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Abstract

Human evaluation of the translation system is expensive. Automatic evalua-
tion metric, which can be used to evaluate the translation system automat-
ically is getting more and more critical. They are not only used to judge a
translation system but also used to orient the training of the neural machine
translation system nowadays. Concerning this, we design a new automatic
evaluation metrics, which can be a better fit for this task. We take good use
of the vector representation of the given sentence, either from the internal
statuses of a machine translation system or from a Word2Vec(w2v) model,
which is used to produce word embeddings, to judge its quality. Comparing
with other metrics, the advantages of the metrics we introduced in this thesis
are: contextual, it depends on the training data of the machine translation
system; character base, so that it can deal with the words that not appeared
in the vocabulary; deep network, neural machine translation contains many
Long Short Term Memory (LSTM) layers in the decoder that can represent
the meaning of a sentence in different aspects; vector representation, we rep-
resent the system output sentence with a vector; the last but not the least,
the quality of the metric depends on the machine translation system that is
used during the evaluation. The performance of the metrics we introduced
here surpass the performance of the sentBLEU, which often used as baseline
in the NLP task, in ’ACL First Conference on Machine Translation’ in both
direct assessment and relative ranking task. The result of our metrics are
close to the State of the art(METRICS-F) in relative ranking task.
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Zusammenfassung

Die menschliche Bewertung des Übersetzungssystems ist teuer. Automatis-
che Bewertungsmetriken, mit denen das Translationssystem automatisch be-
wertet werden kann, werden immer kritischer. Sie werden nicht nur dazu
verwendet, ein Übersetzungssystem zu beurteilen, sondern werden auch ver-
wendet, um das Training des neuralen maschinellen Übersetzungssystems
heutzutage zu orientieren. Hierzu entwerfen wir eine neue automatische Be-
wertungsmetrik, die für diese Aufgabe besser geeignet ist. Wir verwenden die
Vektordarstellung des gegebenen Satzes entweder aus dem internen Status
eines maschinellen Übersetzungssystems oder aus einem Word2Vec (w2v)
-Modell, das zur Erzeugung von Worteinbettungen verwendet wird. Im Ver-
gleich zu anderen Metriken sind die Vorteile der Metriken, die wir in dieser
Arbeit eingeführt haben: kontextbezogen, abhängig von den Trainingsdaten
des maschinellen Übersetzungssystems; Zeichen basiert, damit sie mit den
Wörtern umgehen kann, die nicht im Vokabular vorkommen; tiefes Net-
zwerk, neuronale maschinelle Übersetzung enthält viele ’Long Short Term
Memory’(LSTM) -Schichten im Decoder, die die Bedeutung eines Satzes in
verschiedenen Aspekten darstellen können; Vektordarstellung, wir repräsen-
tieren den Systemausgabesatz mit einem Vektor; zum Schluss hängt die
Qualität der Metrik vom maschinellen Übersetzungssystem ab, das bei der
Auswertung verwendet wird. Die Leistung der hier vorgestellten Metriken
übertrifft die Leistung von sentBLEU, die häufig als Grundlage in der NLP-
Aufgabe verwendet wird, in ’ACL First Conference on Machine Translation’
sowohl in der direkten als auch in der relativen Ranging-Aufgabe.
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Chapter 1

Introduce

1.1 Motivation
How to judge the quality of one translation?

The closer a machine translation is to a professional human translation,
the better it is.

It is the central idea of evaluation metrics. Human evaluation is an ex-
tensive but expensive method that used to evaluate a translation. It weighs
many aspects of the translation, including adequacy, fidelity, and fluency of
the translation[10][22].
Comparing with human evaluation the primary bilingual evaluation under-
study(BLEU) in 2002 regarded to be much more expedient. It compares
n-grams of the candidate with the n-grams of the reference translation and
uses the number of matches to judge the candidate, the more the better[16].
Nowadays it is still used as a baseline in many translation matches.
Based on BLEU, many new matrices are created, for example, character
n-grams F-score(chrF). The general formula for the CHRF score is:

𝑐ℎ𝑟𝐹𝛽 = 𝐶𝐻𝑅𝑃 * 𝐶𝐻𝑅𝑅

𝛽2 * 𝐶𝐻𝑅𝑃 + 𝐶𝐻𝑅𝑅
(1.1)

where 𝐶𝐻𝑅𝑃 is the percentage of n-grams in the hypothesis which has a
counterpart in the reference, and 𝐶𝐻𝑅𝐹 is the percentage of character n-
grams in the reference which is also present in the hypothesis, and 𝛽 is a
parameter which assigns 𝛽 times more important to recall than precision[17].
They are also other kinds of evaluation metric, like BEER. It trains a sim-
ple linear model exploiting 33 relatively dense features, including adequacy
features, fluency features and Features based on PETs[19].
Comparing with metrics, machine translation system also develops quickly
in the recent years. Early in the late 1980s, Time Delay Neural Network
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1. Introduce 2

(TDNN), a prime deep-learning approach, was proposed by Prof. Waibel
for phoneme recognition[20]. In the 2000s, the recurrent neural networks
(RNN)[21] and long-short-term-memory (LSTM)[8] are proven to be effi-
ciently dealing with sequence-to-sequence tasks. Afterwards, the invention
of the word embedding[15] solves the sparsity problem by learning a rep-
resentative feature vector. Together with the recently proposed Attention
mechanism[1] which enhances the power of coping with long sentences, the
mature encoder-decoder paradigm has become the state-of-art solution for
NMT.[4]
Seeing the development of the neural translation system, we come to an idea:
can we use a vector to represent the sentence, and judge its quality throught
this vector, for example, use the internal statuses in the encoder-decoder
neural translation system to evaluate a sentence. It is also the core question
in this thesis.

1.2 Basic Idea
We divide the model into two parts. For the inputted sentences we first
transform them to some vectors with the help of word2vec model or neural
machine translation system. Then we put these vectors in the second part
of the model to get the result we want. We can get the vector representa-
tion for a sentence from a word2vec directly, which is the role of a word2vec
model. But how to utilise the neural translation system to get the vector
representation?
To translate a sentence with an encoder-decoder neural translation system,
we put the source sentence as the input of the encoder. The input of the
decoder should be the output of the decoder in the last timestamp. To utilise
the neural translation system in our metrics model, same as usual transla-
tion, we put the source sentence as input of the encoder, but instead of using
the output of the decoder in the last timestamp as the new input data, we
use the translation candidate, that we want to score, as input of the de-
coder. Then we represent the candidate sentence with the internal statuses
of the decoder. We use a neural network to judge the quality of the original
sentence according to this representation.



Chapter 2

Background

In this chapter, we introduce some knowledge that essential to the model
introduced in later chapters. In the first section, we focus our attention on
the sentence embedding. We introduce different ways to represent a sentence
inputted with a vector so that it can be used in a neural network or some
other model directly. After that, we introduce the distance methods, which
are used to calculate the distance between two vectors, which can dedicate
the similarity of these two vectors. At last, we introduce an algorithm that
can be used to optimise the category parameters in a model.

2.1 Sentence embedding
In this section, we introduce different methods to do the sentence embedding.
Generally, for each word in one sentence, we first transform it to a vector
with a word embedding method and then we use an aggregation function to
aggregate all these vector representations from the same sentence and use
the output vector as the representation of the sentence.
The word embedding methods used here can be roughly distributed into
two types, word2Vec and vector representation learned in neural machine
translation system(NMT). We introduce these methods concretely in the
following subsection.

2.1.1 Word2Vec

The concept Word2vec introduced here is a tool provided by Google. It takes
a text corpus as input and construct a vocabulary from these texts and then
learns the vector representation of each word through training of a neural
network. Concrete processes are introduced in the articles: [14] [15].
We use the word2vec model to get the word embeddings firstly and then
combine the words embeddings in the same sentence with an aggregation
function and use it as the representation of that sentence.

3



2. Background 4

Figure 2.1: Encoder-decoder architecture[11]

Figure 2.2: Long short term architecture[11]

Here we use the pre-trained model directly. There are two different word2Vec
models used in the experiment:

• GoogleNews-vectors-negative300 (named w2v in the experiment result
table) This model is trained on parts of Google news dataset(about 100
billion words). It contains 3 million words and phrases. It represents
each word or phrase with a 300 dimensions vector.

• GoogleNews-vectors-negative300-slim(named w2v-slim in the experi-
ment result table) This model is a subset of the model above. The
compressed file of the original model is 1.6GB, and it takes times to
load the model with gensim. That is why we use the slimmer version
here.

2.1.2 Vector presentation learned in NMT

Because most of the vector representation we used in the experiment come
directly from the neural machine translation(NMT) system. Firstly we take
a brief overview of the neural machine translation system. More specifically,
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the encoder-decoder architecture in neural machine translation system. The
first step of any neural machine translation system is to convert each atomic
symbol into a corresponding continuous vector(500 dimension vector here),
which is often called as a word embedding. This step is done for each source
word independently of the other words and results in a source sequence
of word embeddings. The encoder network which is implemented as a bi-
direction long short-term memory network with two hidden layers, it en-
codes this source sentence into a single context vector.
The decoder network, again the long short-term memory network, generates
a translation word-by-word while being conditioned on the context repre-
sentation of the source sentence. At each step of generation in the decoder,
the internal hidden states of the decoder are updated first and then combine
the last layer hidden states with the attention information. The dot product
between the output of the hidden layers and the output word embedding
vector of each word in the target vocabulary is computed and normalised
across all the target words, resulting in a probability distribution over the
target vocabulary. A target word is selected based on this distribution, and
the whole process is recursively repeated until the end-of-sequence symbol
is generated. Details in [1]
Figure 1 (2.1) shows the encoder-decoder architecture. Figure 2 (2.2) shows
the internal calculation in the Long Short-Term Memory network[8] where
ℎ𝑡 is the hidden state at time t, 𝑐𝑡 is the ceil states at time t. x is the input
data. 𝑖𝑡, 𝑓𝑡, 𝑔𝑡, 𝑜𝑡 are the input, forget, ceil, forget gates. 𝜎 is the sigmoid
function. The long short-term memory network we use here, for each input
data, output three different outputs including hidden states, ceil states and
output states. The output states are almost the same as the hidden states.
It is the output of a dropout layer[18] taking the hidden state as input.
According to this architecture, we summarise the following methods from
the decoder side of a neural machine translation system to represent the
words in the sentence.

• NMT Decoder Embedding It’s the same as NMT Encoder Embedding,
and it’s the first step of the decoder part of the neural machine trans-
lation system. It also converts each atomic symbol into a vector.

• NMT Decoder hidden states It is one of the outputs of the long short-
term memory network in the decoder. It represents the hidden states.

• NMT Decoder hidden ceils It is one of the outputs of the long short-
term memory network in the decoder. It represents the ceil states

• NMT Decoder ouptut It is the output of the decoder.
So far, we only get the word embedding, to transform the word embeddings
into a sentence embedding, we make use of the aggregation function. We
aggregate the representations of all the words in one sentence to form a
sentence representation. The aggregation function we use here include sum,
max and mean. Besides, because the neural machine translation system we
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use here, contains two hidden layers. Therefore, for one candidate sentence,
we get 18 different representations from the decoder side of the neural ma-
chine translation system. They are the core representations that are used in
the experiments.
Besides the sentence representations from the decoder of the neural machine
translation system, we also use the Encoder states in the neural translation
system to represent the words and sentence. These states include:

• Encoder hidden states We use two layer bi-direction LSTM in the en-
coder side of the neural translation system, For each word inputted
the hidden layers of the encoder output a vector. We use this vec-
tor to represent the word inputted. The encoder hidden layer of the
neural translation system model we used here 500 dimension which
means when we input a word into the encoder we get a 500 dimension
vector in return. As describe before, then we use an aggregate func-
tion to transform the words embedding in one sentence into sentence
embedding.

• Encoder context value We use the last output of the LSTM in the
encoder side of the neural translation system to represent the sentence
inputted.

2.2 Distance Measures
In this subsection, we introduce the distance methods that are used in the
experiment. As mentioned above, we represent the candidate sentence with
a vector, usually a 500 dimensions vector. For example we have two vectors
here, we represent them with (𝑥1, ..., 𝑥𝑛), (𝑦1, ..., 𝑦𝑛). The distance methods
take these vectors and input and output a score. We use this score to rep-
resent the similarity of the vectors inputted.
The formulas of the distance methods that are used in the experiments are
as shown below.

• L1(cityblock)
𝐿1 =

∑︁
𝑖

|𝑥𝑖 − 𝑦𝑖| (2.1)

• L2
𝐿2 =

∑︁
𝑖

√︁
𝑥2

𝑖 − 𝑦2
𝑖 (2.2)

• Cosine similarity
𝑐𝑜𝑠 =

∑︀
𝑖 𝑥𝑖𝑦𝑖√︁∑︀

𝑖 𝑥2
𝑖

√︁∑︀
𝑖 𝑦2

𝑖

(2.3)

• Braycurtis[5]

𝑏𝑟𝑎𝑦𝑐𝑢𝑟𝑡𝑖𝑠 =
∑︀

𝑖 𝑥𝑖 − 𝑦𝑖∑︀
𝑖 𝑥𝑖 + 𝑦𝑖

(2.4)
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• Canberra[9]
𝑐𝑎𝑛𝑏𝑒𝑟𝑟𝑎 =

∑︁
𝑖

|𝑥𝑖 − 𝑣𝑖|
|𝑥𝑖| + |𝑦𝑖|

(2.5)

• Pearson correlation[2]

𝑐𝑜𝑟𝑟 = 1 − 𝑝𝑒𝑎𝑟𝑠𝑜𝑛_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑖𝑛 (2.6)

• Mahalanobis where V is the covariance matrix[6]

𝑚𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 =
√︀

(𝑥 − 𝑦)𝑉 −1(𝑥 − 𝑦) (2.7)

• Standard euclidean where V is the covariance matrix

𝑠𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =
√︁

(𝑥 − 𝐸(𝑥))𝑇 𝑉 −1(𝑦 − 𝐸(𝑦)) (2.8)

2.3 Quality of Metrics
Before we can create a new metric by ourselves, we need to look for a method
to measure the goodness of a metrics. In the metrics task of WMT, two
different methods are used according to the type of data they are using.

• Direct Assessment In this case, we use Pearson correlation to measure
the quality of a metric. Generally, the direct assessment dataset con-
tains machine translator output and human scores. We use our metric
to scores the output sentence and calculate the Pearson correlation
between the result and the human scores. The larger the correlation,
the better the metric is. To compute pearson correlation we make use
of the Formula

𝜌𝑋,𝑌 = 𝐸(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌 )
𝜎𝑋𝜎𝑌

(2.9)

In the formular, 𝜇𝑋 is the mean of the X, 𝜎𝑋 is the standard diviation
of X and E is the expectation.

• Relative Ranking In this case, we use Kendall’s Tau-like formula to
measure the quality of a metric. It is a variant of Kendall’s Tau coeffi-
cient[7]. Because we don’t have the ranking data of the whole test set,
we can’t use Kendall’s Tau coefficient. To compute Kendall’s Tau-like
coefficient we use the following matrix(see Table 2.1) and Formula [13].

𝜏 =
∑︀

ℎ,𝑚∈{<,=,>},𝐶ℎ,𝑚 ̸=0 𝐶ℎ,𝑚|𝑆ℎ,𝑚|∑︀
ℎ,𝑚∈{<,=,>},𝐶ℎ,𝑚 ̸=0 |𝑆ℎ,𝑚

(2.10)

In the formula, we read the C value direct from the matrix. |𝑆ℎ,𝑚| is
the size of the specified data set. For example, |𝑆<,>| is the size of the
data set, which human assessment is ’<’ but the metrics assessment is
’>’.
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metric
< = >

human
< 1 0 -1
= X X X
> -1 0 1

Table 2.1: The matrix that use to calculate Kendall’s Tau like coefficient.
’<’ means sentence from translator one is worse than the sentence from
translator two. ’=’ means sentence from translator one is better than the
sentence from translator two. ’=’ means the qualities of the sentences from
both translators are the same



Chapter 3

Related work

In recent year, automatic machine translation evaluation has received much
attention in recent year. Various metrics have been proposed with the aim
to provide quick and stable measurements of the performance of a machine
translation system. Most of them compute the similarity between the ma-
chine translation hypothesis and the reference translation. However, differ-
ence metric based on different perspectives regarding measuring similarity,
for example, BELU metric is based on lexical. However, Maxsim metric is
based on syntactic.

3.1 BLEU
Bilingual evaluation understudy(BLEU) is an algorithm used to evaluate the
quality of a text translated from a translator. Given a translation sentence
and a reference sentence, the BLEU metric output a score between 0 and 1,
which indicate the similarity between the given sentences. The larger is the
output, the better is the translation sentence.
BLEU make use of the so-called modified n-gram precision to calculate the
similarity between the inputted sentences. An n-gram is a segment of con-
secutive n words in a sentence. A sentence with 18 words has 18 1-gram and
17 2-gram. Precision is the probability of an n-gram in a candidate sentence
found in the reference sentence, for example:
Example 1
Candidate 1: It is a guide to action which ensures that the military always
obeys the commands of the party.
Candidate 2: It is to insure the troops forever hearing the activity guidebook
that party direct.
Reference 1: It is a guide to action that ensures that the military will forever
heed Party commands.
Reference 2: It is the guiding principle which guarantees the military forces
always being under the command of the Party.

9
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Reference 3: It is the practical guide for the army always to heed the direc-
tions of the party.
There are 18 words in the sentence candidate 1. 17 of them appear in the
reference sentences. So we can say the precision of 1-gram is 17/18. For the
same reason, the precision of 2-gram is 10/17.
It looks good here, but precision has a shortcoming: the words in the refer-
ence sentence may be reused. See the example below:
Example 2
Candidate: the the the the the the the.
Reference 1: The cat is on the mat.
Reference 2: There is a cat on the mat.
The precision for 1-gram is 7/7. But we know that the candidate sentence
is bad.
To overcome this problem, BLEU uses modified n-gram precision. The mod-
ified n-gram precision calculate a value 𝑚𝑚𝑎𝑥for each word in the candidate
sentence, by taking its maximum total count, in any of the reference sen-
tences. For example, in example 2, the word ’the’ appears twice in the ref-
erence 1 sentence, and once in the reference 2 sentences. So the 𝑚𝑚𝑎𝑥 is 2
for the word ’the’ in the candidate sentence. For each word in the sentence
BLEU calculates the 𝑚𝑚𝑎𝑥, and then BLEU sum over all the 𝑚𝑚𝑎𝑥 in the
candidate sentence. This sum is then divided by the total number of 1-gram
in the candidate sentence. It is the modified 1-gram precision for this sen-
tence.
There are still other problems with BLEU scores. One of them is that they
tend to favour short translations, which can produce very high precision
scores, even using modified precision.

3.2 METEOR
METEOR is the abbreviation of ’Metric for Evaluation of Translation with
Explicit ORdering’. The metric is designed for the evaluation of machine
translation output in 2014 to fix some problems found in the more popular
BLEU metric. To understand the design of METERO metric, some concepts
need to explain first.

Harmonic mean

There are three different kinds of means in the classical Pythagorean means:
the arithmetic mean, the geometric mean and the harmonic mean. Typically,
Harmonic mean is appropriate for situations when the average of rates is de-
sired, it can be expressed as the multiplicative inverse of the arithmetic mean
of the multiplicative inverse of the given set of observations. The equation
of the arithmetic mean are shown below:
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𝑎𝑚𝑒𝑎𝑛 = 1
𝑛

𝑛∑︁
𝑖=1

𝑎𝑖 = 𝑎1 + 𝑎2 + ... + 𝑎𝑛

𝑛
(3.1)

Corresponding to the arithmetic mean, the harmonic mean is:

ℎ𝑚𝑒𝑎𝑛 = ( 1
𝑛

𝑛∑︁
𝑖=1

𝑎−1
𝑖 )−1 (3.2)

Unigram precision and recall

As with BLEU, the algorithm first creates an alignment between two sen-
tences with constraint: the candidate translation sentence and the reference
translation sentence. The alignment is a set of mappings between unigrams.
A mapping can be described as a line between the same unigram in two
sentences. There is a constraint for the mappings. If there is more than one
alignment with the same number of mappings, the alignment is chosen with
fewest intersections of two mappings.
Once the final alignment is computed, the unigram precision P and unigram
recall R are calculated as:

𝑃 = 𝑚

𝑤𝑡
(3.3)

𝑅 = 𝑚

𝑤𝑟
(3.4)

Where m is the number of mappings between the candidate translation and
the reference translation, 𝑤𝑡 is the number of unigrams in the candidate
translation and 𝑤𝑟 is the number of unigrams in the reference translation.
We then calculate the harmonic mean of the precision and recall with recall
weighted 9 times more than precision:

𝐹𝑚𝑒𝑎𝑛 = 10𝑃𝑅

𝑅 + 9𝑃
(3.5)

Penalty

So far we only concern the unigram, to take the longer n-gram into account,
we use them to compute a penalty for the alignment. When we more map-
pings that are not adjacent in the reference and candidate sentence found,
the higher the penalty will be.
To compute the penalty, unigrams are grouped into the fewest possible
chunks, that contain a set of unigrams that are adjacent in the hypotheses
and the reference. The longer the adjacent mappings between the candidate
and the reference, the fewer chunks there are.
The penalty is computed as follows:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 0.5( 𝑐

𝑢𝑚
)3 (3.6)
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Where c is the number of chunks, and 𝑢𝑚 is the number of unigrams that
have been mapped.
The final for sentence is computed as below:

𝑀 = 𝐹𝑚𝑒𝑎𝑛(1 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦) (3.7)

3.3 BLEND
BLEND[12] is a combined machine translation metric which makes good use
of the existing metrics. Contrary to other combined metric BLEN use SVM
regression to train the model and use direct assessment scores as the golden
standard.
Comparing with DPMFcomb1 which use SVM-rank to train the model and
use relative ranking as the golden standard, BLEND make a vast reduction
in required training data and achieves improved performance over DPMF-
comb when they incorporated the same metrics.
BLEND can be applied to any language pair if in-corporated metrics sup-
port the specific language pair.
Generally, BLEND is building upon scores provided by 25 lexical based
metrics and 4 other metrics for to-English language pair. Since some lexical
based metrics are merely different variants of the same metric, there are only
9 kinds of lexical based metrics, namely BLEU, NIST, GTM, METEOR,
ROUGE, Ol, WER, TER and PER. 4 other metrics include CharacTer,
BEER, DPMF and ENTF.[3]

1a combined metric proposed in 2015



Chapter 4

Data

4.1 Quality judgments
When we use a machine translator to translate a sentence, how to judge
the quality of its output? In this section, we are going to introduce several
ways to assess the output of a machine translation system that ware used
in WMT(ACL First Conference on Machine Translation). They are also the
methods that used in the quality judgment of the metric. The closer a metric
score is to a human score, the better this metric is.

• Direct Assessment(DA) Instead of source sentence, the assessor com-
pares a translation of a machine translator with the reference trans-
lation sentence of the same source sentence. Moreover, the assessor
rates each machine translator output sentence with a score between 0
and 100. Direct Assessment is a new golden standard that was used in
WMT. It has two advantages:

– Monolingual knowledge is required
– The similarity of the way to judge a sentence between human and

machine is getting closer. Both of them compare the difference
between the machine translator output and reference sentence.

• Relative Ranking(RR) In the task of DA, assessor only compare the
machine translator output with the reference sentence, however in the
RR task, the assessor have to compare more than one outputs from
different machine translator (of the same source sentence) with not
only the reference sentence but also its source sentence. Instead of
rating an output with a score, the assessor here is asked to rank these
outputs of the different machine translators according to their quality
with ties1 allow.

• DaRR When there are no relative ranking data, and the direct as-
sessment data that we have collected are not enough to get a reliable

1two sentences from different machine translator get the same assess

13
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2017 2016 2015

de-en 3004 2999 2169
en-de 3004 2999 2169

Table 4.1: Number of Sentences that were used in the data set from 2013
to 2017 in WMT

judgment of a metrics. We can convert the direct assessment data to
relative ranking data and use the judgment method for relative rank-
ing data to assess the metrics. The only difference between the DaRR
data and relative ranking data, we introduce above , is the way to
get the data. To translate a DA data to DaRR, it should fulfil the
following conditions:

– There are assessments for the more than one machine translators
output sentences of the source sentence.

– We can judge that one translation sentence is better than the
other according to their assessments.

4.2 Data Set
For the training and testing of the metric model, we use the direct assessment
and relative ranking data that were used in WMT from 2015 to 2017.
The direct assessment data set consist of four parts:

• The source sentence
• The machine translator output sentence
• Reference sentence
• Human score

The relative ranking data set consist of five parts:
• The source sentence
• The machine translator output sentence one
• The machine translator output sentence two2

• Reference sentence
• human score

The number of source sentence that was used in WMT differs from year to
year, they are shown in table 4.1.

2the output from a different machine translator of the same source sentence as machine
translator output sentence one
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dataset type language-pair number

ad-deen-good-stnd da ger-eng 560
ad-seg-scores-de-en da ger-eng 24158
ad-seg-scores-en-de da eng-ger 7025

Table 4.2: Data sets that are collected in WMT17. ’type’ column points out
the quality judgment method, ’da’ means direct assessment. In language-pair
column, ’ger’ is German and ’eng’ is English.

4.2.1 WMT17

Three data sets are collected in WMT17. All of them are direct assessment
data as shown in the table 4.2.

• ad-deen-good-stnd.csv Direct assessment scores of language pair Ger-
man to English. They are created by taking the mean of a minimum of
15 assessments of the same machine translator output sentence. There
are reliable to be used as a estimation of the quality of a translation

• ad-seg-scores-de-en.csv Direct assessment scores of language pair Ger-
man to English. They are created by taking the mean of a maximum of
14 assessments of the same machine translation. They are not expect
to provide an accurate reflection of the quality of the translation

• ad-seg-scores-en-de.csv Direct assessment scores of language pair En-
glish to German. They are created by taking the mean of a maximum
of 14 assessments of the same machine translation. They are not expect
to provide an accurate reflection of the quality of the translation

4.2.2 WMT16

Three data sets are collected in WMT16. One of them is direct assessment
data set, and the others are relative ranking data set. Concrete descriptions
are shown below.(see table 4.3):

• DAseg.newstest2016.human.de-en Direct assessment scores of language
pair German to English. They are created by taking the mean of a
minimum of 15 assessments of the same machine translator output
sentence. There are reliable to be used as an estimation of the quality
of a translation

• wmt16-dump-20160610-1226.deu-eng.cs Relative ranking data of lan-
guage pair German to English.

• wmt16-dump-20160610-1226.eng-deu.cs Relative ranking data of lan-
guage pair English to German.
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dataset type lang-pair number

DAseg.newstest2016.human da ger-eng 560
wmt16-dump-20160610-1226.deu-eng rr ger-eng 20937/17701
wmt16-dump-20160610-1226.eng-deu rr eng-ger 50989/39689

Table 4.3: Data sets that are collected in WMT16. Because for the same
machine systems and sentence pair there exist multiple assessments in rela-
tive ranking data set, here two different numbers are recorded in the table.
The first one is the original number of ranking in the data set and the second
one is the number of ranking after combining the repeated items.

dataset type lang-pair number

DAseg.newstest2015.human da ger-eng 500
judgements.20150817 part1 rr ger-eng 40535/32856
judgements.20150817 part2 rr eng-ger 54447/42936

Table 4.4: Data sets that are collected in WMT15. Because for the same
machine systems and sentence pair there exist multiple assessments in rela-
tive ranking data set, here two different numbers are recorded in the table.
The first one is the original number of ranking in the data set and the second
one is the number of ranking after combining the repeated items.

4.2.3 WMT15

Two data sets are collected in WMT15. One of them is direct assessment
data set, and the other is a relative ranking data set. Concrete descriptions
are shown below.

• DAseg.newstest2015.human.de-en Direct assessment scores of language
pair German to English. They are created by taking the mean of a
minimum of 15 assessments of the same machine translator output
sentence. There are reliable to be used as an estimation of the quality
of a translation.

• judgements.20150817 It includes both the relative ranking data of lan-
guage pair English to German and the relative ranking data of lan-
guage pair German to English

To have a bright look on the data set, we distribute the data into two parts
according to the language pair as shown in table 4.4



Chapter 5

Model

5.1 Framework
We introduce the basic models in this chapter. Generally, we can divide the
model into two parts as shown in the Figure 5.1. For the inputted sentences
we first transform them to some vectors through ’Sentence embedding’, Af-
ter that we use the ’Combination model’ to combine these vector to get
the result. The type of the result depends on the type of the task: direct
assessment or relative ranking.

• Sentence embedding Given a sentence, we present it with a vector.
Sentence embedding does not depend on the type of the task. In the
next section, we introduce different ways of sentence embedding.

• Combination model Taken the representations of the sentences as in-
puts, we compute a result through this model. Because the result is a
combination of the inputted representations, we name this model ’com-
bination model’. Combination model depends on the type of the task,
direct assessment and relative ranking, because for the different task
the input and output data are different. We introduce the framework
of the combination models in the subsections separately according to
the type of the task.

5.1.1 Direct assessment

The target of the direct assessment(DA) task is, given a system output
translation and a reference translation, score the system output translation

Figure 5.1: General framework

17
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Figure 5.2: Direct assessment framework

Figure 5.3: Relative ranking framework

between 0 and 100.
The framework of the model to predict the direct assessment is shown in
the Figure 5.2. The sentences inputted are first translated into two vectors,
Then we put the vectors into the combination model to get a score.

5.1.2 Relative ranking

The target of the relative ranking task is, given two different system output
translations of the same source sentence and a reference sentence, through
the model, we can judge which translation is better, or the qualities of both
translations are the same.
The framework of the model to predict the relative ranking are shown in the
Figure 5.3. First, we use three vectors to represent the inputted sentence,
two candidate translations and the reference sentence, and then we input
them into a combination model to get the ranking.

5.2 Combination model for direct assessment task

5.2.1 Distance based model

The direct assessment combination model takes two vectors as input. One
represents the system output translation and the other the reference sen-
tence. Then it outputs the score of the translation.
To combine these vectors, the distance based model calculates the ’distance’
between these vectors and scores the system output translation with this dis-
tance. Depending on weather neural network is used or not, we divide the
distance based model into two categories, direct model and mapped model.
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Direct model

Given the system output sentence and reference sentence, we represent the
system output sentence with vector X (𝑥1, ..., 𝑥𝑛) and the reference sen-
tence with vector Y (𝑦1, ..., 𝑦𝑛). The direct model scores the system output
sentence X with a distance method as shown in the equation.

𝑠𝑐𝑜𝑟𝑒 = 𝑑𝑖𝑠(𝑋, 𝑌 ) (5.1)

Where ’dis’ is the distance function.
There are different kinds of the distance function, all of them are introduced
in the last subsection.

Mapped model

Given the system output sentence and reference sentence, we represent the
system output sentence with vector X (𝑥1, ..., 𝑥𝑛) and the reference sentence
with vector Y (𝑦1, ..., 𝑦𝑛). The mapped model does not use the X, Y directly.
Instead, it map X and Y to X’ and Y’ with the same linear model and use
the distance between the X’ and Y’ as the final score. The equation are
shown below:

𝑠𝑐𝑜𝑟𝑒 = 𝑑𝑖𝑠(𝑙𝑖(𝑋), 𝑙𝑖(𝑌 )) (5.2)
where ’li’ is the linear function and ’dis’ is the distance function.
There are two reasons for the mapping phase: We use a vector to repre-
sent a sentence. Different dimension of the vector may represent sentence in
different aspect. Through the linear model we can weight these dimensions
and focus on the essential dimensions; Like the idea of Autoencoder, we
restructure the inputted vector so that it can fit the task better.

5.2.2 Neural based model

The direct assessment combination model takes two vectors as input. One
represents the system output translation and the other the reference sen-
tence. Neural based model takes both vectors as input and output the score
and depending on the ways to combine the vectors, we divide the model into
two types: concatenate model and the separate model

Concatenate model

Given the system output sentence and reference sentence, we represent the
system output sentence with vector X (𝑥1, ..., 𝑥𝑛) and the reference sentence
with vector Y (𝑦1, ..., 𝑦𝑛). The concatenate model concatenate vector X and
Y to form a new vector Z (𝑥1, ..., 𝑥𝑛, 𝑦1, ..., 𝑦𝑛) and then use the vector Z as
the input of the neural network to get a score. The model is shown in Figure
5.4:
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Figure 5.4: Concatenate model for direct assessment task

Figure 5.5: Multiply and additive separate model for direct assessment task

Figure 5.6: Mapping separate model for direct assessment task

Separate model

Given the system output sentence and reference sentence, we represent the
system output sentence with vector X (𝑥1, ..., 𝑥𝑛) and the reference sentence
with vector Y (𝑦1, ..., 𝑦𝑛). Instead of catenation, the separate model treats
the inputted vectors differently. We have designed three models here, there
are:

• Multiply separate model We multiply X by Y to form a new vector and
use it as the input of the neural network.

• Additive separate model We sum X by Y to form a new vector and use
it as the input of the neural network.

• Mapping separate mdoel We put the vectors into the neural network
separately and generate two scores, s1 and s2, from the network, and
then we make the final score as s1 minus s2.

5.3 Combination model for relative ranking task

5.3.1 Distance based model

The relative ranking combination model takes three vectors as input. Two
of them represent the translations from two different translation system,
and the last one represents the reference sentence. The output of the model
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is the ranking of the inputted translations with ties allow1. To combine
these vectors, distance based model calculate the ’distance’ between the
translation and reference sentences separately and become a score for each
translation. Then the model ranks the translation with these scores. The
smaller the score is, the better is the translation. Depending on weather
neural network is used or not, we divide the distance based model into two
categories, direct model and mapped model.

Direct model

Given two system output sentences and reference sentence, we represent
the first system output sentence with vector X (𝑥1, ..., 𝑥𝑛) and the second
system output sentence with vector Y (𝑦1, ..., 𝑦𝑛), the reference sentence with
vector Z (𝑧1, ..., 𝑧𝑛). The direct model chooses the better translation with
the equation shown below:

𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖∈(𝑋,𝑌 )𝑑𝑖𝑠(𝑖, 𝑍) (5.3)

Where ’dis’ is the distance function.
There are different kinds of the distance function, and they are the same as
the distance function used in the direct assessment task.

Mapped model

Given two system output sentences and reference sentence, we represent
the first system output sentence with vector X (𝑥1, ..., 𝑥𝑛) and the second
system output sentence with vector Y (𝑦1, ..., 𝑦𝑛), the reference sentence with
vector Z (𝑧1, ..., 𝑧𝑛). The mapped model does not use the X, Y, Z directly.
Instead, it maps X, Y and Z to X’, Y’ and Z’ with the same linear model
and calculates the ’distance’ between the X’, Z’ and Y’, Z’ to get two scores.
Then the model ranks the translation with these scores. The smaller the
score is, the better is the translation. The equation is shown below:

𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖∈(𝑙𝑖(𝑋),𝑙𝑖(𝑌 ))𝑑𝑖𝑠(𝑖, 𝑙𝑖(𝑍)) (5.4)

Where ’li’ is the linear function, and ’dis’ is the distance function.
There are two reasons for the mapping phase:We use a vector to represent a
sentence. The different dimension of the vector may represent the different
meaning of the sentence. Through the linear model, we can weight these
dimensions and focus on the essential dimensions; Like the idea of Autoen-
coder, we restructure the inputted vector so that it can fit the task better.

1two sentences from different machine translator gets the same assess
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Figure 5.7: Concatenate model for relative ranking task

5.3.2 Neural based model

The relative ranking combination model takes three vectors as input. Two of
them represent the translations from two different translation system, and
the last one represents the reference sentence. Neural based model takes
three vectors as input and outputs the ranking of the inputted translation
with ties allowed. Depending on the methods of combining the three vectors,
we divide the model into two types: concatenate model and the separate
model

Concatenate model

Given two system output sentences and reference sentence, we represent
the first system output sentence with vector X (𝑥1, ..., 𝑥𝑛) and the second
system output sentence with vector Y (𝑦1, ..., 𝑦𝑛), the reference sentence
with vector Z (𝑧1, ..., 𝑧𝑛). The concatenate model concatenate vector X, Y
and Z to form a new vector V (𝑥1, ..., 𝑥𝑛, 𝑦1, ..., 𝑦𝑛, 𝑧1, ..., 𝑧𝑛) and then use
the vector V as the input of the neural network. The neural network then
outputs the ranking. The whole model is as shown in Figure 5.7:

Separate model

Given the system output sentence and reference sentence, we represent the
first system output sentence with vector X (𝑥1, ..., 𝑥𝑛) and the second system
output sentence with vector Y (𝑦1, ..., 𝑦𝑛), the reference sentence with vector
Z (𝑧1, ..., 𝑧𝑛). Instead of catenation, the separate model treats the inputted
vectors differently. We have designed two models here, they are:

• Half separate model We concatenate X, Z and Y, Z separately and
make the concatenated vectors go through the network to get two
scores. We rank the translation sentences according to these scores.

• Multiply separate model We multiply X by Z in each dimension to get
a new vector X’ and multiply Y by Z in each dimension to get the
second vector Y’. Then we put the new vectors into a neural network
separately to generate two scores. We rank the translation sentences
according to these scores.
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Figure 5.8: Half separate model for relative ranking task

Figure 5.9: Multiply separate model for relative ranking task



Chapter 6

Experiment

In this section, we introduce the experiments that we have done to test
the quality of the models introduced in the last chapter. We divide the
experiments into two parts. In the first part we concentrate on the direct
assessment experiment, and in the second part, we focus on the relative
ranking experiment. In each part of the experiment, we again distribute
experiments in two subsections: one for distance based experiments and one
for neural based experiments.

6.1 Direct assessment experiment

6.1.1 Distance based experiment

The target of the direct assessment(DA) task is, given a system output
translation and a reference translation, score the system output translation
between 0 and 100.
As mentioned in the last chapter, three points can affect the result of the
distance based model strongly, namely:

• Word embedding An essential part of sentence embedding. It decides
the source of the sentence embedding like w2v or neural translation
system.

• Aggregation function An essential part of sentence embedding. Once
you get the word embedding of each word in a sentence, you need to
aggregate these word embeddings to form the representation of the
sentence.

• Distance function It is the function that used to compute the distance
between two different vectors. Distance function only affects the dis-
tance based model.

The target of the experiment in this subsection is to test the effect of these
elements and figure out the best selection of the elements mentioned above.

24
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sentence embedding max mean sum

w2v 0.502 0.356 0.327
w2v-slim 0.492 0.370 0.259

encoderEmbd 0.454 0.240 0.255
decoderEmbd 0.361 0.334 0.238
decoderOut 0.352 0.349 0.211

decoderState1 0.419 0.373 0.236
decoderState2 0.380 0.400 0.212
decoderCeil1 0.429 0.348 0.211
decoderCeil2 0.25 0.385 0.200

Table 6.1: SentEmbd-agg experiment for the direct assessment task, the
result is the Pearson correlation between the target scores and the output
of the model, the model is testing with direct assessment accuracy data in
wmt17

Direct model experiment

For the direct model, we have designed two experiments. One to find out
the best aggregation function and sentence embedding, the other focus on
the distance function.

• SentEmbd-agg experiment Fix the distance function to L1 distance
function and change the sentence embedding and aggregation function
during the experiment. We use the direct assessment direct model as
described in the last chapter and evaluate the result with Pearson
correlation. We test the experiment both with direct assessment data
in wmt16 and wmt17 to improve the reliability.

• SentEmbd-dis experiment Fix the aggregation function to max aggre-
gation function and change the sentence embedding and distance func-
tion during the experiment. We use the direct assessment direct model
as described in the last chapter and evaluate the result with Pearson
correlation. We test the experiment both with direct assessment data
in wmt16 and wmt17 to improve the reliability.

The pearson correlations of SentEmbed-agg experiment are shown in Tables
6.1 and 6.2. We can see that:
The combination of w2v and max aggregation function performs best with
data in wmt17. However, the combination of decoder ceil1 and max aggre-
gation function performs best with data in wmt16.
Concerning only sentence embedding, w2v and decoder state perform better
than the others.
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sentence embedding max mean sum

w2v 0.430 0.224 0.408
w2v-slim 0.435 0.223 0.375

encoderEmbd 0.451 0.420 0.394
decoderEmbd 0.377 0.287 0.379
decoderOut 0.436 0.367 0.407

decoderState1 0.538 0.341 0.432
decoderState2 0.539 0.459 0.423
decoderCeil1 0.466 0.350 0.418
decoderCeil2 0.537 0.455 0.399

Table 6.2: SentEmbd-agg experiment for the direct assessment task, the
result is the Pearson correlation between the target scores and the output
of the model, the model is testing with direct assessment accuracy data in
wmt16

sentence embedding L1 L2 cos

w2v 0.500 0.452 0.413
w2v-slim 0.492 0.478 0.369

encoderEmbd 0.444 0.415 0.382
decoderEmbd 0.401 0.361 0.330
decoderOut 0.359 0.340 0.318

decoderState1 0.426 0.411 0.368
decoderState2 0.404 0.366 0.350
decoderCeil1 0.403 0.355 0.334
decoderCeil2 0.421 0.357 0.257

Table 6.3: SentEmbd-dis experiment for the direct assessment task1, the
result is the Pearson correlation between the target scores and the output
of the model, the model is testing with direct assessment accuracy data in
wmt17

The effect of aggregation is also complicated. In most of the case max ag-
gregation function performs best, but for some sentence embeddings from a
neural translation system, mean aggregation function performs better.
We only get 500 data in wmt17 and 560 data in wmt16, which make the
result unstable. The Pearson correlations of SentEmbd-dis experiment are
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sentence embedding braycurtis canberra correlation

w2v 0.433 0.420 0.478
w2v-slim 0.410 0.379 0.507

encoderEmbd 0402 0.399 0.402
decoderEmbd 0.380 0.380 0.336
decoderOut 0.322 0.327 0.343

decoderState1 0.400 0.396 0.439
decoderState2 0.417 0.412 0.394
decoderCeil1 0.364 0.346 0.400
decoderCeil2 0.396 0.407 0.277

Table 6.4: SentEmbd-dis experiment for the direct assessment task2, the
result is the Pearson correlation between the target scores and the output
of the model, the model is testing with direct assessment accuracy data in
wmt17

shown in Tables 6.3, 6.4. We only care about the distance function in this
experiment. Therefore the conclusion is quite straightforward:
At most of the times, the L1 distance function performs best, although dis-
tance function ’correlation’ performs better in some case.

Mapped model experiment

We already knew that L1 distance function performs better than the other
distance functions. Therefore we continue to use the L1 distance function
here. For the Mapped model experiment, we focus on the aggregation func-
tions.
We fix the distance function to L1 distance function and change the sen-
tence embedding and aggregation function during the experiment. We use
the direct assessment mapped model as described in the last chapter. We
train the model with direct assessment data in wmt16 and test the model
with direct assessment data in wmt17. We evaluate the result with Pearson
correlation.
The result is shown in the Table 6.5. From the data we can see that:
The combination of w2v sentence embedding and max aggregation function
performs best.
Train Pearson correlation is much larger than the test Pearson correlation.
We can say that the model is overfitting. It may be due to the lack of train-
ing data. We only get 560 data to train the model.
Besides w2v, decoder states1 also performs well in the experiment.
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max mean sum
sentence embedding test train test train test train

w2v 0.409 0.876 0.339 0.873 0.237 0.793
w2v-slim 0.344 0.871 0.352 0.868 0.311 0.628

encoderEmbd 0.400 0.741 0.297 0.856 0.285 -0.163
decoderEmbd 0.298 0.689 0.378 0.829 0.275 -0.104
decoderOut 0.310 0.533 0.315 0.7967 0.213 -0.154

decoderState1 0.399 0.474 0.332 0.870 0.259 0.233
decoderState2 0.333 0.669 0.343 0.868 0.210 0.200
decoderCeil1 0.348 0.396 0.315 0.683 0.226 -0.253
decoderCeil2 0.379 0.319 0.365 0.763 0.214 -0.197

Table 6.5: Mapped model experiment for the direct assessment task, the
result is the Pearson correlation between the target scores and the output
of the model, the model is training with direct assessment accuracy data in
wmt16 and testing with direct assessment accuracy data in wmt17

Compare

We make conclusion of the experiments so far. We already knew that:
Only considering the sentence embedding, w2v and decoder states1 perform
well in both experiments: the direct model experiments and the mapped
model experiments.
In terms of aggregation function, max aggregation function performs best.
If only considering the distance function, L1 distance function gets the best
result.
To compare the direct model and mapped model, we pick some of the results
from the experiment above and put them in a single Table 6.6. Both model,
direct model and mapped model, here use max aggregation function and L1
distance function.
We conclude that:
Only considering the test result, the direct model performs better then
mapped model.
Considering the training result, although direct model performs better than
the mapped model in the test set. However, if we get more training data or
a better neural model, the mapped model may have the chance to beat the
distance model.
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direct model mapped model
sentence embedding test test train

w2v 0.500 0.409 0.876
decoder States1 0.426 0.399 0.474

Table 6.6: Pearson correlation between the target scores and the output
of the model, the model is testing with direct assessment accuracy data in
wmt17

6.1.2 Neural based experiment

The target of the direct assessment(DA) task is, given a system output
translation and a reference translation, score the system output translation
between 0 and 100.
As mentioned in the last chapter, three points can affect the result of the
model strongly, namely:

• Word embedding An essential part of sentence embedding. It decides
the source of the sentence embedding like w2v or neural translation
system.

• Aggregation function An essential part of sentence embedding. Once
you get the word embedding of each word in a sentence, you need to
aggregate these word embeddings to form the representation of the
sentence.

• Neural network The neural network used in the model.
The target of the experiment in this subsection is to test the effect of these
elements and figure out the best selection of the elements mentioned above.

Catenate model experiment

Catenate model first catenate the representaions of the inputted translation
and reference sentences. And then it use the the catenation representation
as input of a nueral network and get the scores direct from this network. We
design an experiment to choose the best aggregation function and sentence
embedding.

• SentEmbd-agg experiment We vary the sentence embedding and aggre-
gation function during the experiment. The neural network we used
here is a multiple layers perceptron with 500 units in the hidden layer.
We train the model with direct assessment data in wmt16 and test the
model with direct assessment data in wmt17.

The Pearson correlations are shown in the Table 6.7. We can see that: For
sentence embedding, hidden stats of the translation system perform much
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max mean sum
sentence embedding test train test train test train

w2v -0.016 0.744 0.097 0.976 0.084 0.981
w2v-slim 0.058 0.656 0.058 0.885 0.123 0.968

encoderEmbd 0.130 0.591 0.136 0.852 0.118 0.938
decoderEmbd 0.047 0.439 0.083 0.956 0.086 0.952
decoderOut 0.073 0.749 0.040 0.983 0.016 0.974

decoderState1 0.167 0.913 0.191 0.987 0.186 0.987
decoderState2 0.195 0.962 0.221 0.980 0.269 0.983
decoderCeil1 0.156 0.688 0.209 0.983 0.156 0.974
decoderCeil2 0.273 0.882 0.272 0.968 0.263 0.968

Table 6.7: SentEmbd-agg catenate model experiment for the direct assess-
ment task, The result is the Pearson correlation between the target scores
and the output of the model, the model is training with direct assessment
accuracy data in wmt16 and testing with direct assessment accuracy data in
wmt17

better than the others. Among them decoder states1 get the best scores.
Only considering the aggregation function, sum aggregation function per-
forms better than the other two aggregation function. It is different from
the distance based model.
All the result show that the model is strongly overfitting.
The number of the training accuracy data is limited. Maybe we can try to
use the sub-accuracy data to train the model.
The sentence embedding which working good in the distance based model
performs poorly here.

Separate model experiment

The model used in this subsection is different from the catenate model.
Therefore, we repeat the experiment for catenate model here but use the
separate model instead. Besides we knew that w2v sentence embedding,
encoder embedding and decoder embedding do not work with this model,
we only try decoder internal states in the experiment. In the experiment,
we vary the sentence embedding and aggregation function. We train the
model with direct assessment data in wmt16 and test the model with direct
assessment data in wmt17. As we have three different separate model, we
show the result in three Tables: 6.8, 6.9 and 6.10
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max mean sum
sentence embedding test train test train test train

decoderState1 0.112 0.888 0.206 0.724 0.119 0.922
decoderState2 0.160 0.914 0.261 0.676 0.171 0.853
decoderCeil1 0.132 0.729 0.172 0.880 0.021 0.503
decoderCeil2 0.237 0.649 0.270 0.895 0.230 0.858

Table 6.8: Multiply separate model experiment for the direct assessment
task. The result is the Pearson correlation between the target scores and the
output of the model, the model is training with direct assessment accuracy
data in wmt16 and testing with direct assessment accuracy data in wmt17

max mean sum
sentence embedding test train test train test train

decoderState1 0.172 0.763 0.205 0.956 0.222 0.953
decoderState2 0.206 0.868 0.223 0.933 0.203 0.950
decoderCeil1 0.565 0.342 0.145 0.954 0.195 0.921
decoderCeil2 0.256 0.713 0.256 0.893 0251 0.847

Table 6.9: Additive separate model experiment for the direct assessment
task. The result is the Pearson correlation between the target scores and the
output of the model, the model is training with direct assessment accuracy
data in wmt16 and testing with direct assessment accuracy data in wmt17

From the result we can see that:
Multiply separate model works better than the other two models.
Instead of sum aggregation function mean aggregation function performs
best with the separate model like multiply, additive and mapping separate
model we designed here.

Compare

Here is a little conclusion for the neural based model. From the experiment
above we see that:
Catenate model works better than separate model in direct assessment task.
The hidden states in the decoder work better than other sentence embed-
ding methods.
The performance of the aggregation function depends on the model that is
used in the experiment. For catenate model sum aggregation function works
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max mean sum
sentence embedding test train test train test train

decoderState1 0.116 0.637 0.072 0.863 0.126 0.889
decoderState2 0.041 0.791 0.164 0.817 0.185 0.868
decoderCeil1 0.059 0.100 0.105 0.870 0.100 0.849
decoderCeil2 0.121 0.536 0.143 0.749 0.155 0.740

Table 6.10: Mapping separate model experiment for the direct assessment
task. The result is the Pearson correlation between the target scores and the
output of the model, the model is training with direct assessment accuracy
data in wmt16 and testing with direct assessment accuracy data in wmt17

better, however for separate model mean aggregation function lead the ex-
periment.

6.1.3 Result for the direct assessment experiment

We conclude the direct assessment experiment here. In this subsection, we
compare the aggregation function, sentence embedding method and Pearson
correlation score for each model when they get the best result. We test these
models with the direct assessment data in wmt17. From the Table 6.30 we
know that: The direct distance based model with w2v sentence embedding
and max aggregation function works best in the direct assessment task.
The pearson correlation of the direct model are better than the baseline but
still worse as the best result(0.571).
Comparing the results of w2v and w2v-slim, we can see that, the better the
model is, the better the result.

6.2 Relative ranking experiment

6.2.1 Distance based experiment

The target of the relative ranking task is, given two different system output
translation of the same source sentence and a reference sentence, through
the model, we can judge which translation is better, or the qualities of both
translations are the same.
As mentioned in the last chapter, three points can affect the result of the
model strongly, namely:

• Word embedding An essential part of sentence embedding. It decides
the source of the sentence embedding like w2v or neural translation
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model corr agg sentEmbd ’dis’

direct model(distance based) 0.500 max w2v L1
mapped model(distance based) 0.409 max w2v L1

catenate separate model 0.273 max decoderCeil2 X
multiply separate model 0.270 mean decoderCeil2 X
additive separate model 0.256 mean decoderCeil2 X
mapping separte model 0.185 sum decoderState2 X

state of the art(BLEND) 0.571 X X X
baseline(sentBLEU) 0.432 X X X

Table 6.11: Conclusion for the direct assessment task. ’model’ indicate the
model that was used in the experiment. ’agg’ is the aggregation function, that
was used to get this result. ’corr’ is the pearson correlation, ’sentEmbed’ is
the sentence embedding that was used to get this result, ’dis’ is the distance
function that was used to get the result, ’X’ means that the model does not
need this element.

system.
• Aggregation function An essential part of sentence embedding. Once

you get the word embedding of each word in a sentence, you need to
aggregate these word embeddings to form the representation of the
sentence.

• Distance function It is the function that used to compute the distance
between two different vectors. Distance function only affects the dis-
tance based model.

• Neural network The neural network used in the model.
The target of the experiment in this subsection is to test the effect of these
elements and figure out the best selection of the elements mentioned above.

Direct model experiment

For the direct model, we have designed two experiments. One to find out
the best aggregation function and sentence embedding, the other focus on
the distance function.

• SentEmbd-agg experiment Fix the distance function to L1 distance
function and change the sentence embedding and aggregation function
during the experiment. We use the relative ranking direct model as
described in the last chapter and evaluate the result with Tau like cor-
relation. We test the experiment with relative ranking data in wmt16.

• SentEmbd-dis experiment Fix the aggregation function to max aggre-
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sentence embedding max mean sum

w2v 0.355 0.374 0.359
w2v-slim 0.354 0.368 0.338

encoderEmbd 0.340 0.359 0.359
decoderEmbd 0.324 0.348 0.330
decoderOut 0.350 0.373 0.352

decoderState1 0.391 0.382 0.374
decoderState2 0.373 0.381 0.370
decoderCeil1 0.395 0.374 0.369
decoderCeil2 0.379 0.375 0.356

Table 6.12: SentEmbd-agg experiment for the relative ranking task, the
result is the tau like correlation between the target scores and the output of
the model, the model is testing with relative ranking data in wmt16

gation function and change the sentence embedding and distance func-
tion during the experiment. We use the relative ranking direct model
as described in the last chapter and evaluate the result with Tau like
correlation. We test the experiment both with relative ranking data in
wmt16.

The Tau like correlations of SentEmbed-agg experiment are shown in Table
6.12. We can see that:
The combination of decoderCeil1 and max aggregation function performs
best with test data in wmt16.
Concerning only sentence embedding, decoder ceil and decoder state per-
form better than the others.
The effect of aggregation is also complicated. In most of the case max ag-
gregation function performs best, but for some sentence embeddings from a
neural translation system, mean aggregation function performs better.
The Tau like correlations of SentEmbd-dis experiment are shown in Table

6.13. We only care about the distance function in this experiment. Therefore
the conclusion is quite straightforward:
At most of the times, the L1 distance function and canberra distance dis-
tance function perform best. At some case canberra function works even
better then L1 function.
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sentence embedding L1 L2 cos

w2v 0.354 0.344 -0.346
w2v-slim 0.355 0.368 -0.372

encoderEmbd 0.340 0.333 -0.339
decoderEmbd 0.323 0.322 -0.320
decoderOut 0.350 0.330 -0.345

decoderState1 0.391 0.373 -0.384
decoderState2 0.375 0.357 -0.366
decoderCeil1 0.396 0.374 -0.383
decoderCeil2 0.380 0.353 -0.365

Table 6.13: SentEmbd-dis experiment for the relative ranking task, the
result is the Tau like correlation between the target scores and the output of
the model, the model is testing with relative ranking data in wmt16

sentence embedding braycurtis canberra correlation

w2v 0.366 0.359 0.329
w2v-slim 0.363 0.368 0.360

encoderEmbd 0.342 0.351 0.333
decoderEmbd 0.331 0.338 0.313
decoderOut 0.365 0.373 0.329

decoderState1 0.404 0.409 0.376
decoderState2 0.386 0.398 0.366
decoderCeil1 0.399 0.405 0.375
decoderCeil2 0.394 0.399 0.359

Table 6.14: SentEmbd-dis experiment for the relative ranking task, the
result is the Tau like correlation between the target scores and the output of
the model, the model is testing with relative ranking data in wmt16

Mapped model experiment

We already knew that canberra and L1 distance function performs better
than the other distance functions. Therefore we continue to use the canberra
and L1 distance function here. For the Mapped model experiment, we focus
our attention on the aggregation functions.
We design two experiments here. In the first experiment we fix the distance
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max mean sum
sentence embedding test train test train test train

w2v 0.318 0.588 0.351 0.717 0.337 0.342
w2v-slim 0.335 0.751 0.355 0.763 0.354 0.502

encoderEmbd 0.306 0.512 0.367 0.788 0.349 0.248
decoderEmbd 0.305 0.512 0.355 0.690 0.332 0.262
decoderOut 0.321 0.469 0.365 0.648 0.353 0.256

decoderState1 0.359 0.354 0.390 0.747 0.368 0.220
decoderState2 0.330 0.480 0.358 0.779 0.347 0.286
decoderCeil1 0.375 0.300 0.385 0.549 0.365 0.163
decoderCeil2 0.352 0.369 0.388 0.625 0.367 0.206

Table 6.15: Mapped model experiment for the relative ranking task with
L1 distance function, the result is the Tau like correlation between the target
scores and the output of the model, the model is training with relative ranking
data in wmt15 and testing with direct assessment accuracy data in wmt16

function to L1 distance function. However in the second experiment we fix
the distance function to canberra distance function. In both experiments we
change the sentence embedding and aggregation function during the exper-
iment. We use the relative ranking mapped model as described in the last
chapter. We train the model with relative ranking data in wmt15 and test
the model with relative ranking data in wmt16. We evaluate the model with
Tau like correlation.
The result is shown in the Table 6.15, 6.16. From the data we can see that:
The combination of decoder states sentence embedding and mean aggrega-
tion function performs best.
Train Tau like correlation is much larger than the test Tau like correlation.
We can say that the model is overfitting.
Besides decoder states1, decoder ceil1 also performs well in the experiment.

Compare

Here is a small conclusion for the relative ranking experiments so far. We
already knew that:
Only considering sentence embedding, decoder state and decoder ceil per-
form well in both experiments: the experiment for direct model and experi-
ment for the mapped model.
In terms of aggregation function, max aggregation function performs best.
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max mean sum
sentence embedding test train test train test train

w2v 0.327 0.644 0.346 0.624 0.377 0.367
w2v-slim 0.328 0.734 0.356 0.722 0.328 0.351

encoderEmbd 0.300 0.684 0.353 0.727 0.306 0.323
decoderEmbd 0.307 0.722 0.345 0.656 0.295 0.336
decoderOut 0.309 0.659 0.313 0.418 0.322 0.362

decoderState1 0.336 0.627 0.364 0.671 0343 0.431
decoderState2 0.321 0.666 0.351 0.730 0.338 0.553
decoderCeil1 0.339 0.784 0.353 0.653 0.341 0.422
decoderCeil2 0.331 0.776 0.358 0.667 0.307 0.503

Table 6.16: Mapped model experiment for the relative ranking task with
canberra distance function, the result is the Tau like correlation between the
target scores and the output of the model, the model is training with relative
ranking data in wmt15 and testing with direct assessment accuracy data in
wmt16

For distance function, L1 distance function and canberra distance function
gets the best result.
To compare the direct model and mapped model, we pick some of the re-
sults from the experiment above and put them in a single Table 6.17. Both
model, direct model and mapped model, here use max aggregation func-
tion. Besides, direct model use canberra distance function, however mapped
model use L1 distance function.
We conclude that:
Only considering the test result, the direct model performs better then
mapped model.
Considering the training result, although direct model performs better than
the mapped model in the test set. However, if we get more training data or
a better neural model, the mapped model may have the chance to beat the
distance model.

6.2.2 Neural based experiment

The target of the relative ranking task is, given two different system output
translation of the same source sentence and a reference sentence, through
the model, we can judge which translation is better, or the qualities of both
translations are the same.
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direct model mapped model
sentence embedding test test train

decoder States1 0.404 0.390 0.747
decoder States2 0.386 0.358 0.779
decoder Ceil1 0.399 0.385 0.549
decoder Ceil2 0.394 0.388 0.625

Table 6.17: Pearson correlation between the target scores and the output
of the model, the model is testing with direct assessment accuracy data in
wmt17

As mentioned in the last chapter, three points can affect the result of the
model strongly, namely:

• Word embedding An essential part of sentence embedding. It decides
the source of the sentence embedding like w2v or neural translation
system.

• Aggregation function An essential part of sentence embedding. Once
you get the word embedding of each word in a sentence, you need to
aggregate these word embeddings to form the representation of the
sentence.

• Neural network The neural network used in the model.
The target of the experiment in this subsection is to test the effect of these
elements and figure out the best selection of the elements mentioned above.

Catenate model experiment

Catenate model fist catenate the representations of the inputted translation
and reference sentences. And then it use the catenated representation as
input of a neural network. The neural netowrk then output the ranking of
the inputted translation sentence. We design two experiment to choose the
best aggregation function and sentence embedding.

• SentEmbd-agg experiment1 We vary the sentence embedding and ag-
gregation function during the experiment. The neural network we used
here is a multiple layers perceptron with 500 units in the hidden layer
and 1 units in output layer. We train the model with direct assess-
ment data in wmt15 and test the model with direct assessment data
in wmt16.

• SentEmbd-agg experiment2 We vary the sentence embedding and ag-
gregation function during the experiment. The neural network we used
here is a multiple layers perceptron with 500 units in the hidden layer
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max mean sum
sentence embedding test train test train test train

w2v 0.091 0.716 0.106 0.670 0.120 0.569
w2v-slim 0.093 0.748 0.125 0.684 0.129 0.607

encoderEmbd 0.029 0.720 0.109 0.619 0.103 0.614
decoderEmbd 0.041 0.668 0.135 0.671 0.130 0.599
decoderOut 0.092 0.600 0.166 0.532 0.139 0.496

decoderState1 0.129 0.787 0.173 0.754 0.195 0.759
decoderState2 0.148 0.756 0.179 0.706 0.180 0.684
decoderCeil1 0.117 0.760 0.177 0.727 0.169 0.698
decoderCeil2 0.149 0.685 0.190 0.653 0.173 0.535

Table 6.18: SentEmbd-agg catenate model experiment1 for the relative
ranking task, The result is the Tau like correlation between the target scores
and the output of the model, the model is training with relative ranking
accuracy data in wmt15 and testing with relative ranking data in wmt16

and 3 units in output layer. We train the model with direct assess-
ment data in wmt15 and test the model with direct assessment data
in wmt16.

The Tau like correlations are shown in the Table 6.18 and 6.19. We can see
that:
For sentence embedding, hidden states of the translation system perform
much better than the others in both experiment 1 (6.18) and experiment 2
(6.19). Among them decoder state1 get the best scores in experiment 1 and
decoder ceil2 get the best scores in the experiment 2.
For aggregation function, sum aggregation function performs better than
the other two aggregation functions. It is different from the distance based
model.
All the result show that the model is strongly overfitting.
The number of the training accuracy data is limited. Maybe we can try to
use the sub-accuracy data to train the model.
The sentence embedding which working good in the distance based model
performs poorly here.
model with one unit in output layer performs better than the model with
three units in the output layer
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max mean sum
sentence embedding test train test train test train

w2v 0.068 0.301 0.080 0.361 0.104 0.434
w2v-slim 0.063 0.321 0.083 0.351 0.093 0.442

encoderEmbd 0.038 0.289 0.076 0.344 0.081 0.444
decoderEmbd 0.021 0.200 0.067 0.356 0.077 0.509
decoderOut 0.064 0.262 0.151 0.434 0.106 0.297

decoderState1 0.138 0.441 0.155 0.451 0.172 0.639
decoderState2 0.149 0.464 0.165 0.440 0.181 0.585
decoderCeil1 0.000 0.165 0.169 0.543 0.146 0.387
decoderCeil2 0.131 0.400 0.195 0.461 0.151 0.342

Table 6.19: SentEmbd-agg catenate model experiment2 for the relative
ranking task, The result is the Tau like correlation between the target scores
and the output of the model, the model is training with relative ranking
accuracy data in wmt15 and testing with relative ranking data in wmt16

Overfitting

The target of relative ranking is, given two translations of a sentence, ac-
cording to the reference translation we can decide one translation is better
than the other one.
In this subsection, we focus on the method to reduce the overfitting.

Choose the number of hidden units in mlp
One reason for overfitting is the capacity of the model is too large. So we try
to reduce the capacity of the model in this experiment and compare their
performances.
The basic model we used here is a multiple layers perceptron model with
400 dimensions hidden layer, the activation function is ReLU, and the loss
function is NLLLoss, the optimizer is Adam and set the learning rate to 1e-
3. We train the model with deen data in wmt14 and wmt15 and test it with
the German-English data in wmt16 with the method taul like correlation.
We only change the dimensions of the hidden layer during the experiment.
Conclusions are shown below (Table 6.20):
If we enlarge the architecture, the training loss will become smaller, but the
test loss willget larger

Whiten
It often helps, to do the normalisation or zero-centre before we train the
model. We try this out in this experiment.
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loss tau like
num of hidden layer test loss train loss test taul train taul

400 1.24 0.73 0.15 0.59
300 1.24 0.72 0.15 0.59
200 1.24 0.72 0.14 0.59
100 1.25 0.72 0.14 0.56
64 1.23 0.75 0.14 0.52
32 1.21 0.80 0.13 0.48
16 1.17 0.84 0.13 0.41
8 1.13 0.88 0.14 0.40
4 1.09 0.91 0.13 0.37
0 X X 0.10 0.28

Table 6.20: Selection of model

The basic model we used here is a multiple layers perceptron model with
400 dimensions hidden layer, the activation function is Tanh, and the loss
function is NLLLoss, the optimizer is Adam and set the learning rate to
1e-3. We train the model with deen data in wmt14 and wmt15 and test it
with the deen data in wmt16 with the method taul like correlation. We only
change the method to whiten the data during the experiment.
The candidate methods include:

• Zero-score
• PCA1 do the pca after combining the sys1, sys2 and ref data
• PCA2 do the pca before combining the sys1, sys2 and ref data

Conclusions of the experiments are (Table 6.21):
When we use the zero-score to whiten the data, the result improves a bit.
Same with PCA and PCA2. However, of the three methods, PCA performs
best.

Attenuation of learning rate
It always helps, to reduce the learning rate when the loss stays still.
The basic model we used here is a multiple layers perceptron model with
400 dimensions hidden layer, the activation function is Tanh, and the loss
function is NLLLoss, the optimizer is Adam and set the learning rate to
1e-3. We train the model with deen data in wmt14 and wmt15 and test it
with the deen data in wmt16 with the method taul like correlation. We only
change the method to whiten the data during the experiment.



6. Experiment 42

TwoLayers OneLayer
whiten method test taul train taul test taul train taul

no whiten 0.16 0.81 0.14 0.25
pca 0.18 0.92 0.14 0.29
pca2 0.178 0.91 0.14 0.28

Table 6.21: Selection of whiten method

scheduler test taul train taul

no 0.14 0.71
LambdaLR 0.157 0.44

Table 6.22: Attenuation of learning rate

• Without scheduler
• 𝑙𝑟_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟.𝐿𝑎𝑚𝑏𝑑𝑎𝐿𝑅, 𝑠𝑡𝑒𝑝 = 20 Multiply the learning rate by 0.1

after 20 epochs.
• 𝑙𝑟_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟.𝑅𝑒𝑑𝑢𝑐𝑒𝐿𝑅𝑂𝑛𝑃𝑙𝑎𝑡𝑒𝑎𝑢 Reduce the learning rate when

the selected value stay still.
Conclusions of the experiments are (Table 6.22):

It’s a good idea to add a LambdaLR scheduler in the code. It helps to reduce
the test error.

Selection of activation function
The activation function is always crucial in a neural network model. In this
experiment, we try some difference activation functions and compare the
result.
The basic model we use here is a multiple layers perceptron model with
400 dimensions hidden layer, the activation function is Tanh, and the loss
function is NLLLoss, the optimizer is Adam and set the learning rate to
1e-3. We train the model with deen data in wmt14 and wmt15 and test
it with the deen data in wmt16 with the method taul like correlation. We
only change the activation function during the experiment. The candidate
methods include:

• tanh
𝑡𝑎𝑛ℎ = (𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥) (6.1)

• relu
𝑟𝑒𝑙𝑢 =

{︂
0 𝑓𝑜𝑟𝑥 < 0
𝑥 𝑓𝑜𝑟𝑥 ≥ 0 (6.2)
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activation function test taul train taul

tanh 0.14 0.71
selu 0.15 0.58
relu 0.15 0.80

Table 6.23: Selection of activation function

loss tau like
weight decay test loss train loss test taul train taul

1e-3 1.06 0.93 0.15 0.35
1e-2 1.03 1.02 0.13 0.28
2e-2 1.04 1.04 0.09 0.18
4e-2 1.06 1.07 0.004 0.01

Table 6.24: Selection of weight decay

• selu
𝑠𝑒𝑙𝑢 = 𝜆

{︂
𝛼(𝑒𝑥 − 1) 𝑓𝑜𝑟𝑥 < 0

𝑥 𝑓𝑜𝑟𝑥 ≥ 0 (6.3)

where 𝜆 = 1.0507 and 𝛼 = 1.67326
Conclusions of the experiments is (Table 6.23):
Comparing with tanh and selu, relu has a better result.

Selection of weight decay
We know that increase the value of weight decay can reduce the effect of
the overfitting. In this section, we design an experiment to choose the best
weight decay for out model.
The basic model is a multiple layers perceptron model with 400 dimensions
hidden layer, the activation function is ReLU, and the loss function is NLL-
Loss, the optimizer is Adam and set the learning rate to 1e-3. We train the
model with deen data in wmt14 and wmt15 and test it with the deen data
in wmt16 with the method taul like correlation. We only change the weight
decay during the experiment.
Conclusions are shown below(Table 6.24):
When we set wieght decay to 1e-3, we get the best result. Noise in weight

Adding noise is a useful method against overfitting. In this experiment, we
try some method to initialise the weight of the linear model.
The basic model is a multiple layers perceptron model with 400 dimensions
hidden layer, the activation function is ReLU, and the loss function is NLL-
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init code test taul train taul

no init 0.153 0.80
init1 0.167 0.80

Table 6.25: Initialize the parameters of the model before the training. ’init
code’ indicate weather initialize the parameters or not. no init means initialize
with 0 value.

sigma of gauss test taul train taul

0 0.14 0.713
0.05 0.14 0.749
0.1 0.14 0.727
0.4 0.11 0.66
1 0.08 0.502

Table 6.26: Adding gauss noise to the input data of the model, ’sigma of
gauss’ indicate the sigma parameter in gauss function.

Loss, the optimizer is Adam and set the learning rate to 1e-3. We train the
model with deen data in wmt14 and wmt15 and test it with the deen data
in wmt16 with the method taul like correlation. We only change the initial-
isation method during the experiment. The candidates of the initialisation
method are:

• Init1: init.xavier_normal
Conclusions are shown below(Table 6.25):
When we use Xavier to initialize the parameters in the network, the result
get better.

Noise in input
In the second last subsection we try adding noise in the weight, now we try
to add gauss noise in the input data.
The basic model is a multiple layers perceptron model with 400 dimensions
hidden layer, the activation function is Tanh, and the loss function is NL-
LLoss, the optimizer is Adam and set the learning rate to 1e-3. We train
the model with deen data in wmt14 and wmt15 and test it with the deen
data in wmt16 with the method taul like correlation. We only change the
sigma value of Gauss noise during the experiment. Conclusions are shown
below(Table 6.27):
Weather we add noise in the input data or not, it will not affect the result.
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TwoLayer OneLayer
num of features vae autoencoder vae autoencoder

64 0.10|0.58 0.09|0.54 0.10|0.13 0.05|0.07
128 0.13|0.78 0.12|0.76 0.12|0.19 0.05|0.08
256 0.13|0.78 0.12|0.75 0.13|0.25 0.05|0.08

Table 6.27: Test the model with features from the autoencoder, num of
features is the number of units in the hidden layer of the autoencoder. There
are two scores in each grid, the first one is the train taul like correlation and
the second one is the test taul like correlation.

Autoencoder
Use the Autoencoder to extract the features of the sentence embedding. To
do that, we train two autoencoder firstly. We use two different Autoencoders
here:

• Normal autoencoder With three hidden layers with the number of
units: 256, 64, 256.

• VAE
Apply the features we extracted from the autoencoder in our model, but the
result shows no improvement.

Separate model experiment

The model used in this subsection is different from the catenate model.
Therefore, we repeat the experiment for catenate model here but use the
separate model instead. Besides we knew that w2v sentence embedding, en-
coder embedding and decoder embedding do not work with this model, we
only try decoder internal states in the experiment. In the experiment, we
vary the sentence embedding and aggregation function. We train the model
with relative ranking data in wmt15 and test the model with relative rank-
ing data in wmt16. As we have two different separate model, we show the
result in two Tables: 6.28 and 6.29.
From the result we can see that:
Multiply separate model works better than the other model.
Instead of sum aggregation function mean aggregation function performs
best with the separate model like multiply and half separate model we de-
signed here.
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max mean sum
sentence embedding test train test train test train

decoderState1 0.180 0.319 0.220 0.413 0.230 0.491
decoderState2 0.185 0.348 0.223 0.408 0.232 0.435
decoderCeil1 0.096 0.006 0.225 0.393 0.212 0.284
decoderCeil2 0.185 0.294 0.234 0.373 0.226 0.246

Table 6.28: Half separate model experiment for the relative ranking task.
The result is the Tau like correlation between the target scores and the output
of the model, the model is training with relative ranking data in wmt15 and
testing with relative ranking accuracy data in wmt16

max mean sum
sentence embedding test train test train test train

decoderState1 0.253 0.463 0.337 0.458 0.297 0.593
decoderState2 0.283 0.517 0.348 0.441 0.326 0.498
decoderCeil1 0.197 0.227 0.315 0.524 0.114 0.250
decoderCeil2 0.256 0.290 0.308 0.319 0.136 0.177

Table 6.29: Multiply separate model experiment for the relative ranking
task. The result is the Tau like correlation between the target scores and the
output of the model, the model is training with direct assessment accuracy
data in wmt15 and testing with direct assessment accuracy data in wmt16

Compare

Here is a little conclusion for the neural based model. From the experiment
above we see that:
Separate model works better than catenate model in relative ranking task.
The hidden states in the decoder work better than other sentence embed-
ding methods.
The performance of the aggregation function depends on the model that is
used in the experiment. For catenate model sum aggregation function works
better, however for separate model mean aggregation function lead the ex-
periment.
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model corr agg sentEmbd dis

direct model(distance based) 0.404 max decoderState1 canberra
mapped model(distance based) 0.364 max decoderState1 canberra

catenate separate model1 0.195 sum decoderState1 X
catenate separate model2 0.195 mean decoderCeil2 X

half separate model 0.234 mean decoderCeil2 X
multiply separate model 0.348 mean decoderState2 X

state of the art(METRICS-F) 0.421 X X X
baseline(sentBLEU) 0.265 X X X

Table 6.30: Conclusion for the relative ranking task. ’model’ indicate the
model that was used in the experiment. ’agg’ is the aggregation function, that
was used to get this result. ’corr’ is the Tau like correlation, ’sentEmbed’ is
the sentence embedding that was used to get this result, ’dis’ is the distance
function that was used to get the result, ’X’ means that the model does not
need this element.

6.2.3 Result for the relative ranking experiment

We conclude the relative ranking experiment here. In this subsection, we
compare the aggregation function, sentence embedding method, Tau like
correlation score for each model when they get the best result. The model
here are testing with the relative ranking data in wmt16. From the Table
6.30 we know that:
The direct distance based model with decoder states sentence embedding
and max aggregation function works best in the relative ranking task.
The tau like correlation of the direct distance based model is worse than the
state of the art slightly.



Chapter 7

Conclusion

From the statistic model to the neural network model, the development
of machine translation system is fast. Comparing with machine translation
system, although many new metrics are created during years, the core idea is
the same: based on the features and n-gramm. To cope with the development
of neural machine translation system, new metrics are needed.
In this thesis, we propose a new automatic evaluation metrics. The model we
designed here are consist of two parts, sentence embedding and combination
model. In the first part, we either utilize the w2v model, that provided by
google, or the internal states from the machine translation system, so that
we can represent a sentence with a vector. To utilize the neural translation
system, same as standard translation with neural machine translation, we
put the source sentence as input of the encoder, but instead of using the
output of the decoder in the last timestamp as the new input data, we use
the translation candidate, that we want to score, as input of the decoder.
Then we represent the candidate sentence as the internal statuses of the
decoder. In the second part, we use a model to combine the vectors we get
from the first part and judge the quality of the original sentence according
to this vectors.
To test the models, we design many experiments, all of them are described
in the experiment chapter. The result of the experiment are exciting.

• relative rankning task the distance based model with the combination
of sentence embedding ’decoder ceil2’, aggregation function ’mean’ and
distance function ’canberra’ works best. Its tau like correlation is near
to the state of the art.

• direct assessment task the distance based model with the combination
of sentence embedding ’w2v’, aggregation function ’max’ and distance
function ’L1’ works best.

Besides some exciting points are found during the experiment:
The internal states of the decoder in the machine translation system always
perform better than the output of the decoder. When the interval between

48
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the training loss and test loss is large, try to add some constraints to the
model, it may enlarge the training loss, but at the same time, it depresses
the test loss.
Comparing with other metrics, our model have some advantages, they are:

• Contextual It depends on the training data of the machine translation
system and w2v model.

• Character base So that it can deal with the words that not appeared
in the vocabulary(depends on the sentence embedding methods that
used in the model).

• Deep network Only for relative ranking task, because in this task, we
prefer to use ’decoder ceil’ sentence embedding.

• Vector representation We representation the system output sentence
with a vector.

• Robust The quality of the metric depends on the machine translation
systems and w2v model that are used during the evaluation.

The experiments we have done here are only a small part of the whole re-
search of the new metrics. There are still many points worth to be tested.
The sentence embedding method used in the experiment, is consist of two
parts: word embedding and aggregation function. Can we use the sentence
embedding model directly? or can we use some start of art word embedding
model? Moreover, instead of sentence embedding can we use word embed-
ding directly? Can we integrate some embeddings of the same sentence to
get a stronger representation? We only try multiple layer perceptron in the
combination model, can we try other neural network, like capsule, convolu-
tion layer?
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