 1.0 if the agent dies,
* 0.4 if the agent gets food,
* 0.0 otherwise.

Negative reinforcement is considered bad, and positive is good. The food reward is smaller
than the penalty for being dead, since it is more important to stay alive. The food reward, 0.4,
was chosen empirically; a few different values were tried for Agent AHCON, and 0.4 gave
roughly the best performance. Theoretically speaking, the agent should learn to get food even
without food rewards, because the agent is required to get food to stay alive. But the sooner
good action decisions are rewarded, the sooner the agent should learn.

4.2.2 Input Representations

As described in Chapter 3, AHC-agents have a V-net and a policy net, while Q-agents have
a Q-net. This subsection describes the input representation for the networks, while another
subsection describes the output representation.

The V-net, Q-net, and policy net are all structurally similar; each of them is a feed-forward
network, consisting of 145 input units, 1 output unit, and a layer of hidden units. (The number
of hidden units is a parameter to be tuned for performance.) The networks are fully connected
except that there are no connections between the input and output units. The input units of the
networks can be divided into five groups: enemy map, food map, obstacle map, energy level,
and some history information. Each of the maps shows a certain kind of object in a local region
surrounding the agent and can be thought of as being obtained by an array of" sensors fixed
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Figure 4.2: The (a) food, (b) enemy, and (c) obstacle sensor arrays.

on the agent. The sensor array moves as the agent moves. If the local action representation
(see Section 4.2.3) is used, the array also rotates as the agent rotates. Figure 4.2 shows the
configuration of the food, enemy and obstacle sensor arrays.

Each food sensor may be activated by several nearby food objects and each food object may
activate several nearby food sensors. The food sensor array is composed of three different types
of sensors, types "X', "0", and "Y". Different food sensor types have different resolution and
different receptive fields- "XV, "0", and "Y" sensors can be activated by food at any of the
five, nine, and thirteen nearby cells, respectively. This technique of encoding spatial positions
of objects is known as coarse coding [24]. Through the use of multiple resolution and coarse
coding techniques, the food positions are effectively coded without loss of critical information.

The enemy sensor array has a similar layout of the food sensor array, except that it consists
of only "X'" and "0" types of sensors. The obstacle sensors are organized differently; there is
only one type of obstacle sensor, and each obstacle sensor is only activated by ar obstacle at
the corresponding cell. The coarse coding technique is not used to encode obstacle positions,
because it only works effectively when the features to be encoded are sparse [24], and this is
not the case for obstacles.

The agent's energy level is, again, coarse-coded using sixteen input units. Each of the
sixteen units represents a specific energy level and is activated when the agent's energy level
is close to that specific level. Finally, four units are used to encode the agent's previous action
choice and one unit to indicate whether or not the previous action resulted in a collision with an
obstacle. These five units convey a kind of history information, which allows the agent to learn
heuristics such as "moving back to previous position is generally bad", "when no interesting
objects (e.g., food) are around, keep moving in the same direction until you see something
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interesting", etc.

4.2.3 Action Representations

The agent has four actions. This work experimented with two different representations of agent
actions:

* Global representation: The four actions are to move to the north, south, west and east,
regardless of the agent's current orientation in the environment.

e Local representation: The four actions are to move to the front, back, right and left
relative to the agent's current orientation.

If the local representation is used, the agent begins with a random orientation for each new
play, and its orientation is changed to the move direction after each step. For instance, if the
agent takes four consecutive "right" moves and no collision occurs, it will end up being at tK,:
same cell with the same orientation as before.

4.2.4 Output Representations

The single output of the V-net represents the estimated utility of the input state. Corresponding
to the action representations, there are two different output representations for the policy net
and Q-net.

Global representation: With this action representation, the agent uses only one network to
implement the policy net. The network has a single output representing the merit of moving to
the "north". The merits of moving in other directions can be computed using the same network
by rotating the state inputs (including food map, enemy map, obstacle map, and the 4 bits
encoding the agent's previous action) by 90, 180, and 270 degrees. Similarly, the agent uses
only one network to implement the Q-net. The network has a single output representing the
utility of moving to the "north" in response to the input state. Again, the utilities of moving in
other directions can be computed by rotating the state inputs appropriately. By taking advantage
of action symmetry, the learning tasic is simplified, because whatever is learned for a situation
is automatically carried over to situations which are more or less symmetric to it.

Local representation: This representation does not take advantage of action symmetry.
Four networks (one for each action) are used to implement the policy net and Q-net, and each
network has a single output.

All of the network outputs are between -I and +1. By Definition ( 3.1), the V-function
and Q-function may be greater than I when the agent is close to many pieces of food. In such
(rare) cases, they are truncated to 1 before being used to compute TD errors. Also, the output
units of the V-net and Q-net use mainly the linear part of the sigmoid function.
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4.2.5 Action Models

Agents AHCON-M and QCON-M learn an action model. The action model is intended to
model the input-output behavior of the dynamic environment. More specifically, given a world
state and an action to be executed, the model is to predict what reinforcement signal will be
received, where the food, enemies and obstacles will appear, and what the agent's energy level
will be. In this nondetermihiistic environment, each action can have many possible outcomes.
There are two alternatives to modeling the environment: the action model can generate either
a list of outcomes associated with probabilities of happening or only the most likely outcome.
The second alternative is adopted, because of its simplicity.

Since the food and obstacles do not move, their positions were found to be quite easy
to predict using connectionist networks. So, to shorten simulation time without significantly
simplifying the model-learning task, Agents AHCO1'T-M and QCON-M were only required
to learn reinforcement networks for predicting the immediate reinforcement signal and enemy
networks for predicting the enemy positions. The reinforcement and enemy networks are
single-layer networks (i.e., without hidden layers). The reinforcement networks use as inputs
all of the 145 input bits mentioned before, while the enemy networks use only the enemy
and obstacle maps. The single output of each enemy network is trained to predict whether a
particular enemy sensor will be turned on or off after the agent moves.

The reinforcement and enemy networks are learned on-line just like the other networks.
Learning these networks is a kind of supervised learning, and the encountered experiences
(i.e., x, a, y, r) can be saved in a queue (of limited length) for repeated presentation to the
networks. Because the enemies are nondeterministic and the agent does not know the exact
enemy positions due to coarse coding, the prediction of enemy positions was found to be often
incorrect even after the networks were well-trained.

To avoid using a completely senseless model, Agents AHCON-M and QCON-M in fact
do not perform relaxation planning for the first 10 plays. Since it is also interesting to see
what performance they will have if a perfect model can be learned quickly, AHCON-M and
QCON-M are also provided with a "perfect" model, which is simply the environment simulator.
Section 4.4.3 presents a performance comparison between using a perfect model and using a
learned, potentially incorrect one.

4.2.6 Active Exploration

As described in Chapter 3.3 and 3.4, the learning agents use a stochastic action selector as a
crude strategy for active exploration. The stochastic action selector uses a temperature param-
eter T to control the randomness of action selection. For better performance, a complementary
strategy is also used: Each learning agent dead-reckons its trajectory and increases the temper-
ature T whenever it finds itself stuck in a small area without getting food. A similar strategy
is also used in Chapter 5. For both domains, this strategy was found good enough, although
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further improvement should be possible to obtain by using a better exploration strategy.

4.2.7 Other Details

Agents AHCON-R, QCON-R, AHCON-T, and QCON-T use the following heuristic strategies
to control the amount of experience replay and to prevent the over-replay problem mentioned
in Chapter 3.5.2 and 3.7.2:

"* After each play, each agent replays n lessons chosen randomly from the most recent
100 experienced lessons, with recent lessons exponentially more likely to be chosen. ni
decreases linearly over time and is between 12 and 4. Appendix A.2 gives the algorithm
for choosing experiences stochastically.

"* After each play, Agents AHCON-T and QCON-T also stochastically choose taught
lessons for replay. Each of the taught lessons is chosen with a decreasing probability
between 0.5 and 0.1.

The numbers given above are not critical to the agents' performance. In fact, replaying more
experiences may result in better performance, but it also demands more computational time.

Recall that only policy actions are replayed. Policy actions are those whose probability
of being chosen is greater than P1. For AHCON-R, Pg = 0.2 was found to give roughly the
best performance for the survival task. For QCON-R, P, = 0.1, 0.01 and 0.001 were tried and
found to give similar performance. (P1 = 0 indeed gave poor performance.) In other words,
AHCON-R is quite sensitive to replaying non-policy actions, while QCON-R is much less
sensitive. The difference in sensitivity can be explained by the fact that replaying non-policy
actions, in the case of using look-up tables, is bad for AHC-learning but is fine for Q-learning
(see Chapter 3.5.1).

The experimental results reported below were obtained with P1 = 0.2 for AHC-agents and
P1 = 0.01 for Q-agents. Since the taught lessons I gave to the agents were nearly optimal, P,
was in fact set to 0 during replaying taught lessons.

Recall also that Agents AHCON-M and QCON-M mentally experience only promising
actions. In this simulation study, an action is considered promising if its probability of being
chosen is greater than 2%.

4.3 Experimental Results

This section presents performance of the various learning agents. In the first study, the agents
used the global action representation and took advantage of action symmetry. In the second
study, the agents used the local action representation and did not exploit action symmetry.
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4.3.1 Experimental Designs

Each study consisted of 7 experiments. (Each experiment took a Sparc Station two days to
complete.) For each experiment, 300 training environments and 50 test environments were
randomly generated. The agents were allowed to learn only from playing the 300 training
environments. Each time an agent played 20 training environments, it was tested on the 50
test environments with learning turned off and the temperature T set to zero. The average
number of food pieces obtained by the agent in the test environments was then plotted versus
the number of training environments that the agent had played so far. The learning curves
presented below show the mean performance over all of the 7 experiments.

For both studies, two taught lessons were provided for Agents AHCON-T and QCON-T to
use. To generate a lesson, T pretended to be the agent trying to survive in a manually-chosen
environment, which involved a few instructive situations. I got all the food in each of the
lessons.

Each learning agent has several parameters that can be tuned for performance:

" -f: the discount factor (fixed to be 0.9);
"• T: the temperature for the stochastic action selector;
"* H,, H. and H.: the number of hidden units of the V-nets, policy nets, and Q-nets;
"• q,,, irp and 7?q: the learning rate of the back-propagation algorithm for the V-nets, policy

nets, and Q-nets;
"* the momentum factor of the back-propagation algorithm (fixed to be 0.9 for all networks);
"• the range of the random initial weights of networks (fixed to be 0.1).

4.3.2 Study 1: Using Global Action Representation

In this study, the agents used the global acuon representation and exploited action symmetry.
Table 4.1 shows the parameter settings used to generate the learning curves shown in Figure
4.3. Those parameter values were empirically chosen to give roughly the best performance for
Agents AHCON and QCON. Little search was done for the other agents. AHC-agents used
a temperature much higher than that used by Q-agents, because action merits are supposed to
approach 1 for the best action(s) and - I for the others, while utilities of state-action pairs are
usually small numbers between 1 and - 1. Cooling temperatures were used, although fixed low
temperatures seemed to work as well. The learning agents with learning-speedup techniques
used smaller learning rates than those used by the basic learning agents, because the former
adjusted their networks more often.

4.3.3 Study 2: Using Local Action Representation

In this study, the agents used the local action representation and did not exploit action symmetry.
The agents used tl~e same parameter settings as in Study 1, except that all the learning rates
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Figure 4.3: Learning curves of the agents using the global action representation.
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Table 4.1: Parameter values used for Study 1, which used a global action representation

Agent H 77 T
AHCON H,, = 30 th,,= 0.2 1/T = 2 -+ 10

H.=30 7p=0.4

other H, = 30 i/ = 0.1 1/T=2-+ 10
AHC-agents Hp = 30 i~p = 0.2

QCON Hq=30 77q--0.3 1/T=20-60
other Q-agents Hq = 30 1rq = 0.15 I/T = 20-- 60

were doubled. Figure 4.4 shows the learning curves of the agents.

4.3.4 Observations

Among all the learning agents, QCON-T was roughly the best one. To see the absolute per-
formance of the best agent after 300 plays, I tested QCON-T against 8000 randomly generated
environments. The following table shows how often the agent got all the food, got killed, or
ran out of energy.

-got all food got killed ran out of energy
39.9% 31.9% 28.2%

In average the agent got 12.1 pieces of food in each play. The table below shows how often the
agent got no food, 1 piece of food, more pieces, or all of the 15 pieces.

1 0 1 2 13 4 1 5 6 7 8 9 1011 12 13 114 5
% 0.1 0.3 0.8 1.8 2.2 2.9 4.0 4.1 3.8 3.7 3.4 4.1 5.4 8.2 15.2 39.9

As mentioned previously, the learning curves in Figures 4.3 and 4.4 show the mean
performance over 7 experiments. The standard deviations of these curves, point by point, are
roughly 2 food pieces in the begin-aing of learning and I food piece at the end of the experiments.
Generally speaking, the agents who had better performance had smaller performance deviations
between experiments. But an agent's performance difference between experiments did not
imply much about the repeatability of experimental results, because each experiment used a
different set of training and test environments. What really matters is the relative performance
of agents, which was found consistent most of the time through each entire experiment.

4.4 Discussion

This section compares the learning agents by analyzing the experimental results in Section
4.3. In each of the coming subsections, I first compare the agents from the aspects of learning
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speed and final performance at the end of the experiments, and then discuss implications of the
results. In the comparison, I use X > Y to mean agent X is better than agent Y. Similarly, <
means worse, •z means similar, > means slightly better, and _< means slightly worse.

4.4.1 AHC-agents vs. Q-agents

learning speed final performance
Global Q-agent"> AHC-agent Q-agent > AHC-agent
Local Q-agent = AHC-agent Q-agent z% AHC-agent

In the first study with the global action representation, Q-agents performed better than
AHC-agents. A number of previous studies [35, 67] also found the superiority of Q-learning
over AHC-leaming. But Study 2 with the local action representation did not confirm this
superiority. It is still an open question whether Q-learning works better than AHC-learning in
general.

Q-agents' final performance was basically unaffected by using different action representa-
tions, while for AHC-agents, the local action representation apparently worked better than the
global action representation as far as the final performance is concerned. This result suggests
that different action representations, as well as different input representations, may make a big
difference in the performance of a learning system.

4.4.2 Effects of Experience Replay

learning speed final performance
Global AHCON-R > AHCON AHCON-R ; AHCON

QCON-R > QCON QCON-R ," QCON
Local AHCON-R > AHCON AIHCON-R > AHCON

I QCON-R > QCON . QCON-R > QCON

Experience replay indeed made learning converge faster, while the final performance was
unchanged in the case of using the global representation. In general, asymptotic performance
is expected to remain the same no matter whether experience replay is used or not.
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4.4.3 Effects of Using Action Models

learning speed final performance
perfect AHCON-M > AHCON AHCON-M> AHCON

Global model QCON-M > QCON QCON-M • QCON
learned AHCON-M ; AHCON AHCON-M ; AHCON
model QCON-M < QCON QCON-M < QCON
perfect AHCON-M > AHCON AHCON-M > AHCON

Local model QCON-M> QCON QCON-M > QCON
learned AHCON-M > AHCON AHCON-M > AHCON
model QCON-M > QCON QCON-M z QCON

This result suggests that whether an action model helps depends on the relative difficulty of
acquiring the model and learning a control policy directly. If a perfect model is available, it is
always useful to use the model. If a sufficiently good model can be learned faster than a good
control policy (such as Study 2 with the local action representation), it is worthwhile to learn the
model. But if it is the opposite case (such as Study 1 with the global action representation), a
potentially incorrect model can only be misleading and hamper the learning of a control policy
in the early stage of learning. (In both studies, the model's prediction accuracy approached its
asymptote after approximately 50 plays.)

The agents never acquired a nearly perfect model for this nondeterministic world, even after
hundreds of plays. This suggests that a model need not be perfect to be useful.

As speculated in Chapter 3.6, relaxation planning should be needed less and less as learning
proceeds. This speculation was confirmed in both studies. Figure 4.5 shows the average number
of hypothetical actions that were taken on each step. (The curves show the mean results from
the 7 experiments of Study 2.) The maximum is 4, since there are 4 actions to choose from on
any step. As we can see from the figure, the amount of planning dropped very quickly as the
learning curves leveled off. But it did not drop close to zero at the end, because in this task
there are many situations where several actions are in fact almost equally good and therefore
they all ended up being tried in simulation. For tasks where only a small portion of actions are
relevant most of the time, the saving of relaxation planning should be more significant.

4.4.4 Effects of Teaching

learning speed final performance
Global AHCON-T ,t AHCON-R AHCON-T ;, AHCON-R

QCON-T ;, QCON-R QCON-T • QCON-R
Local AHCON-T > AHCON-R AHCON-T • AHCON-R

QCON-T > QCON-R QCON-T • QCON-R

Recall that AHCON-T/QCON-T is AHCON-RIQCON-R plus replaying taught lessons.
Because the task in the first study (with the global action representation) was not very difficult
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Figure 4.5: Average number of hypothetical actions taken on each step (from Study 2).

and experience replay alone had done a good job, there was not much improvement we could
expect from teaching. In the second study, there was a noticeable speed advantage to using
teaching experiences. This result suggests that the advantage of teaching should become more
significant as the learning task gets more difficult. Indeed, Chapter 5 reports similar results,
which are obtained from a simulated mobile robot.

4.4.5 Experience Replay vs. Using Action Models

learning speedc final performance
perfect AHCON-R > AHCON-M AHCON-R < AHCON-M

Global model QCON-R > QCON-M QCON-R _> QCON-M
learned AHCON-R > AHCON-M AHCON-R -ý AHCON-M]
model QCON-R > QiCON-M QCON-R > QCON-M
perfect AHCON-R_< AHCON-M AHCON-R _< AHCON-M

Local model QCON-R z• QCON-M QCON-R QCON-M
learned AHCON-R > AHCON-M AHCON-R . AHCON-M-
model F QCON-R > QCON-M - QCON-R > QCON-M

When the agents had to learn a model themselves there was clear, consistent superiority of
e7ýperience replay over using action models. But when the agents were provided with a perfect
action model, there was no clear, consistent superiority of one over the other. 'Ibis result can
be simply explained by the fact that it took some time for the agents to learn a sufficiently good
model before the agents could start taking advantage of it.

Why couldn't relaxation planning with a perfect action model outperform experience replay?
Two explanations:



4.4. DISCUSSION 51

1. The relaxation planning algorithms used here may not be the most effective way of using
action models. For example, the number of hypothetical experiences that AHCON-M
and QCON-M generated and used was limited by the the number of states actually visited.

2. Experience replay is also a kind of relaxation planning. By sampling past experiences,
experience replay in effect uses an action model, but it need not explicitly build one (in
the sense of doing curve-fitting, nearest neighbor, or the like). In essence, the collection
of past experiences is a model. It represents not only explicitly the environment's input-
output patterns but also implicitly the probability distributions of multiple outcomes of
actions.

Experience replay is effective and easy to implement. The main cost of using it is the
extra memory needed for storing experiences. So, is it of no use to learn an action model?
The answer is unclear. If a model is learned merely for doing relaxation planning, perhaps it
is not worthwhile to learn a model, since experience replay does the same thing as relaxation
planning. One may argue that: (1) a model that generalizes can provide induced or interpolated
experiences which are not seen before, and (2) the extra experiences will result in better learning
of the evaluation functions. But if the evaluation functions also generalize (as it should be the
case for non-toy tasks), it is unclear whether these extra experiences can actually do any extra
good.

On the other hand, having an action model can be useful. In this work I only investigated
how action models can be used for learning an evaluation function. There are other ways of
using a model to improve performance. For example, we can use an evaluation function, an
actioni model, and a look-ahead planning technique to help find the best actions [80, 72]. In
a complex domain where an optimal policy may be hardly obtainable, by looking ahead a few
steps (much as computer chess does), the non-optimality of a policy can be compensated, if an
accurate action model is available. How to use action models effectively is an interesting issue
and needs further study.

4.4.6 Why Not Perfect Performance?

Why did all the agents fail to reach the perfect performance (i.e., get all the food)? There
are at least two reasons: (I) The local information used by the agents may be insufficient to
determine the optimal actions, and (2) the perfect policy may be too complex to be represented
by the connectionist networks used here. As a matter of fact, I also played against the simulator
myself. Being allowed to see only objects in the local region as the learning agents do, I got
all the food pieces most (but not all) of the time. I found that I often employed two techniques
to play it so successfully: look-ahead planning (although very crude) and remembering food
positions so that I could come back to get the food after I lost the sight of food because of
chasing enemies. The learning agents did not use either of the two techniques.
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4.5 Summary

In this chapter, AHC-learning, Q-learning, neural networks, experience replay, using action
models, and teaching all have been tested against a moderately complex learning task-
surviving in an unknown environment. The size of the task s state space is estimated to
be greater than 25°. The main simulation results are summarized as follows:

" Neural networks generalized effectively even with a large number (145) of binary inputs.
Without generalization, it would take an agent a large number of plays, instead of just
300 plays, to develop a good survival strategy for such a large state space.

"* In one case Q-learning outperformed AHC-learning, while in the other case both were
similarly effective.

"* Experience replay made learning converge faster, but would not be expected to affect the
asymptotic performance.

" An action model need not be perfect to be useful, but a very poor model may mislead
the learner and hamper, instead of improve, the learning speed. Whether it is useful
to learn a model may depend on the relative difficulty of model-learning and modelless
control-learning.

"* Teaching alone was not found to result in a significant speedup here. Perhaps, the survival
task is not difficult enough to demonstrate the actual utility of teaching.

To have a rough idea about how much speedup can be obtained from the extensions, here
I take the Q-agents in Study 2 for example and show the obtained speedup in the following
table. The second column of the table shows the number of plays needed by each agent to reach
the performance of 8 (i.e., 8 food pieces per game), and the third column shows the speedup
(compared with the agent without any extension). A speedup of x means that the number of
plays needed is reduced to 1/x of the originally needed number.

# of plays speedup
no extensions 200

using a learned model 140 1.4
using a perfect model 95 2.1

experience replay 80 2.5
experience replay + teaching 60 3.3



Chapter 5

Scaling Up: Mobile Robot Tasks

"The simulation experiments reported in the previous chapter indicate that among the eight
reinforcement learning frameworks presented in Chapter 3, QCON-T appears to work best.
QCON-T integrates Q-learning, neural networks, experience replay, and teaching.

This chapter presents more simulation experiments with Framework QCON-T. The domain
used here is a physically-realistic mobile-robot simulator. Control errors and sensing errors
are simulated, and the robot operates in a continuous state space. The robot's tasks include
wall following, door passing, and docking on a battery charger. The Q-functions to be learned
are nonlinear. In other words, the robot must develop high-order state features in order to
accomplish these learning tasks. Rewards in this domain in general are much less likely to be
obtained by luck than those for the survival task (Chapter 4). This domain is more challenging
than the survival task, allowing us to further demonstrate the utility of QCON-T and importance
of teaching.

This chapter also extends the experience replay technique to use TD(A) methods for general
A. Simulation experiments indicate that there is a speed advantage to using a nonzero A
value. Two possible ways of combining supervised learning and reinforcement learning are
also discussed here, although their utility appears to be limited.

5.1 Using TD(A)

This section extends the experience replay technique to use TD(A) methods for general A. For
readers' convenience, two terms defined in Chapter 3 are repeated here:

e Experience. An experience is a quadruple, (xt, at, xt+1, rt), meaning that at time t action
at in response to state xt results in the next state xt+l and reinforcement rt.

* Lesson. A lesson is a sequence of experiences starting from an initial state xo to a final
state x,, where the goal is achieved or given up.

53
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TD methods make learning changes in proportion to TID errors. The difference betweer
TD(O) (the one used in the previous chapter) and TD(A > 0) is the way they compute TD
errors. TD(O) errors are the difference between two successive pre4ictions, while TD(A) errors
are the sum of TD(0) errors exponentially weighted by recency. A simple example illustrating
the difference can be found in Chapter 2.1.

Let Ut be the predicted utility of state Xt. In other words, Ut is the discounted cumulative
reinforcement that is expected to be received starting from state xt. Consider the application
of TD(A) methods to the following sequence of state transitions:

(Xo, ao, X ,,ro).- (Xn Ian tXn+1 ,rn).

Let A' be the TD(A) error in the prediction about the utility of state xj, and let A' be the TD(0)
error. A' and A' are computed as follows:

A0° = rt + 7"Ut+j - Ut (5.1)
n-t-,

At = (TfA)kA°t+k (5.2)

k=O

Note that the discount applied to TD(0) errors in ( 5.2) includes -f as well as A. We now .- te
(5.2) as

n-t--I

A,\ = Ao + E (.YA)kAO+

rn-t- I

= [rt+ +r Ut+, + E (-tA)k+kI -u,
k=,

We define
n-t-I

P= r,+ Ut,+, + Ze(A)kA°+k (5.3)

k=,
R-\ is called the TD(A) return, the estimated utility from state Zt. The TD(A) error is the

difference between the 'TD(A) return and the current prediction:

S= R U,(5.4)

We can rewrite (5.3) as
R,\ = rt + -. Ut+1 + iA-yAA+

= rt + -- Ut+1 + A7-(Rt+l - Ut+, )
= rt + y [((I - A)U+, + AR1A+ (5.5)

Equation ( 5.5) is the basis of the experience replay algorithms to be presented below. When
A = 0, the TD return computed by Equation (5.5) is the actual payoff rt plus the predicted
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utility of the next state Ut+1 weighted by -y. (This definition is consistent with the one described
in Chapter 3.) When A = 1 and backward replay is used, the TD return computed by
Equation (5.5) is exactly the discounted cumulative reinforcement that is actually received in
the (replayed) action sequence. When 0 < A < 1, the TD return is some aggregate of the
predicted return (namely, TL(0) return) and the actual return (namely, TID(l) return).

Recall that TD methods train an evaluation function by miniaiizing TD errors. In other
words, TD methods train the function using TD returns as target outputs. Thus, we can say
TD(l) is a supervised learning method, because TD(l) trains an evaluation function using as
target outputs the returns that are actually received from the environment.

Recall also that agents based on AHC-learning learn an evaluation of states, V(x), while
agents based on Q-learning learn an evaluation of states and actions, Q(x, a). To compute TID
returns using AHC-learning, we simply plug

U,+1 = V(xt+1)

into Equation ( 5.5). The TD(A) error is thus the difference between Equation (5.5) and the
current prediction, V(xt). If the V-function is implemented using neural networks, we can use
the back-propagation algorithm to reduce the TD error.

Similarly, to compute TD returns using Q-learning, we simply plug

Ut+l = Max{Q(xt+l,a)la E actions}

into Equation ( 5.5). The TD(A) error is thus the difference between Equation (5.5) and
the current prediction, Q(xt, at). Again, the back-propagation algorithm can be used to train
Q-nets.

Figure 5.1 shows two experience replay algorithms; one for Q-Iearning and the other for
AHC-learning. For the sake of reducing the number of experiments in this chapter and the
coming chapters, only Q-learning is considered in the rest of this dissertation. Because of
this, from now on, when I mention "the experience replay algorithm", I refer to the one using
Q-learning.

5.1.1 Choice of A

Recall Equation ( 5.2)- A-ý is some weighted sum of AO, A A and so forth. In other
words, AO contributes to the learning changes applied to states before time t; namely, xt, xt- 1 ,

Xt_2, and so forth. The contribution decays exponentially by the temporal distance between
state xt and the state to which the learning change is applied. Let D be the temporal distance
for which this contribution is decayed to (lie) ; 0.37 of the original amount:

1-=,AD
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Algorithm for Q-learning agents to replay { (xo, ao, x 1, ro)" (,, a,, x,+ 1, r,) }:
1. t -- n;
2. et .- Q(xt, at);

3. u,+1 +-- Max{Q(z,+i, k) I k E actionsl;
4. et +.- rt + -y[(l - A)ut+1 + Aee+ 1];
5. Adjust the Q-net for action at by back-propagating the error (e' - et) through it

with input xt;
6. If t = 0 exit; else t 4-- t - 1; go to 2;

(a)

Algorithm for AHC-learning agents to replay {(xo, ao, x,,ro) ""

1. t1 - n;
2. et 4- V(xt);
3. ut+1 4-- V(.T+-);
4. e' -- r, +[(1 - + Aer

5. .' just the V-net by back-propagating the error (e' - et) through it with input
Xt;

6. Adjust the policy net for action at by back-propagating the error (e' - et) through
it with input zt;

7. If t = 0 exit; else t +-- t - 1; go to 2;

(b)

Figure 5.1: The experience replay algorithms using (a) Q-learning and (b) AHC-learning.
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Figure 5.2: Relationship between D and A.

In other words,
-1

D= log,(A)

Figure 5.2 shows the relationship between D and A. As we can see, D increases gradually
as A increases toward 0.9, and increases rapidly as A increases over 0.9.

How can one determine a proper A value? Clearly, the larger the A value, the farther credits
can be propagated from goal states to preceding states at a time. But large A values may not
be desirable for certain reasons. The following is an informal analysis. Recall that the TD(A)
return computed in Equation ( 5.5) is some weighted sum of predicted return and actual return.
Consider Q-learning. In the beginning of learning, the Q-function is normally far from correct,
so the actual return is often a better estimate of the expected return than the return predicted
by the Q-function. In this case, we may want to trust more the actual return by using a large
A value (say 1.0). On the other hand, as learning proceeds and the Q-function becomes more
accurate, the Q-function provides a better prediction. In particular, when the replayed lesson is
far back in the past L.id involves many bad choices of actions, the actual return (in that lesson)
would be smaller than what really can be obtained using the current policy. In this case, we
may want to trust more the predicted return by using a small A value (say 0.0).

Thus, a good strategy might be to start with A = I in the beginning of learning and
gradually reduce it to 0 as learning goes on. In this dissertation, however, A is kept constant
and temporarily set to 0 in two situations (refer to Figure 5.1 .a):

"* when t = n, because e4, in Step 4 is undefined, and

"* when action at+I is not a policy action, because the actual return from executing this action
would be an underestimate of the return obtainable by following the current (improved)
policy.
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As a matter of fact, non-policy actions will never be replayed as discussed in Chapter 3.5.

There were some empirical studies on the choice of A. In one study, Sutton [66] found that
A = 1.0 gave the worst performance and that A = 0.3 gave roughly the best performance. In
another study, Tesauro [70] found that A = 0 gave the best asymptotical performance, while
there was a speed advantage to using a large A value (say, 0.7).

5.1.2 Training Modes and Conditions

The experience replay algorithms can be used in batch mode or in incremental mode. In
incremental mode the networks are adjusted after replaying each experience, while in batch
mode the networks are adjusted only after replaying a whole lesson. The algorithms will do
exactly what TD(A) does only when they are used in batch mode. However, the advantage of
backward replay is greatest when the incremental mode is used. Unless explicitly stated, the
incremental mode was used in the experiments reported in this dissertation.

As mentioned in Chapter 3.5.2, the correctness of Q-learning and AHC-learning relies on
the assumption that next states are visited in proportion to their probabilities. Experience replay
may invalidate this assumption. Therefore, it is important to sample and replay experiences as
uniformly as possible. It is also important not to be over-trained on teaching experiences.

5.2 A Mobile Robot Simulator

Many experiments in this dissertation are based on a mobile robot simulator called HEROINE
(HEro RObot In a Novel Environment). HEROINE was intended to mimic a real robot called
Hero [38, 39] and a real office environment. The simulated environment (Figure 5.3) consists
of three rooms, A, B and C, and two narrow doorways connecting Room C to Rooms A and B.
A battery charger is located in the left-bottom corner of Room A. A light is placed on top of
the charger so that the robot can distinguish the charger from other obstacles.

5.2.1 The Robot and Its Sensors

The robot has 6 actions: turn ±15', turn ±600, and move ±-12 inches. It has a sonar sensor
and a light intensity sensor mounted on its top. Both sensors can rotate and collect 24 readings
(separated by 15 degrees) per rotation. The sonar sensor returns a distance reading between
0 and 127 inches, with a resolution of 1 inch. In addition, the robot has a compass and four
collision sensors placed around its body. The compass is not needed to execute the local
navigation tasks studied in this chapter. Its use for global navigation will be discussed in
Chapter 6.

The light intensity readings are thresholded to give 24 binary bits (called light readings);
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Figure 5.3: A Robot Simulator. (a) The robot and its environment. The environment consists
of three rooms, two doors, and a battery charger with a light on its top. The radius of the robot
is 12 inches. The dimensions of the environment are 360 inches by 420 inches. The robot can
turn and rotate. It has sonar sensors, light intensity sensors, collision sensors, and a compass.
The task is to find the battery charger-and connect to it. The robot may start from any location
with any orientation. It takes the robot approximately 100 steps to connect to the charger from
Location Li. (b) Sonar readings obtained when the robot is at Location L3 and faces north.
The dots indicate potential door edges. Four edges are detected here, but only two of them
are real door edges. (c) Sonar readings obtained when the robot is at Location L4 and faces
north. They are very similar to those in (b). (d) Binary light readings obtained when the robot
is at Location L2 and faces north. A long line stands for the detection of light beams from that
direction.
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each indicates if there is light coming from a particular direction. The 24 sonar readings are also
processed to give 24 binary bits (called door edge readings), each of which indicates if there is
a potential door edge in a particular direction. The door edge feature is turned on when there is
an abrupt change between neighboring sonar readings, The door edge readings are unreliable,
because some obstacle edges may also look like door edges. See Figure 5.3 for an illustration.

To be realistic, about 8% control error has been added to the robot's actuators and about 10%
sensing error added to the sensors. (For instance, let x be the distance between the robot and
an object surface. The sonar reading will be uniformly distributed between 0.9x and 1. 1x) In
the real world, sonar sometimes gets reflected by smooth surfaces or absorbed by soft objects,
resulting in a maximum reading, 127. This sensing error is simulated by randomly selecting a
sonar reading and setting it to 127 once in a while. In average, for every 4 sets of sonar readings
the robot takes (24 readings per set), one of the readings is set to 127. Very often such a faulty
reading looks like a door opening and causes faulty door edge readings.

5.2.2 The Robot's Tasks

The robot's ultimate task is to learn a control policy for finding the battery charger and con-
necting to it. It may start from any location with any orientation. This task, which is called the
battery recharging task or CHG, is decomposed into four elementary tasks:

* following walls while keeping walls on the robot's right hand side (WFR),

* following walls while keeping walls on the robot's left hand side (WFL),

@ passing a door starting from places near the door (DP), and

* docking on the battery charger starting from places where light beams are detected (DK).

This chapter focuses on the problem of learning skills (i.e., control policies) for carrying
out the elementary tasks, while the next chapter presents a reinforcement learning approach
to learning the coordination of previously learned skills. In that approach, the robot learns
a high-level control policy, which chooses among the four skills to accomplish the battery
recharging task. For instance, to connect to the battery charger from Location LI (see Figure
5.3), the robot simply executes WFR to get to the vicinity of the right door, executes DP to get
out of Room B, executes WFL to reach the left door, executes DP again to get into Room A,
executes WFR again to get close to the charger, and finally executes DK to get connected to
the battery charger.

5.3 The Learning Robot

This section describes the reinforcement functions, input representations, network structures,
and parameter settings that the robot uses to learn the wall following, door passing, and docking
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tasks. The learning technique is based on the experience replay algorithm (Figure 5. l.a) and
teaching.

5.3.1 Reinforcement Functions

The robot receives the following reinforcement signals for docking:

* 100 if it successfully docks, or
e - 10 if a collision occurs, or
e 0 otherwise.

The robot receives the following reinforcement signals for door passing:

* 100 if the robot successfully passes a door, or
- 10 if a collision occurs, or

* 0 otherwise.

The robot receives the following reinforcement signals for wall following:

- 10 if a collision occurs, or
* -3 if the executed action is moving 12 inches backward, or
* 0 if the robot is too close to walls on either side, or
* 0 if the robot is too far from walls on the specified side, or
* 8, 9, or 10 depending on the alignment of the robot's body to walls (see below).

When executing WFL (or WFR), the robot is requested to maintain a clearance between its
body and obstacles on the left (or right) hand side. Any clearance between 14 inches and 32
inches is acceptable. The robot receives a small penalty when moving backward. This penalty
is needed to keep the robot moving forward, because otherwise the robot, in certain situations,
may maximize rewards by moving back and forth.

When the executed action is moving forward and a desirable clearance is maintained, the
robot receives a reward between 8 and 10. Comparing a few sonar readings from the right-hand
side (or left-hand side in the case of WFL), the reinforcement mechanism determines how well
the robot's body is parallel to walls. If they are almost parallel, the maximum reward (10) is
received, or else a smaller reward is received. A constant reward, say 10, may be instead used,
but the robot was found to learn a more desirable wall following skill with this variable reward
than a constant reward.

The robot uses -y = 0.9 for all the tasks. The reinforcement values for each of the tasks
were chosen in order to keep the Q-values between - 100 and 100.
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5.3.2 Input Representations

For the docking task, the robot uses 52 input units to encode the state information, including
24 sonar readings, 24 (binary) light readings, and 4 (binary) collision readings. A few different
ways of encoding sonar data have been tested. They all gave reasonable performance. Among
them, the best one was to encode readings ranging from 0 to 64 as values between I and 0 and
to encode readings ranging from 64 to 127 as values between 0 and -0.25. (Linear scaling is
used.) Smaller readings are weighted more heavily because the robot has to pay more attention
to nearby obstacles than to obstacles far away. For all of the four robot tasks studied here, sonar
readings are encoded in this way. As usual, binary inputs are represented by 0.5 and -0.5.

For the door passing task, the robot uses 52 input units to encode the state information,
including 24 sonar readings, 24 (binary) door edge readings, and 4 collision readings.

For both wall following tasks, 24 units are used to encode sonar readings, and 4 units to
encode collision readings. In addition, 2 real-valued units are used to indicate how well the
robot's body is parallel to obstacles on both sides, and 6 binary bits to indicate whether the
clearance between the robot's body and obstacles on either side is too small, too large, or just
right. The last 8 bits of information are not critical to successful learning. Without them, the
robot could learn to follow walls reasonably well. But it learned better and faster with them.

Note that the input representations used here are robot-centered representations. For
example, the first element of the state vector always encodes the sonar reading coming from the
direction in which the robot is facing. This kind of local-coordinate representations is desired,
because the four tasks are local navigation tasks. For example, with this type of representation,
once a wall following skill is learned to follow a wall going from north to south, it can apply
equally well to following walls going from east to west or in any other direction.

5.3.3 Q-nets

The Q-function for each of the tasks is implemented by 6 feed-forward, fully-connected net-
works with one hidden layer. Each Q-net corresponds to one action. There are no connections
between input and output layers. The inputs to the networks are the state information discussed
previously. The single output of each Q-net represents the expected utility of the input state
and the corresponding action. The number of hidden units of each Q-net is approximately 30%
of the number of input units. It appeared similarly effective to use more hidden units (50%) or
less (20%).

Each unit used a symmetric squashing function (see Equation ( 2.3)). The learning rate
and momentum factor used by the back-propagation algorithm were fixed to 0.05 and 0.9,
respectively. The network weights were randomly initialized to be between 0.5 and -0.5.
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5.3.4 Exploration

The robot used the stochastic action selector described in Chapter 3.4 as a crude exploration
strategy. The temperature T, which controls the randomness of action selection, was decreasing
over time. It started from 0.05 and gradually cooled down to 0.02 after 300 trials. For better
performance, another complementary strategy was also used together: The robot kept track
of its X-Y position and orientation (relative to the start point) and temporarily increased the
temperature whenever it found itself stuck in a small area without progress. This is still quite
a naive exploration strategy. Using a more sophisticated strategy, the robot may acquire good
skills faster than it did in the experiments reported below. But for the purposes of demonstrating
the effects of teaching and TD(A), this exploration strategy seems appropriate.

5.3.5 Non-Policy Actions

After each trial, the robot replayed 60 1 (randomly selected) experienced lessons as well as all
the taught lessons.

As discussed in Chapter 3.5.1, non-policy actions are not replayed. Here an action is
considered a non-policy action if its probability of being chosen by the stochastic action
selector is lower than P1 = 2%. Also recall that A is temporarily set to 0 when a non-policy
action is encountered during replay.

5.4 Experimental Designs and Results

Four experiments are presented below. The purpose of the first experiment is to see how much
performance improvement can be obtained from the use of teacher-provided training data. The
second one experiments with various A values. The purpose is to see whether there is an
advantage to using TD(A7) over the simple TD(0). In the third experiment, two techniques for
combining supervised learning and reinforcement learning are tested. Finally, in the fourth
experiment, the Q-functions are represented by single-layer networks instead of multi-layer
networks. The purpose is to see whether the Q-functions to be learned are nonlinear and
whether temporal difference and back-propagation together can learn nonlinear Q-functions.

Each experiment consisted of 7 runs. Each run consisted of 300 trials. In each trial, the
robot started with a random position and orientation near a door (in the case of DP), near the
battery charger (in the case of DK), or anywhere (in the case of WFL and WFR). Each trial
ended either when the goal was achieved, or else after 30 steps. (Since the wall following
tasks do not have a final goal state, in this case each trial lasted for 30 steps.) To measure the
robot's performance over time, after every 10 trials, the robot was tested against 50 randomly

Fewer lessons were replayed in the beginning when there were not many lessons available.



64 CHAPTER 5. SCALING UP: MOBILE ROBOT TASKS

generated test tasks. (The same set of test tasks was used throughout a run. Different runs
used different sets.) Learning was turned off during tests. Again, each test lasted 30 steps at a
maximum.

During learning, the robot selected actions semi-randomly using the exploration strategy
mentioned in Section 5.3.4. During tests, the robot chose the best actions according to its current
policy. The robot's performance was computed as the ratio between the total reinforcement
received during solving the 50 test tasks and the total number of steps taken. In other words,
the performance measure was the averaged reinforcement per step.

The robot's performance was then plotted versus the number of trials taken so far. The
learning curves shown below describe the mean performance over 7 runs. Since WFR and WFL
are similar tasks, only WFL was studied here. In some part of the experiments, the robot utilized
taught lessons. To generate an instructive lesson, I placed the robot at a manually-chosen start
position and did my best to maneuver the roboL (All the experiments used the same set of
taught lessons.) The actions I showed to the robot were not all optimal, simply because it was
difficult for me to tell what would be optimal from the robot's point of view. In particular, the
optimal actions for wall following were rather hard to determine.

The parameter settings for the first three experiments are described in Section 5.3, while
the parameter settings for the fourth experiment are slightly different as will be described later.

5.4.1 Experiment 1: Effects of Teaching

In this experiment, A = 0.7 was used. But as described in Section 5.1.1, A was selectively set
to 0. Figure 5.4 shows the mean performance of the robot executing DP, DK, and WFL with or
without teaching involved. One thing very clear from the figure is the usefulness of teaching.
The following are observations from the experiments.

DP: Without a teacher, the robot often learned very little in the first 100 trials, because the
robot was not lucky enough to achieve the door passing goal several times within 100 trials.
Effective learning could take place only after a few successful experiences had been collected.
In I out of 7 runs, the robot totally failed; it did not know how to gain rewards at all even if
it was just in front of a door way. In contrast, with only 3 taught lessons, the robot learned
significantly better than with no teaching involved. When provided with 10 positive examples,
the robot acquired quite a good door passing skill after 100 trials.

DK: Once again, more teaching, the better performance. When no taught lessons were
provided, the robot totally failed to learn the task in 2 out of 7 runs. 2 The high failure rate was
due to the two contradictory goals of docking and obstacle avoidance. To get a tight connection
to the battery charger, the robot has to position itself relative to the charger accurately and then
drive to bump into it. But the robot might quickly learn to avoid obstacles in the very beginning,

21n my previous study [34], the robot never learned to perform docking without a teacher. Here with more
randomness in action selection, it was able to succeed occasionally.
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Figure 5.5: Four solution paths found for the door passing task.

and prevent itself from colliding with the charger later on. Once the robot experienced a few
successful trials, effective learning suddenly took place and the final performance (after 300
trials) was often as good as that with teaching involved.

WFL: The wall following task is an easier task than DP and DK, because reinforcement
is not far delayed. Once again, teaching had reduced the number of action executions needed
to learn a good wall following skill. The impact of teaching, however, was not as significant
as what we have seen for DP and DK. There was almost no difference in learning speed
between the two cases with 2 and 5 taught lessons, possibly because the 2 lessons provided
approximately the same amount of information as the 5 lessons.

Performance: Figures 5.5, 5DS, and 5.7 show some solution paths that the robot had
learned after 300 learning trials with 10 (DK and DP) or 5 (WFL) taught lessons. Those solution
paths are in fact nearly optimal.
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Figure 5.6: Three solution paths found for the docking task.
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Figure 5.7: Three solution paths found for the left wall following (WFL) task. The start of
each path is indicated by an "S".
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Sumnnary: Without a teacher, the robot's learning of DP and DK sometimes got stuck in
poor local optima; in other words, the robot learned to avoid obstacles but was afraid to move
close to the battery charger or the doors. In contrast, with the help of a teacher, the robot ,ould
easily avoid the local optima. If we let the robot keep high randomness in action selection
and continue to explore for thousands of trials (maybe less if a clever exploration strategy is
used), it is likely that the robot would reach the same level of competence regardless how much
teaching is involved. But a robot programmer can save the robot lots of trial and error simply
by giving the robot some demonstration.

5.4.2 Experiment 2: Effects of TD(A)

In this experiment, the robot experimented with several different A values. The number of
taught lessons available to the robot was 10 in the case of DP and 0 in the case of WFL. (Only
DP and WFL were studied.) Figure " shows the experimental data, which are summarized
as follows:

"* Among all the different A values, A = 0 clearly gave the worst performance.

"* TD(0.9) and TD(l) were similarly effective, and more effective than TD(0.3).

"* In the case of DP, TD(0.9) and TD(l) appeared slightly more effective than TD(O.7),
while in the case of WFL, TD(0.7) seemed more effective than TD(0.9) and TD(l).

That 'I D(0) gave the worst performance can be explained by the fact that TD(A > 0) can
propagate credits more effectively than TD(0). In his empirical study [66], Sutton found that
TD methods worked the worst with A - 1. His result seems inconsistent with the results
obtained here. But this inconsistency may be explained by the following important difference
between my experiments and his: In his case A was kept constant throughout estimations, while
in my case A was selectively set to 0. The TD(l) used here switched between pure TD(1) and
pure TD(O).

How can one determine the best A value for a given task? Unfortunately, this experiment did
not shed light on the answer. The best choice may aepend on some characteristics of learning
protlen s such as the lengtia of reward delay and the nondeterminism of the domain.

5.4.3 Experiment 3: Combining Supervised Learning and Reinforcement
Learning

The teacaing technique studied in the previous experiments does not require the teacher to be an
expert; the robot can learn from teachers who do not teach the optimal action. But this teaching
technique may not be the best way of using valuable training instances provided by human
experts. Suppose a teacher taught the robot to execute action a in response to state x. By using
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Figure 5.8: Experiment 2: Learning curves for (a) DP with 10 taught lessons and (b) WFL with
no teaching involved. The purpose of this experiment was to compare the effects of various A
values.
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Figure 5.9: Experiment 3: Learning curves for (a) DP with 3 taught lessons and (b) DP with
10 taught lessons. The curves have been smoothed for ease of comprehension. A was set to
0.7. The purpose of this experiment was to study two different strategies (raise andi lower)
for combining reinforcement learning and supervised learning, none means that neither of the
strategies was used.
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the teaching technique described before, what the robot learns from this piece of advice is only
the utility of action a in response to state x. It makes no learning changes regarding the utilities
of the other actions in response to the same state. Indeed, if the teacher is not trustworthy, this
is about all that can be safely learned from this advice. But if the robot is told that action a
is the optimal action in state z, how can the robot take advantage of the information that a is
optimal? If a teacher always teaches the optimal action, supervised learning seems to be a more
effective way of using training instances than reinforcement learning.

In fact, it is possible to combine supervised learning and reinforcement learning. Consider
the following scenario: The robot has n actions, a,--.- a,, the taught action in state x is aI,
and a, is the optimal action in state z. An optimal Q-function should satisfy the following
condition:

Q(z,a,) > Q(x, a,) for all i E [2..n]. (5.6)

During learning, this condition may not hold true due to incorrect generalization. For example,
the robot may examine its current Q-function and find that Q(x, a1) < Q(X, a2). When this
happens, two repairs are possible.

"a lower repair: lower Q(z, az) to make Q(z, a1) > Q(z, a2), or

"• raise repair: raise Q(x, a,) to make Q(x, a,) > Q(x, a2).

The lower repair can be done by back-propagating the error (Q(x, a,) - Q(z, a2)) through the
Q-net corresponding to action a2. Similarly, twe raise repair can be done by back-propagating
the error (Q(x, a2) - Q(x, a,)) through the Q-net corresponding to action aI.

In Experiment 3, the robot replayed taught lessons as usual. In addition, every time it
replayed a taught lesson, it examined its Q-function to see if conditions like ( 5.6) had been
violated. If a violation was detected, it made one of the repairs mentioned above. The
experiment consisted of two parts, (a) and (b). For both parts, the door passing task was used
as the test case, and A was set to 0.7. In part (a) 3 taught lessons were available to the robot, and
in part (b) 10 taught lessons. Figure 5.9 shows the learning curves, which have been smoothed
for ease of comprehension. Smoothing is done by averaging every 3 successive original data
points, except that the first two points are left untouched. In part (a) both repairs tended to
improve the perfo~mance, while in part (b) the improvement, if any, was marginal.

Both techniques of utilizing taught lessons should be more effective than simple experience
replay. But proper applications of the techniques are limited to situations where the teacher
always demonstrates the optimal action. Indeed, the lessons I provided to the robot were not all
optimal, and this may explain the experimental results of part (b), which showed no significant
improvement gained by the use of the techniques.
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5.4.4 Experiment 4: Single-layer Q-nets

In [11], Chapman and Kaelbling doubted whether the combination of temporal difference
methods and connectionist back-propagation could learn nonlinear Q-functions. The purpose
of this experiment is to test their doubt. The setup of this experiment was similar to that of
Experiment 1 (Section 5.4.1) except that in this experiment:

* single-layer perceptrons were used to represent the Q-functions,
e binary inputs were represented by 1 and 0 (instead of 0.5 and -0.5),
* the learning rate was 0.04 for the DK and DP tasks, and 0.03 for the WFL task, and
* the momentum factor was 0.

The parameter settings were chosen to give roughly the best performance. Figure 5.10 shows
the experimental results. For comparison, some of the learning curves from Experiment 1
are also included in the figure. Clearly, the robot could not accomplish the DP, DK and
WFL tasks without using multi-layer networks to represent the Q-functions. Since single-layer
perceptrons worked poorly for these tasks, the Q-functions are nonlinear. This result indicates
that the combination of temporal difference and back-propagation really can learn nonlinear
Q-functions.

5.5 Discussion

Based on a robot simulator, this chapter has demonstrated an approach to automatic robot
programming. How likely is this approach to successfully apply to real robots in the real
world? It seems that this approach should work for real robots, since reinforcement learning is
inductive learning and does not rely on unrealistic assumptions such as prior domain knowledge.
When applying reinforcement learning to real robots, we may face three problems:

e Slow learning. This problem can be handled by teaching, as I have already demonstrated.
Another approach to reducing learning time is hierarchical learning, which is the topic
of the next chapter.

* Hazard. Learning from trial-and-error could be hazardous in a hostile environment. A
possible way to minimize damages to the robot during trial-and-error is again teaching.
For example, we may teach the robot to avoid obstacles by carefully making up a collision
situation (without ht;-ing the robot), from which it wou;X get the idea that moving forward
is bad when the sonar readings from the front are small.

* Noise. Noise prevails in the real world. To be realistic, this robot simulator also simulates
sensing and control errors. In this research, I found that the robot's performance in the
noisy world was almost the same as that in a noise-free world. In other words, noise did
not appear to be a problem.
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Figure 5. 10: Experiment 4: Learning curves for (a) [P, (b) DK, and (c) WFL. A was set to 0.7.
The robot was provided with 10 taught lessons for learning each of the DP and DK tasks. and
5 taught lessons for learning the WFTL task. The purpose of this experiment was to see whether
single-layer networks are adequate to represent the Q-funcuions or not.
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As a matter of fact, some preliminary experience with a real HERO robot has been presented
in [34]. This learning approach was not directly tested on the real robot. Instead, the skills
learned by a simulated robot were tested in the real world. (After many modifications, the
simulator used in this dissertation is different from the simulator used in [34].) In other words,
the real robot used the Q-nets learned in simulation to operate in the real world. Because
that simulator mimicked the real robot and the real environment closely, the real robot indeed
operated quite successfully in the real world. In simulation the robot achieved goals 96% of
the time, while in the real world 84% of the time. This gives indirect evidence of the approach
being practical for real world problems. I hope to apply the learning technique directly to real
robots in the future.

Section 5.4.3 describes two possible ways of combining supervised learning and reinforce-
ment learning. One is to lower the utility of a non-taught action if it has a higher utility than the
optimal one. The other is to raise the utility of the taught action if it does not have a higher utility
than all the others. The lower technique may be more appropriate than the raise technique.
Because the robot has experience with the taught action and may not have experience with the
other actions, it is likely that the robot would have a more accurate estimate in the utility of the
taught action than in the utilities of non-taught actions. Therefore, it seems more appropriate
to modify non-taught actions' utilities than to modify the taught action's. The utility of both
techniques, however, was found limited.

Whitehead [79] describes a teaching technique called learning with an external critic
(LEC). His idea is the following: While doing reinforcement learning, the learner is observed
by a critic, who occasionally provides immediate feedback on the learner's performance. The
feedback, for example, may be 1 if the executed action is optimal and - I otherwise. The
learner learns a Q-function as usual. In addition, it learns a biasing function, which represents
the average feedback from the critic for each state-action pair. The control policy is to choose
the action that has the greatest combination of Q-value and bias-value. It would be interesting
to compare his approach and mine.

5.6 Summary

This chapter presented two experience replay algorithms for reinforcement learning; one uses
Q-learning and the other AHC-learning. Both algorithms use backward replay and are efficient
implementations of TD(A) methods. The one using Q-learning has been tested here to learn
nonlinear Q-functions, and found quite effective.

Two main simulation results were obtained:

* Teaching significantly improved the learning speed.

* TD(O.7) was significantly better than TD(O) regarding learning speed.

To have a rough idea about how much speedup can be obtained from teaching and from
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using non-zero A values, here I take the door passing task for example and show the obtained
speedup in the following two tables. In the first table, the second column shows the number
of learning trials needed by the robot (using A = 0.7) to reach the performance of 2.5 (i.e., 2.5
units of reward per step), and the third column shows the speedup (compared with the robot
without teaching). In the second table, the second column shows the number of learning trials
needed by the robot (using 10 taught lessons) to reach the performance of 5, and the third
column shows the speedup (compared with TD(0)). A speedup of x means that the number of
trials needed is reduced to l1x of the originally needed number.

# of trials speedup
no teaching 280

3 taught lessons 20 14
10 taught lessons 10 28

# of trials speedup

A = 0.0 280
A = 0.3 140 2.0
A = 0.7 65 4.3



Chapter 6

Hierarchical Learning

The previous chapters have discussed several techniques for improving the convergence speed
of reinforcement learning, including using neural networks, teaching, using nonzero A values,
etc. These techniques alone, however, may not be sufficient for dealing with situations where
the optimal control policy is very complex to represent and very difficult to learn.

This chapter presents hierarchical learning as another way to scale up reinforcement learn-
ing and enable its applications to very hard learning problems. Hierarchical learning is a
divide-and-conquer technique- a complex learning problem is decomposed into small pieces
so that they can be easily solved. This chapter presents a model of hierarchical reinforcement
learning. A close examination into this model results in possible answers to questions such
as (1) how hierarchical learning can be done and save learning time and (2) what domain
knowledge may be needed to do it.

The robot simulator described in Chapter 5 is used here again to demonstrate the importance
of hierarchical learning. The learning task studied in this chapter is so hard that the robot is
unable to solve it as a monolithic learning problem within a reasonable time. In contrast, by
hierarchical learning, the robot can effectively and efficiently solve it.

This chapter also addresses issues such as behavior-based exploration and efficient credit
assignment in face of long reward delay.

6.1 Introduction

It is well known that no planning system can scale up well without hierarchical planning.
Similarly, no learning agent can successfully cope with the complexity of the real world
without hierarchical learning of skills. By hierarchical learning, an agent learns elementary
skills for solving elementary problems first. After that, to learn a new skill for solving a complex
problem, the agent only need learn to coordinate the elementary skills it has developed without
worrying about low-level details. While new skills are being developed, the elementary skills

77
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may be polished further.

In this chapter, I will demonstrate that hierarchical learning of skills is possible within the
reinforcement learning paradigm. In this chapter, four terms are used interchangeably: skill,
control policy, behavior, and abstract action. This is because a control policy for a task is a
skill for carrying out the task, and an agent exhibits a sort of behavior when following a control
policy. A skill is also an abstract action, with which the agent can achieve a subgoal without
considering the low-level details.

The primary virtue of hierarchical learning (and planning) is the great reduction in the
complexity of problem solving. The essential idea is based on problem decomposition and the
use of abstraction. To efficiently solve a complex learning problem, humans often decompose
the problem into simpler subproblems. Once we have learned skills to solve each subproblem,
solving the original problem becomes easier, because we now can concentrate on the high-level
features of the problem and ignore the low-level details, which presumably will be filled in
when the previously learned skills are actually applied. This idea can generalize to multiple
levels of abstraction. At each level, we focus on a different level of details. Another virtue
of hierarchical learning is that subproblems shared among high-level problems need be solved
just once and their solutions can be reused.

Three m,.in steps are involved in hierarchical learning:

1. design a hierarchy of skills,

2. learn elementary skills that select primitive actions to carry out elementary tasks, and

3. learn high-level skills that coordinate elementary skills to solve complex problems.

Among the three steps above, hierarchy design (Step 1) seems to be the most difficult part
for machines to automate, because a good hierarchy design demands either lots of domain
knowledge or lots of experience of solving related problems. In comparison, humans seem to
come up a good hierarchy relatively quickly after being given a robot task. This work thus
assumes that a correct hierarchy is given by human designers.

The problem of learning elementar skills (Step 2) has been the focus of the previous
chapters. This chapter focuses on issues related to learning high-level skills (Step 3). It seems
that learning high-level skills is similar to learning elementary skills, since elementary skills
may be treated like primitive actions during learning high-level skills. While this is the essential
idea of hierarchical learning, there is an important difference between primitive actions and
elementary skills. Primitive actions are normally assumed to complete in a fixed period of time,
while elementary skills may last forever. For example, a wall following skill, once activated,
may never end.

The rest of this chapter is organized as follows: Section 6.2 presents a model of hierarchical
reinforcement learning and a quantitative analysis of the learning efficiency gained by task
decomposition and abstraction. Section 6.3 summarizes the model and addresses some practical
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issues involved. Section 6.4 describes the specific learning task investigated in this chapter.
Section 6.5 discusses implications of never-ending behaviors and presents approaches to
coordinating such behaviors. Section 6.6 presents simulation experiments and results. Based on
the results, Section 6.7 makes comparisons between hierarchical learning and non-hierarchical
learning. Finally, Section 6.8 discusses related work, and Section 6.9 summarizes the main
results.

6.2 A Model and Complexity Analysis

This section presents a model of hierarchical reinforcement learning and a complexity analysis
for deterministic domains. The analysis is based on previous results obtained by Koenig
[31], who showed that the complexity of learning an optimal control policy in discrete and
deterministic domains is 0(n 2), where n is the number of states (see below for details). The
analysis here yields two main results. First, under some assumptions, learning problem solving
skills hierarchically can reduce learning time from 0(n2) to 0(n • log n). Second, once a
learning problem has been solved, solving a second problem becomes easier, if both problems
share the same subproblems.

Note that all the analyses mentioned in this section, including the one by Koenig, make the
following simplifying assumptions:

* The environment is Markovian, deterministic, and discrete.

e The learning task is to find solution paths from every state to a single goal state.

6.2.1 Complexity of Non-Hierarchical Reinforcement Learning

Koenig [31] developed algorithms for real-time search. His algorithms can be modified for
an agent to build a complete model of an unknown deterministic environment. (For any given
state-action pair, the model predicts the next state and the immediate reinforcement.) The
complexity of learning a complete miodel (i.e., the number of action executions required to
build a model) can be shown to be 0(b. n), where n is the number of states and b is the total
number of actions available in all the states. If the number of actions in every state is bounded
by a constant c, the complexity of learning a model is 0(c. n2). In d-dimensional grid worlds,
for example, the number of actions in each state is dependent on d and independent of n. The
complexity of learning a grid world is thus 0(n2 ).

Once the agent has learned a model, it can construct the optimal control policy off-line
by using the model to generate hypothetical experiences, much as Framework QCON-M or
AHCON-M does (see Chapter 3.6). Consider using tabular Q-Iearning to build a control policy.
For each experience generated by the model, the agent can apply the learning rule specified by
Equation ( 3.5) to update the tabular Q-function. Since the domain is deterministic, a learning
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rate of 1 can be used without loss of optimality. After every state-action pair generated by the
model has been tried, the agent has found the optimal Q-values for all the states that are 1-step
away from the goal state. If the agent applies the learning rule to every state-action pair once
again, it will find the optimal Q-values for all the states that are 2-step away from the goal state.
Let p be the depth of the state space. 1 The agent can find the optimal Q-function by applying
the learning rule to every state-action pair p times. The complexity of constructing an optimal
control policy with a model is thus O(b p). Since p < n, O(b. p) < O(b. n). For grid worlds,
the complexity is bounded by O(n 2).

In the analysis to be presented below, I assume that the complexity of reinforcement learning
for deterministic tasks is O(n 2), where n is the number of states of the environment.

6.2.2 A Model of Hierarchical Reinforcement Learning

Definitions

Let us call the original state space the base space, which consists of a set of base states.
Corresponding to the base space is a set of base actions, which enab'-- 'Ie agent to move from
one base state to another. An abstract space is a subset of the base states called abstract states.
An abstract action, which is composed of a sequence of base actions, enables the agent to move
from a base state to an abstract state.

Abstract states and abstract actions are defined as follows: We divide the base space into k
regions of approximately equal size and shape. We then choose the center state of each region
as an abstract state. 2 Hence the abstract space consists of k abstract states. Abstract states serve
as subgoals, and thus are also called subgoal states. Each subgoal state has its corresponding
abstract action, and vice versa. (Hence there are k abstract actions.) Each abstract action is a
close-loop control policy (such as a Q-function), which finds solution paths from base states to
its corresponding subgoal state. Each abstract action, however, is not required to find paths for
every base state in the base space. Instead, it only need find paths for a subset of the base space
called the application space of the abstract action. The application space is the set of base
states from which the subgoal state is reachable within I steps, where 1 is the maximum distance
between any two neighboring abstract states. This definition implies that abstract actions allow
the agent to navigate among abstract states. This model of hierarchical learning is illustrated
in Figure 6.1, in which a 2-D grid world is considered. In this example, k = 16 and I = 3.

To summarize, for a given base space, a number of base states are chosen as abstract state.
For each abstract state, there is an abstract action. When executed, the abstract action will
bring the agent to the corresponding abstract state, as long as the agent starts in the application

'The depth of a state space is the maximum distance from any state to the goal state.
21n grid worlds, the center state of a region can be chosen to be the geometrical center of the region. In general,

a center state is chosen such that the distances (in terms of primitive actions) from the perimeter of the region to
the center state are roughly equal.
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Figure 6. 1: A hierarchy of abstraction for a 2-D grid world. The grid world is divided into 16
regions. The center state of each region is selected as a subgoal (or abstract) state. Hence there
are 16 subgoal states. There are also 16 abstract actions; each corresponds to a subgoal state.
Each abstract action is a close-loop control policy, which defines paths from every state in its
application space to its corresponding subgoal state. For example, the application space of the
abstract action corresponding to the subgoal state S would be those states in the shaded area. If
the current state is not in the application space, the agent may never reach state S by executing
this abstract action.
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space. The application space can be thought of as the precondition of the abstract action. An
abstract action is applicable, if its precondition is met; in other words, if its application space
covers the agent's current state. The application space is centered at the abstract state, and is
large enough to cover the neighboring abstract states.

Learning Abstract Actions

Each abstract action can be learned by Q-learning. Without any restrictions, learning to reach
a subgoal state has the same complexity as learning to reach a top-level goal state, and thus
it is no use having hierarchical learning. For hierarchical learning to be useful, the following
assumption is introduced:

Reset Assumption: For each subgoal state, there is a corresponding reset operator.
When used, the reset operator will raadomly place the agent in a state which is at
most I steps away from the subgoal state.

In other words, this reset operator will randomly place the agent in the application space. With
such a reset operator, each abstract action can be effectively learned by repeating the following
two steps until an optimal abstract action is learned:

1. apply the reset operator;
2. explore the environment until the abstract state is reached or else after I steps.

The basic idea is that during learning an abstract action, the agent uses the reset operator to
confine its exploration to the vicinity of the abstract state, avoiding exhaustive exploration of
the whole base space. Let us call the states to be explored in the above process the exploration
space of the abstract action. Note that the exploration space covers the whole application space.
According to the above exploration strategy, the radius of the application space is 1, while the
radius of the exploration space is 21. Let m be the number of base states in the exploration
space. The complexity of learning an abstract action is thus O(m 2).

Choosing Abstract Actions

An important question here is how the agent determines whether a given abstract action is
applicable at the moment. In the learning phase, if the agent executes an abstract action whose
application space does not cover the agent's current state, the agent may never reach the abstract
state it intended to reach and thus get stuck forever. Depending on the reward function used,
the agent may find the answer (i.e., whether a given abstract action is applicable) from the
Q-function learned for the abstract action. If the reward function is 1 for reaching the goal
state and 0 otherwise, from the Q-values the agent can figure out the distance from its current
state to the abstract state. If the distance is not greater than 1, the abstract action is applicable.
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Otherwise, it is not. For general reward functions, the agent may not be able to figure out
the answer from Jhe Q-function. In such a case, the agent can learn anoth,;r function (called
distance function) to represent the distance from a state to the abstract state. This function can
be learned simultaneously with the Q-function. Thus the complexity of learning an abstract
action remains the same (i.e., 0(m2)).

Another ip,-stion is how the agent finds all the applicable abstract actions and what is the
complexity of finding them. In a straightforward way, the agent evaluates all the Q-functions
(or distance functions) for the abstract actions and finds the applicable ones. All the functions
can be evaluated in parallel and in a constant time, if the agent has sufficient hardware.
Alternatively, the agent can record the applicable abstract actions for each state, and retrieve
them in a constant time. Note that the number of applicable abstract actions in each state is
a (small) constant. The number is generally dependent on the structure of the base space and
independent of the size of the space. For example, in grid worlds, the number of applicable
abstract actions is equal to the number of primitive actions. In short, the complexity of finding
all the applicable abstract actions can be bounded by a constant.

Consider the problem of finding a solution path from a given start state s to a goal state g.
Let us assume that g is one of the abstract states. If g is not, %:e simply add it to the abstract
space. To find a path from s to g, the agent first finds all the -oplicable abstract actions and
then determines which one can reach an abstract state at the least cost (namely, with the highest
Q-value). It executes this abstract action and ends up in an abstract state i. Then, the agent
finds a path from i to g in the abstract space. Note that solution paths found in this way may
not be optimal, since they must go via subgoal states. When using alostraction, we generally
have to trade off optimality for efficiency.

Total Complexity

The question now is how to find solution paths in the abstract space, and what is the number
of action executions required. 3 Imagine that the agent is in an abstract state and is about
to choose an experimental abstract action. It first finds all of the applicable abstract actions.
Then it chooses one of them according to its exploration rule, executes it, and ends up in
another abstract state. Essentially, the agent can navigate among abstract states by executing
applicable abstract actions. Therefore, the number of abstract-action executions required to
learn a Q-function in the abstract space is 0(k2). It amounts to 0(1. k2) action executions,

3Depending on ,he reward functions used, it is possible that no more action executions are needed to find
solution paths in the abstract space, once the agent has learned the abstract actions. Suppose the only concern
of the agent is to find shortest paths between states. After learning the au-stract actions, me agent already knows
the distance between any two neighboring abstract states. Thus, the agent can simply use Dijkstra's shortest
path algorithm to find the shiortest paths between states in the abstract spact. But in general, the agent may be
concerned not only with shortest paths but also with avcidance of certain malicious states, which are unknown
during learning the abstract actions. In this case, the agent must actlually get involved in ,he world in order to fir,
out which path is short and meanwhile away from malicious states. In the analysis here, I assume the general case.
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because the distance between any two neighboring abstract states is bounded by 1.

To summarize, the total number of action executions required to learn a hierarchy of control
policies is O(k. m2 + 1. k2). The former is for learning k abstract actions. Without hierarchical
learning, the learning complexity is O(n 2 ).

1 and m are dependent on the choice of k; the larger k, the smaller I and m. I and m are also
dependent on the structure of the base space. For d-dimensional grid worlds, 1 = (n/k)l/ d and
m = 4. n/k, assuming optimal dividing of the base space is possible. For 2-dimensional grid
worlds, the learning complexity amounts to 0(44. n . k-1 + n0'5- k1's). When k = 7.8. n
this complexity is minimum and equal to (55- n").

Suppose the agent has already learned a task. What is the expected number of action
executions required to learn a new task? If the new goal state is already in the abstract space,
then 0(1. k2) action executions will be required, since the agent only needs to find solution
paths for a new goal in the abstract space. If not, the agent adds the new goal state to the
abstract space, learns a new abstract action for this new abstract state, and finds solution paths
in the abstract space. Doing all of these requires O(m2 + I. (k + 1)2) action executions. For
2-dimensional grid worlds and k = 7.8 -n3/5 , this is approximately equal to (4. n0 -8 + 22- n1 4 )
action executions.

Following the above analysis, we can show that for d-dimensional grid worlds where d > 1,
the complexity of learning the first task is bounded by 0(nl'), and the complexity of learning
an additional task is also bounded by O(n1 5 ), assuming an optimal value of k is chosen.

6.2.3 Multiple Levels of Abstraction

We now consider reinforcement learning with multiple levels of abstraction. Again, let n be
the number of states in the base space. At each level of the hierarchy, states are divided into
regions, whose center states form an abstract space for the next higher level. Abstract actions
are defined and trained in the way described in Section 6.2.2, except that abstract states and
abstract actions at one level will be treated as base states and base actions at the next higher
level. To find a path from a base state s to a goal state g, the agent first finds the abstract action
connecting s to the nearest abstract state s1 in the abstraction space of the first level, then finds
the abstract action connecting s5 to the nearest abstract state in the abstract space of the second
level, and so on, until the goal state is reached. Again, we assume that the goal state is included
in the abstract spaces of all levels.

Let ki be the number of states in the state space of Level i. (The base space corresponds
to Level 0.) Let 1i be the distance (in terms of base actions) between two neighboring states at
Level i. (Hence lo = 1.) Also let mi be the number of states (in terms of states at Level i - 1)
in the exploration space during learning an abstract action at Level i. The number of action
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executions required to learn all the abstract actions at all levels is thus:
h k - 3, l,_, (6.1)

where h is the number of levels of the hierarchy and kh = 1.

For the purpose of analysis, we make two more assumptions: First, the relative distribution
of abstract states over the base space is the same for all levels. Second, the ratio between k,+I
and k- is constant for all i. Also let k, 1, and m be kj , 11, and mIn, respectively. Under the two
assumptions, ki = n . (k/n)', 1i = 1', and mi = m for all i. We thus can simplify ( 6.1) to:

2h 2 -- ph
k.M r- • l= k.rn2 (6.2)

i=1 (6-2)

where p = kl/n. Because kh = n. (k/n)" = 1, the abstraction hierarchy consists of
h = log,1 1,, n levels. For 2-dimensional grid worlds, I = (n/k)0 '5 , m = 16 n/k, and ( 6.2)
further simplifies to:

44_ n. V n (6.3)

When k = in, (6.3) is minimum and equal to 1728n.

What is the complexity of learning a new task? If the new goal state is already in the
abstract spaces up to the jth level of the hierarchy, the expected number of action executions
required is:

h h
(1+ M,)2./ -,_ = (I + M)2. e /-1 (6.4)

i-j+ t 1 3j+

For 2-D grid worlds, (6.4) simplifies to:
S2 h

(1+ 16. n). •j (k)(j-)/2 (6.5)

When k = 4n and when j = 0 (the worst case), (6.5) is equal to 2738v/'i.

It can be shown that for 1-dimensional grid worlds, the complexity of learning the first task
is 0(n. log n), and the complexity of learning an additional task is O(n). For d-dimensional
grid worlds where d > 2, the complexity of learning the first task is 0(n), and the complexity
of learning an additional task is O(nl/d). These complexities are obtained when (n/k) is a
small constant.

6.2.4 Summary of the Analysis

Table 6.1 compares the complexity of reinforcement learning in grid worlds of arbitrary
dimensions with and without abstraction. It is clear that hierarchical learning can reduce the
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Table 6.1: Complexity of reinforcement learning in d-dimensional grid worlds where d> 1. n
is the number of states.

no single-level multi-level
abstraction abstraction abstraction

learning the 0(nz) O(n"-') O(n .logn) ford= I
first task O(n) ford> 1

learning an O(n2) 0(nJ7) 0(nl/d)

additional task I I

Table 6.2: Complexity of planning provided that the planner has an action model. n is the

number of states.

no single-level multi-level
abstraction abstraction abstraction

complexity O(n) O(v'f) 0(logn)

number of action executions required to learn a task. It is important to emphasize that this
reduction is not possible without the use of reset operators, because without using the operators
to confine the space to be explored, learning to reach a subgoal state is just as difficult as
learning to reach a high-level goal state. (Section 6.3.2 gives further discussions about reset
operators.)

For 2-D grid worlds, the optimal hierarchy is obtained when the number of levels is logo/ 4 n,
which is about I 1 for a 100 by 100 grid world. In general, such a deep hierarchy suggested
by this analysis is not achievable and not practical. For example, solution paths found with a
deep hierarchy may be too suboptimal to be acceptable, because many constraints are imposed
on the solution paths regarding what intermediate states the paths should go via. Nevertheless,
the analysis gives a sense about how much efficiency can be gained by the use of hierarchical
learning.

Korf [32] presented a quantitative analysis of abstraction in planning systems. My analysis
of hierarchical learning was in fact inspired by his work. His main results can be summarized
in Table 6.2. With multiple levels of abstraction, the planning time can be dramatically
reduced from O(n) to O(log n), where n is the number of states. Such a dramatic reduction in
complexity is not possible in reinforcement learning, because a planning system can change the
system state from one to another in a single search step, while a reinforcement learning agent,
which learns directly from the interactions with its environment, cannot jump from one state to
another without actually going through all the intermediate states. Note that Korf assumed that
an action model is available to a planning system, while here a reinforcement learning agent
does not have a model to start with-. this is why the planning complexity without abstraction
is O(n), while the learning complexity without abstraction is 0(n').
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6.3 Hierarchical Learning in Practice

6.3.1 Summary of the Technique

According to the proposed model of hierarchical reinforcement learning, the following 5 steps
are involved in doing hierarchical learning. (The rest of the chapter focuses on hierarchies with
single-level abstraction.)

1. Select abstract states. A good heuristic might be to select as abstract states the states with
special landmarks.

2. Define abstract actions- To define an abstract action, we need to specify two things:

"* a reinforcement function specifying the goal of the abstract action, and
"* an application space specifying the portion of the base space for which the abstract

action will be trained.

The main design criterion is that there must be abstract actions to take the agent from
any base state to an abstract state and there must be abstract actions to allow the agent to
navigate among abstract states.

3. Train each abstract action in its exploration space, which covers its application space.

4. Have a procedure to find applicable abstract actions. In some cases, this can be done by
examining the Q-functions for the abstract actions.

5. Train a high-level policy to determine the optimal abstract action.

The 5 steps will become clearer as the simulation experiments are presented.

6.3.2 Reset Operators

The complexity analysis presented above assumes the availability of reset operators. (Note
that the reset operators are needed during learning, but not needed afterwards.) How can we
actually implement the reset operators, if learning takes place in the real-world rather than in
simulation?

Humans spend several years in school learning to calculate. Step by step, we are taught to
count, then to do addition and subtraction, and then to multiply and divide numbers. Teachers
will not ask students to do multiplication before the students have learned addition. This is
hierarchical learning, and the reset operators are in fact provided by the teachers, who carefully
generate appropriate training tasks for the students.

Like students, robots may rely on human teachers to implement reset operators. Suppose
we want to train a robot to dock on a battery charger whenever the charger is nearby and
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detected. One possibility is to have a human teacher physically carry the robot and place
it at a random location close to the charger after each learning trial- this relocation has to
be done each time the robot has either successfully docked or moved too far away from the
charger. Alternatively, relocation may be performed by a software procedure that issues a
random number of random action commands to the robot. A protection mechanism may be
needed to prevent the robot from damages during random action executions. This alternative
is normally more desirable than physically carrying the robot, since much less human labor is
involved. However, generally speaking, this alternative works only when primitive actions are
invertible (i.e., each action can be undone by another action).

6.4 The Learning Domain

The case study to be presented in this chapter is based on HEROINE, the mobile robot simulator
described in Chapter 5. The specific learning task for the robot is battery recharging, which
involves finding a battery charger and electrically connecting to it. The reinforcement function
for this task is:

* 100 if the robot gets connected to the charger, and
* 0 otherwise.

6.4.1 Task Decomposition

According to Section 6.3.1, the first step to do hierarchical learning is to select a set of abstract
states (i.e., subgoal states) for the robot. Figure 6.2 shows the 6 subgoal states I have picked
for this study. Note that Subgoal 1 is in fact the goal state of the recharging task. To reach
Subgoal 1 starting from Room B, the robot simply moves to Subgoals 6, 5, 4, 3, 2, and finally
to Subgoal 1.

The second step to do hierarchical learning is to define abstract actions or elementary
behaviors. For example, we may define the application space of Behavior 4 (corresponding
to Subgoal 4) to be Room C and the Vicinity of Subgoal 3. Similarly, we may define the
application space of Behavior 6 to be Room B and the vicinity of Subgoal 5. A problem with
this choice of behavior hierarchy is that it is very specific to this 3-room environment and may
not apply to other environments.

Here I define the elementary behaviors in a slightly different way from the above. There
are four elementary behaviors. A door passing behavior enables the robot to navigate between
Subgoals 3 and 4, and between Subgoals 5 and 6. A docking behavior enables the robot to
reach Subgoal I from places that surround Subgoal I and include Subgoal 2. And two wall
following behaviors (wall following right and wall following left) allow the robot to navigate
around in the same room. Detailed specifications of the four elementary behaviors can be found
in Chapter 5. This choice of elementary behaviors is more appropriate than the one suggested
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Figure 6.2: Six subgo-al states selected for the recharging task.
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in the previous paragraph, because it is environment-independent. For example, once the robot
learns a door passing or wall following behavior in an environment, it can apply it to other
environments as well.

The third step is to train the elementary behaviors, which has been discussed in great detail
in Chapter 5. The rest of this chapter focuses on the last two steps: finding applicable abstract
actions and learning a high-level control policy on top of the elementary behaviors.

6.4.2 Input Representation

There is an important difference between the input representation used for the recharging
task and those used for the elementary tasks. As discussed in Chapter 5.3.2, the robot uses
a local-coordinates input representation for the elementary tasks. Such a representation is
appropriate, because those tasks are local navigation tasks. In contrast, the recharging task
is a global navigation task. For this task, the robot uses a compass and a global-coordinates
representation. To explain the difference, in the local-coordinates representation, the first
element of the state vector encodes the sonar reading coming from the direction in which the
robot is facing, while in the global-coordinates representation, the first element encodes the
sonar reading coming from north regardless of the robot's orientation.

The state representation for the recharging task includes 16 input units:

e 8 real-valued units encoding 8 sonar readings averaged out of the 24 sonar readings,

* 3 binary units encoding the detection of collisions, light, and potential door edges,

* 3 binary units encoding the room which the robot is currently in, and

* 2 real-valued units encoding the robot's global X-Y position in the environment.

The last 2 units (X-Y position) are used here to remove the hidden state problem, which occurs
when the robot is located at Subgoal 4 or Subgoal 5. As illustrated in Figure 5.3 (Chapter 5),
both subgoal states display very similar sensory readings. But the optimal behaviors in both
situations are different- one is to enter the doorway to Room A, while the other is not to enter
the doorway to Room B. To concentrate on the issue of hierarchical learning, in this chapter
I ignore the hidden state problem, which will be the focus of the next chapter. In Chapter 8,
I will describe a learning robot, which has memory of its past and no longer needs the X-Y
information.

6.4.3 Applicable Elementary Behaviors

As discussed previously (Section 6.2.2), an important question during learning is to determine
whether the agent is currently in the application space of a given elementary behavior. For the
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wall following behaviors, the answer is quite simple- the application space covers the entire
state space.

For the docking and door passing behaviors, which have final goal states, the answer can
be found from the Q-functions that define the behaviors. Take the door passing behavior for
example. There are basically two circumstances where the Q-values may be low: either the
robot is far away from any door or the door passing behavior is unable to handle the given
situation. In either case, we can say the agent is not in the application space. In contrast, high
Q-values means that the robot is close to a door and the execution of the behavior will transfer
the robot from its current room to another. Thus the agent is in the application space. Similarly,
the applicability of the docking behavior can be determined in this way.

But, what Q-values should be considered high or low? In this work, a simple thresholding
was used. A possible way to find a proper threshold for a behavior is to collect statistics on the
Q-values of successful experiences in the course of learning. In this work, it was simply chosen
off-line based on Q-value maps such as Figure 6.3. Figure 6.3 illustrates the Q-function that
was used for door passing. According to the figure, Q-values greater than 30 can be considered
high. Due to noise or imperfect learning, there are places where no door is nearby but the
Q-values are abnormally high. 4 But this was not found to cause serious problems for the robot
during learning the high-level task. Figure 6.4 illustrates the Q-function that was used for
docking. The docking behavior was considered applicable when its Q-values were greater than
25.

Note that because it is fine to activate an inappropriate behavior, the choice of the threshold
was not found critical as long as it was not too high to rule out the optimal behavior.

6.5 Behaviors That Last Forever

In my proposed abstraction model, each abstract action has a subgoal state aad ends automati-
cally once the subgoal state is reached. Applying those abstract actions, the agent can navigate
among abstract states without worrying about the low-level details of getting from one abstract
state to another. Therefore, when learning a high-level control policy, the agent can naturally
treat abstract states and abstract actions just like base states and base actions.

In general, however, robot behaviors may not always have this nice property of automatic
termination. Behaviors may last forever once they are activated. In the robot simulator, the
wall following behaviors have no termination condition at all. Even though the door passing
behavior has a termination condition (i.e., getting into another room), it may also never stop

41f a neural network is never trained on an input pattern that is very different from the training patterns, we
generally cannot guarantee that the network will display a reasonable output in response to this input pattern.
Because of this, if the door passing behavior is only trained on the near-door locations, its Q-net may output
abnormally high Q-values for situations it has not been trained on (such as near-charger locations). To minimize
the problem, the door passing behavior was in fact occasionally trained on locations far away from the doors.
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Figure 6.3: Illustration of the Q-function that defines the door passing behavior. The Q-function
can be thought of as an evaluation function of the robot's positions, orientations, and actions.
Each number in the figure represents the maximum Q-value over all actions and 4 pre-selected
orientations when the robot is on the corresponding location. The application space of the door
passing behavior can be defined as the states where Q-values are greater than 30.
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Figure 6.4: Illustration of the Q-functions that defines the docking behavior. Each number
in the figure represents the maximum Q-value over all actions and 4 pre-selected orientations
when the robot is on the corresponding location. The application space of the docking behavior
can be defined as the states where Q-values are greater than 25.
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under certain circumstances. For example, the robot's sensors may mistakenly detect a non-
existing door (due to noise), causing an inappropriate activation of the behavior. Or the behavior
may not have been trained well enough to deal with every situation that the behavior is supposed
to take care of. Under both circumstances, the door passing behavior may never be able to
achieve its goal and stop.

Since behaviors may last forever, 'he agent has to learn not only the optimal sequence of
hehaviors to reach a high-level goal hut also :ie optimal tinings for switching behaviors.
Bccause the optimal timingm r , one vior to aU ,'r M':. -Ctur at any time. th.'

ine :,ent must check O.' .' optimal timil,,

that the behavior is no longer aup .p .AI.

This work takes an extreme- the which behavior to apply is made by the
robot on each primitive step. In other ,o nrds. the :iobot checks to see which behavior is most
appropriate; applies it for one single step- determines the next appropriate behavior; applies
that behavior for another step; and so on. In the worst case, the robot needs a high-level control
policy to decide the optimal behavior for each base state, not just for each abstract state. In other
words, the agent needs to learn an evaluation function of Q(state, behavior), where "state"
here stands for the whole base space. In comparison, if hierarchical learning is not used, the
robot has to learn Q(atate, action).

Is Q(state, behavior) easier to learn than Q(.5.tate, action)? I have not been able to answer
this question quantitatively in the way I have done in Section 6.2.2, but it appears that the
answer is positive. This is because the former Q-function is less complex than the latter, which
is easily seen by noting that the robot need switch actions much more frequently than switch
behaviors.

6.5.1 Behavior-Based Exploration

To learn Q(state, behavior) effectively, the robot needs a good strategy to explore the state
space, which may be large. Fortunately, the robot has some knowledge (i.e., Q-functions)
about the elementary behaviors it has learned previously. It can use this knowledge for
effective exploration. First of all, not every behavior needs to be tried in a state. In fact, only
applicable behaviors need to be tried (Section 6.4.3). Below I discuss an exploration strategy
in the context of the battery recharging task. This exploration strategy seems quite general and
applicable to many other domains as well:

Persistence Rule: Keep following the same behavior unless some significant
changes to the robot's situation has happened.
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The follo, o changes can be considered significant: (1) the goal of the docking or door
passing h s achieved, and (2) a previously inapplicable behavior becomes applicable
(for inst4. oor opening suddenly comes into sight, making the door passing behavior
become a. .e). The basic idea behind this rule is the following: To make good progress,
the robot sK, avoid switching behaviors frequently. Imagine that the robot is close to a door.
The door pa., ig behavior and the wall following behaviors are all applicable at this moment.
The robot can choose any of them for experimentation, but it should either keep following the
wall until another doorway comes into sight or dedicate itself to door passing until the door is
completely passed. If the robot keeps changing behaviors, it will often end up being stuck in
the same place.

In this study, the robot chooses behaviors stochastically according to the following proba-
bility distribution:

Prob(b) = W(b) . eQ(r')/T/ 6.6 .°(, ,. (r),),7 6.6

S:-re x is the input state. b is a behavior, Q(. ! is the a lenlpertur,:
"cter. a!- factor fr -

ection mnulation experiments. Through the experinw,':-
., how wc ....... ca of hierarchical reinforcement learning works an 11'a a,:. • .

up. The t- was to learn a control policy for the battery recharging task. In the :i
,,eriment, hierarchical learning was not used- the robot learned a monolithic Q-function.

O(.state, action), for the task. The other 4 experiments are about learning a high-level control
policy, Q(state, behavior), for the same task. Experiments 2, 3 and 4 assumed that the
elementary behaviors had been learned beforehand, while Experiment 5 allowed high-level and
elementary behaviors to be learned simultaneously.

Each of the experiments consisted of two interleaved phases: a learning phase and a test
phase. In the learning phase, the robot explored its environment and incrementally learned
a Q-function. In the test phase, learning was turned off and the robot always followed the
best behavior according to its current policy. Each experiment was repeated 7 times, and the
learning curves shown below describe the robot's mean performance. In both the learning
phase and test phase, each robot's learning trial ended when the task was accomplished, or
else after 200 primitive steps. The experience replay algorithm described in Chapter 5.1 was
employed. Approximately 60 lessons were replayed after each trial.

Several learning parameters were used in the experiments:

* discount factor -,



96 CHAPTER 6. HIERARCHICAL LEARNING

RelnflStep

2.0

1.5

1.0

0.5

0. 0

0 50 100 150 200 250 300
Trials

Figure 6.5: The robot's mean performance over 7 runs from Experiment 1. The robot did not
use hierarchical learning in this experiment.

"* recency factor A,
"* learning rate (fixed to 0.05),
"* number of hidden units of Q-nets (fixed to 8 for Experiments 2-5),
"* Pi, and
"* temperature T (cooling down from 0.05 to 0.02).

Experiences involving bad behavior choices were not replayed. Bad behaviors were those
whose probability of being chosen (see Equation 6.6) was less than P1. P, was dynamically set
tc be between 0 and 0.02, depending on the recency of the replayed lesson. (P1 = 0 was used
for replaying the most recent lesson.)

6.6.1 Experiment 1: Non-Hierarchicai Learning

Hierarchical learning was not used in this experiment. The robot was provided with 10 taught
lessons to start with. The same learning technique used to train the elementary behaviors (see
Chapter 5) was employed to train a recharging behavior. The state representation consisted
of 102 input features, including all the input features used by the four elementary behaviors
(Section 5.3.2) and the high-level recharging behavior (Section 6.4.2). The Q-nets used 30
hidden units. The parameter settings were -t = 0.99 and A = 0.8.

Figure 6.5 shows the robot's mean performance over 7 runs. The Y axis indicates the
average reinforcement per primitive step, and the X axis indicates the number of trials the robot
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had attempted so far. After 300 learning trials, the robot was generally unable to accomplish
the task starting from Rooms B and C. Besides, it collided with obstacles very often (more than
5% of the time). In this experiment, the robot was not punished when it collided with obstacles.
In some random tests, the robot received a small punishment (-5 or - 10) for each collision.
Slightly better performance was observed with this punishment, but it still performed poorly.
The robot in fact never learned a systematic way to carry out the recharging task within 300
trials no matter what reward function was used.

6.6.2 Experiment 2: Basics

In this experiment and the rest, the robot was not provided with any teaching example except
those for training the elementary behaviors. The state representation consisted 16 of input
units, as mentioned in Section 6.4.2.

In this experiment, the robot did not use any special exploration rule. On each primitive
step, the robot chose a behavior stochastically according to Equation ( 6.6). The W-function is
computed as follows:

4' 0 if behavior b is not applicable,
I 1 if behavior b is applicable.

The parameter settings were: -y = 0.99 and A = 0.8. Figure 6.6 shows the robot's mean
performance over 7 runs. This experiment demonstrates two points: On the one hand, the
robot failed to learn a good control policy after 150 trials, because it switched behaviors too
frequently, resulting in a considerable waste of exploration effort. On the other hand, when
starting from Room A, the robot was generally able to accomplish the battery recharging task
within as few as 10 learning trials. Within 50 trials, it was able to accomplish the task when it
started from some portion of Room C.

6.6.3 Experiment 3: Persistence Exploration Rule

This experiment was similar to Experiment 2, and only differed in that it utilized the persistence
exploration rule mentioned in Section 6.5.1. The rule was implemented by defining the W-
function as follows:

0 if behavior b is not applicable,

100 if behavior b is currently active and
W(b) = the last reinforcement received by behavior b is not 100 and

no previously inapplicable behavior becomes applicable,
I otherwise.

This experiment used the same parameter settings as Experiment 2. The learning curve
is shown in Figure 6.6. Within 20 trials, the robot hail developed a good high-level skill for
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Figure 6.6: 'The learning curves obtained from the experiments. Each curve shows the robot's
mean performance over 7 runs.
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Figure 6.7: Three solution paths found for the recharging task.

connecting to the charger from most locations in Rooms A and C. A nearly optimal skill for all
situations was generally learned within 60 trials. Figure 6.7 shows some solution paths found
by the robot after 150 learning trials.

6.6.4 Experiment 4: Very Long Reward Delay

Experiment 4 was intended to test if the learning technique described here could deal with very
lcng reward delay. Specifically, the reward delay in this experiment was made 5 times longer
than that in Experiments 2 and 3. The experimental design was as follows. The step size of each
primitive action was reduced to one fifth of its original size. For instance, in Experiment 3 the
robot could move 12 inches forward in a single step, while here it could only move 2.4 inches at
a time. Thus, the number of steps to reach the goal state was 5 times greater than before, and so
was the reward delay. (Moving from Room B to the charger would require approximately 500
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steps.) The robot explored its environment in a way similar to that in Experiment 3. The new
timeout was 1000 steps instead of 200 steps in Experiment 3. For the purpose of performance
comparison, the reward for accomplishing the task was set to 500, 5 times larger than before.
In spite of these differences, the optimal high-level Q-functions in both Experiments 3 and 4
are very similar.

In the first attempt, the same learning technique used in Experiment 3 was used. The
parameter settings were -/ = 0.998 and A = 0.9. The robot's performance was found poor-
it was unable to accomplish the task when starting from Room B. I also tried various A values
(ranging from 0.8 to 0.97), but never obtained good performance.

Upon inspection, the main reason it failed seemed to be related to a re-learning problem. In
supervised learning, if a network is not trained on some patterns for quite a while, the network
is typically subject to forgetting what it has learned for those patterns. Re-learning is therefore
needed. The same problem seemed to occur here. Consider replaying a lesson of 1000 steps
long. The re-learning problem would occur simply because patterns not in the sequence will
not be trained on until the entire 1000 patterns have been presented.

A state grouping technique is proposed here to deal with the re-learning problem and also
to save computation time. The basic idea is the following: When some generalization method
is employed, it would be unnecessary to replay an entire action sequence and adjust Q-values
for every state-behavior pair along the sequence. Consider a behavior which takes the robot
through five consecutive states (a, b, c, d, e). If states b, c, and d have similar state descriptions
and similar Q-values, we may need to adjust Q-values for just one of them, since generalization
will hopefully take care of the other two. One way to do this is to treat the three states as a
single state, c, with c being its center 1. Then the experience replay algorithm is applied to
the new sequence (a, c, e). Note that doing this requires the discount factor, gamma, to be
dynamically adjusted in order to reflect the fact that the actual distance from & to a (and to e) is
2 steps, not 1 step. If the temporal distance between two states is n, the discount factor should
be changed to -yn, where -y is the normal discount factor.

In the second attempt, the state grouping technique was used, and the parameter settings
were 7 = 0.998 and A = 0.8. Here two states were considered similar and grouped together
when the Euclidean distance between the two input vectors was less than p, where p was a
random number between 0.5 and 2.5. In average, every 11 states were grouped together. In
general, Q-values of states should also be taken into account to determine whether two states
are similar or not, because syntactically similar states may have very different utilities and
should not be grouped together. This consideration was not found necessary here, however.
The learning curve is shown in Figure 6.6. Clearly, the robot's performance was comparable
to that of Experiment 3 in spite of the extended reward delay.

5For better performance, we may sometimes choose as the center state b. sometimes state c, and sometimes
state d. This allows every pattern to be trained on.
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6.6.5 Experiment 5: Simultaneous Learning of Behaviors

In Experiments 2-4, the elementary behaviors were trained separately and independently of the
high-level behavior and of each other. There are advantages and disadvantages to doing this.
The main advantage is stability. It is hard to imagine what may happen if all the high-level and
elementary behaviors are trained simultaneously. It is possible that learning of each behavior
would become unstable or easily fall into a poor local maximum due to unexpected interactions
among changing behaviors. The disadvantage, on the other hand, is that it may be hard to
determine when a behavior needs no further training and allows other behaviors to be learned.
Furthermore, it is possible that the elementary behaviors will be over-trained for dealing with
situations that occur rarely during solving the high-level task, and in the meantime they will also
be under-trained for handling situations that occur frequently during solving the high-level task.
An obvious solution to deal with this tradeoff is to train each elementary behavior separately
to some acceptable degree and then polish them further as the robot proceeds to learn the
high-level behavior. Experiment 5 was designed to demonstrate this point.

Experiment 5 was similar to Experiment 3; both used the same parameter settings. In
Experiment 5, each elementary behavior was at first trained separately for approximately 300
primitive steps (about 10-13 trials). Teaching was employed during training the elementary
behaviors. (The number of taught lessons used was 10 for door passing and docking, and was
5 for wall following.) As we can see from the learning curves in Figure 5.4 (Chapter 5.4.1),
the performance of the elementary behaviors would be quite poor at this point. But the robot
went on to learn the recharging behavior, anyway. As the robot was learning the recharging
behavior, it further trained the four elementary behaviors.

The learning curve is shown in Figure 6.6. The robot was not making much progress in the
first 50 trials, simpiy because its elementary behaviors had not been good enough yet. After
50 trials, the robot's performance started to improve rapidly. At the end of the experiment, it
had learned good control policies for the elementary tasks and the recharging task, and was
able to connect to the battery charger starting from any room. Although the performance here
was slightly worse than that in Experiment 3, the robot did not have to wait for the elementary
behaviors to be trained completely.

6.7 Discussion

This section compares the performance of the robot with and without hierarchical learning.
More specifically, it compares the learning curve obtained from Experiment I (Figure 6.5) and
that from Experiment 3 (Figure 6.6). Note that it is unfair to make a point-by-point comparison
between the two learning curves, because in the case of hierarchical learning, the robot had
already taken many action executions to learn the elementary behaviors before it started to
learih the high-level behavior. But let us consider the following two facts:
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" Teaching steps. In Experiment 1, the robot was provided with 10 taught lessons. In
Experiment 3, it was provided with taught lessons for learning the four elementary
behaviors. The numbers of teaching steps involved in both experiments were roughly
the same and approximately 500.

" Experimental steps. When Experiment 1 and Experiment 3 ended, the robot executed
approximately the same number of actions (about 40000) in both cases, taking into
account the action executions during learning the elementary behaviors.

Given that the robot used approximately the same number of teaching steps and took approxi-
mately the same number of experimental steps in both experiments, the one using hierarchical
learning was apparently superior to the one without hierarchical learning.

Why did the robot perform significantly better with hierarchical learning than without it?
In additional to the theoretical complexity reduction mentioned in Section 6.2, hierarchical
learning offers the following two practical advantages over non-hierarchical learning:

* Better state representations. Good input representations are crucial to efficient learn-
ing, because better representations support better generalization and thus faster learning.
One criterion for being a good representation is that it includes only the information
relevant to the task. When the recharging task was not decomposed, the robot had to use
a large state representation that described the robot state in sufficient detail, even though
not all of the detailed information would be needed at the same time during carrying out
the task. Such a state representation is less desirable.

When the task was decomposed, the robot only needed to use a small state represen-
tation during solving each subtask, resulting in efficient learning. For example, the
light readings, which were needed for docking, would not be needed for door passing
and thus could be excluded from the state representation for the door passing behavior.
The high-level behavior also used a small state representation, which carried abstract
information derived from the low-level sensory inputs. For example, the high-level state
representation included 8 (instead of 24) sonar readings averaged out of the 24 sonar
readings. Ignoring the features irrelevant to decision making at the moment, the robot
was able to learn efficiently.

o Easier-to-learn Q-nets. It is a traditional wisdom that training multiple simple networks
is often easier than training a single complex network [731. Without task decomposition,
the optimal Q-net for the recharging task is so complex that it could hardly be trained to
the desired accuracy at all. With task decomposition, the optimal Q-net for each of the
elementary and high-level tasks is simple and can be learned rapidly.

Note that being able to do hierarchical learning, the robot has been provided with additional
domain-specific knowledge, including a proper selection of elementary tasks and a proper
selection of a reward function and an application space for each elementary task. It seems
inevitable that we need domain knowledge to buy great learning speed.
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6.8 Related Work

Maes and Brooks [401 described a technique for an artificial insect robot to learn to coordinate
its elementary behaviors. Each elementary behavior was pre-programmed and controlled the
movement of one of the insect's 6 legs. The high-level control policy to be learned was to
coordinate the movement of the 6 legs so that the insect could walk. Their task was less
challenging, since an evaluation of the agent's performance was available on every step; no
temporal credit assignment was involved.

Mahadevan and Connell [41] presented a box-pushing robot, which was able to learn
elementary behaviors from delayed rewards. Their learning technique was reinforcement
learning. Instead of using neural networks as I do here, they generalized Q-functions using
statistical clustering techniques. Their work can be viewed as complementary to that of Maes
and Brooks. In Maes and Brooks' case, the elementary behaviors were wired by humans;
what to be learned was behavior coordination. In Mahadevan and Connell's case, the policy for
behavior coordination was wired by humans beforehand; what to be learned was the elementary
behaviors.

Lewis et al. [33] also studied a six legged insect robot, which successfully learned to
walk. The robot was controlled by artificial neural networks with weights determined by
genetic algorithms. The robot developed its walking skill in two stages: It developed first an
oscillation behavior for each of the six legs, and then a walking behavior that coordinates the six
oscillation behaviors. The robot might not have developed a successful walking skill without
dividing the learning process into such two stages. Except that we used different optimization
techniques (genetic algorithms vs. reinforcement learning), we have shared the same idea of
hierarchical learning. Dorigo and Schnepf [151 also described a simulated behavior-based
robot, which learned its behaviors hierarchically using genetic algorithms.

Singh [62] also addressed the issue of task decomposition within the reinforcement learning
paradigm. He described an efficient way to construct a complex Q-function from elementary
Q-functions. However, to use his technique requires two strong assumptions to be met: First,
each elementary behavior must have a termination condition. Behaviors like wall following
are not allowed. Second, for a given high-level task, there can be only one optimal sequence
of behaviors to reach the goal state. For his technique to work properly for the robot task
studied here, the recharging task must be divided into multiple tasks; each corresponding to
a recharging task in which the robot starts from a different room of the environment. On the
other hand, Singh has demonstrated for a simple case that his architecture could learn a new
elementary behavior that was not explicitly specified. This suggests a possible way for robots
to discover a behavior hierarchy on their own. However, no convincing results have been
obtained yet.

Singh [61] also addressed the credit assignment problem in face of long reward delay. He
proposed to learn abstract models for predicting the effects of elementary behaviors. Credit
propagation can be sped up by doing many shallow lookahead search based upon the abstract
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models. Basically this extends the idea of one-step lookahead search proposed by Sutton [67]
in his DYNA architecture (also studied in Chapter 3.6) to multi-step lookahead search. To
use this idea, again, requires each behavior not to last forever, simply because it is impossible
to predict the exact effects of a never-ending behavior. In fact, Singh's multi-step lookahead
search can also be realized by experience replay and the state grouping technique described
in Section 6.6.4. To do what Singh does, we simply group together all consecutive states
linked by a single behavior execution, and then do credit assignment on groups of states. The
advantage is that no explicit model needs to be constructed- the collection of experiences
itself is a model.

Nilsson [52] and McCallum [42] also proposed ideas similar to state grouping. Their
basic ideas are to divide the input space into regions based on syntactic similarity (and also
locality in McCallum's case). In the meanwhile, a region graph is constructed and describes
how actions may link regions together. With this graph, solution paths can be found by graph
search at run-time. Alternatively, Q-learning can be applied to learn a control policy, whose
input representation treats each region as a single state. For their methods to work properly,
each region must correspond to a unique portion of the input space- this is often hard to
do. Otherwise, a problem similar to hidden state will occur and degrade the performance. In
contrast, my state grouping technique is based upon a weaker assumption: consecutive states
with similar state descriptions should have similar Q-values and therefore can be grouped
together.

6.9 Summary

This chapter presented a model of hierarchical reinforcement learning and analytically showed
that a great saving in learning time can be obtained by task decomposition and the use of
abstraction. The complexity analysis is restricted to deterministic domains with lookup-table
representations; nevertheless, it provides a basis for understanding how hierarchical learning
can be done and how it can save learning time.

This chapter also empirically demonstrated the importance of hierarchical learning- by
hierarchical learning, a simulated robot was able to solve a complex problem, which otherwise
was hardly solvable. The proposed model assumes that every elementary behavior has a
termination condition, but in the simulation study this assumption was violated by the never-
ending wall following behaviors. Using an appropriate exploration rule, the robot was able to
coordinate never-ending behaviors in spite of long reward delay, which in one case was as large
as 500 steps.

Another assumption made by the proposed model is the independent training of elementary
behaviors and high-level behaviors..The purpose of doing this is mainly stability, but it may be
hard to decide when a behavior requires no further training. In one experiment, the robot at first
trained each elementary behavior separately for approximately 300 primitive steps, and then
trained the elementary behaviors and the high-level behavior all simultaneously. In this way,



6.9. SUMMARY 105

an agent can start learning high-level behaviors without waiting for the elementary behaviors
to be completely developed.

Hierarchical learning in this research relies on a careful decomposition of tasks. To de-
compose a task properly often requires some domain-specific knowledge. For example, as
a designer of the robot studied here, I knew the four elementary behaviors would enable the
robot to achieve the recharging task in an arbitrary multi-room environment. However, I need
not know exactly how the behaviors can be combined to achieve goals, since there can be any
number of rooms and the battery charger can be in any one of them. An extension to this work
and great challenge for the machine learning community would be automatic discovery of a
proper behavior hierarchy.
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Chapter 7

Learning with Hidden States

The convergence of Q-learning relies on the assumption that any information needed to de-
termine the optimal action is reflected L, the agent's state rppresentation. If some important
state features are missing (or hidden) from the state representation, true world states cannot
be directly identified and optimal decisions cannot be made based on this state representation.
This problem is known as the hidden state problem.

A possible solution to the hidden state problem is to use history information to help uncover
the hidden states. This chapter presents three architectures that learn to use history to handle
hidden states; namely, window-Q, recurrent-Q, and recurrent-model. Simulation experiments
indicate that these architectures work to some extent for a variety of simple tasks involving
hidden states.

This chapter also presents a categorization of reinforcement learning tasks, and discusses
the relative strengths and weaknesses of the three learning architectures in dealing with tasks
of various characteristics.

7.1 Introduction

Watkins and Dayan [74, 751 have shown that Q-learning will converge and find the optimal
policy under a few conditions (see also Chapter 2.2). One of the assumptions is that the world is
a Markov decision process; in other words, at any given time, the next state of the environment
and the immediate reinforcement to be received are determined only by the current state and
the action taken. In such environments, all information needed to determine the current optimal
action is- reflected in the current state representation.

Consider a reinforcement learning agent whose state representation is based on only its
immediate sensation. When its sensors are not able to make essential distinctions among world
states, the Markov assumption mentioned above is violated. Consider a packing task which
involves 4 steps: open a closed box, put a gift into it, close it, and seal it. An agent driven

107



108 CHAPTER 7. LEARNING WITH HIDDEN STATES

only by its current visual percepts cannot accomplish this task, because when facing a closed
box, the agent does not know if a gift is already in the box and therefore cannot decide whether
to seal or to open the box. This problem is known as the hidden state problem, because some
state features (in this example, whether there is a gift in the box) are hidden from the agent's
sensory inputs. A possible solution to the hidden state problem is to use history information,
such as whether a gift was ever put in the box, to help determine the current world state.

The rest of the chapter is organized as follows. Section 7.2 distinguishes two types of non-
Markovian control problems: active perception tasks and hidden state tasks. This dissertation
focuses on the second type of tasks, and Section 7.3 discusses three connectionist architectures
for dealing with such tasks. Section 7.4 proposes OAON network architectures for model
learning and Q-learning. Section 7.5 presents empirical study of these architectures, and
Section 7.6 discusses their relative strengths and weaknesses. Finally, Section 7.7 discusses
related work, and Section 7.8 summarizes the main lessons learned.

7.2 Active Perception and Hidden State

Two important types of control problems are inherently non-Markovian: active perception
tasks and hidden state tasks. Active perception tasks are those in which the learning agent has
to effectively manage its sensing operations in order to collect adequate state information for
decision making. Hidden state tasks are those in which the learning agent has limited sensing
capabilities and does not always obtain complete state information from its sensors.

Active perception tasks. Consider an agent with a set of sensing operations which allows
the agent to make complete distinctions among world states. Because some sensing operations
are very costly (due to either time constraints or physical resource constraints), the agent might
choose to apply only some subset of its available sensing operations. When the choice of limited
sensing operations is improper, the agent will fail to capture critical state information- this is
why active perception tasks tend to be non-Markovian. Whitehead and Ballard [81] proposed a
lion algorithm, with which a reinforcement learning agent can learn to focus perceptual attention
on the right aspect of the environment during control. Tan [69, 68] proposed a cost-sensitive
algorithm, with which a reinforcement learning agent can learn to choose minimal sensing
operations to disambiguate world states. Both algorithms assume deterministic environments.

Hidden state tasks. The gift packing task mentioned previously is a hidden state task,
because the agent's sensors are unable to determine whether there is a gift hidden in a closed
box. One way to deal with hidden state tasks is to use history information to uncover hidden
states. The problem, however, is that given a large amount of information in the past, how an
agent can efficiently and effectively utilize its history information.

This dissertation focuses on hidden state tasks. Note that many tasks of interest involve
both active perception and hidden state. Consider the gift-packing task again. Suppose after
packing, the agent has to place the sealed box on a proper table according to the color of the
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Figure 7.1: Three memory architectures for reinforcement learning with hidden states: (a)
window-Q, (b) recurrent-Q, and (c) recurrent-model.

gift inside. Also suppose the agent has an expensive visual operation to identify object colors.
To be successful, the agent should identify the color of a gift before it is packed in a box,
and remember the color for later use. To be efficient, the agent should apply the expensive
color-identification operation once for all.

7.3 Three Memory Architectures

Figure 7.1 depicts three memory architectures for reinforcement learning with hidden states.
One is a type of indirect control, and the other two direct control. These architectures all learn
a Q-function, which is represented by neural networks.

Instead of using just the current sensation as state representation, the window-Q architecture
uses the current sensation, the N most recent sensauens, and the N most recent actions taken
all together as state representation. In other words, the window-Q architecture allows a direct
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access to the information in the past through a slic;-i, indow. N is called the window size.
The window-Q architecture is simple and straigi.fforward, but the problem is that we may not
know the right window size in advam.ce. If the window size is chosen to be not large enough,
there will be not enough history information to construct an optimal Q-function. Moreover, if
the window size needs to be large, the large number of units in the input layer will require a lot
of training patterns for successful learning and generalization. In spite of these problems, it is
still worth study, since this kind of time-delay neural networks has been found quite successful
in speech recognition [73] and several other domains.

The window-Q architecture is sort of a brute force approach to using history information.
An alternative is to distill a (small) set of history features out of the large amount of information
in the past. This set of features together with the current sensation become the agent's state
representation. The optimal control actions then can be determined based on just this new state
representation, if the set of history features reflects the information needed for optimal control.
The recurrent-Q and recurrent-model architectures illustrated in Figure 7.1 are based on this
same idea, but the ways they construct history features are different. Unlike the window-Q
architecture, both architectures in principle can discover and utilize history features that depend
on sensations arbitrarily deep in the past- although in practice it is difficult to achieve this.

Recurrent neural networks, such as Elman networks [ 16], provide a way to construct useful
history features. As illustrated in Figure 7.2, the input layer of an Elman network is divided into
two parts: the true input units and the context units. The operation of the network is clocked.
The context units hold feedback activations coming from the network state at a previous clock
time. The context units, which function as the memory in 1,igure 7. 1, remember an aggregate
of previous network states, so the output of the network depends on the past as well as on the
current input.

The recurrent-Q architecture uses a recurrent network to model the Q-function. To predict
utility values correctly, the recurrent network (called recurrent Q-,et) will be forced to develop
history features which enable the network to properly assign different utility values to states
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displaying the same sensation.

The recurrent-model architecture consists of two concurrent learning components: learning
an action model and Q-learning. An action model is a function which maps a sensation and
an action to the next sensation and the immediate payoff. To predict the behavior of the
environment, the recurrent action model will be forced to develop a set of history features.
Using the current sensation and this set of history features as state representation, we can
in effect turn a non-Markovian task into Markovian one and solve it using the conventional
Q-learning, if the action model is perfect. This is simply because at any given time, the next
state of the environment and the immediate reinforcement now can be completely determined
by this new state representation and the action taken.

Both the recurrent-Q and recurrent-model architectures learn history features using a gra-
dient descent method (i.e., error back-propagation), but they differ in an important way. For
model learning, the goal is to minimize the errors between actual and predicted sensations and
payoffs. In essence, the environment provides all the needed training information, which is
consistent over time as long as the environment does not change. For recurrent Q-learning, the
goal is to minimize the errors between temporally successive predictions of utility values, as I
have described in previous chapters. The error signals here are computed based partly on infor-
mation from the environment and partly on the current approximation to the true Q-function.
The latter (i.e., the learned Q-function) changes over time and carries no information at all in
the beginning of learning. In other words, these error signals are in general weak, noisy and
even inconsistent over time. Because of this, whether the recurrent-Q architecture will ever
work in practice may be questioned.

In general the action model must be trained to predict not only the new sensation but also
the immediate payoff. Consider another packing task which involves 3 steps: put a gift into
an open box, seal the box so that it cannot be opened again, place the box in a proper bucket
depending on the color of the gift in the box. A reward is givenA only when the box is placed
in the right bucket. Note that the agent is never required to reriember the gift color in order
to predict future sensations, since the box cannot be opened once sealed. Therefore a model
which only predicts sensations will not have the right features needed to accomplish this task.
However, for each of the tasks described in Section 7.5, the action model does not need to
predict the immediate payoff in order to discover history features needed for optimal control.

It is worthwhile to note that combinations of the three architectures are possible. For
example, we can combine the first two architectures: the inputs to the recurrent Q-net could
include not just the current sensation but also recent sensations. We can also combine the last
two architectures: the memory is shared between a recurrent model and a recurrent Q-net,
and history features are developed using the error signals coming from both the model and the
Q-net. lhis chapter is only concerned with the three basic architectures. Further investigation
is needed to see if these kinds of combination will result in better performance than the basic
versions.
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Figure 7.3: Two OAON architectures for recurrent models and recurrent Q-nets: (a) linear and
(b) nonlinear. The linear one consists of multiple (here, 2) perceptrons, and the nonlinear one
consists of (modified) Elman networks. In both cases, at any given time, only the network
corresponding to the selected action is used to compute the next values of the output and context
units.

7.4 OAON Network Architectures

Both the Q-function and action model take two kinds of inputs: sensation and action. There
are two alternative network structures to realize them. One is a monolithic network whose
input units encode both the sensation arid the action. For domains with discrete actions, this
structure is often undesirable, because the monolithic network is to be trained to model a highly
nonlinear function- given the same sensation (and same history features), different actions
may demand very different outputs of the network.

An alternative is what I call the OAON (One Action One Network) architectures, which use
multiple networks (one for each action) to represent the Q-function and the model. Figure 7.3
illustrates two types of recurrent OAON architectures: linear and nonlinear. The linear OAON
consists of single-layer perceptrons, and the nonlinear one consists of multilayer networks of
units with a nonlinear squashing function. At any given time, only the network corresponding
to the selected action is used to compute the next values of the output and context units, while
the others can be ignored. It is important to note that we also have to ensure that the multiple
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networks will use the same (distributed) representation of history features. This is achieved by
having the networks share activations of context units, and can be further reinforced (in the case
of the nonlinear one) by having the networks share all connections emitting from the hidden
layer. As found empirically, the sharing of connections does not seem necessary but tends to
help.

As shown in Figure 7.3, the input layer of each network (either linear or nonlinear) is
divided into two parts: the true input units and the context units, as we have seen in the Elman
network (Figure 7.2). Note that each of the recurrent networks in Figure 7.3.b is a modified
Elman network. There are three differences between the "standard" Elman network and my
modified version.

"* The Elman network does not use back-propagation through time, but mine does (see
below for details).

"* The whole hidden layer of the Elman network is fed back to the input layer, but here
only a portion of hidden units is fed back. Consider an environment with just one hidden
feature that needs to be discovered. In such a case, it makes sense to have many hidden
units butjust one context unit. From my limited experience, the Elman network tended to
need more context units than this modified one. As a consequence, the former normally
required more connections than the latter. Furthermore, since the context units are also
part of the inputs to the Q-net, more context units require more training patterns and
training time on the part of Q-learning.

"* The third difference is in the constant feedback weight, the w in Figure 7.3.b. The
Elman network uses w = 1, while it was found that w slightly greater than I (say,
1.5) tended to make the network converge sooner. The reason it might help is the
following: In the early phase of training, the activations of context units are normally
close to zero (I used a symmetric squashing function). Therefore, the context units
appear unimportant compared with the inputs. By magnifying their activations, the
back-propagation algorithm will pay more attention to the context units.

The linear OAON architecture shown in Figure 7.3.a is in fact the SLUG architecture
proposed by Mozer and Bachrach [5111, who have applied SLUG to learn to model finite state
automata (FSA) and demonstrated its success in several domains. (They did not use SLUG
to model a Q-function, however). They also found that the conventional recurrent networks,
such as the Elman network, were "spectacularly unsuccessful" at modeling FSA's. This may
be explained by the fact that their experiments took the monolithic approach (one network for
all actions). In contrast, my experiments using the nonlinear OAON architecture were quite
successful. It always learned perfectly the FSA's that SLUG was able to learn, although it
seemed that more training data would be needed to acquire perfect models due to the fact that
nonlinear networks often have more degrees of freedom (connections) than linear ones.t

II must clarify what I mean by being able to learn a perfect model. Given any finite set of input-output patterns
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To model FSA's, we probably do not need a nonlinear OAON; linear OAONs (SLUG) may
suffice and outperform nonlinear OAONs. But for many applications, a nonlinear OAON is
necessary and cannot be replaced by the linear one. For example, Q-functions are in general
nonlinear. For a pole balancer to be discussed later, its action model is also nonlinear. For the
sake of comparing simulation results, I used nonlinear OAONs for all the recurrent Q-nets and
models in all the experiments to be presented below.

Both the hidden units and the output units (in the nonlinear case) used a symmetric sigmoid
squashing function y = 1/(1 + e-1) - 0.5. A slightly modified version of the back-propagation
algorithm [58] was used to adjust network weights. Back-propagation through time (BPTr)
[58] was used and found to be significant improvement over back-propagation without BFIT.
To apply BPTr, the recurrent networks were completely unfolded in time, errors were then
back-propagated through the whole chain of networks, and finally the weights were modified
according to the cumulative gradients. (Readers may refer to Chapter 2.4 and Figure 2.4.) To
restrict the influence of output errors at time t on the gradients computed at times much earlier
than t, I applied a decay to the errors when they were propagated from the context units at time
t to the hidden layer at time t - 1. Better performance was found with this decay than without
it. The decay used here was 0.9. The context units were initialized to 0 at the start of each task
instance.

7.5 Experimental Designs and Results

This section presents a study of the three architectures for solving various learning problems
with different characteristics. Through the study, we expect to gain more insights into these
architectures, such as whether these architectures work and which one may work best for which
types of problems.

Several parameters were used in the experiments, such as the discount factor Y, the recency
factor A used in TD(A) methods, the learning rate, the number of context units, the number
of hidden units, the window size, etc. Several of them, however, were fixed for all of the
experiments. Appendix B gives a detailed description of the parameter settings used here,
which were chosen to give roughly the best performance.

The experience replay algorithm described in Chapter 5.1 was used to significantly reduce
the number of trials needed to learn an optimal control policy. The experience replay algorithm
can be used in batch mode or in incremental mode. Here non-recurrent Q-nets were trained in
incremental mode, while recurrent Q-nets in batch mode to avoid possible instability. In all of

generated by an unknown finite state automaton (FSA), there are infinite number of FSA's which can fit perfectly
the training data. Because of this, at any given moment, a model learning algorithm can never be sure whether it
has learned exactly the same FSA as the one producing the training data, unless some characteristic (for example,
the upper bound of size) of the target FSA is '_ wn in advance. Therefore, when I say an architecture can learn
an FSA perfectly, I mean that it can predict an environment perfectly for a long period of time, say a thousand of
steps.
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2 possible initial states:

3 actions: walk left, walk right & pick up
4 binary inputs: left cup, right cup, left collision & right collision
reward: 1 when the last cup is picked up

0 otherwise

Figure 7.4: Task 1: A 2-cup collection task.

the experiments, only the experience from the most recent 70 trials would be replayed, while
the action model was trained on all the experience in the past Z.

Each experiment consisted of two interleaved phases: a learning phase and a test phase.
In the learning phase, the agent chose actions stochastically (see the stochastic action selector
in Chapter 3.4). This randomness in action selection ensured sufficient exploration by the
agent during learning. In the test phase, the agent always took the best actions according to
its current policy. All of the experiments were repeated 5 times. The learning curves shown
below describe the mean performance in the test phase.

7.5.1 Task 1: 2-Cup Collection

I started with a simple 2-cup collection task (Figure 7.4). This task requires the learning agent
to pick up two cups located in a 1-D space. The agent has 3 actions: walking right one cell,
walking left one cell, and pick-up. When the agent executes the pick-up action, it will pick
up a cup if and only if the cup is located at the agent's current cell. The agent's sensation
includes 4 binary bits: 2 bits indicating if there is a cup in the immediate left or right cell, and
2 bits indicating if the previous action results in a collision from the left or the right. An action
attempting to move the agent out of the space will cause a collision.

The cup-collection problem is restricted such that there are only two possible initial states
(Figure 7.4). In each trial, the agent starts with one of the two initial states. Because the agent
can see only one of the two cups at the beginning of each trial, the location of the other cup can

2Previously, the action model was only trained on the experiences from the most recent 70 trials. The resulting
model was found poor. As pointed out by Chris Atkeson, experiences from earlier trials in fact carry a better
diversity of information than those from recent trials, because the agent is gradually converging to the optimal
behavior as time goes by. Therefore, experiences from early trials should be kept for training the action model.
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only be learned from previous trials. To collect the cups optimally, the agent must use history
information, such as which initial state it starts with, to decide which way to go after picking
up the first cup. Note that the reason for restricting the number of initial states is to simplify the
task and to avoid ambiguity in the very beginning where no history information is available.
This task is not trivial for several reasons: (1) The agent cannot sense the cup right in its current
cell, (2) it gets no reward until both cups are picked up, and (3) it often operates with no cup
in sight especially after picking up the first cup. The optimal policy requires 7 steps to pick up
the 2 cups in each situation.

Figure 7.5 shows the learning curves for the three architectures. These curves show the
mean performance over 5 runs. The Y axis indicates the number of steps to pick up the four
cups in both task instances shown in Figure 7.4 before time out (i.e., 30 steps). The X axis
indicates the number of trials the agent had attempted so far. In each trial the agent started with
one of the two possible initial states, and stopped either when both cups were picked up, or else
after time out.

I experimented with two different A values. Two things are obvious from the learning
curves. First, with A = 0.8, all of these architectures successfully learned the optimal policy.
Second, A = 0.8 gave much better performance than A = 0. Consider the situation in Figure
7.6, where A-E are five consecutive states and F is a bad state that displays the same sensation
as State D. With A = 0, the TD method estimates the utility of State C (for example) based
on just the immediate payoff Rc and the utility of State D. Since State D displays the same
sensation as the bad state F, the utility of State D will be much underestimated, until features
are learned to distinguish States D and F. Before the features are learned, the utilities of State
C and the preceding states will also be much underestimated. This problem is mitigated when
A > 0 is used, because the TD(A > 0) method estimates the utility of State C not only based
on Rc and State D, but also based on all the following rewards (Rd, Re, etc) and states (State
E, etc).

The following are some additional observations, which are not shown in Figure 7.5:

The window size N. The performance in Figure 7.5.a was obtained with N = 5. As a
matter of fact, the optimal policy could be learned (but only occasionally) with N = 2. Imagine
that the agent has picked up the first cup and is walking towards the second cup. For a few
steps, the most recent 3 sensations (including the current one) in fact do not provide the agent
any information at all (namely, all sensation bits are off). How could the agent ever learn the
optimal policy with N = 2? The way it worked is the following: After picking up the first
cup, the agent determines the right direction to move. Later on, the agent simply follows the
general direction the previous actions has been headed for. In other words, the agent's action
choices are themselves used as a medium for passing information from the past to the present.

Robustness. The policy learned by the window-Q architecture is not very "robust", because
I can fool it in the following manner: Suppose the agent is following its learned optimal policy.
I suddenly interrupt the agent and force it to move in the opposite direction for a few steps. The
agent then cannot resume the cup collection task optimally, because its policy will choose to
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Figure 7.5: Performance for Task 1: (a) window-Q, (b) recurrent-Q, and (c) recurrent-model.
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Figure 7.6: A difficult situation for TD(0). A-E are five consecutive states and F-G are bad
states. Rc, Rd, and Re are the payoffs received on the state transitions. Also, States D and F
display the same sensation.

continue on the new direction, which is opposite to the optimal direction (see the last paragraph).
In contrast, the policy learned by the recurrent-model architecture was found more robust; it
appeared to choose actions based on the actual world state rather than on the actions taken
before. I also examined the policy learned by the recurrent-Q architecture- its robustness
appeared to be somewhere between the above two; sometimes it appeared to choose actions
based on the actual world state, and sometimes based on its recent action choices. It would be
instructive to investigate what history features were learned in the model versus in the recurrent
Q-net.

Imperfect model. The agent never learned a perfect action model within 500 trials. For
instance, if the agent had not seen a cup for 10 steps or more, the model normally was unable
to predict the appearance of the cup. But this imperfect model did not prevent Q-learning from
learning an optimal policy. This reveals that the recurrent-model architecture does not need to
learn a perfect model in order to learn an optimal policy. It needs to learn only the important
aspects of the environment. But since it does not know in advance what are and what are
not important to the task, it will end up attempting to learn everything including the details of
the environment that are relevant to predicting the next sensation but unnecessary for optimal
control.

Computation time. Both the recurrent-Q and recurrent-model architectures found the
optimal policy after about the same number of trials, but the actual CPU time taken was very
different. The former took 20 minutes to complete a run, while the latter took 80 minutes.
This is because the recurrent-model architecture had to learn a model as well as a feed-forward
Q-net and the model network was much bigger than the recurrent Q-net.

This experiment revealed two lessons:

* All of the three architectures worked for this simple cup-collection problem.

a For the recurrent-model architecture, just a partially correct model may provide sufficient
history features for optimal control. This is good news, since a perfect model is often
difficult to obtain.
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7.5.2 Task 2: Task 1 With Random Features

Task 2 is simply Task 1 with two random bits in the agent's sensation. The random bits
simulate two difficult-to-predict and irrelevant features accessible to the learning agent. In
the real world, there are often many features which are difficult to predict but fortunately not
relevant to the task to be solved. For example, predicting whether it is going to rain outside
might be difficult, but it does not matter if the task is to pick up cups inside. The ability to handle
difficult-to-predict but irrelevant features is important for a learning system to be practical.

Figure 7.7 shows the learning curves of the three architectures for this task. Again, these
curves are the mean performance over 5 runs. As we can see, the two random features gave
little impact on the performance of the window-Q architecture or the recurrent-Q architecture,
while the negative impact on the recurrent-model architecture was noticeable.

The recurrent-model architecture in fact found the optimal policy many times after 300
trials. It just could not stablize on the optimal policy; it oscillated between the optimal policy
and some sub-optimal policies. I also observed that the model tried in vain to reduce the
prediction errors on the two random bits. There are two possible explanations for the poorer
performance compared with that obtained when there are no random sensation bits. First, the
model might fail to learn the history features needed to solve the task, because much of the effort
was wasted on the random bits. Second, because the activations of the context units were shared
between the model network and the Q-net, a change to the representation of history features on
the model part could simply destabilize a well-trained Q-net, if the change is significant. The
first explanation is ruled out, since the optimal policy indeed was found many times. To test
the second explanation, I fixed the model at some point of learning and allowed only changes
to the Q-net. In such a setup, the agent found the optimal policy and indeed stuck to it.

This experiment revealed two lessons:

* The recurrent-Q architecture is more economic than the recurrent-model architecture in
the sense that the former will not try to learn a history feature if it does not appear to be
relevant to predicting utilities.

* A potential problem with the recurrent-model architecture is that changes to the rep-
resentation of history features on the model part may cause instability on the Q-net
part.

7.5.3 Task 3: Task 1 With Control Errors

Noise and uncertainty prevail in the real world. To study the capability of these architectures
to handle noise, I added 15% control errors to the agent's actuators, so that 15% of the time
the executed action would not have any effect on the environment. (The 2 random bits were
removed.) Figure 7.8 shows the mean performance of these architectures over 5 runs. Note
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that I turned off the control errors when I tested the performance of the agent, so the optimal
number of steps in the figure is still 14. 1

In 3 out of the 5 runs, the window-Q architecture successfully found the optimal policy,
while in the other two runs, it only found suboptimal policies. In spite of the control errors, the
recurrent-Q architecture always learned the optimal policy (with little instability).

The recurrent-model architecture always found the optimal policy after 500 trials, but again
its policy oscillated between the optimal one and some sub-optimal ones due to the changing
representation of history features, much as happened in Task 2. If we can find some way to
stablize the model (for example, by gradually decreasing the learning rate to 0 at the end), we
should be able to obtain a stable and optimal policy.

In short, two lessons have been learned from this experiment:

* All of the three architectures can handle small control errors to some degree.

* Among the architectures, recurrent-Q seems to scale best in the presence of control errors.

7.5.4 Task 4: Pole Balancing

The traditional pole balancing problem is to balance a pole on a cart given the cart position,
pole angle, cart velocity, and pole angular velocity. (See Appendix C for a detailed description
of the problem.) This problem has been studied many times (e.g., [3]) as a nontrivial control
problem due to sparse reinforcement signals, which are - 1 when the pole falls past 12 degrees
and 0 elsewhere. Task 4 is the same problem except that only the cart position and pole angle
are given to the learning agent. To balance the pole, the agent must learn features like velocity.
In this experiment, a policy was considered satisfactory whenever the pole could be balanced
for over 5000 steps in each of the 7 test trials where the pole starts with an angle of 0, ± 1,
±2, or ±3 degrees. (The maximum initial pole angle with which the pole can be balanced
indefinitely is about 3.3 degrees.) In the training phase, pole angles and cart positions were
generated randomly. The initial cart velocity and pole velocity are always set to 0. N = 1 was
used in this experiment.

The input representation used here was straightforward: one real-valued input unit for
each of the pole angle and cart position. Table 7.1 shows the number of trials taken by each
architecture before a satisfactory policy was learned. These numbers are the average of the
results from the best 5 out of 6 runs. A satisfactory policy was not always found within 1000
trials."

3In this chapter, I did not experiment with sensing errors, which will be future work. As pointed out by Mozer
and Bachrach [51], to train a recurrent model properly in noisy environments, We may need to alter the learning
procedure slightly. More precisely, current sensations cannot be 100% trusted for predicting future sensations.
Instead, we should trust the model's predicted sensations more as the model gets better.

4Memoryless Q-learning took 119 trials to solve the traditional pole balancing problem, in which the agent is
given the cart position, pole angle, cart velocity, and pole angular velocity.
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Table 7.1: Performance for the pole balancing task.

method window-Q I recurrent-Q recurrent-model
# of trials 206 552 247

A lesson has been learned from this experiment:

e While the recurrent-Q architecture was the most suitable architecture for the cup cclection
tasks, it was outperformed by the other two architectures for the pole balancing task.

7.6 Discussion

The above experiments provide some insight into the performance of the three memory archi-
tectures. This section considers problem characteristics that determine which architecture is
most appropriate to which task environments.

7.6.1 Problem Parameters

The three architectures exhibit different advantages whose relative importance varies withý
problem parameters such as:

* Memory depth. One important problem parameter is the length of time over which the
agent must remember previous inputs in order to represent an optimal control policy. For
example, the memory depth for Task 1 is 2, as evidenced by the fact that the window-Q
agent was able to obtain the optimal control based only on a window of size 2. The
memory depth for the pole balancing task is 1. Note that learning an optimal policy may
require a larger memory depth than that needed to represent the policy.

e Payoff delay. In cases where-the payoff is zero except for the goal state, we define
the payoff delay of a problem to be the length of the optimal action sequence leading
to the goal. This parameter is important because it influences the overall difficulty of
Q-learning. As the payoff delay increases, learning an accurate Q-function becomes
increasingly difficult due to the increasing difficulty of credit assignment.

* Number of history features to be learned. In general, the more hidden states an agent
faces, the more history features the agent has to discover, and the more difficult the task
becomes. In general, predicting sensations (i.e., a model) requires more history features
than predicting utilities (i.e., a Q-net), which in turn requires more history features than
representing optimal policies. Consider Task 1 for example. Only two binary history
features are required to determine the optimal actions: "is there a cup in front?" and
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"is the second cup on the right-hand side or left-hand side?". But a perfect Q-function
requires more features such as "how many cups have been picked up so far?" and "how
far is the second cup from here?". A perfect model for this task requires the same features
as the perfect Q-function. But a perfect model for Task 2 requires even more features
such as "what is the current state of the random number generator?", while a perfect
Q-function for Task 2 requires no extra features.

It is important to note that we do not need a perfect Q-function or a perfect model
in order to obtain an optimal policy. A Q-function just needs to assign a value to each
action in response to a given situation such that their relative values are in the right order,
and a model just needs to provide sufficient features for constructing a good Q-function.

7.6.2 Architecture Characteristics

Given the above problem parameters, we would like to understand which of the three archi-
tectures is best suited to which types of problems. Here we consider the key advantages and
disadvantages of each architecture, along with the problem parameters which influence the
importance of these characteristics.

" Recurrent-model architecture. The key difference between this architecture and the
recurrent-Q architecture is that its learning of history features is iriven by learning an
action model rather than the Q-function. One strength of this approach is that the agent
can obtain better training data for the action model than it can for the Q-function, making
this learning more reliable and efficient. In particular, training examples of the action
model (<sensation, action, next-sensation, payoff> quadruples) are directly observable
with each step the agent takes in its environment. In contrast, training examples of the
Q-function (<sensation, action, utility> triples) are not directly observable since the
agent must estimate the training utility values based on its own changing approximation
to the true Q-function.

The second strength of this approach is that the learned features are dependent on the
environment and independent of the reward function (even t& -ugh the action model may
be trained to predict rewards as well as sensations), and therefore can be reused if the
agent has several different reward functions, or goals, to learn to achieve.

" Recurrent-Q architecture. While this architecture suffers the relative disadvantage that
it must learn from indirectly observable training examples, it has the offsetting advantage
that it need only learn those history features that are relevant to the control problem.
The history features needed to represent the optimal action model are a superset of those
needed to represent the ontimal Q-function. This is easily seen by noticing that the
optimal control action can in principle be computed from the action model (by using
look ahead search). Thus, in cases where only a few features are necessary for predicting
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utilities but many are needed to predict completely the next state, the number of history
features that must be learned by the recurrent-Q architecture can be much smaller than
the number needed by the recurrent-model architecture.

* Window-Q architecture. The primary advantage of this architecture is that it does not
have to learn the state representation recursively (as do the other two recurrent network
architectures). Recurrent networks typically take much longer to train than non-recurrent
networks. This advantage is offset by the disadvantage that the history information it can
use are limited to those features directly observable in its fixed window which captures
only a bounded history. In contrast, the two recurrent network approaches can in principle
represent history features that depend on sensations that are arbitrarily deep in the agent's
history.

Given these competing advantages for the three architectures, one would imagine that each
will be the preferred architecture for different types of problems:

"* One would expect the advantage of the window-Q architecture to be greatest in tasks
where the memory depths are the smallest (for example, the pole balancin3, task).

"* One would expect the recurrent-model architecture's advantage of directly available
training examples to be most important in tasks for which the payoff delay is the longest
(for example, the pole balancing task). It is in these sit ~ations that the indirect estimation
of training Q-values is most problematic for the recurrent-Q architecture.

"• One would expect the advantage of the recurrent-Q architecture - that it need only
learn those features relevant to control - to be most pronounced in tasks where the
ratio be.,veen relevant and irrelevant history features is the lowest (for example, the cup
collection task with two random features). Although the recurrent-model architecture
can acquire the optimal policy as long as just the relevant features are learned, the
drive to learning the irrelevant features may cause problems. First of all, representing
the irrelevant features may use up many of the limited context units at the sacrifice
of learning good relevant features. Secondly, as we have seen in the experiments, the
recurrent-model architecture is also subject to instability due to changing representation
of the history features- a change which improves the model is also likely to deteriorate
the Q-function, which then needs to be re-learned.

The tapped delay line scheme, which the window-Q architecture uses, has been widely
applied to speech recognition 173] and turned out to be quite a useful technique. However, I
do not expect it to work as well for control tasks as it does for speech recognition, because of
an important difference between these tasks. A major task of speech recognition is to find the
temporal patterns that already exist in a given sequence of speech phonemes. While learning to
control, the agent must look for temporal patterns generated by its own actions. If the actions
are generated randomly as it is often the case during early learning, it is unlikely to find sensible
temporal patterns within the action sequence so as to improve its action selectioa policy.
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On the other hand, we may greatly improve the performance of the window-Q architecture
by using more sophisticated time-delay neural networks (TDNN). The TDNN used here is quite
primitive; it only has a fixed number of delays in the input layer. We can have delays in the
hidden layer as well [73, 27]. Bodenhausen and Waibel [9] describe a TDNN with adaptive
time delays. Using their TDNN, window-Q may be able to determine a proper window size
automatically.

7.7 Related Work

In recent years, multilayer neural networks and recurrent networks have emerged and become
important components for controlling nonlinear systems with or without hidden states. Figure
7.9 illustrates several control architectures, which can be found in the literature. Some of these
architectures use recurrent networks, and some use just feed-forward networks. In principle,
all these architectures can be modified to control systems with hidden states by introducing
time-delay networks and/or recurrent networks into the architectures.

Note that there are two types of critic in Figure 7.9: Q-type and V-type. The Q-type critic is
an evaluation function of state-action pairs, and therefore is equivalent to the Q-function except
that the critic may have multiple outputs; for example, one output for discounted cumulative
pain and another output for discounted cumulative pleasure. (The Q-nets in Figure 7.1 can
also be modified to have multiple outputs.) The V-type critic is an evaluation function of only
states. Temporal difference (TD) methods are often employed to learn both types of critic.

The adaptive heuristic critic (AHC) architecture (Figure 7.9.a) was first proposed by Sutton
[65]. Each time an action is taken, the action is rewarded or punished based on whether it leads
to better or worse results, as measured by the critic. At the same time, the critic is trained using
TD methods. This architecture assumes discrete actions. This architecture was discussed and
studied in Chapters 3 and 4.

The back-propagated adaptive critic (BAC) architecture (Figure 7.9.b) was proposed by
Werbos [76, 78]. This architecture assumes the availability of the desired utility at any time.
For example, the desired utility for the pole balancing system is 0 all the time; that is, the pole
never falls. Under this assumption and the assumption that the critic and the action model
have been learned already, the control policy can be trained by back-propagating the difference
between the desired utility and actzal critic output through the critic to the model and then to
the policy network, as if the three networks formed one large feed-forward network. Here the
gradients obtained in the policy network indicate how to change the policy so as to maximize
the utility. Note that this architecture can handle continuous actions.

The architecture shown in Figure 7.9.c was described by Werbos [77] and Schmidhuber
[60]. This architecture assumes the availability of the desired outputs from the system to be
controlled. Under this assumption, the errors between actual outputs and desired outputs can
be back-propagated through the model to the policy network. The gradients obtained in the
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policy network indicate how to change the policy so as to obtain the desired outputs from the
system. Note that this architecture can handle continuous actions.

Jordan and Jacobs [281 proposed a control architecture (Figure 7.9.d) somewhat similar
to the BAC architecture- instead of using a model and a V-type critic, it uses a Q-type critic.
This architecture also assumes the availability of the desired utility, and can handle continuous
actions.

The architecture shown in Figure 7.9.e was described by Thrun and M6fller [721. Given
a well-trained model, this architecture performs multiple-step look-ahead planning to find out
the best action for a given situation. Using the input situation and the action that is found best
as a training pattern, the policy network is then trained to mimic the multiple-step planning
process in one step. This architecture can handle continuous actions.

"The architecture shown in Figure 7.9.f was proposed by Bachrach [6]. Assuming that the
action model has been learned already, this architecture trains a V-type critic using TD methods.
The control policy is simply to choose the action for which the critic output is maximal. This
architecture assumes discrete actions.

My proposed recurrent-model architecture, which is shown in Figure 7.1 .c and replicated in
Figure 7.9.g, is similar to Bachrach's architecture (Figure 7.9.). Both assume discrete actions
and do not require the availability of the desired utility. Two differences between both are that:
(1) mine uses a Q-type critic, while his a V-type critic, and (2) the Q-type critic uses the actual,
current sensation as inputs, while the V-type critic uses the predicted, next sensation as inputs.
Because correct predictions by the V-type critic strongly relies on correct predictions by the
model, we may expect the recurrent-model architecture to outperform Bachrach's architecture,
if the learning agent has rich sensations and is unable to learn a good action model.

The recurrent-model architecture is also similar to a control architecture proposed by Chris-
man [12]. A main difference is that my model learning is based on gradient descent and his
based on maximum likelihood estimation.

All of the architectures discussed in this section so far consist of two or more components.
The recurrent-Q architecture (Figure 7.1.b and Figure 7.9.h), on the other hand, consists of
only one component, a Q-type critic. The critic is directly used to choose actions, assuming
that actions are enumerable and the number of actions is fin- 'e. This architecture is interesting;
it attempts to solve three difficult problems all by a singk, component: credit assignment,
generalization, and hidden state.

7.8 Summary

This chapter presented three memory architectures for reinforcement learning with hidden
states: window-Q, recurrent-Q, and recurrent-model. These architectures are all based on
the idea of using history information to discriminate situations that are indistinguishable from
immediate sensations. As shown already, these architectures are all capable of learning some
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tasks involving hidden states. They are also able to handle irrelevant features and small
control errors to some degree. This chapter also discussed strengths and weaknesses of these
architectures in solving tasks with various problem parameters.

The (good) performance reported in this chapter would not be obtainable without two
techniques: experience replay with large A values and back-propagation through time. The
following is a general summary on each of these architectures:

1. For tasks where a small window size N is sufficient to remove hidden states, the window-
Q architecture should work well. However, it is unable to represent an optimal control
policy if the memory depth of the problem is greater than N.

2. Surprisingly, the recurrent-Q architecture seems to be much more promising than I
thought before this study. I (as well as several other researchers) in fact did not expect
this architecture to work at all. A potential problem with this architecture, however, is
that it attempts to solve three difficult learning problems at the same time and within the
same learning component. The three problems are credit assignment, generalization, and
hidden state.

3. The recurrent-model architecture deals with the hidden state problem by learning an
action model, and handles the credit assignment and generalization problems by learning
a feed-forward Q-net. The recurrent-model approach may be quite costly to apply,
because model learning often takes a lot more effort than what seems to be necessary.
The difficulty of the general problem of model learning is well recognized. There
are few methods that are truly successful. For example, the diversity-based inference
procedure proposed by Rivest and Schapire [57] is restricted to deterministic, discrete
domains. Instance-based approaches, such as the work by Moore [47], Atkeson [5], and
Christiansen [ 13], are suitable for nondeterministic, continuous domains, but cannot learn
history features. Chrisman [12] studied a model learning method based on maximum
likelihood estimation. That method can handle nondeterminism and history features, but
does not seem to scale well. I also do not think the architectures proposed here scale well
to handle problems with very large memory depths. On the other hand, once a model is
learned for a task, it may be re-usable for other tasks.

Finally, as mentioned before, combinations of these architectures are possible and may give
better performance than the basic versions. Further study of this remains to be done.
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Chapter 8

Integration of Capabilities

In Chapter 6, the hidden state problem was avoided by allowing the simulated robot to access
its global X-Y position. In this chapter, the robot is no longer allowed to do that, and therefore
faces the hidden state problem. To deal with this problem, the robot combines the hierarchical
learning techniques developed in Chapter 6 and the recurrent-Q architecture developed in
Chapter 7. This chapter demonstrates the success of this combination.

Moreover, the robot's learned control policies can adapt to certain unexpected environ-
mental changes without additional training- this demonstrates the robustness of the learning
techniques developed in this dissertation.

8.1 The Learning Domain

In this chapter, HEROINE (the robot simulator used in Chapters 5 and 6) is once again used
as the learning domain. As described before, the simulated robot has 6 primitive actions and
several kinds of sensors. The robot's sensors and actuators are not perfect and have errors.
Its main task is to learn a control policy for electrically connecting to a battery charger in a
three-room environment (see Figure 5.3). The battery recharging task is decomposed into four
subtasks: right wall following (WFR), left wall following (WFL), docking (DK), and door
passing (DP). Each subtask can be learned separately and the learning result is an elementary
behavior for carrying out the subtask.

The specific task studied here is for the robot to learn an optimal control policy that
accomplishes the recharging task by choosing among the four elementary behaviors. The state
representation for this task includes sonar information (8 real-valued units), room information
(3 binary units), and information about collisions, light, and door edges (3 binary units). This
representation is in fact similar to what is described in Chapter 6.4.2. The only difference is
that the robot is no longer allowed to access its X-Y position. The robot faces a small hidden
state problem, because its sensory information is insufficient to make clear distinctions between
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the two doorways connecting Room C to Rooms A and B.

The experimental setup here is pretty much the same as that described in Chapter 6.6. The
learning parameters include:

"* discount factor -y (fixed to 0.99),
"* recency factor A (fixed to 0.8),

Other parameters such as learning rate will be given below. In the experiments presented below,
the robot replayed approximately 100 lessons after each learning trial.

8.2 Experiment 1: Memoryless Robot

In this experiment, the robot did not use any mechanism to deal with hidden states. In other
words, the same learning algorithm, the same exploration strategies, the same network structure,
and the same learning parameters as used in Experiment 3 of Chapter 6.6.3 were used here. The
learning curve is shown in Figure 8.1. As expected, the robot generally failed to accomplish
the recharging task when it started from Room B. For comparison, the learning curve from
Experiment 3 of Chapter 6.6.3 is also included in Figure 8.1. Recall that the robot did not
have hidden states in that experiment.

8.3 Experiment 2: Robot with Recurrent Q-nets

Chapter 7 discussed three memory architectures for reinforcement learning agents to deal
with hidden states: window-Q, recurrent-Q, and recurrent-model. Here I only experimented
with the recurrent-Q architecture. The hidden state problem involved in this task is in fact
not serious. The history features the robot needs to learn are mainly the features that can
help make distinctions between the two -doorways. Therefore, it does not seem worthwhile to
learn a complicated recurrent model, which will inevitably attempt to model many detailed but
unimportant aspects of the environment, such as where obstacles are located. The window-Q
architecture was not tried, because it seemed that a large window size would be needed.

The parameter settings were as follows: The learning rate was 0.08, the number of hidden
units was 12, and the number of context units was 8. To avoid instability, the experience replay
algorithm was used in batch mode; in other words, the recurrent Q-nets were adjusted after
an entire lesson was replayed. As we can see from the learning curve (shown in Figure 8. 1),
the robot based on recurrent-Q did significantly better than the memoryless robot described in
Experiment 1. After 150 learning trials, the robot had successfully developed certain history
features for uncover hidden states, and its control policy was acceptably good.
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8.4 Experiment 3: Unexpected Environmental Changes

In this experiment, I modified the environment of the robot. The modifications (see Figure
8.2) included two new obstacles (one in Room A and one in Room B), movement of two
existing obstacles (both in Room A), movement of the battery charger, and movement of both
door openings. After the robot had successfully learned a recurrent control policy for battery
recharging in the non-modified environment, it was placed in this new environment and learning
was turned off. It was found that its control policy could adapt to these environmental changes
reasonably well without additional training. Figure 8.2 illustrates three solution paths the robot
came up with in the new environment. This result reveals the good generalization achieved by
the robot. Being able to succeed in the new environment, the robot must have developed useful
high-order features for both the elementary tasks and the high-level task.

8.5 Discussion

Up to this point of the dissertation, I have extended the state of the art of reinforcement learning
in several directions, and have applied it to solve a complicated long-range robot navigation
problem in a noisy environment with hidden states. The following table summarizes some of
the simulation results:

DK DP WFR WFLCHG total

teaching steps 100 100 150 15G 0 500
experimental steps 2000 2000 1500 1500 15000 22000

The second row indicates the number of teaching steps that were provided to the robot for
learning a task. The third row indicates the number of action executions that the robot took to
learn a good policy for a task. ' The robot may save several thousand steps if it simultaneously
learns both the elementary behaviors and the high-level behavior, as I have shown in Chapter
6.6.5. The robot may save even more steps if more teaching is given. If each action execution
takes 4 seconds in the real world, 22000 action executions will take about one day. Considering
the complexity of the task, this performance is not bad.

What is important about this dissertation, however, is not in that it has solved a sonar-based
navigation problem, but in that it has demonstrated a general learning approach to a wide range
of control problems. Indeed, there are other approaches that seem to be more suitable than
reinforcement learning for sonar-based navigation. For example, Moravec's sonar mapping
technique [49] together with a path planner can enable a robot to navigate efficiently in an
unknown environment. But Moravec's technique is specific to sonar-navigation, and cannot be
applied to other control problems. In contrast, the reinforcement learning approach makes no
assumptions regarding the robot's sensors or its environment, and is a general learning method.

'When the robot was allowed to access its X-Y position, it took only 7000 steps to solve the recharging task.
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Figure 8.2: Three solution paths found for the recharging task. Recurrent Q-nets were used
here to handle hidden states. In spite of many environmental changes, the robot was able to
accomplish the task without additional training. This success suggests that the robot must have
developed useful high-order features for its tasks.
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Chapter 9

Conclusion

Reinforcement learning is a technique to build robot systems with much less involvement
of human efforts than many other learning techniques. The main problem, however, is that
existing reinforcement learning methods learn very slowly. This dissertation has presented a
series of extensions to reinforcement learning, and each of the extension has been shown to
result in either noticeable speedup or new capabilities of the learning agents. These extensions
together with their simulation results are summarized as follows:

For any learning system to succeed, the ability to generalize is absolutely crucial. In
this dissertation, multi-layer neural networks and back-propagation have been used to obtain
generalization, and shown to be quite successful. For example, a simulated robot has suc-
cessfully trained a set of neural networks to approximate a nonlinear evaluation function for
a door passing task in a noisy environment. The inputs to the networks included 28 binary
data and 24 real-valued sonar data. Given the fact that the back-propagation algorithm was
originally designed for being used in a supervised learning manner, its successful applications
to self-supervised reinforcement learning are particularly notable.

In this research, neural networks were found to handle control errors and sepsing errors
quite well. They also achieved good generalization, which can be seen by noting that the
control policy reported in Chapter 8.4 could adapt to small environmental changes without
additional training. On the other hand, neural networks seemed computationally expensive.
They typically require many presentations of training data before they converge, and each
presentation may take a lot of time depending on the size of the ietworks. For example, the
networks used in Experiment I of Chapter 6.6.1 have 102 input units, 30 hidden units and I
output unit. For such large networks, each simulation run (consisting of 300 trials) took about
1.5 days to complete on a Sparc Station. Neural networks can be highly parallelized, however.

Generalization can result in significant speedup to reinforcement learning. Another way to
obtain significant speedup is to utilize an action model, which can be incrementally built during
trial and error. In essence, by action projection with a model, the learner can experience the
consequence of an action without running risks in its environment. This dissertation proposed
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a technique called experience replay. This technique in effect takes advantage of a model,
but does not have the difficult problem of building a model, because the model is simply the
collection of past experiences.

The experience replay technique is simple and yet effective. For example, for a survival
task in a dynamic environment, this technique in one case has resulted in a speedup of 2.5 (i.e.,
the learning time was reduced to 1/2.5 of the original one; see Chapter 4.5). (More significant
speedup is generally expected for more difficult learning problems.) This speedup was obtained
from using TD(0) methods. The experience replay technique was further extended to use TD(A)
methods, and has been shown to result in even more speedup. For examaple, with the use of a
proper A value, a speedup of 4.3 (compared with experience replay with TD(O)) was obtained
for the door passing task mentioned above (see Chapter 5.6).

On the other hand, the experience replay technique did not seem to be a very efficient way
of reusing experiences. In this research, each experience was typically replayed 60 times in
order to obtain good performance. (Recall that non-policy actions were not replayed.) To be
efficient, experience replay should be performed selectively. For example, we may estimate
the information gain from replaying an exrerience, and allow only experiences with high
information gain to be replayed (for example, see [53]).

Both generalization and experience replay effectively improve learning speed. However,
there is a bottleneck that both techniques cannot help break through. The prerequisite of
learning a good control policy is that the learning agent has reached its goal state once before.
A learning agent starting with zero knowledge will rely on its luck in reaching the goal state
for the first time, which may take an arbitrarily long time. Here a teacher can save the agent
lots of trial and error by simply giving it a few successful examples. This research has shown
that teaching can be naturally integrated into reinforcement learning and result in significant
speedup. Take the door passing task for example. The robot obtained a speedup of 14 by taking
advantage of 3 teacher-provided lessons, and a speedup of 28 with 10 lessons (see Chapter
5.6).

Another way to get great speedup is hierarchical learning. A model of hierarchical rein-
forcement learning has been proposed. A complexity analysis for discrete and deterministic
domains has shown two main results. First, the complexity of reinforcement learning can be
reduced from 0(n 2 ) to O(n . log n) (n is the number of states), assuming that an optimal hier-
archy is provided by a designer in advance (Chapter 6.2.4). Second, once a learning problem
has been solved, solving a second problem becomes easier, if both problems share the same
subproblems.

The idea of hierarchical reinforcement learning was tested in a robot simulator. By the
teaching technique mentioned above, the simulated robot at first learned a set of elementary
behaviors (i.e., control policies) such as wall following and door passing. Next, the robot
learned a high-level control policy, which coordinated the elementary behaviors to accomplish
a long-range navigation task. Without hierarchical learning, the robot could not learn a good
policy for this navigation task within a reasonable time.
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This dissertation also extended reinforcement learning to allow agents to learn with incom-
plete state information. Three architectures were presented: window-Q, recurrent-model, and
recurrent-Q. They are all based on the idea of having a memory of the past, and thus allow
agents to learn history-sensitive control policies. Window-Q allows agents to have direct access
to a sliding window of its past. It is simple, but may not work effectively when the window
size must be large. Based on recurrent neural networks, the recurrent-model architecture trains
a recurrent action model, which will then help determine the actual world state. It was found
that an agent might learn a perfect control policy without having learned a perfect model. The
recurrent-Q architecture trains recurrent networks to approximate a history-sensitive evaluation
function. Many researchers (including myself) did not expect recurrent-Q to work at all, but it
turned out to work effectively for several problems.

Finally, Q-learning, neural networks, experience replay, teaching, hierarchical learning and
the recurrent-Q architecture were combined to solve a complex robot problem in the face of a
large and continuous state space, sparse reward signals, control errors, sensing errors and hidden
states. All these results support the thesis of this dissertation: We can scale up reinforcement
learning in various ways, making it possible to build reinforcement learning agents that
can effectively acquire complex control policies for realistic robot tasks.

9.1 Contributions

This research has made a number of contributions to robot learning and learning from delayed
rewards:

Successful integration of temporal difference and back-propagation: Temporal differ-
ence methods are often used to solve the temporal credit assignment problem in reinforcement
learning. Neural networks and back-propagation are often used to solve the generalization
problem. Previous attempts to integrating temporal difference and back-propagation, how-
ever, have not always been successful. In particular, most researchers did not believe that a
straightforward integration of temporal difference and recurrent neural networks could ever
learn history-sensitive evaluation functions in non-Markovian domains. This research has
demonstrated the success of this integration in solving several nontrivial learning problems-
some of them were non-Markovian.

Experience replay algorithms: The novel experience replay algorithms are simple and yet
effective techniques for solving the temporal credit assignment problem. They use backward
replay of experiences and are efficient implementation of TD(A) methods for general A.

Teaching: The novel teaching technique described in this dissertation allows a robot to learn
control policies from a human teacher as well as from experimentation with its environment.
This technique is appealing, not only because it is an effective way to speed up learning, but
also because it is simple. What a human teacher needs to do is simply taking control over
the robot and showing to the robot solutions to some sample task instances. Furthermore, the



140 CHAPER 9. CONCLUSION

teacher is not required to demonstrate only the optimal action in order for the robot to learn an
optimal control policy- it can learn from both positive and negative examples.

Hierarchical reinforcement learning: A model and an analysis of hierarchical reinforce-
ment learning have been presented. The analysis has shown that a great reduction in learning
complexity can be obtained by the use of abstraction. The analysis is restricted to discrete and
deterministic domains, and is based on a few assumptions; nevertheless, it sheds light on how
hierarchical reinforcement learning can be done and how learning complexity can be reduced.

Hierarchical learning of robot behaviors: In addition to theoretical results, hierarchical
reinforcement learning has been tested in a simulated mobile-robot domain. The robot was
able to learn both the elementary behaviors and the coordination of them.

Learning with hidden states: Three memory architectures have been presented to allow
reinforcement learning in the presence of hidden states. Two of them are novel. These
architectures were empirically shown to be useful. Their relative strengths and weakness were
also evaluated and discussed.

Integration: Previous studies of reinforcement learning have mostly been about solving
simple learning problems. Previous efforts in scaling reinforcement learning have mostly fo-
cused on a single topic, for example, either on generalization or on utilizing models. This
dissertation proposed a number of extensions to reinforcement learning, and furthermore in-
tegrated those extensions to solve a robot learning task, which is complex and physically
realistic.

9.2 Future Work

Chapter 1 pointed out a list of issues involved in reinforcement learning. Some of them have
been addressed in this dissertation, and some have not. For those studied and those not studied
here, much work remains to be done. In particular, the following are some interesting areas to
be pursued in the future:

" There has been significant progress in neural network learning. Improved training
algorithms and new network structures have been proposed. Reinforcement learning may
directly benefit from these new technologies. It remains to be investigated, however. It
would also be interesting to explore alternative generalization approaches, such as those
mentioned in Chapter 2.3.

" It seems that the learning techniques described here can be extended to handle actions
with real-valued parameters (e.g., "move z inches"). For example, the Q-function can
be represented by a network, whose input units encode both the state inputs and action
parameters. Given such a Q-net, one can use error back-propagation to find the best action
parame" . Initially a random parameter value is picked, and the network is evaluated
to determine the utility (say, u) of the action with this parameter value. Suppose the
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maximum possible utility value is 1. We set the error of the network output to (I - u),
and propagate this error back to the input units. Here the error in the input unit that
encodes the action parameter indicates how we can change the parameter value so as to
maximize the utility. We change the parameter value accordingly, and do the above once
again with this new value as the start point. This process can be repeated many times
until the error in the input unit becomes sufficiently small.

"* We like robots to be able to accelerate learning by taking advantage of human inputs
during learning. This dissertation presented one way to do it (i.e., teaching). Other
approaches remain to be-found.

"* To prove the usefulness of the techniques described here, they must be tested in many
domains. In particular, it would be interesting to see their applications to real-world robot
problems.

"* This research assumes that a correct behavior hierarchy is given by human designers. A
great challenge is automatic discovery of a good hierarchy.

" It is possible that some combination of the three memory architectures may result in
better performance than each individual one.

" Effective exploration is an important issue for learning agents. In particular, how can a
learning agent explore efficiently in a continuous state space? Even more challenging,
how can it explore an environment with hidden states?

" It is important that a robot intelligently manage its expensive sensory resources. There
has been some work on applying reinforcement learning to solve this active perception
problem. It is generally quite an open area, however.

9.3 Closing

Robot learning is generally a hard problem. Some robot learning problems, I believe, can
be readily solved by the reinforcement learning techniques described in this dissertation. But
for complicated real-world problems, reinforcement learning in its current stage is still not
powerful enough. Nevertheless, reinforcement learning looks promising as an approach to
robot learning, because it is not built on top of strong assumptions, such as deterministic
worlds, availability of perfect (or sufficiently good) models, etc. Much progress in scaling
reinforcement learning has been made in recent years. Many problems have been identified,
and some possible solutions have been proposed and pursued. It would not be surprising to see
in the near future that reinforcement learning is embedded in a robot system to continuously
optimize and adapt the robot's skills of performing routine tasks.
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Appendix A

Algorithms Used in Chapter 4

A.1 Algorithm for Choosing Enemy Actions

Each enemy in the dynamic environment behaves randomly. On each step, 20% of the time the
enemy will not move, and 80% of the time it will choose one of the four actions, A0 (east), AI
(south), A2 (west), and A3 (north), according to the following probability distribution:

prob(A1 ) = P,/(Po + P + P2 + P3)

where

Pi= 0 if Ai will result in a collision with obstacles
exp(O.33- W(angle) T(dist)) otherwise

angle = angle between the direction of action A. and
the direction from the enemy to the agent

dist = distance between the enemy and the agent
W(angle) = (180 - jangle1)/180

15 -dist if dist <4
T(dist) = { - dist/2 if dist < 15

1 otherwise

A.2 Algorithm for Choosing Lessons for Replay

The agents which replay experiences keep only the most recent 100 lessons in memory. Lessons
are randomly chosen for replay; recent lessons are exponentially more likely to be chosen. The
aigorithm for choosing a lesson from memory is shown below.

Input: a sequence of lessons, Lo, L,..., L,, 1, where L,,-I is the latest one.

Output: an integer k, 0 < k < n
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Algorithm:

1. w 4Min (3,1 + 0.02. n)
2. r - a random number between 0 and 1
3. kn--r,'og~l + r'Cew- 1))/w.



Appendix B

Parameter Settings Used in Chapter 7

The parameters used by the experiments in Chapter 7 included:

"* discount factor -y (fixed to be 0.9),
"* recency factor A,
"* range of the random initial weights of networks (fixed to be 0.5),
"* momentum factor (fixed to be 0 for perceptrons and 0.9 for multilayer networks),
"* window size (N),
"* learning rate for Q-nets (?7q),
"* learning rate for action models (0lm),
"* number of hidden units for Q-nets (Hq),
"* number of hidden units for action models (Hm),
"* number of context units for Q-nets (Cq),
"* number of context units for action models (C,,),
"* temperature for controlling randomness of action selection (T), and
"* probability threshold for determining policy actions for experience replay (PI).

The parameter settings used are shown in Table B.1. Note that Hq = 0 means that the Q-nets
are single-layer perceptrons. The value of P1 (see Chapter 3.5 or 5.3.5) was dynamically set to
be between 0.01 and 0.00001 for the cup collection tasks and between 0.0001 and 0.0000001
for the pole balancing task, depending on the recency of the experience to be replayed.
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Table B. 1: Parameter Settings

Task I Task 2 Task 3 Task 4
window-Q N = 5 same as same as N = 1

A = G.8 Task I Task 1 except A = 0.7
H., = 0 19 = 0.01 Hq = 6

ilq = 0.02 7•q = 0.25
1/T = 10 --* 30 1/T = 20 --+ 50

recurrent- A = 0.8 same as A = 0.8 A = 0.7
Q Cq= 8  Task1 Cq= 12  Cq= 2

Hq 14  Hq-20 Hq= 10

17q =0.04 7= 0.02 ?7q = 0.0 2

1/T= 5 - 30 I/T=5--+30 1/T=20--+50
recurrent- A= 0.8 A = 0.8 A =0.8 A = 0.7

model C.. = 16 C, = 18 Cm = 20 C'. = 4
H. = 24 H. = 26 H,, = 30 Hm = 6
7M= 0.02 77m = 0.02 17,, = 0.02 q,,, = 0.005
Hq 10 Hq It Hq 12  Hq = 6
I = 0.2 7 = 0.2 /7q 0 .1I 7 = 0.5

I_ =/T=5.--.30 1/T=5--.30 L/T=5--.30 1/T=15--,50



Appendix C

The Pole Balancing Problem

The dynamics of the cart-pole system (Figure C.1) are given by the following equations of
motion [65] [3]:

x(t + 1) = x(t) + ,r(t)
i(t + 1) = i(t) + Ti(t)

O(t + 1) = O(t) +± O(t)

j(t + 1) = i(t) + Ti(t)

F(t) + mpl [0(t) sin O(t) - 0(t) cos 0(t)1 - /=sgn(•(t))

M, + mpF Ft-(t)t)ame =pa~~~)) _~t9t

g sin O(t) + cos O(t) [-rt)-...t sinmc, t)+m,.p-g (,J)) _

O [ M ,CO+ 49(t)]

where
g = 9.8m/s 2  = acceleration due to gravity,
m, = 1.0kg = mass of cart,
MP = 0.1 kg = mass of pole,
I = 0.5 m = half pole length,
PC = 0.0005 = coefficient of friction of cart on track,
A, = 0.000002 = coefficient of friction of pole on cart,
F(t) = ± 10.0 newtons = force applied to cart's center of mass at time t,
T = 0.02 s = time in seconds corresponding to one simulation step,

X +1 ifx>0,

-1 ifx < 0.

The reinforcement function is defined as:

r(t) = -1 if jO(t)I > 0.21 radian or lx(t)I > 2.4 m,

{ 0 btherwise.
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x

Figure C.1: The pole balancing problem.
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