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Abstract

Neural Machine Translation has recently shown promising results, replacing Statistical
Machine Translation as state-of-the-art approach to machine translation.

The following work examines the usefulness of integrating Target Factors into an atten-
tional encoder-decoder Neural Machine Translation system in order to improve translation
quality. Target Factors are all kinds of, mostly linguistically motivated, information that
can be gathered about the target language and that can be expressed on wordlevel. Factors
utilized in this work include part of speech tags enriched with morphosyntactic infor-
mation (RFTags), lemmas, Dependency Labels and IOB tags together with sbuword units
based on BPE segmentation. In order to derive this additional information, external tools
are used to annotate the target sentences of the bilingual training corpus.

The approaches for integrating this additional information into an existing Neural
Machine Translation system presented in this work include an N-Best List Re-Ranking
study, a Serialization approach and the joint prediction of the target factors in every
decoding step (Joint Decoding). Moreover, it is examined whether the application of such
factors to the target language in combination with the factorization of the source language,
already known from literature, can be bene�cial to the translation process. Additionally
we deployed the serialization approach for the source language as well.

The approaches are evaluated on a low-resource translation task. The results obtained
for the N-Best List Re-Ranking study are promising and the Serialization approach leads
to slight improvements up to +0.7 Bleu when used with a modi�ed lemma vocabulary.
Regarding the Joint Decoding approach, no improvements could be discerned, which is
consistent with other results released recently in literature. Concerning the combination
of factorizing source and target language, signi�cant improvements of +0.9 Bleu can be
observed. This result was achieved when the proposed serialization approach is applied
for both the source and the target language.
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Zusammenfassung

Neuronale maschinelle Übersetzung ist ein derzeit vielversprechender Forschungsgegen-
stand auf dem Gebiet der maschinellen Übersetzung. Die vorliegende Arbeit befasst sich
mit der Untersuchung, ob die Integration von sogenannte Target Factors in ein neuro-
nales maschinelles Übersetzungssystem die Übersetzungsqualität zu verbessern vermag.
Target Factors, zu deutsch zielsprachliche Faktoren, bezeichnen prinzipiell jegliche Art
der, die Zielsprache betre�enden zusätzlichen Informationen, für die gilt, dass sie sich
auf Wortebene darstellen lassen. Um sie in das Training des Systems ein�ießen lassen zu
können, werden in dieser Arbeit die Trainingsdaten auf Wortebene mit den eingesetzten
zusätzlichen Faktoren annotiert. Um dies zu ermöglichen, wird hierbei aufgrund von
Verfügbarkeit und Qualität hauptsächlich auf linguistisch motivierte Faktoren und die
dazu vorhandenen Tools zurückgegri�en. In dieser Arbeit werden um reichhaltige morpho-
syntaktische Information erweiterte Part Of Speech Tags (RFTags), Lemmata, Dependency
Labels und Information über die Subwortstruktur (IOB Tags) als zusätzliche Faktoren
neben den Subworteinheiten, auf denen das Basissystem operiert, eingesetzt.

Die vorgestellten Ansätze zur Integration dieser zusätzlichen Information in ein be-
stehendes neuronales maschinelles Übersetzungssystem beinhalten eine N-Best Listen
Re-Ranking Studie, einen Serialisierungsansatz (Serialization) und ein Verfahren um die
Faktoren in jedem Dekodierschritt gemeinsam vorherzusagen (Joint Decoding). Darüber-
hinaus wird untersucht, ob ihr Einsatz in der Zielsprache zusammen mit der bereits
in der Literatur bekannten Faktorisierung der Quellsprache vorteilhaft ist. Dabei wird
auch der Serialisierungsanatz als alternative Möglichkeit der Quellsprachenfaktorisierung
vorgeschlagen.

Die Ansätze wurden auf einem “low-resource task” evaluiert, wobei sich zeigte, dass die
Ergebnisse der N-Best Listen Re-Ranking Studie vielversprechend waren, und dass der
Serialisierungsansatz leichte Verbesserungen von bis zu +0,7 Bleu mit einem modi�zierten
Lemmata Vokabular erreichen konnte. Für den Joint Decoding Ansatz konnten keine
Verbesserungen festgestellt werden, was im Einklang mit jüngst erschienener Literatur
steht. Für die Kombination der Faktorisierung von sowohl Ziel- als auch Quellsprache
konnten klare Verbesserungen von etwa +0.9 Bleu nachgewiesen werden. Dieses Ergebnis
konnte erzielt werden, indem für die Faktorisierung von sowohl Quell-, als auch Zielsprache
der vorgeschlagene Serialisierungsansatz verwendet wird.
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1. Introduction

Anytime a
linguist

leaves the group
the recognition rate goes up.

— Frederick Jelinek1

We live in a globalized world where means of translation are an essential cornerstone of
human interaction. Growing international cooperation and the multiplicity of worldwide
spoken languages increase the need to bridge language barriers.

The interconnection through the World Wide Web enables one common pool of informa-
tion, the exchange of user-generated content on Web 2.0 platforms and collaborative work
around the globe by multinational corporations, thereby promoting cultural exchange
and mutual learning. This interaction requires the understanding of di�erent languages.
The human ability to learn foreign languages is naturally limited and a large scale deploy-
ment of human translators is not feasible in these scenarios, therefore shifting the focus
to automated solutions. The research �eld of machine translation (MT) focuses on the
computer-based automation of the translation process from one natural human language
(source language) into another (target language) with no human translator involved.

Neural machine translation (NMT) is a research �eld recently introduced for machine
translation. It has shown very promising results and emerges to replace state-of-the-
art statistical machine translation (SMT) systems (e.g., Bentivogli et al., 2016; Junczys-
Dowmunt et al., 2016). Within a few years after its �rst introduction NMT is already
deployed in commercial applications (Crego et al., 2016; Wu et al., 2016).

The idea of NMT is to use an arti�cial neural network to manage the entire translation
process, which will be explained in detail in Section 2.1. NMT comprises several advantages,
the most notable are the following: NMT o�ers a holistic solution. A single, jointly trained
model replaces the variety of loosely coupled weak feature functions which were deployed
in SMT. The network learns continuous word representations that map semantically or
syntactically related words to nearby points in a word embedding space. This allows
for similar words to share knowlegde as opposed to the former SMT approaches which
treated words independently whenever their surface form2 di�ered. Moreover, these
representations are gained by the system itself, thus relieving the developer of the intricate
task of rich feature design while surpassing the quality of hand designed features. Lastly,
the use of neural networks with recurrent connections leads to deep structures that allow
the consideration of a larger context in order to model long range dependencies among
words.

1cf. Jurafsky and Martin (2009)
2the form in which the word or sentence is written in the text corpus
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1. Introduction

NMT is getting closer to human translation quality, but the latter is not yet met (Wu
et al., 2016). Therefore, further improvements require extensive research.

1.1. Motivation

Neural machine translation is based on a general sequence-to-sequence learning approach
that treats sentences as sequences of generic tokens. Thereby, it does not explicitly make
use of linguistic properties of the languages involved. Therefore, the question arises
whether providing additional information, e.g., in form of linguistic annotations, can help
to improve translation performance. Recently Sennrich and Haddow (2016) successfully
enriched the source language sentences with linguistic features. A natural extension to
this approach is to take the target language into consideration.

Therefore, this thesis investigates the introduction of target factors to neural machine
translation. A factor refers to “each type of additional word-level information” (Koehn,
2009). Thus, we de�ne target factors as any type of additional word-level information
related to the target language exclusively. Word level factors comprise linguistic informa-
tion, for example part of speech tags, lemmas or morphosyntactic labels like case, gender
or number. But they also include rather abstract information like statistically derived word
classes or tags that annotate sub-word structure (see Section 2.2). In principle, factors
could be any kind of automatically derivable information that is representable at word
level. External tools are used to acquire the annotations for the training data corpus.

An important di�erence between deploying factors for the target language as opposed
to the source language includes the fact that source factors can not only be inferred during
training, but at translation time as well. Whereas the target factors can not be inferred
during translation, because the target sentence is not given during translation. Utilizing
external tools to obtain the additional factors on a partial hypothesis for the target sentence
is discouraged because we assume it to be both error-prone and slow. Therefore, the NMT
system can only pro�t from the annotations at training time and has to generate them
during the inference phase itself.

Figure 1.1 depicts the basic setup. Note that the ultimate goal of translation still is to
generate a valid target sentence based on words. The additional factors are only used
internally and are discarded when the �nal hypothesis is output to the user. However,
they might be useful during the translation process allowing the decoder to make better
choices concerning the generation of target words.

The various motivations to include additional factors in general presented in the litera-
ture include the following aspects (e.g., Hoang et al., 2016; Nadejde et al., 2017; Sennrich
and Haddow, 2016). An important reason to use additional information is data sparseness.
Lemmatization can help especially for morphologically rich languages, in which certain
morphological variants are rare and therefore robustly estimated representations cannot
be easily found. But when the base form (i.e., the lemma) of a word is additionally used,
knowledge might be shared among all its in�ectional variants, allowing for better gen-
eralization. Further improvements that might be expected concern the word order and
word agreement of the target language. Thereby additional knowledge about a broader

2



1.1. Motivation

NMT
John loves Mary

Jo- han- nes liebt Marianoun verb noun

name love name

subj root obj

source factored

NMTJohn loves Mary

Jo-     han-     nes   liebt   Maria

target factored

O       O       O

subword units

noun noun   noun  verb   noun

B       I           E        O         O

subj    subj    subj   root    obj
name name name lieben name

subword units

subword units

part of speech

subword structure

dependeny labels

lemma

subword units
part of speech

subword structure
dependeny labels
lemma

Figure 1.1.: Overview of source and target factorization. This is a �ctive example. The
number and the choice of additional factors is arbitrary. Further description of
the factors used in this work is found in Section 2.2. Note that a combination
of both approaches is possible as well, respective experiments are performed
in Chapter 5.

categorization like parts of speech and the morphological attributes of consecutive words
might be helpful to estimate the correct choices.

Additional information might also help to disambiguate homographs, i.e., words that
portray di�erent meanings although sharing a common surface form. This is especially
helpful for the source language, because as homographs di�er in meaning they often
result in di�erent translations, which makes disambiguation necessary. The motivation
to enclose additional information on target side for disambiguation purposes is slightly
di�erent. It stems from the concern to enable di�erent meanings of a homograph to be
expressed with di�erent internal representations. As long as only the surface form of a
word is used, it inevitably results in the same internal representation, but when including
additional factors their representations can be combined to form overall representations
that allow for disambiguation. Table 1.1 shows an example where two di�erent meanings
of the English word can might be disambiguated by their part of speech (verb compared
to noun). Also when using sub-word units3 depending on the design choices made for
sub-word modeling an end unit might be ambiguous to a whole word (e.g., San Franciscan
in Table 1.1). In this case IOB Tags4 that encode the sub-word structure can support
disambiguation. This allows for three di�erent internal representations of the word can
instead of only a single one.

The use of external tools to derive the additional factors includes the following bene�ts.
Dependent on their design they might be trained on large amounts of monolingual data
that signi�cantly surpass the amount of bilingual data which is used to train the NMT
model. Moreover handcrafted rules can be exploited, leveraging the language expertise of
linguist experts. At least the tools’ design might be in�uenced by task-speci�c knowledge,
e.g. the part of speech of an unknown word might be successfully guessed by its su�x

3we use BPE sub-word units described in Section 2.1.7
4see Section 2.2.4
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1. Introduction

(Schmid, 1994a). Lastly, for an under-resourced language pair it might be easier to build
simple taggers and parsers based on handwritten rules than acquiring larger amounts of
bilingual data.

Table 1.1.: Example for di�erent interpretations of the word “can”
verb Alice can sing .
noun I enjoy a can of beer .
sub-word (end-)unit My father was a San Franc- is- can .

The concept of word factorization was originally introduced to the �eld of machine
translation by Koehn and Hoang (2007) when building factored translation models for
statistical machine translation. Sennrich and Haddow (2016) pose the question of how
much of their �ndings can be transferred to NMT. The latter has stronger implicit learning
capabilities than SMT. In SMT any linguistically motivated concept to be learned must
be explicitly represented as sequences of words in surface form, which in consequence
leads to data sparsity problems because not all relevant word combinations that cover the
linguistic concept can be represented in a training data corpus. Therefore, falling back to a
more general representation than words in surface form, e.g., parts of speech or lemmas, is
assumed to be bene�cial. In NMT however, those concepts can, to some extend, already be
implicitly learned from the lexical data (Shi et al., 2016). This could make explicit provision
redundant and therefore supplant the necessity of additional target factors.

Sennrich and Haddow (2016) postulate that these e�ects will be even stronger the
more training data is available. In this regard, as a rather qualitative consideration to be
mentioned, we observe a comparable human behavior. While toddlers learn their mother
tongue without the explicit knowledge about any linguistic concepts (which an average
child is probably confronted with in school for the �rst time), they nevertheless develop
a form of mind’s ear that can implicitly discourage wrong grammar usage and therefore
make the explicit knowledge about linguistic concepts super�uous. On the other side, a
non-native speaker who learns a foreign language is confronted with loads of linguistic
information, mostly in form of grammar and morphology rules. This procedure of course
might be related to di�erent language learning abilities at di�erent ages. Still, it is believed
that also the low resource setting a foreign language learner usually is confronted with is a
driving force for this approach, allowing to quickly explorate the language space without
the help of constant parental feedback.

Concerning NMT, at the time of writing, data is assumed to be sparse either due to
low resource settings where the amount of available data is simply too small to develop
syntactically and semantically rich models. In this case we expect additional information
to be helpful. But also because of the lack of deep semantic understanding that NMT
still su�ers from (e.g., Bentivogli et al., 2016), this pattern matching approach cannot
correctly translate unknown idioms, metaphors and other constructs with no comparable
observation in the training data as for this purpose, higher levels of meaning need to be
extracted. However, to what extent rather abstract and low level linguistic knowledge can
help in these situations is underexplored.

4



1.2. Objective

1.2. Objective

The objective of this work is to �nd empirical evidence whether integrating additional
knowledge about the target language into an Attentional Encoder-Decoder Neural Ma-
chine Translation system leads to translation performance improvements. The following
additional knowledge sources are to be investigated. As linguistic information, part of
speech tags with rich morphosyntactic annotation, lemmas and syntactic dependency
labels, and as structural information IOB tags, are used. All additional factors are derived
by existing external tools for the target side of the training data corpus. Di�erent possible
solutions to augment the target words with additional factors are to be examined and
compared to similar approaches taken in recent literature.

1.3. Outline

The remaining thesis is structured in the following way:
In Chapter 2, the theoretical foundations of this work regarding neural machine transla-

tion are given. We thereby focus strongly on the current state-of-the-art attentional RNN
encoder-decoder architecture. Moreover the factors used in this work are described. We
provide comprehensive overview of the RFTagger, as the morphological enriched part of
speech tags it provides originally were our main additional factor. We however chosen
to include lemmas, dependency labels and IOB tags for better comparison and therefore
we give brief description. As for evaluation purposes the BLEU metric is used we give a
summary of the latter.

In Chapter 3, previous approaches using factorization in machine translation are pre-
sented.

In Chapter 4, the integration of target factors for neural machine translation is discussed.
We state or di�erent approaches and motivate our design decisions.

Chapter 5 contains the evaluation results of the proposed approaches.
Finally, this work is concluded in Chapter 6 with a short summary and outlook.

5





2. Background

This thesis investigates the integration of additional knowledge implemented in the form of
word-level factors into a Neural Machine Translation system. Therefore, a brief overview
on Neural Machine Translation is given in this chapter with strong focus on the Attentional
Recurrent Neural Network (RNN) Encoder-Decoder architecture.

Subsequently, the features used for word factorization will be presented along with the
external tools to derive them. The proposed methodology does not depend on any speci�c
functional principles of those tools. However, it relies on the availability and correct
operation of the latter, because the approach taken in this thesis requires respective factor
annotations for the bilingual training corpus. As gold annotations by human annotators
are usually not available for a bilingual training corpus, we have to resort to automatic
tools.

This chapter concludes with a presentation of the Bilingual Evaluation Understudy
(BLEU), the most widespread automatic evaluation metric for machine translation.

2.1. Neural Machine Translation (NMT)

Neural Machine Translation (NMT) is a recently proposed approach to machine transla-
tion. NMT attempts to model the entire translation process with a single, large arti�cial
neural network (ANN) which is jointly trained in an end-to-end fashion on a bilingual
corpus. Instead of integrating neural-network-based components into an existing machine
translation approach, NMT provides a stand-alone translation system (Zhang and Zong,
2015).

From a probabilistic perspective, neural machine translation seeks for a parametric
model that provides a conditional probability P (y | x ) for a target sentencey given a source
sentence x . This goal is common to statistical machine translation. Brown et al. (1993)
de�ne a frequentist interpretation to P (y | x ) as the probability that a human translator
would translate x to y.

The general translation problem is described as �nding the most likely target language
sentence ŷ given a source language sentence x = (x1,x2, . . . ,xLx ) of length Lx . Using a
maximum likelihood approach, ŷ can be found by solving Equation 2.1, thereby using the
chain rule of conditional probabilities (Goodfellow et al., 2016), which is useful to build up
the target sentence incrementally.

ŷ = argmax
y

P (y|x) = argmax
y

Ly∏
i=1

P (yi |x,y1, ...,yi−1) (2.1)

It is important to note that this probability is modeled directly. No assumptions are made,
no externally enforced simpli�cations are introduced by design. This implies that the

7



2. Background

whole context is taken into account and no Markov assumption has to be made to cut it
o� (Kalchbrenner and Blunsom, 2013).

Compared to previous approaches, this is a more generic approach to translation. Instead
of designing dedicated feature functions or translation rules, it is modeled as generic
sequence-to-sequence learning problem (Cho et al., 2014b; Sutskever et al., 2014).

2.1.1. Attentional RNN Encoder-Decoder Architecture

Using neural networks for the task of machine translation poses some challenges which
are addressed by the components of the state-of-the-art Attentional RNN Encoder-Decoder
Architecture.

A simpli�ed sketch of this architecture is depicted in Figure 2.1.
Firstly, words are discrete tokens that need to be suitably represented in a neural net,

which only operates on real-valued vectors of �xed dimension (Cho et al., 2014a), discussed
in Section 2.1.2.

Secondly, the input and output layers of neural networks are of �xed size while natural
language sentences are of variable length. This problem is tackled by the Encoder-Decoder
Architecture (Cho et al., 2014a; Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014).
In the current state-of-the art both, encoder and decoder are based on Recurrent Neural
Networks (RNN), described in Section 2.1.3. Alternatively, Convolutional Neural Networks
(CNNs) (Kalchbrenner and Blunsom, 2013; Waibel et al., 1989) were successfully introduced
to be used as encoder, but are not covered in this work.

Thirdly, di�erent parts of the source sentence are usually translated to di�erent parts of
the target sentence. How the neural network is given the ability to learn a proper mapping
is shown in Section 2.1.6.

All these challenges are solved in the Attentional RNN Encoder-Decoder Architecture,
which is depicted in Figure 2.1.

8
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Figure 2.1.: Overview of the Attentional RNN Encoder-Decoder Architecture used in the Neuronal Machine Translation approach.
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2. Background

2.1.2. Word Representation

Let us �rst de�ne the input representation of words suitable for the neural network to
operate on. It is thereby necessary to have input layers for source words at the encoder
and target words at the decoder. Words are discrete tokens, that can be unambiguously
represented by their index in the respective source or target vocabulary. A neural network
on the other hand operates on real valued vectors. To de�ne an internal representation that
is well suited for the translation process would be a cumbersome task if done manually.
But this is actually not a challenge but a bene�t of the NMT approach that it is able to �nd
internal word representations of remarkable quality itself as described in the following.
We thereby �rst need a representation that ensures the words in the vocabulary to be
mathematically truly independent in terms of vector distances. This is not the case for
using vocabulary indices, e.g., when using alphabetical ordering in the english vocabulary
the distance of indices of the words "muscle" and "museum" is small though these words
are not closely related semantically. Therefore the one-hot encoding is used to ensure
independence.

One-Hot Encoding In One-Hot Encoding, each word in a vocabularyW is represented by a
|W |-dimensional vector with almost all entries set to zero. Only a single entry identifying
the k-th word wk ∈ W , is set to one. The feature vector length corresponds with the
vocabulary size |W |. The ordering of words in the vocabulary must be de�ned once and
remain �xed but is otherwise arbitrary. This representation is usually chosen as word
input for the neuronal network (Lebret, 2016). We will denote the one-hot vector of a word
index x ∈W as h(x ). Distinct vocabularies are used for the source and target language.

Word Embedding To use One-Hot encoded input is already a su�cient premise for the
neural network to learn its own internal representation by the error backpropagation
learning procedure. In order to investigate these internal representations we can use an
optional word embedding layer. Its introduction has more advantages explained below.
From a mathematical viewpoint the embedding layer is similar to other layers used in the
architecture with slight modi�cations. Its activation functions are linear and a bias vector
is usually not used. The dimension of the embedding layer is chosen to be signi�cantly
smaller than the size of the respective input word vocabulary. To compute the embedding
layer the input vector given in One-Hot coding, representing the k-th vocabulary word, is
projected linearly by a respective weight matrix E:

e (x ) = Eh(x ), E ∈ Rd×|W | (2.2)

As in this special case the input is a One-Hot vector and no bias is used, the multiplication
equals the selection of the k-th column in the weight matrix. Mathematically this equals
an projection or embedding of a higher dimensional vector space into lower dimensional
pendant. E is also called embedding matrix and e (x ) embedding vector, the latter span the
embedding space. The embedding matrix is gained by the joint training of the network
automatically. Because the dimension of the embedding space is chosen to be substantially
smaller than the One-Hot space, the network is forced to �nd a representation of increased
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2.1. Neural Machine Translation (NMT)

e�ciency, as words cannot be represented completely independent anymore. Moreover
the latter is enabled by a property of natural language. It is known, that words occurring
in similar contexts show relations both semantically and syntactically. This property
was already successfully used to cluster words in an unsupervised manner (Brown et al.,
1992). The novelty of word embeddings is that for a word multiple relations expressed
by di�erent dimensions in the embedding space can be learned and expressed in a real
valued space instead of learning a�liations to discrete classes (Mikolov et al., 2013a).

For a di�erent but related architecture and learning task Mikolov et al. (2013a,b,c) could
show that when using billions of words in a monolingual corpus remarkable dependencies
among words can be learned to be represented in the embedding space. It could be shown
that nearby embedding vectors, expressed by vector distances like euclidean distance or
similarity measures like cosine similarity are semantically and syntactically related. Also
linear relationships among embedding vectors could be used to solve analogical reasoning
tasks (Mikolov et al., 2013b). Figure 2.2 shows an example of how the relation “gender” can
be expressed in the embedding layer as linear vector o�set. One could use the di�erence
between the vectors of “man” and “woman” and add this di�erence vector to the vector
representation of “king” to �nd out that the feminine form of the latter is “queen”1.

Figure 2.2.: Gender relation expressible as linear vector o�set in the embedding space,
from Mikolov et al. (2013c)

Even phrases and whole sentences can be expressed with internal vector representations
(Cho et al., 2014b).

The main goal of machine translation is however not to solve analogical reasoning tasks,
but rather to �nd high quality translations. Also the embeddings will in that respect be of
lower quality as usually less bilingual data is available than monolingual data. However
when the system learns how words relate we assume the data sparseness problem to be
alleviated as formerly distinct words may share knowledge which in consequence will im-
prove the generation capabilities. Moreover embedding quality might even partly increase
by disambiguation of words on the basis of translation choice. Yang et al. (2013) could show
that the antonyms "good" and "bad" are highly related in word representations trained
with monolingual data, as they appear in similar contexts. But when using bilingually
trained embeddings their representations diverge.

1by a nearest neighbor search in the vicinity of the resulting position in the embedding space
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To explicitly use embedding layers has the advantage that they can be tied in the case of
using multiple encoders (e.g., the BiRNN, presented in Section 2.1.6) and that when using
multiple factors an embedding can be learned for each with distinct dimension which are
then combined appropriately as shown in Section 4.3.3.

2.1.3. Recurrent Neural Network (RNN)

RNN is a rich dynamic model for sequence learning tasks. It has been successfully used as
language model. We �rst state the general formulation and then show how RNNs can be
used as encoder and decoder.

As shown in Figure 2.3, a RNN consists of an input layer w, a hidden layer h and a
optional output layer o (Mikolov et al., 2010). The hidden layer is a self-recurrent, i.e., a
copy of its output at the last time step t − 1 is used as input at the current time step t
(Goodfellow et al., 2016).

Figure 2.3.: A Recurrent Neural Network which processes a phrase word-by-word.

Equation 2.3 shows how the hidden layer ht in time step t can be calculated: First, the
t-th word is represented using the One-Hot Encoding wt . Then, it is projected into the
Word Embedding e (wt ) where e (·) represents the projection function. Together with the
output of the hidden layer from the last time step ht−1, an arbitrary activation function f (·)
calculates the output of the hidden layer from the current time step. For the �rst hidden
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layer h1, h0 is set to zero. As an example, Equation 2.3 uses the hyperbolic tangent as
activation function, a linear projections applied on ht−1 and e (wt ) represented by weight
matrices U and W and bias b. (Cho et al., 2014a; Mikolov et al., 2010)

ht = f (ht−1,e (wt ))
e.g.
= tanh(Uht−1 +We (wt ) + b) (2.3)

Equation 2.4 presents the computation of the RNN’s output layer: The output can be
calculated by any function д(·) using the output of the hidden layer ht , but usually a
multinomial probability distribution over all words is desired as output form so that the
softmax function is used in most cases. Equation 2.5 shows how each vector component
of the softmax function is calculated.

ot = д(ht )
e.g.
= softmax(Oht + bo ) (2.4)

softmax(x)i =
exp(xi )∑
j exp(xj )

(2.5)

The architecture for NMT uses modi�ed RNNs as both encoder and decoder which are
described in the next section.

2.1.4. RNN Encoder – Decoder

The basic idea is to �rst digest a complete source sentence using an Encoder, resulting in
an intermediate representation and then generate the target sentence using a Decoder
based on the intermediate representation (Cho et al., 2014b).

Encoder The encoder RNN is not connected directly to the output layer. Instead, the
hidden encoder states are used to compute the input which to fed into the decoder. This
can be done by simply using the last encoder hidden state as it contains a summary of
the source sentence (Cho et al., 2014b) or by using the attention mechanism described in
Section 2.1.6. The encoder is depicted in Figure 2.1.

The encoder formula to calculate the hidden layer’s output is the same as presented in
Section 2.1.3 (Equation 2.3). Only the output layer is omitted.

Decoder The decoder is also an RNN and it basically represents a Neural Language Model
(NLM) for the target language with slight modi�cations:

Obviously, information about the source language sentence must be included. This can
be done once by initializing the decoder’s hidden layer with information about the source
sentence, as extra input to each decoding step or a combination of both.

Lastly, Cho et al. (2014b) proposes to make the decoder’s output layer dependent on the
last target word and the information about the source sentence.

The decoder is also depicted in Figure 2.1. The calculations to update the hidden state st
after generating a word yt−1 is described in Equation 2.6: Using the last decoder state st−1,
a target language embedding projection etrg(·), last generated word yt−1 and the context
of the entire source sequence c = ht , which is the output of the encoder in the last time
step and an activation function f dec(·), the current decoder state st can be computed. In
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the example of Equation 2.6, the hyperbolic tangent is used as activation function and the
input vectors are projected linearly using the matrices Udec, Wdec, C and bias bdec

h .

st = f dec(st−1,etrg(yt−1),c)
e.g.
= tanh(Udecst−1 +Wdecetrg(yt−1) + Cc + bdec

h ) (2.6)

Using the hidden state for the current target word st , an intermediate representation for
the current target word qt can be computed using Equation 2.7 (Sennrich et al., 2017):

qt = ϕ (st ,yt−1,c)
e.g.
= tanh(Qsst + Qyetrg(yt−1) + Qcc + bq) (2.7)

Finally, the output vector ot representing a probability distribution over all possible
target words to be outputted of decoder step t can be computed using Equation 2.8:

ot = д(qt )
e.g.
= softmax(Oqt + bo ) (2.8)

In summary, the RNN Encoder-Decoder can estimate the probability of target sentence
y by converting the whole source sentence x into a continuous representation c (x ), as
depicted in Equation 2.9. The main advantage of RNNs is that context of arbitrary length
can be modeled.

P (y|x) =
Ly∏
t=1

P (yt |c(x),y1, ...,yt−1) (2.9)

Note that the length of the target sentence does not have to be known in advance. The
target sentence will be terminated as soon as the decoder outputs a special end-of-sentence
(<eos>) token, making the prediction of the target sentence length a decision of the model.
During training it is therefore necessary to �nalize each target sentence in the training
corpus with the <eos> token in order for the model to learn this behavior. The search
procedure to derive the most likely target word sequence given a source sentence is
described in Section 2.1.9.

To further improve the training, Gated Recurrent Units (GRUs) can be used as activation
functions. GRUs are able to “forget” the context, which is useful as not all context is
relevant for translating parts of the sentence.

2.1.5. Gated Recurrent Units (GRUs)

From a mathematical view, RNNs with conventional units su�er from the vanishing
gradient problems during training. As the recurrences are unrolled for training to form a
feed forward like topology, the depth of the net is high. Therefore, the gradients under�ow
with increasing depth of history, e�ectively limiting the history on which the nodes can be
conditioned. Long-Short-Term-Memory units (LSTM) are said to cope with the vanishing
gradient problem (Hochreiter and Schmidhuber, 1997).

Gated recurrent units, proposed by Cho (2015), are a simpli�cation of LSTM. As shown
in Figure 2.4, the update gate z selects whether the hidden state is to be updated with a
new hidden state h̃. The reset gate r decides whether the previous hidden state is ignored.
Update and reset gates should not be considered as binary vectors but as real-valued
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h r

z

h̃ x

Figure 2.4.: A Gated Recurrent Unit, from Cho et al. (2014b).

coe�cient vectors: z ∈ [0,1]|h | ,r ∈ [0,1]|h | . The following equations 2.10 – 2.13 describe
how the hidden state h is computed using r, z and h̃ (Cho et al., 2014b):

reset gates: r = σ (Wrxt + Urht−1) (2.10)

update gates: z = σ (Wzxt + Uzht−1) (2.11)

h̃t = ϕ (Wxt + U (r � ht−1)) (2.12)

ht = z � ht−1 +
(
~1 − z

)
� h̃t (2.13)

GRUs are said to be able to condition on things at arbitrary points in the source sentence.
From a more intuitive point of view, a system that is able to adaptively forget and remember
has the advantage that it does not have to model the entire history with all its hidden units
but may rather focus only on the relevant parts. This is especially useful when deploying
the attentional mechanism described in the next section.

2.1.6. Attention Mechanism

In the previous sections, we described that it is feasible to encode the entire source
sentence into a vector of �xed length, e.g., the last hidden state of the encoder and to use
this information as input to a decoder which generates the target sentence (Sutskever
et al., 2014). Thereby, the vector containing all the sentence information might be used to
initialize the decoder or as additional input in every decoding step. Cho et al. (2014a) and
Pouget-Abadie et al. (2014) report a decreasing translation performance with increasing
sentence length. Sutskever et al. (2014) suggest a heuristic by reversing the word order
of source sentences. They claim that when encoding the source sentence’s �rst words
just before the �rst words of the target sentence are decoded, the generation of the latter
will bene�t from the introduced short term dependencies. This might be at least the case
for languages sharing a common word order. However, it is assumed to be cumbersome
to compress all the expressiveness a natural language sentence may exhibit including
syntactic phenomena like word ordering into a single vector of limited length. Also,
since the beginnings of statistical machine translation, it could be shown that decent
translation performances can be reached when utilizing word-to-word (Brown et al., 1993)
or phrase-to-phrase correspondences (Koehn, 2009).
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Therefore, a more sophisticated approach to NMT is the attention mechanism introduced
by Bahdanau et al. (2014). Instead of compressing the complete source sentence into a
single vector of limited expressiveness, the generation of each target word shall rather
focus only on necessary parts of the source sentence relevant for translation of that target
word. Instead of falling back on discrete representations like words or phrases, the so far
presented architecture based on continuous representations can still be used with only
slight modi�cations.

Until now, the encoder is altered to also be able to encode information about the remain-
ing source sentence at each encoding step. The task is not only to encode information
about previous words: At each encoding step, the encoder must be able to encode infor-
mation about the entire sentence, i.e., also about words still lying ahead. That is why in
Figure 2.1, the encoder is depicted as bi-directional RNN (BiRNN), comprised of a forward
RNN and a backward RNN. The latter is conceptually the same as the former, but simply
reads the source sentence from its end to its beginning. The hidden states in each time
step from the forward encoder RNN and the backward encoder RNN are concatenated and
are conveniently called annotations. Then, the weighted sum of all annotations from each
time step is computed as input for each decoder step.

The weights are learned by jointly training of the entire network. The design of weight
computation must not introduce a dependency on the length of the source sentence. As
the weights do not depend on each other, a normalization step is performed to make them
sum to one.

Using recurrent units with memory behavior, like LSTMs or GRUs, in combination
with the decoder states attending only to relevant encoder states allows the encoder to
encode only information about the source word whenever its context is not necessary for
translation. Whereas this design might perform simple word-to-word translations, it is
also able to consider longer contexts if necessary.

In their model architecture Bahdanau et al. (2014) de�ne

p (yi | y1, ...,yi−1,x ) = д (yi−1,si ,ci ) , (2.14)

where si is the RNN hidden state for time i , computed by

si = f (si−1,yi−1,ci ) . (2.15)

For each target word y the probability is conditioned on a distinct context vector ci , which
depends on a sequence of annotations (

h1...hTx
) . The input sentence is mapped to this

annotations by the encoder. Then, the context vector is calculated as weighted sum of the
annotations:

ci =
Tx∑
j=1

αijhj . (2.16)

The weight αij of each annotation hj is computed by:

αij =
exp

(
eij

)
∑Tx

k=1 exp (eik )
, (2.17)
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where eij = a
(
si−1,hj

)
is an alignment model. It scores the matching between inputs

at position j and outputs at position i , based on the RNN hidden state si−1 and the j-th
annotation hj of the input sentence (Bahdanau et al., 2014).

As a BiRNN consists of a forward and backward RNN,

• the forward RNN
−→
f is ordered from x1 to xTx , reads the input sequence and computes

a sequence of forward hidden states
(
−→
h1...
−−→
hTx

)
,

• the backward RNN
←−
f is ordered from xTx to x1 and computes a sequence of backward

hidden states
(
←−
h1...
←−−
hTx

)
.

By concatenating both hidden states, the annotation for each word is achieved:

hj =

[
−→
hTj ,
←−
hTj

]T
. (2.18)

2.1.7. Large Vocabularies: Byte Pair Encoding (BPE)

A drawback of NMT currently is that full-blown vocabularies of natural languages do
not �t into current memory of modern GPUs (Garcia-Martinez et al., 2016a). Therefore,
vocabulary size must be reduced. Splitting words into sub-word units is a way to do that.
Encoding rare and unknown words as sequences of sub-word units also helps to deal with
data sparseness and rare, unknown vocabulary (Sennrich et al., 2015b). It has also the
advantage that for morphological rich languages, morphological variants of words can be
generated, that do not occur in the training data. E.g., this is the case with the virtually
unlimited number of composite words in German.

Sub-word Translation using Byte Pair Encoding The basic idea is that words can be trans-
lated using smaller units therefore allowing open-vocabulary translation with a �xed
vocabulary and was proposed by Sennrich et al. (2015b). Byte Pair Encoding (BPE) origi-
nally is a simple textual data compression method: Byte pairs are merged into symbols
and symbols are recursively merged into higher level symbols such that no symbol occur
more than twice or there is no unused byte anymore.

Transferred to the word segmentation problem a similar approach is taken. Instead of
merging frequent pairs of bytes, the authors merged characters or character sequences. The
algorithm can be implemented as straightforward bottom up clustering and is depicted in
Figure 2.5. In general it operates on clusters that are represented each by a character string.
It starts at character level with each character found in a training corpus to represent an
own cluster. In every iteration of the clustering procedure those two clusters are combined
where the concatenation of their character strings is most frequent on the training data.
A new cluster is inserted represented by this concatenation witch is dubbed as a merge.
Thereby its parent clusters are not deleted. A special character is inserted at the end of
each word in order to ensure that merges are not performed across word boundaries. If
the algorithm converged, every single word in the training data would be represented
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by a cluster. Therefore usually the algorithm is terminated when the number of clusters
roughly equals the desired vocabulary size. For segmentation purposes the learned merge
rules are then applied to the data, which is therefore split down to single characters which
are subsequently merged to reveal the sub-word units.

Figure 2.5.: BPE segmentation algorithm, from Sennrich et al. (2015b).

Applying BPE segmentation to source and target language was called joint BPE. Thereto,
a common set of merge rules is learned on the joint set of training data of both languages.
This will ensure that words common to both languages like proper names will be modeled
the same way.

2.1.8. Training

To train the presented model, a stochastic gradient descent based algorithm in conjunction
with back-propagation is used to estimate the model parameters (cf. Goodfellow et al.,
2016). For back-propagation, the RNN is unfolded through the time steps. To calculate the
gradient, the output of the decoder, starting from the input, needs to be di�erentiable to
get a di�erentiable objective function for the optimization problem associated with the
learning process (Cho et al., 2014b).

Cho et al. (2014b) formulate the training problem as maximizing the conditional log-
likelihood in Equation 2.19, which is a maximum likelihood approach (Wu et al., 2016).
In Equation 2.19, θ represent the model parameters, i.e., the weight matrices and biases
and each (yn,xn ) is an input/output sentence pair from the training set (Cho et al., 2014b).
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Maximizing Equation 2.19 is equal to minimizing the cross-entropy, which is proportional
to the negative log-likelihood of the otherwise identical equation.

max
θ

1
N

N∑
n=1

logpθ (yn |xn ) (2.19)

Training the network is accelerated by a Graphical Processing Unit (GPU) using mini
batches that �t into the memory of a graphics card.

Drawbacks of end-to-end Training One drawback of end-to-end training is that it is bound
to the bilingual data corpus, which is limited. For most languages a lot more monolingual
data exists. The latter has been used to train language model components vital to traditional
SMT systems. But the inclusion of monolingual data or any other kind of data, as for
instance the linguistically annotated data the external tools used in this work was build
upon, is not straightforward.

2.1.9. Translation using Beam Search

There are di�erent possibilities to use the trained encoder-decoder in order to translate an
unseen input sentence. The source sentence is �rst encoded by the encoder conceptually
the same way as done in the forward propagation during training.

To use the decoder to generate a translation hypothesis iteratively word by word, several
search strategies are possible:

1. use the most probable target word generated in each decoding step (“greedy decoding”
(Stahlberg, 2016)),

2. sample a word from the probability distribution over the target vocabulary at each
decoding step (“stochastic sampling”),

3. take all combinations of all possible target words into account leading to di�erent
paths in a search graph. Then apply the Beam Search pruning technique to make
this approach feasible.

In each of the above presented attempts a hypothesis (path) is �nalized when the <eos>
symbol2 is chosen by the search strategy based on the decoder’s output.

The third case mentioned above is the common practice. The purpose of pruning is to
boost time e�ciency taking into account a degradation of decoding performance. Beam
search uses a pruning rule to select only promising nodes in a path at each level of the
search graph by a heuristic (Zhou and Hansen, 2005). The extend and complexity of the
search are determined by varying the beam width. In NMT normally a �xed beam size is
used. It was empirically shown that small beam sizes are su�cient. Often a �xed beam
size of 12 or less is utilized (Garcia-Martinez et al., 2016b; Sutskever et al., 2014).

The beam search procedure in NMT is straightforward and can be implemented as fol-
lows. A �xed number of k hypotheses is tracked where k is the beam size. For each tracked

2end-of-sequence symbol
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hypothesis the next decoding step is performed resulting in a probability distribution over
all vocabulary words to be the next word on that hypothesis. Each hypothesis is then
expanded by all the words in the vocabulary leading to k |W | new hypotheses in total
where |W | is the size of the target vocabulary. Overall scores are calculated and the k best
new hypotheses are kept discarding all others. The procedure is iterated for subsequent
decoding steps. Thereby the total number of decoding steps is not known in advance. The
decoder itself decides when to �nalize a hypothesis by predicting the <eos> symbol. For
each �nalized hypothesis the beam width is reduced. The search procedure comes to an
end when all remaining hypotheses are �nalized or a maximum number of decoding steps
is reached.

2.2. Factors and External Tools

This section contains a brief presentation of automatically derivable additional knowledge
which is used in this work as additional factors to augment the target language sentences.

This work only considers additional knowledge which can be represented on word
level. Also, all additional factors should be generically interchangeable and not requiring
any special factor-dependent treatment such as a factor-dependent topology of the NMT
system. These requirements are not met by syntactic parse trees as de�ned by phrase
structure grammars or dependency grammars which represent the syntactic structure of a
sentence on a higher level than word level.

The automatic derivation of additional factors should not be restricted to a narrow
domain which currently discourages semantic labeling, especially for the target language
German.

2.2.1. Parts-of-Speech and Morphosyntactic Information

Part of speech (POS) is a categorization of words based on their syntactic role in a sentence
(Radford, 2006). POS indicates a class of words that occur in similar positions or ful�ll
similar functions. The main POS in English are noun, pronoun, adjective, determiner,
adverb, verb, preposition, conjunction, and interjection (Collins English Dictionary, 2017).
Parts of speech are not to be confused with the syntactic functions itself, e.g., subject,
predicate, object.
POS tagging refers to the assignment of the correct part of speech label (subsequently

referred to as POS tag) to each token in a sentence. Tokens comprise words, numbers,
punctuation marks and special character sequences. A tagset de�nes which POS tags
to consider and may vary largely among di�erent POS taggers, mostly due to varyingly
vigorous sub-categorization of part of speech classes (e.g., adjectives might be further
speci�ed to be attributive adjectives or adjective with predicative or adverbial usage).

Regarding neural machine translation, POS tags could help to disambiguate homographs,
at least in such cases where di�erences in semantic content lead to di�erent parts of speech.
An example of such ambiguities in German is given in Table 2.1. Furthermore, POS tagging
can be seen as a form of word classi�cation which might help to share information about
words with the same POS tag. Both mentioned advantages are already achieved by NMT
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systems to great extend by utilizing information about context and translation choice to
disambiguate and (soft-)classify words.

Table 2.1.: Example for homographs in German. Part of Speech tags help to disambiguate
the di�erent meanings.

noun pronoun adjective verb cardinal number

die faulen Kinder
(the lazy children)

Äpfel faulen
(apples rot)

Sein (existence) sein Name (his
name)

müde sein (be
tired)

Regen (Rain) Im regen Verkehr
(in busy tra�c)

Schnecken regen
sich nicht (Snails

don’t move)

Lauten pl. (lutes)

Lärm durch
lauten Gesang

(noise due to loud
singing)

die Gewinner
lauten (the
winners are

(called))
Wir sieben Sand
(we screen sand)

sieben Zwerge
(seven dwarfs)

However, because bilingual training data is sparse, it is assumed that words with few
occurrences cannot be represented robustly. POS taggers on the other hand can be trained
on monolingual data which might exceed the amount of bilingual data. Note that in the
approach taken in this work, a word must nevertheless appear in the bilingual corpus
along with its POS tag(s), generated by an external POS tagger, in order for the NMT
system to learn this mapping likewise, i.e., knowledge about words which are not present
in the bilingual corpus can not be transferred into the NMT system.

POS tagging itself could be done by classi�cation of words in isolation. But the com-
plexity of tagging derives from the fact that the POS tags to be assigned to a word often
are ambiguous. Besides, a tagger designed for open domain usage must be able to deal
with unknown words, i.e., words that were not foreseen in the taggers vocabulary but are
encountered during application. The exploration of context may be helpful to alleviate
both problems (Koehn, 2009). Therefore tagging is to be seen as a sequence labeling
approach rather than a classi�cation of words in isolation (Neunerdt, 2016).

Statistical approaches to POS tagging follow the basic formula rendered in Equation 2.20:
The most probable tag sequence t̂N1 shall be found by maximizing the a-posteriori proba-
bility p

(
tN1 |w

N
1
)

given the word sequence wN
1 . Either this probability is modelled directly

or Bayes’ law may be used to achieve the transformations displayed in Equation 2.21. The
denominator may be omitted as p (wN

1 ) remains constant for all possible tag sequences.
The remaining numerator is equivalent to the joint probability of tag and word sequences.

t̂N1 = argmax
tN1

p (tN1 |w
N
1 ) (2.20)

= argmax
tN1

p (wN
1 |t

N
1 )p (tN1 )

p (wN
1 )

= argmax
tN1

p (wN
1 |t

N
1 )p (tN1 ) = argmax

tN1

p (tN1 ,w
N
1 ) (2.21)
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One instance of statistical approaches is to use a Hidden Markov Model (HMM) to
approximate this probability as described by Equations 2.22 to 2.25. After rearrangement of
the joint probability in Equation 2.23 (Charniak et al., 1993) the following two simpli�cation
assumptions are made:

Firstly, the k-th order Markov assumption p (ti |t
i−1
1 ,w

i−1
1 ) ≈ p (ti |t

i−1
i−k

) lets each state
depend only on its k predecessor states, but each state is independent from any other
states as well as from any emissions (Du Preez and Weber, 1998).

Secondly, the output independence assumption p (wi |w
i−1
1 ,t

i
1) ≈ p (wi |ti ) states that the

current observation wi depends on the current state ti only and should be independent of
all previous observations and states (Huang et al., 2001).

p (tN1 ,w
N
1 ) = p (t1, ...,tN ,w1, ...,wN ) (2.22)

= p (t1)p (w1 |t1)p (t2 |t1,w1)p (w2 |t1,t2,w1) . . .p (tN |t
N−1
1 ,wN−1

1 )p (wN |t
N
1 ,w

N−1
1 ) (2.23)

=

N∏
i=1

p (ti |t
i−1
1 ,w

i−1
1 )p (wi |t

i
1,w

i−1
1 ) (2.24)

≈

N∏
i=1

p (ti |t
i−1
i−k )p (wi |ti ) (2.25)

Schmid and Laws (2008) and Charniak et al. (1993) see in this result that the probability
of the tags depend on a lexical and a contextual factor, as depicted in Equation 2.26.

p
(
tN1 ,w

N
1
)
=

N∏
i=1

p
(
ti | t

i−1
i−k

)︸       ︷︷       ︸
context prob.

p (wi | ti )︸     ︷︷     ︸
lexical prob.

(2.26)

The contextual probability p
(
ti | t

i−1
i−k

)
could be simply estimated by using n-grams, e.g.,

Brants (2000) proposes trigrams in Equation 2.27.

Trigrams: P̂ (t3 | t1,t2) =
f (t1,t2,t3)

f (t1,t2)
(2.27)

The lexical probability p (wi | ti ) is modeled by the emission probabilities and can be
estimated by counting the number of co-occurrences of tags and words, normalized by the
number of tag occurrences on the training data. As an example, Brants (2000) uses the
Equation 2.28 to calculate the probability.

Lexical: P̂ (w3 | t3) =
f (w3,t3)

f (t3)
(2.28)

RFTagger In this work, the RFTagger by Schmid and Laws (2008) is used to annotate
the training corpus with linguistic knowledge. It is a probabilistic HMM tagger and
its performance could be shown to be superior or at least comparable to other tagging
approaches (Clematide, 2013; Maier et al., 2014; Sajjad and Schmid, 2009). The German
version was trained on parts of the TIGER corpus (Brants et al., 2002) which consists
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of German newspaper sentences with high quality linguistic annotations undertaken or
corrected by human annotators. The tagset of the TIGER corpus is de�ned upon POS base
categories derived from the Stuttgart Tübingen TagSet (STTS) of about 50 tags (Schiller
et al., 1995), which Schmid and Laws (2008) rede�ned to 23 POS categories. These base
tags are further enriched by the morphosyntactic attributes number, gender, case, person,
tense, degree and mood, being concatenated into a single feature vector. Which attributes
are applicable depends on the base POS. The result is a �ne-grained tagset of more than
700 tags in total. Table 2.2 shows an example of the POS attribute vectors. Each attribute is
separated by a dot and the �rst attribute is the base POS category. A complete description
of the tags used in the TIGER corpus can be found in Crysmann et al. (2005).

Table 2.2.: An example for a tagged German sentence by the RFTagger. Tag labels are
described by Crysmann et al. (2005).

word tag
farblose ADJA.Pos.Nom.Pl.Fem
grüne ADJA.Pos.Nom.Pl.Fem
Ideen N.Reg.Nom.Pl.Fem
schlafen VFIN.Full.3.Pl.Pres.Ind
wutentbrannt ADJD.Pos
. SYM.Pun.Sent

To use a relatively large number of tags might improve discrimination abilities regarding
above mentioned disambiguation purposes. Including morphosyntactic information could
help to improve word agreement, especially for morphologically rich languages as German.

But concerning POS tagging, the problem of data sparsity arises when using a large
tagset. The possibility of encountering tag combinations during testing without being
observed during training increases. Schmid and Laws (2008) argue that modeling the
context probability with a simple n-gram approach despite utilizing appropriate smoothing
techniques is not su�cient.

As main innovation, they propose to decompose the context probability into a product
of attribute probabilities and then use decision trees to model the latter.

This way the problem of data sparsity is alleviated. Moreover, the consideration of a
larger context is possible. The context of up to 10 preceding words were used instead of
typically only 2 for trigrams.

An example of this decomposition is shown in Equations 2.29 – 2.35 for the tag sequence
corresponding to the sentence “das blaue haus” (see Figure 2.6). For illustration purposes
the number of attributes and the context length are vastly reduced. The context probability
p

(
ti | t

i−1
i−k

)
is �rst de�ned on whole attribute vectors (Eq. 2.29). The leading numbers

(1:,2:, later 0:) correspond to the predecessor (1), pre-predecessor (2) and current word (0).
The attribute vectors are then split up in single attributes (Eq. 2.30 – 2.32). Each attribute
is modeled to be still dependent on its base POS category but independent from other
attributes. The formula is then approximated using only those conditional attributes which
are necessary to decide for the current attribute value (exemplary in Eq. 2.33 – 2.35).
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Das
blaue
Haus

( ART.Def.Nom.Sg.Neut )
( ADJA.Pos.Nom.Sg.Neut )
( N.Reg.Nom.Sg.Neut )

simplified:
( ART.Sg.Neut )
( ADJA.Sg.Neut )
( N.Sg.Neut )

vector of attributes

Figure 2.6.: The tagged German utterance “Das blaue Haus”. Tag labels are described by
Crysmann et al., 2005.

p (ti |t
i−1
i−k ) = p (N.Sg.Neut | 2:ART.Sg.Neut, 1:ADJA.Sg.Neut) (2.29)

= p (N | 2:ART, 2:ART.Sg, 2:ART.Neut, 1:ADJA, 1:ADJA.Sg, 1:ADJA.Neut) (2.30)
∗ p (N.Sg | 2:ART, 2:ART.Sg, 2:ART.Neut, 1:ADJA, 1:ADJA.Sg, 1:ADJA.Neut, 0:N) (2.31)
∗ p (N.Neut | 2:ART, 2:ART.Sg, 2:ART.Neut, 1:ADJA, 1:ADJA.Sg, 1:ADJA.Neut, 0:N, 0:N.Sg) (2.32)
≈ p (N | 2:ART, 1:ADJA) (2.33)
∗ p (N.Sg | 1:ADJA.Sg , 0:N) (2.34)
∗ p (N.Neut | 1:ADJA.Neut, 0:N) (2.35)

Which attributes are relevant is modeled by a decision tree.
The questions are chosen during training by optimizing an information gain criterion.

Pruning of the tree shall prevent over�tting to the training data (Schmid and Laws, 2008).
In addition, smoothing is necessary to avoid zero probabilities either due to data sparseness
or because of ungrammatical input during testing.

A tree is built for each value of each attribute of the feature vectors given a context of
prede�ned length. In a leaf the context probability of the attribute value the tree was built
for, given the context de�ned by the path to that leaf is stored. An exemplary tree that
models the probabilities of the current tag being a noun in nominative case (N.nom) given
di�erent contexts is depicted in Figure 2.7.

2:N.Reg

p=0.571 p=0.938

p=0.999

0:N.Name

1:ART.Nom

0:N.Name 0:N.Name

p=0.948 p=0.998 ....

1:ADJA.Nom

yes

yes no

noyes no

yes no

no

yes

Figure 2.7.: An exemplary decision tree to model the probability of the current tag being a
noun in nominative case (N.nom) given, by Schmid and Laws (2008).

The RFTagger is able to estimate lexical probabilities for unknown words that were not
seen during training. It utilizes strategies like regarding capitalization and word endings.
The latter are arranged in a su�x tree for e�ciency. Statistics of known words are used to
anticipate the lexical probabilities of an unknown word with the same ending.
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Schmid and Laws (2008) report accuracies up to 91.07% for predicting German �ne-
grained POS tags when trained and tested on the TIGER corpus. As the number of �ne-
grained tags exceeds most other POS tagging approaches, direct comparison is di�cult.
When only predicting the smaller set of STTS base POS tags, the tagger achieves state-of-
the-art accuracies of up to 97.97%. Best results could be obtained with a context width of
10 preceding words. However, the highest gains are achieved when switching from 2 to 3
context words and performance improvements seem to be almost converged at a context
width of 5.

2.2.2. Lemmas

Utilizing the lemma information has been proposed to reduce data sparseness (Sennrich
and Haddow, 2016; Sennrich et al., 2009).

A lemma thereby is a linguistic term describing the citation form of a set of words
(Collins English Dictionary, 2017; Sennrich and Haddow, 2016). All in�ectional variants
of a word share the same lemma. Verbs are usually represented by their in�nitive and
nouns in the singular nominative case. For example, the lemma of go, goes, going, went,
and gone is go (Collins English Dictionary, 2017). The speci�c choice of the representative
of each equivalence class that shares a common lemma is in the context of this work of
no concern, as the systems do not work on character level. It is only necessary that class
labels are distinguishable.

In this work we use the TreeTagger in order to derive the lemmas of the German target
words (Schmid, 1994b, 1995).

2.2.3. Dependency Labels

Dependency grammars are a grammar formalism re�ecting the syntactic structure of
a sentence (Jurafsky and Martin, 2014). In this formalism each word in a sentence is
dependent on a single other word (its syntactic head). This binary relation can be expressed
by an arc, resulting in a tree structure as depicted in Figure 2.8. The verb is usually taken
as the structural center resembling the root of the tree and, therefore, does not have a
syntactic head. The dependency relations can be interpreted with the grammatical function
a word ful�lls in relation to its head. In Figure 2.8 we can see that the noun “I” is subject of
the verb “prefer” whereas the noun “�ight” is a direct object. These grammatical functions
are referred to as Dependency Labels.

Because the entire dependency tree cannot be easily expressed on word level, the
dependency labels are used instead.

To extract dependency labels for the German target language we use ParZu (Sennrich et
al., 2013). It was �rst described by Sennrich et al. (2009) and builds on the same architecture
as the English Pro3Gres parser (Schneider et al., 2008). ParZu is described as a hybrid
dependency parser build upon external tools for POS tagging and morphological analysis,
and merges a manually crafted rule-based grammar with a statistical disambiguation
component that is trained on the TüBa-D/Z treebank (Telljohann et al., 2004).
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Figure 2.8.: Illustration of a dependency-style analysis using a standard graphical method
by Jurafsky and Martin (2014)

2.2.4. IOB Tags

Sennrich and Haddow (2016) suggest annotating sub-word units with tags that encode
the sub-word structure. Therefore IOB tags are proposed. In their approach B marks
whether a sub-word unit forms the beginning of a word, I stands for inside and E �ags
the end of a word. The O-tag is used for units that cover an entire word. Advantages
of IOB tags include the possibility to disambiguate the di�erent types of sub-word units.
Otherwise end units cannot be distinguished from whole words, as well as begin units
from units inside a word. Also the BPE segmentation approach used in this work does not
enable the NMT system to be aware of the mapping of sub-words to words. For example
it is not prohibited by design that due to failing generalization e�orts the network can
generate incomplete words3. Thereby when additionally providing the IOB structural
information we assume the NMT system to more robustly learn that words comprised of
several sub-word units have to be �nalized properly. The derivation of IOB tags once the
data is segmented using BPE is straight foreward.

2.3. BLEU Evaluation Metric

The bilingual evaluation understudy (BLEU) metric proposed by Papineni et al. (2002) is
the most widely used automatic evaluation metric in the �eld of machine translation
(e.g., Han and Wong, 2016; Koehn, 2009; Liu et al., 2011; Song et al., 2013). Automatic
evaluation as opposed to the assessment of a system’s translation performance by human
judges is necessary because of its availability, low cost, speed, reproducibility, language
independence and objectivity4 (Dorr et al., n.d.).

But as automatic evaluation algorithms are not able to rate quality criteria of translations,
e.g., intelligibility, adequacy and �uency directly, they have to regress to low level similarity
measures, comparing translation hypotheses generated by an MT system with high quality
reference translations provided by human translators (Han and Wong, 2016).

3as negative side e�ect the incomplete word will then be merged with its successor word during post-
processing

4Koehn (2009) suggests a possible bias of the BLEU metric towards phrase-based statistical MT which is
similarly concerned with (the generation of) short phrases of high integrity
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Thereby, a fundamental challenge consists in the lack of an unambiguous ground truth.
When translating natural languages, usually many di�erent valid translations exist to a
given source sentence without an inherently objective ranking of quality. BLEU alleviates
this problem by allowing multiple reference translations for a source sentence. The
rationale behind the approach is that translation quality improves the closer a hypothesis
is to the references and the aim of the evaluation metric is to quantify this “translation
closeness” (Jurafsky and Martin, 2009).

The BLEU metric is thereby based on modi�ed n-gram precisions. An n-gram is a
sequence of n subsequent words and the concept of precision (and recall) is commonly
used in information retrieval and in binary classi�cation (Powers, 2007). An adoption of
precision as a sentence-wise similarity measure between a hypothesis translation output
generated by an MT system and reference translations can be de�ned on the basis of
n-gram matching.

All n-grams of a certain order n found in any reference sentence comprise the set of rel-
evant occurrences. The perspective of precision is to minimize the number of non-relevant
n-gram predictions in the hypothesis translation, whereas completely hypothesizing all
n-grams in the references is of no concern. On the other hand, the recall measure would
demand for maximization of coverage, i.e. ideally completely hypothesizing all n-grams
from all references—regardless of any non-relevant predictions which additionally may be
made.

Instead of comparing each reference individually, they are considered collectively to
allow phrasings from di�erent references in di�erent parts of the hypothesis.

On a sentence basis, n-gram precision might be de�ned as in Equation 2.36 (cf. Abele,
2014):

precisionn =

∑
n-gram∈H

count(n-gram,H ) max
R∈R

(δ (n-gram,R))∑
n-gram∈H

count(n-gram,H )
, (2.36)

where count(n-gram,H ) is the number of occurrences of a speci�cn-gram in the hypothesis
string H . R is the set of references, the δ function checks whether the n-gram occurs in a
reference R and the max operator ensures that it is su�cient for an n-gram to appear in
any reference in order to be accounted.

An attempt to de�ne sentence level n-gram recall in this scenario using a slightly
di�erent intuition is approached in Equation 2.37.

recalln =

∑
n-gram∈H

min(count(n-gram,H ),
∑
R∈R

count(n-gram,R))∑
R∈R

∑
n-gram∈R

count(n-gram,R) . (2.37)

Recall is not used in BLEU, as with multiple references the requirement of a hypothesis
to cover all phrasings of all references at once is not reasonable. In above de�nition of
recall the numerator slightly di�ers from the de�nition of precision and takes into account
that not more occurrences of a speci�c n-gram should be hypothesized than are backed up
by the references taken all together. It could be used in the de�nition of precision as well.
Which one to choose is of no concern as the authors of BLEU take this thought even one
step further, when introducing the modi�ed n-gram precision. Here the n-gram counts of
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the hypothesis to be accredited are even further restricted by the maximum occurrence
in any single hypothesis. The complete proposed formula for modi�ed n-gram precision
already appropriately averaged over the entire test set T renders to

pn := precisionmod
n (T) =

∑
(H ,R)∈T

∑
n-gram∈H

countclipped(n-gram,H ,R)∑
(H ,R)∈T

∑
n-gram∈H

count(n-gram,H )
, (2.38)

where

countclipped(n-gram,H ,R) = min
(
count(n-gram,H ),max

R∈R
(count(n-gram,R))

)
(2.39)

(cf. Papineni et al., 2002). The clipping of counts penalizes the over-generation of words in
the hypothesis.

For the �nal BLEU metric the modi�ed precisions of various orders n are combined.
According to the authors shorter n-grams shall account for correct word choice (adequacy),
longern-grams for word order (�uency). As the probability to match longern-grams decays
exponentially, the precisions are logarithmized and possibly weighted. To compensate for
not explicitly modeling recall and as precision is biased towards shorter hypotheses, a
special term called brevity penalty BP is introduced to penalize hypotheses that are too
short:

BP =



1 if c > r

e (1−r/c ) if c ≤ r
. (2.40)

Then,

Bleu = BP · exp *
,

N∑
n=1

wn logpn+
-
, (2.41)

where r is the e�ective reference corpus length5, c is the total length of all hypothesis
sentences and N the maximal order of n-grams to be considered.

As usually N = 4 and uniform weights of 1/N are recommended, this further simpli�es
to

Bleu = BP × *
,

4∏
n=1

pn+
-

1
4

, (2.42)

the geometric mean of the modi�ed n-gram precisions weighted by the brevity penalty
(Song et al., 2013).

Advantages and shortcomings of the BLEU metric found in the literature (e.g., Koehn,
2009; Liu et al., 2011; Song et al., 2013) include that, on one hand, the metric is simple,
fast, easy to implement, language and domain independent, does not require additional
resources nor task speci�c adaptation and, most important, highly correlates to human
judgment. On the other hand, researchers criticize that BLEU is not representative at
sentence level (scores rather have to be averaged over a large test set), that it does not
account for similar phrasings or synonyms nor for an importance ranking of words and it

5for each hypothesis the reference closest in length is used to add up to the e�ective reference corpus
length
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does not explicitly include the recall measure. Also, absolute BLEU score values gained by
di�erent researchers on di�erent experiments are not easily compared directly as they
depend on the data, domain, language pair and number of reference translations deployed
(Koehn, 2009).
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This chapter presents work that previously utilize word factorization approaches in ma-
chine translation. They were at �rst successfully used in Statistical Machine Translation
(SMT). Therefore, a brief presentation will be given. Following this, we outline related
work regarding factors in Neural Machine Translation (NMT). We thereby distinguish
between approaches that are concerned with integrating factors on source language side
of an NMT system as to those dealing with the target language side.

3.1. Factors in Machine Translation

Statistical machine translation has been the state-of-the-art approach to machine transla-
tion for over two decades. Including linguistic knowledge has already proven to be helpful
to the �eld of machine translation during this period. Therefore, we give reference in order
to acknowledge these ambitions. However, it must be kept in mind that the principles of
SMT and NMT di�er substantially, albeit the essential rationales behind the procedures
remain related. Because this work does not focus on SMT in general, no insights about the
essential principles are given, the interested reader is referred to Koehn (2009). Accordingly
subsequent subchapters address the factorization approaches recently issued for the �eld
of neural machine translation.

3.1.1. Statistical Machine Translation (SMT)

Koehn et al. (2007,2006) introduced the basic concept of using extra information on
word level to the �eld of machine translation. The authors generalize the phrase-based
statistical machine translation (PB-SMT) approach by substituting each word in surface
form with a vector of factors of this word. Factors used for experiments include lemma,
POS, morphological information and statistically derived word classes additionally to the
surface words.

The translation is broken down into di�erent steps as shown in Figure 3.1 (based on
Koehn and Hoang (2007)). The analysis step refers to the mapping of a word to its additional
factors derived by external tools. Translation steps are then carried out for each factor
independently. Independent translation is necessary to not further increase the data
sparseness problem (Birch et al., 2007). Thereby, the same basic phrase-based modeling
approach is used for each factor. Lastly, a generation step uses a statistical model that
operates at target word level1 to map combinations of target factors to possible target
words.

1i.e., no context is taken into account
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Figure 3.1.: Translation steps for SMT by Koehn and Hoang (2007).

Di�erent scenarios were proposed. In the �rst scenario solely the additional factors
are translated and then the target word is generated from their respective translations
on target side, as shown in Figure 3.1. The source words themselves are not translated
directly. In SMT, this procedure is helpful, as it allows morphological variants of source
words to be mapped to their common lemma in order to share statistics, hence alleviating
data sparseness problems. In order to be able to generate the correct morphology on target
side, morphology information is used as an additional factor and translated independently.
As another advantage, in�ectional variants may be generated on target side, that are not
included in the bilingual training corpus2. From the perspective of Neural Machine Trans-
lation these issues are still relevant but attenuated by the strong learning capabilities of the
neural network, which allow the representations of similar words, including morphological
variants, to relate. On the other hand, these learning capabilities are strong enough to
learn from di�erent tasks in parallel, therefore shifting the idea from individual translation
to jointly present the additional data to the network, allowing it to �nd useful insights
in the data itself. We further assume the utilization of a crude model for generation of
surface word forms on target side to undermine the strong generation capabilities of the
NMT model.

A second scenario for factored SMT proposes to use the additional information on target
language side to build dedicated language models that operate on the respective additional
factor exclusively. For example, as part of speech tags are less manifold than surface
words, traditional n-gram language models of higher order could be used. In the currently
most prominent NMT formulation however no explicit language model is deployed, as
the decoder is basically a target language model already. Nevertheless, we assume the
underlying motivation to achieve improvements in grammatical integrity, like word order
or word agreement to be the same, although again, NMT models are stronger in these
aspects already in advance (Bentivogli et al., 2016).

2as the word generation model on target side might be trained with additional monolingual data
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3.1.2. Neural Machine Translation (NMT)

Regarding neural machine translation, �rst experiments with additional knowledge at
word level were reported for the source language only (Hoang et al., 2016; Sennrich and
Haddow, 2016). Experiments regarding the target language were performed since end of
2016 (Garcia-Martinez et al., 2016a,b; Nadejde et al., 2017).

As the experiments performed in this thesis are based on the English to German trans-
lation task, we focus on the comparison of results regarding this translation direction.

3.1.2.1. Factorization of Source Language

Sennrich and Haddow (2016) proposed the �rst approach to integrate factors into an NMT
system. Their work focuses on the factorization of the source language words only. The
target language remains unchanged. Again, external tools are used to automatically derive
a conceptually arbitrary amount of word level factors for the source words.

A challenge consists in achieving compatibility of those factors gained at word level
with the sub-word modeling approach used. The authors propose to simply copy the word
level factors for all sub-word units of the same surface word. In the encoder’s input layer,
a separate vocabulary and embedding matrix is used for each factor. In each encoder
time step the respective embedding vectors of all factors of the current input are then
concatenated to form the overall embedding vector which is ultimately used as input to the
system. The further procedure of encoding and decoding does not di�er from a baseline
attentional NMT system as described in Section 2.1. We will denote this procedure joint
encoding.

In their experiments, the factors used are the BPE sub-word segments, IOB tags, lemmas,
POS tags, morphological information and dependency labels. They report a signi�cant
improvement of up to +0.8 Bleu for English to German translation when using all factors
except the morphological information. Even slightly better results are obtained for this
translation direction when only using POS tags as additional factor.

Hoang et al. (2016) conducted similar experiments. As main innovation, they propose to
use distinct attention mechanisms for each source factor in combination with the commonly
used single attention mechanism. For English to German translation, improvements of up
to +0.5 Bleu are reported. However, improvements could not be shown for all experiments
consistently.

Details on design choices will be further elaborated in Section 4.3.

3.1.2.2. Factors on Target Side

Garcia-Martinez et al. (2016a,b) were the �rst to examine the factorization of target words.
They proposed to replace the target words by a combination of lemma and POS together
with morphosyntactic features. The system is trained to generate those factors as unit of
translation instead of words. After decoding has come to an end, an external component
is used to obtain a target word sequence from the sequence of additional target factors.
This procedure is conceptually related to the work of Koehn and Hoang (2007) described
in Section 3.1.1. Therefore, the reasons and advantages are the same as stated above. The
external tool that generates the target words’ surface forms from the additional factors is
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not bound to the limitations of the bilingual corpus and therefore may generate unseen
morphological variants and thus could not be predicted by the NMT system itself. The
authors suggest this procedure to e�ectively increase the amount of possible output words
for morphologically rich target languages while decreasing the target vocabulary size
of the NMT system, as morphological variants do not have to be covered there. This
motivation is less relevant to this thesis as we use the BPE sub-word encoding to achieve
open-vocabulary translation. However, it is uncertain whether a linguistically more
sophisticated approach could outperform the crude BPE segmentation technique.

Unfortunately, no signi�cant performance improvements over a baseline system could
be reported. Nevertheless, some interesting experiments were carried out, as for example,
di�erent alternatives to combine the factor embeddings, di�erent ways to feed back the last
decoder output as input to the next decoding step, and the idea to introduce an arti�cial
dependency between lemma and factors to be generated.

Regarding this work, the main disadvantage is the requirement on an external tool
which generates the full word forms on target side from the NMT output and has therefore
to be dedicated to the chosen factors. This makes the approach less generic. We advise the
avoidance of any such severe post processing strategies as they undermine the powerful
end-to-end generation capabilities of the NMT system.

Nadejde et al. (2017) introduce tags based on the combinatory categorial grammar (CCG)
formalism by Steedman (2000) as additional syntactical information to NMT. CCG tags
have been successfully used by Birch et al. (2007) in a factored SMT system similar to the
proposal by Koehn and Hoang (2007) referenced in Section 3.1.1. The main advantages
of CCG tags is their ability to capture information about the structure of the sentence at
word level. They were dubbed as an “approach to almost parsing” because they leave only
minor ambiguities compared to a complete parse tree of the sentence’s syntactic structure
(Bangalore and Joshi, 1999).

Figure 3.2.: Simple CCG example by Birch et al., 2007.

Figure 3.2 shows an annotated example sentence. Peter and apples are noun phrases
(NP) and the verb eats is the root of the sentence (S), indicating the presence of a noun
phrase on the left (\NP) and another one on the right (/NP). Where exactly in the sentence
the latter are located is not de�ned by the grammar. The �nal word level CCG tags are NP,
(S\NP)/NP and NP.

Certainly the NMT system cannot interpret the information about the sentence structure
encoded in the tags directly. But when there is enough training data, it may deduce this
knowledge by the observation of how tags co-occur with other tokens in certain situations.
The authors argue that a tag at mid sentence might function as a reminder for decisions
based on long range dependencies where words at the end of the sentence depend on
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words at the beginning. When basing its decision on a CCG tag at mid sentence, the
system is released from the burden to remember this information on the whole span of the
sentence. The authors argue that especially coordination and prepositional phrase (PP)
attachments can be generated more accurately.

They performed di�erent experiments with CCG tags for English both on source and
on target side. On source side, the performance reported by Sennrich and Haddow (2016)
as stated above could not be outperformed using CCG tags.

For the target language factorization, three architectures were proposed, that are dis-
cussed in more detail in Chapter 4. For the �rst approach, dubbed as serializing, the target
factor values are shown to the decoder in an alternating order during training, sharing
the same decoders’ input and output layers among all factors. When using CCG tags
for English as target language translating from German improvements of +0.6 Bleu are
reported. The English to German translation direction was not investigated.

The two remaining approaches are based upon multi tasking architectures (Luong et al.,
2015) and both could not lead to translation performance improvements when used with
target factors.

Also, the factorization of both, source and target side at once, were investigated. Using
dependency labels for German as source and CCG tags for English as target language an
improvement of up to +1.0 Bleu could be achieved.

The main disadvantage of the CCG grammar is that, at the time of writing, the availability
of openly accessible parsers is unfortunately limited to only a few languages including
English. But for the German target language as used in this work no such parser could be
found. Hence no experiments were conducted using CCG tags.
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4. Target Factors for Neural Machine
Translation

This work aims to probe the usefulness of integrating additional knowledge into an NMT
system by means of factorizing the target language words. After stating fundamental
assumptions, we brie�y highlight the di�erent design decisions in oder to give a compre-
hensive overview of the chosen approaches. Regarding the combinatorial explosion of
possible design options, we have to focus on reasonable choices. We therefore �rst carry
out a basic n-best list re-ranking approach as a preliminary study. We then present the
idea to alternate target factors, dubbed as serialization approach. Next, we propose to
jointly decode target factors. And lastly, we combine source and target factorization. The
usefulness of the proposed approaches are then empirically evaluated in Chapter 5.

4.1. Assumptions

This work applies the following assumptions:

1. Factor information can be encoded at word level.

2. Factors are generically interchangeable.

3. The (sub-)word factor has to be generated by the translation system.

These assumptions enable us to tightly integrate additional information about the target
language into an NMT system. We thereby seek for a generic solution that is not tailored
to a speci�c type of information or would lead to architectural changes dependent on a
speci�c factor. Moreover it is important that factors can be represented at word level to
use them in conjunction with the (sub-)word units during training, as opposed to training
di�erent tasks with entirely di�erent training data (e.g., multi-tasking of translation and
parsing by Luong et al. (2015), Niehues and Cho (2017)). Lastly, we want the NMT system
to output the word factors (in our case sub-word units) itself. We do not want to utilize
another additional tool that generates words from a variety of additional factors, as this
would lead to a dependency on factor selection. Also, we believe the strong learning and
generation capabilities of the neural network architecture to be most appropriate for the
task of target word generation and therefore do not want to resort to more primitive tools
or interfere the end-to-end generation process.
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4.2. Levels of Component Sharing

A major design decision driving the construction of systems that integrate target factors
is the sharing of components. When adopting the basic attentional encoder-decoder
architecture to operate on multiple target factors, we �rst consider how much of the
system to be dedicated to the di�erent factors and which parts to share among all factors.

Encoder DecoderAttention

S
O

FT
M

A
X

x y

levels of component sharing
entire system

encoder & attention & decoder

nothing shared - dedicated systems

encoder & attention

encoder

Figure 4.1.: Levels of component sharing (extended version based on Niehues and Cho,
2017)

Entire Architecture is Shared It is possible to use the entire architecture without any
changes. In order to integrate target factors they can be interleaved with the stream of
target words, called serializing and will be described in greater detail in Section 4.3.2. It is
the so far only approach known from literature, that could successfully be used for target
factorization in NMT. Another possibility would be to use a concatenation of all target
factors into a single factor. But this strategy is not helpful, as it would even increase data
sparseness and it is not feasible, as the vocabulary of the concatenated factors would be
too large to meet the memory restrictions of modern GPUs.

Shared Decoder In this level of sharing, only the softmax output layer is distinct for each
target factor. Especially the same decoder is used to predict all target factors synchronously.
We call this a joint decoding and go into greater detail in Section 4.3.2.

Shared Encoder w/o sharing of Attention Mechanism Also, solely the encoder can be
shared while utilizing di�erent decoders, presumably one for each target factor. Thereby,
either common or distinct attention mechanisms are used. As a main disadvantage of this
approach, no information is shared on the target side of the system. Whatever shared
knowledge is to be learned among target factors has to be propagated back into the en-
coder, which by design is rather concerned with the source language. We therefore did
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not further investigate this approach. It could however be shown that this approach is
useful to multi-task additional source information (Luong et al., 2015; Nadejde et al., 2017;
Niehues and Cho, 2017). For the target language, so far no improvements could be shown
(Nadejde et al., 2017).

DedicatedTranslationSystems Lastly, it is possible to not make use of any system sharing,
by building a dedicated translation system for each target factor. These systems might
then be used in a n-best list re-ranking approach as described in the next section. As
an advantage, all factors may make use of a full blown NMT system. A disadvantage
includes the missing opportunity to share common knowledge among factors within a
shared system.

4.3. Proposed Approach

The following subsections explain our design decisions leading to three approaches on
how to integrate target factors into an NMT system. Additionally, we will also include
source factors and state in our approach.

4.3.1. N-Best List Re-Ranking

First, we propose a n-best re-ranking approach. It is meant as a preliminary study to
possibly—but not necessarily—show the usefulness of target factor information. Any
sound solution should be able to surpass the results gained with n-best list re-ranking.

dedicated translation system 1

NMT

n-best list

n-best list

generate

re-score

POS tagger

normalization

n-best list

score with evaluation metric

BLEU

re-rank using combination
of scores

subword units

normalization

extract new first best

subword units

re-ranked

part of speech

source language
subword units

target language
subword units

dedicated translation system 2

NMT
source language
subword units

target language
part of speech

Figure 4.2.: N-Best List Re-Ranking

The procedure which is depicted in Figure 4.2 is as follows. First, two dedicated transla-
tion systems are trained. The �rst of which is in our case a baseline system that translates
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sub-word units in a source language to sub-word units in a target language. It is used to
obtain a n-best list of reasonable size. A n-best list literally covers the n best translation
hypotheses to each input source sentence in the test set. They are generated by the beam
search procedure of the baseline system. The basic assumption behind every n-best re-
ranking approach is that the n-best list contains hypotheses that are of better quality than
the top ranked choices. Finding those alternatives could lead to better overall performance.
Therefore, a second system is used to score each pair of input source sentence and target
sentence hypothesis from the n-best list a second time, called re-scoring. Thereby, the
second system can be designed to be more specialized to the re-scoring task, as it does
not have to �nd translation hypotheses itself but rather re-score existing ones. Finally,
the scores of both systems are combined to overall scores, e.g., by taking the sum. The
latter is used, as scores are logarithmized probabilities and the sum of scores therefore
corresponds to the joint probability given by the product of probabilities. The ordering of
hypotheses in the n-best with respect to the overall scores is assumed to change, ideally
revealing new top ranked choices of better translation quality. The new �rst best choices
in the n-best list are evaluated with an evaluation metric, in our case the Bleu metric.

The re-scoring system we use in this proposal is a dedicated translation system, that
maps source sub-word units to one of the additional target factors in isolation, e.g., part of
speech in Figure 4.2. Note that the dedicated system does not take sub-word units of the
target language into account. For training of such a system, the training corpus’ target
side is tagged with the factor information and then this information is solely used as target
sequence for training. The system architecture does not have to be altered. Because NMT
is a rather generic sequence-to-sequence mapping approach, this procedure is feasible.

In the re-ranking scenario, this implies that the target sentence hypotheses in a n-best
list generated by the baseline system are tagged by the external tool used to gain the
respective information, e.g., POS tags. Therefore, sub-word units are normalized to words
in surface form and some minor post-processing is performed. After re-scoring and re-
ranking the original hypotheses are restored in the new order and the top-ranked choices
are evaluated. Utilizing the tagger not only during training, but also at translation time is
a major di�erence to the remaining proposals, where the latter is prohibited.

We use this rather intricate approach of the dedicated translation system, instead of
simply deploying a tag based target language model for re-scoring purposes, because any
more elaborate approach will also be confronted with the challenge to generate target
factor information based on a source sentence.

If the re-ranking approach was successful, we assume it to immediately prove the
usefulness of the target factor information in a translation scenario. However, it is unclear
how much potential improvements the original n-best list o�ers, e.g., the possibility
remains that it does not contain any better translation choices than its �rst best proposals.
Therefore, this study will not necessarily show the usefulness of target factors.

4.3.2. Serialization of Target Factors

As the second approach, we propose to use a single feature stream containing all target
factor tokens in an alternating order. The concept is depicted in Figure 4.3, where target
words are interleaved with their respective POS and dependency labels. Parallel to the
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preparatory phase of this work, Nadejde et al. (2017) published a similar proposal. We
adopt their naming convention to call this a serialization approach.

As an advantage, no architectural changes are necessary. Only the respective target
factor vocabularies have to be concatenated to a joint vocabulary. Also, the target sentences
of the bilingual training corpus are annotated with their respective additional factor
information and these sequences are then interleaved to form a single target sequence of
target factor tokens. As the NMT system is confronted with a serialized stream of factor
tokens, it learns to generate them during translation likewise. A factor dependent special
character sequence was added to each token in advance in order to easily distinguish the
di�erent target factors in a translation hypothesis after decoding. For the �nal translation
hypothesis, all additional factor tokens are discarded. However, we also evaluate them
independently to investigate the overall prediction capabilities of the NMT system.

Decoder

Peter#!noun #1!subj liebt#!verb #1!root #!noun #1!objDecoder Input

Decoder Output

<init> Maria

Peter#!noun #1!subj liebt#!verb #1!root #!noun #1!obj <eos>Maria

Figure 4.3.: Serialization of POS, dependency labels and target words for German target
sentence “Peter liebt Maria” (Peter loves Mary). Simpli�ed illustration omitting
input from the encoder and the complexity of softmax output layers. Additional
factors are pre�xed with special character sequences in order to separate them
easily in the translation hypothesis.

Summarizing the related work section on current proposals that deal with NMT target
factorization directly, we �nd that the serialization approach is so far the only proposal that
could show translation quality improvements, at least when using CCG tags. Therefore,
we validate these �ndings on a di�erent experimentation setting. We are speci�cally
interested in whether improvements are reproducible with factors other than CCG tags.
Further experimentation includes the order of factors and the word-level to sub-word level
mapping strategy, as described as follows.

Order of Factors When serializing all factors into a single stream, we have to de�ne an
order in which factors appear in this stream. First of all, it is important to note that we
want to interleave factors at word level, i.e., all factors assigned to the �rst word are to
appear in the �nal stream �rst, followed by the factors of the second word, etc. We are
then especially interested in the question whether the additional factors should precede or
succeed their related (sub-)word unit. In case of using the additional factors �rst, from a
probabilistic viewpoint, the prediction of the (sub-)word unit thereby will be conditioned
on the latter. This might enable the neural network to �rst choose a broader category,
e.g., the appropriate morphosyntactic information and then use this information when
deciding on the correct surface word form of the subsequent (sub-)word unit. However,
due to the deployment of gated recurrent units it might as well ignore the additional
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information. We also include experiments were the additional factor tokens follow their
respective (sub-)word unit. Because the shared knowledge that might be gained must
have been learned during training, the precise order might be irrelevant, which could be
indicated by these experiments.

Word-Level to Sub-word Level Mapping Strategy In this work, BPE units are used as main
word factor at sub-word level, while most additional factors are generated at word level.
IOB tags are an exceptional case, as they re�ect the sub-word structure and are therefore
de�ned on sub-word level. Thus, it is necessary to establish a mapping strategy between
word and sub-word level. For the serializing approach, we use three di�erent procedures.
Firstly, the additional factor tokens might be combined with all their respective sub-word
units belonging to the same surface word only a single time. I.e., preceding or succeeding
the �rst sub-word unit, depending on the chosen order, but not appearing together with the
remaining sub-word units of a segmented word. Thereby, we loosen the strict alteration
pattern. Secondly, in order to maintain the strict pattern of succession, it is possible to copy
a word level factor to all its related sub-word units. Lastly, it is possible to concatenate
the tokens from an additional factor vocabulary with IOB tags to establish sub-word level
mapping. We assume this strategy to increase data sparseness. Also, this strategy is not
feasible if the size of the factor vocabulary grow too large, as in case of lemmas.

Expected Advantages and Disadvantages We assume possible advantages of the proposed
method to include the following aspects. All factor tokens are projected into a common
embedding space instead of subspaces of limited dimension. Therefore, each projection
may make use of the expressiveness of the overall embedding space. Especially, the
embedding dimensionality of the most important target factor—the sub-word units—does
not have to be reduced.

Also, we assume the system to learn to represent the dependencies among factors in
a common space similar as it does for words as presented in Section 2.1.2. For example
relations between as POS tag and its corresponding words might be expressed. As this
implies that more information is modeled within the same space, the expressiveness of
each factor might be e�ectively reduced, but it is left to the system to make the decision
on how much bandwidth is used for each factor and how to possibly suppress redundancy.
Moreover, illegal factor token combinations (e.g., the word “house” interleaved with the
POS “verb”), which might occur during translation due to failing generalization e�orts,
at least do not a�ect the embedding layer – as opposed to the joint decoding approach
presented in the next section.

Lastly, we assume the attention mechanism to be able to partially learn factor dependent
attentional behavior. Although no dedicated attention mechanism is used for each factor,
the former has to deal with only one distinct target factor token at each decoder time step.

As disadvantages, this approach is not able to model ambitious sub-word units with
a di�erent representation for each meaning, as the embedding vector for a sub-word
unit cannot be chosen to di�er for each of its possible meanings. However, due to its
powerful context modeling capabilities, we assume the model to have no di�culties with
disambiguation when the sub-word unit is preceded by appropriate additional information
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that would enable the latter. A rather application-oriented disadvantage includes that the
target sentences double in length. Consequently, training and translation is more time
and memory consuming (Nadejde et al., 2017). Also, due to vocabulary concatenation, the
softmax output layer increases in size, leading to the same issues.

4.3.3. Joint Decoding of Target Factors

As the third approach, we propose to use a shared decoder with a separate softmax output
layer for each target factor. The architecture is depicted in Figure 4.4. Encoder and attention
mechanism are shared as well. We thereby aim to use a factorized representation also at
the input layer of the decoder.
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Figure 4.4.: Architecture for jointly decoding all target factors in parallel with a distinct
softmax output layer for each. Also the decoders target input is factorized. (1)
describes data structures for the sub-word unit base factor and (2) describes
data structures for an additional factor. More additional factors can be intro-
duced following the same scheme. Scores are added during training (possibly
weighted). yGTt denotes the respective ground truth value. The �gure is a
modi�ed excerpt from Figure 2.1.

Nadejde et al. (2017) use a similar approach except that they do not use a factorization
of the decoder’s input layer. They only use the distinct softmax output layers. This
was also proposed among a series of multi-tasking approaches (e.g., Luong et al., 2015).
When generating the next decoder output, their proposal does not take into account
the additional factor information predicted by the system in the previous decoding step.
Therefore, the system’s generation of (sub-)word units cannot be conditioned on the
choice of the additional target factors in the previous decoding step. Also, when only
the (sub-)word units are used for decoder input, no dedicated representations for such
homographs that are disambiguated by additional factors are possible. On the other hand,
Garcia-Martinez et al. (2016a) use mostly the same architecture as presented here, but do
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not predict the target word factor directly. Also, they do not utilize word segmentation.
None of the above stated proposals were successful when used for target factors.

Integration of Embeddings A �rst design decision to be made is how to build the target-
sided input of the decoder. Usually, the last decoded word is fed back to form the latter.
We now want to be able to deal with multiple target factors that were predicted in the last
decoding step. A common scheme in the related works concerned with factorization ap-
proaches in neural machine translation and neural language modeling is to use a dedicated
embedding matrix for each factor and then concatenate the respective factor dependent
embedding vectors to perform an overall embedding vector, as rendered in Equation 4.1
(cf. Sennrich and Haddow, 2016).

edec
(
(y (1)t−1, ..,y

( |F |)
t−1 )

)
=
|F |
‖
i=1

E(i )h (i ) (y (i )t−1) (4.1)

Thereby, F is the set of target factors, (y (1)t−1, ..,y
( |F |)
t−1 ) is the vector of target factor tokens

the search strategy decided to be the output of the previous decoding step, E(i ) and h (i ) are
factor dependent embedding matrices and one-hot functions, respectively, and ‖ denotes
vector concatenation. The �nal embedding vector edec(·) is then fed to the decoder.

Training Criterion In order to predict all target factors in parallel, the training criterion
has to be slightly altered to take into account, the errors made by the forward propagation
for the additional target factors as well. In order to compute the cost for a single sentence
pair (y,x) from the training corpus we decide to simply sum the (possibly weighted)
negative log scores over all target words in the sentence pair.

cost(y|x) =
Ly∑
t=1

|F |∑
i=1
−λi log(P (y (i )t |ct (x),H )) (4.2)

Thereby, λi are factor dependent weights, F is the set of target factors, Ly is the length of
the target sentence andH are all so far predicted target factors (y (1)1 , ..,y

( |F |)
1 , ..,y (1)t−1, ..,y

( |F |)
t−1 ).

The probability P (y (i )t |·) is predicted by the respective factor-dependent softmax output
layers. Costs are then averaged over all sentences in a mini-batch. The remaining error
backpropagation approach is not altered.

Beam Search When using all target factors that were decoded in the previous time step
as input for the current decoding step, the beam search strategy has to be adapted. As
target factors are decoded independently, we now face the situation that there is a beam
for each target factor. In order to merge the beams, it is necessary that for each decoding
time step every hypothesis of target factor A has to be combined with every hypothesis
of target factor B and so on. This implies to build the cross product space of all possible
target factor hypotheses at a given decoding time step (Garcia-Martinez et al., 2016a). As
the cross product space of all factor vocabularies possibly exceeds the memory limitations
posed by modern GPUs, careful design is necessary. A possible solution is to �rst truncate
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the probability distributions of each target factor after the k most probable entries, where
k is the beam width of the beam search strategy. As all factors are treated independently,
applying pruning by the beam width �rst is feasible. This allows to build the cross product
space where all factor hypotheses scores of the current decoding timestep are combined
to overall scores. The remainder of the search strategy remains the same. A sentence is
�nalized when for the main (sub-)word unit factor the <eos> token is decoded, regardless
of the hypotheses of the additional factors at that time step.

4.3.4. Combination With Source Factorization

Finally, we are interested whether the combination of our target factorization approaches
with the integration of source factors is bene�cial. For source factorization, we follow two
approaches:

Firstly, we use the approach proposed by Sennrich and Haddow (2016). In this approach,
a dedicated embedding matrix is used for each source factor. The respective source factor
embedding vectors are then concatenated to form the overall input to the encoder, similar
to Equation 4.1. We call this joint encoding as all source factors are presented to the encoder
in parallel.

Secondly, we �nd that the serialization approach described in Section 4.3.2 could be
transferred to the source language as well. As to the best of our knowledge, this idea has
not been investigated so far for the source language.
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In this chapter, we provide empirical evidence to the question whether the integration of
additional knowledge into an NMT system by factorizing the target language can improve
translation performance.

First, we describe the experimental setup, including the Neural Machine Translation
Toolkit, the choice of data and hyper-parameters, the evaluation method and the baseline
system. In the second part of this chapter, the results of the di�erent approaches described
in Section 4.3 are discussed.

5.1. Experimental Setup

All experiments were conducted translating from English as source language to German as
target language. Hence, target factors were applied for the German language in approach
1 – 3. Additionally, in approach 4, factors were utilized �rst on source side solely and then
on source and target side combined.

5.1.1. Neural Machine Translation Toolkit

The Nematus1 NMT system by Sennrich et al. (2017) was used as a basis for all experiments.
It is an implementation of the attentional encoder-decoder architecture described in
Section 2.1.1. It is powered by the Theano Framework, that makes GPU implementation
transparent, is capable of automatically computing symbolic di�erentiation and provides
many other tools that are useful for various machine learning applications (Al-Rfou et al.,
2016).

5.1.2. Data and Hyper-parameters

Training and Test Data In this work, training and evaluation is performed on data derived
from TED2 talks as used in the IWSLT evaluation campaign (Cettolo et al., 2015), publicly
accessible at WIT3 archive (Web Inventory of Transcribed and Translated Talks (Cettolo et
al., 2012))3. TED (Technology, Entertainment, Design) is a non-pro�t organization that hosts
conferences where guest speakers are invited to give talks that are made publicly available
on the Internet free of charge. The talks were subtitled and translated by volunteers.
Therefore, the translations are mostly of reasonable quality, but not always as sophisticated
as if carried out by professional translators. The domain of spoken language usually is

1https://github.com/EdinburghNLP/nematus
2ted.com
3wit3.fbk.eu
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Table 5.1.: Size of Training Data
English German

Number of sentence pairs 189 thousand
Number of tokens4 in total 3.5 million 3.3 million
Number of unique tokens 51 thousand 111 thousand
Number of unique BPE segments 40 thousand 40 thousand
Number of BPE segments in total 3.6 million 3.6 million
Average sentence length in:

tokens 18.6 17.3
BPE segments 18.9 19.1

concerned with spontaneous speech phenomena, like hesitations, false starts, repetitions,
bad grammar, etc. However, due to intense rehearsal these talks show only a decent amount
of such spontaneous speech phenomena (Cettolo et al., 2015). Nonetheless, compared to
written language, a more vivid and pictographic style is used, containing many idioms,
colloquialisms and metaphors.

Quantitative numbers describing the data are shown in Table 5.1 and Table 5.2. The
number of sentence pairs is rather small compared to current approaches in the literature
which use several million sentence pairs (e.g. Sennrich et al., 2015a). The experiments can
therefore be framed as low resource setting. An advantage is that training converges in
days instead of weeks. As German is a morphologically rich language, the German word
vocabulary is more than twice as large as its English counterpart.
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Figure 5.1.: BPE segmentation: resulting vocabulary sizes, number of words that are not
splitted and number of resulting UNK tokens on development data (test2013)
as a function of BPE merge rules

We use BPE segmentation for vocabulary reduction as the presented in Section 2.1.7.
To learn the merge rules we use a data basis consisting of the concatenation of source
and target training data together with a large background corpus. We thereby assume the
robustness of rule extraction to increase. We use about 60K merge rules for the German

4A token is a full word, punctuation mark, number or any other contiguous (special) character sequence.
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Table 5.2.: Development and Test Data
number of
sentence

pairs

number of total UNK
tokens5

number of total UNK
BPE segments

en de en de

test2013 993 203 518 85 28
test2010 1565 210 783 71 65
test2011 1433 237 653 104 77
test2012 1700 267 756 124 41
test2014 1305 275 665 85 53

test set 6003 989 2857 384 236

language resulting in 40k sub-word units. Concerning joint BPE for English the same
amount of rules would lead to a vocabulary comprising only 26k sub-word units. We
decided not to use joint BPE but a di�erent number of 135k rules for English leading to a
40k sub-word unit vocabulary as well, as this showed slightly better results for our baseline
system.

Figure 5.1 plots statistics concerning the BPE segmentation as a function of learned
merge rules. We can see that for German according to its larger vocabulary size also
more BPE segments result when applying the same amount of rules. The relation between
generated segments and learned rules is not linear, �rstly because we use the above
mentioned concatenation of various training data a basis for rule extraction. This implies
that rules are learned that cannot be applied to a certain language and are instead simply
ignored. Secondly, throughout rule application shorter segments are completely covered
by longer segments and therefore do not occur in the resulting vocabulary anymore.
Additionally we can observe that for German more than half and for English about two
thirds of the resulting BPE segments cover an entire word. In case of convergence of the
BPE rule extraction algorithm the vocabulary based on BPE segments would coincide with
the non-segmented word vocabulary.

Table 5.2 shows statistics about our development and test data. Thereby “test2013” is
used as development data during training and the remaining entries (test2010–12, test2014)
comprise our test set. We can see that the number of unknown (UNK) tokens is signi�cantly
reduced when switching from word vocabularies to vocabularies based on BPE segmented
sub-word units.

Target Factor Vocabularies The vocabularies were built upon the annotated training data.
Di�erences to the original vocabularies used by the respective annotation tool are possible
but irrelevant for the training procedure. This is because the NMT system can only learn
about tokens that actually appear in the data. Any additional tokens simply cannot be

5no segmentation

49



5. Evaluation

learned and therefore the vocabularies may be truncated to contain only occurrences from
the training data.

RFTags are parts of speech concatenated with other morphosyntactic features (number,
case, gender, etc.) as descibed in Section 2.2.1.

The number of unique lemmas surpasses the number of unique sub-word units, because
the former are not segmented. As can be seen from Table 5.3, the number of unique lemmas
is however less than half as big as the number of unique word level tokens (111 thousand).

One would assume the number of unique lemmas to be smaller than what is displayed
in Table 5.3 because especially for a morphologically rich language like German, many
morphological variants of a word should map to a single lemma. Among others, a reason
to the large number of lemmas is that a large number of singleton words map each to a
unique lemma. There are about 58 thousand unique word tokens with a single appearance
in the data. Instead of only deleting lemmas that occur only once, we take this a step
further. The main reason to utilize lemma information is that words that share a common
base form shall pro�t from each other, e.g., by being mapped to adjacent points in the
embedding space. From this perspective, lemmas targeted only by a single morphological
variant are useless, even if the lemma appears often in the data. Therefore, additional
experiments which use a reduced lemma vocabulary, where at least two di�erent words
map to the same lemma were conducted.

Table 5.3.: Vocabulary sizes: number of unique tokens in German factor vocabularies. All
vocabularies additionally contain UNK and <eos> tokens.

Factor Vocabulary Size

BPE sub-word Units 40008
RFTags 723
Lemmas 50681
Lemmas (reduced) 16294
Dependency Labels 32
IOB Tags 4

Hyper-parameters The following hyper-parameters were used for all experiments.
As it is not feasible to search the vast space of parameter combinations for optimal

choices, either standard parameters recommended by the creators of the Nematus system
(Sennrich et al., 2017) or otherwise proposed in literature were used.

We use word embedding layers for source and target language each of the size of 500
dimensions and the encoders and decoders hidden layers comprise of 1024 units. As our
dataset is much smaller than those used by the latter authors we assume these dimensions
to be not chosen too small. An answer to the question whether they are chosen too big is
given by Britz et al. (2017). The authors could show through extensive experimentations
that too large dimensions do not harm performance. When using oversized hidden layers,
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this might lead training not to converge properly—a behavior which was not observed
in any of our experiments. The error backpropagation training is performed with the
Adadelta algorithm (Zeiler, 2012), a variant of stochastic gradient descent with adaptive
learning rate (Sennrich et al., 2017). The norm of the gradient is clipped to 1.0 (Pascanu
et al., 2013).

We use a mini-batch size of 80 and for each mini-batch, sentences of similar length
are used in order to speed up training (Sutskever et al., 2014). Also, the training data is
shu�ed with each training epoch, which refers to one complete training loop over the
entire training data corpus. Sentence pairs where both sentences exceed 50 words are
discarded from the training data, which is already taken into account in Table 5.1. This
was done in advance in order to have the same data basis for all experiments—as some
experiments have an e�ect on sentence length.

During translation, a beam size of 12 is used for all experiments and also for validation
on a development set during training.

The early stopping criterion is used, supported by the Nematus system (Sennrich et al.,
2017). The patience is set to 10.

5.1.3. Evaluation Method and Baseline

The results are presented in Bleu (metric described in Section 2.3). Evaluating NMT
systems is not an easy task. In this section, we highlight the existing di�culties and the
strategies taken to face them. We thereby also present our baseline system.

Training of a neural network not necessarily results in �nding the global optimum.
In order to not always be confronted with the same (possibly weak) local optimum,
training of a neural network is designed to be non-deterministic. The non-deterministic
behavior manifests itself in the random initialization of weights, random shu�ing of data,
probabilistic dropout and rounding errors. Consequently, when several copies of a system
sharing the same hyper-parameters are trained independently, a di�erent local optimum
might be reached each time, resulting in di�erent system quality, which makes comparison
of di�erent approaches not trivial.

Moreover, it is important to establish fair comparison among di�erent systems. Due
to convergence at di�erent paces, we do not use a �xed amount of training iterations or
training time for each system, but deploy the early stopping criterion. We thereby assume
each system to be reasonably converged, allowing for fair comparison.

Exemplarily, we show the convergence behavior of our baseline system, which was
run three times independently in Figure 5.2. For each baseline run, the scores on the
development set are plotted as a function of training iterations. We can observe that all
three baseline runs converge reasonably similar. Note that due to slight variations, the
early stopping criterion is met at di�erent iterations.

During the training of a system it is evaluated every 10k iterations and models are saved
every 30k iterations. For evaluation, two strategies are pursued. First, the model that
achieved the highest validation Bleu score during training is used for evaluation—dubbed
as single best in all result tables. Secondly, ensemble decoding is performed on the four
best models according to validation scores. In ensemble decoding, multiple models are
used for translation. At each decoding step, the respective probability distribution for the
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Figure 5.2.: Plot of validation Bleu scores on the development set as a function of training
iterations.

next word choice is derived by each model in the ensemble. These probability distributions
are geometrically averaged in order to obtain an overall distribution which is then further
processed as if a single model was used (Sennrich et al., 2017). Sennrich and Haddow
(2016) state that this procedure smooths the variance between single models.

Table 5.4 shows the Bleu scores for the three baseline runs on the development set and
test set. We can see that the evaluation tasks seem to be of varying degrees of di�culty
for the models to solve, with scores ranging between 24 and 30 Bleu. More importantly,
we observe that the maximum deviation of single best scores between the baseline runs is
considerable—it is listed in the �nal row. For test2011, a maximum di�erence of 0.79 Bleu
is observed. This is of the same magnitude we assume possible improvements to be, due to
target factorization. The ensemble scores show less deviation, possibly allowing for better
comparison of di�erent models. Also, we notice the ensemble scores to be signi�cantly
higher than the scores achieved with single best models. Therefore, we will give more
priority to the ensemble scores, as this is the designated way of decoding—at least if not
su�ering from severe resource restrictions. However, we also report results achieved with
the single best model, as ensemble decoding is a heuristic and might not �t all scenarios
the same way (e.g., the number of models to be taken into account might di�er if a system
converges faster, etc.).

To further improve comparability, we average the results obtained for the individual
test data �les. Thereby, we observe a notable reduction of variance both for the single best
and ensemble decoding. In Table 5.4, the maximum di�erence between the baseline runs
is only 0.09 Bleu and 0.15 Bleu for single best and ensemble decoding, respectively. We
will thus focus on the averaged values.
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Table 5.4.: Bleu scores for the three Baseline runs on the Development and Test Set

Baseline Dev Set Test Set Average
Test Set

2013 2010 2011 2012 2014
single
best

ens
single
best

ens
single
best

ens
single
best

ens
single
best

ens single
best ens

run 1 28.53 28.81 26.71 27.90 29.53 30.11 25.65 26.74 24.19 24.78 26.52 27.38

run 2 28.59 28.96 27.11 27.72 28.74 30.43 25.79 27.05 24.36 24.93 26.50 27.53

run 3 28.69 29.10 26.59 27.56 28.96 30.28 25.97 26.91 24.20 24.90 26.43 27.41
∆(max,min) 0.16 0.29 0.52 0.34 0.79 0.32 0.32 0.31 0.17 0.15 0.09 0.15

5.2. Experiments and Results

Limited resources force us to evaluate only a limited amount of experiments, therefore a
selection of reasonable approaches was motivated in Chapter 4.

Despite the usage of modern GPUs, evaluation is a time-consuming task. Therefore,
only a selection of experiments were possible.

5.2.1. N-Best List Re-ranking

As described in Section 4.3.1 for n-best list re-ranking, at least two systems are necessary. A
baseline system is deployed to generate a n-best list. For re-scoring, dedicated translation
systems are used that translate English sub-word units to German RFTags and Lemmas,
respectively.

Word-segment to Tag Translation First, let us examine the performance these systems
can achieve when deployed for their dedicated translation task. Here, we also report on
systems translating to dependency labels and IOB tags which were not used for re-ranking.

The results in Table 5.5 show that the performance of the baseline systems operating on
sub-word units can be clearly surpassed by all three systems. Thereby, systems translating
to RFTags and lemmas achieve about +4 Bleu above the baseline for ensemble decoding,
when averaged over the test set. For dependency labels, this di�erence is even higher,
about +17 Bleu.

This is not surprising as the vocabularies of the respective tags are either much smaller
or as for lemmas we expect that the most common words map to a reduced number
of lemmas. Therefore on average, the system is confronted with a smaller number of
translation choices, thus the translation task is easier.

However, the results are inferior to what a tagger could achieve when directly deployed
on the target language. That is because the task of translating sub-word units from one
language to tags in another language is more challenging than expected (Garcia-Martinez
et al., 2016a).
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Table 5.5.: Bleu scores for dedicated word-to-tag-translation systems. They are used for
re-scoring.

Dedicated
Systems Dev Set Test Set Average

Test Set

2013 2010 2011 2012 2014
sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

RFTags 32.60 33.80 30.48 32.34 31.77 33.94 29.61 31.08 28.48 29.20 30.09 31.64

Lemmas 32.37 33.23 30.50 31.13 32.80 33.83 30.11 30.84 28.57 29.13 30.50 31.23
Dependency
Lables 46.35 46.57 44.88 45.74 44.86 45.75 42.81 43.27 43.28 43.43 43.96 44.55

IOB 69.64 56.54 76.83 60.58 77.14 66.69 76.00 65.44 72.67 58.50 75.66 62.80

Note that the sub-word unit to lemma translating system might show the potential that
could be exploited by a system that is able to entirely predict the correct morphology in the
target language6. Also note that when evaluating these systems, we cannot rely on human
annotations of the test set as references, but have to resort to deploying the respective
taggers. Therefore, results might be slightly biased which is not problematic, because
these systems are used only indirectly as re-ranking system or as means of comparison
for the tag generating capabilities of the systems in experiments described in subsequent
sections.

N-Best List Re-ranking Table 5.6 shows the results achieved with the re-ranking approach.
We use the baseline system (run 1) to write the n-Best list of 100 target hypotheses for
each input source sentence7. Thereby, consequently a beam size of 100 is used during
translation which leads to slightly better results for most test cases (detailed results for all
test cases can be found in Table A.1). As re-ranking strategy the sum of original scores and
re-scored pendants are used. For re-scoring, systems translating to RFTags and Lemmas are
deployed. Because it is often already helpful to use a second instance of the same system
for re-scoring, we also use run 2 and 3 of the baseline system to ensure a fair comparison.
We can see that all re-ranking approaches could lead to better results than baseline (run
1). Also, we show that the results were not obtained by chance. To demonstrate chance
level, we randomly choose hypothesis from the n-best list and calculate mean and variance
of scores several such random re-rankings achieve. We can see, that all of the proposed
approaches signi�cantly surpass chance level. Moreover, by also choosing the worst
hypotheses from the n-best list we show the large range of quality the latter covers.

6including some side e�ects as translating names and numbers, etc. correctly which are mapped to common
lemmas, respectively.

7because baseline run 1 was the �rst to be available. We take into account that run 2 achieved slightly
better results by using it as a re-scoring system
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Table 5.6.: Bleu scores for Re-Ranking
Re-Ranking Average Test Set

single best ensemble

baseline (run 1. beam 12) 26.52 27.38
baseline (run 1. beam 100) 26.88 27.43

RFTags 27.05 27.77
RFTags. dims reduced 27.03 27.74
Lemmas 27.37 27.72
RFTags+Lemmas 27.61 28.03

baseline (run 2) 27.42 27.73
baseline (run 3) 27.55 27.86
baseline (run2 + run3) 27.81 27.98

Average Random 23.84 24.61
Variance 0.03 0.06
WORST 17.23 19.21

When using the combination of scores produced by systems translating to RFTags
and lemmas, we can achieve an improvement of +0.6 Bleu over baseline for ensemble
decoding. This shows that the information learned by these systems is at least useful.
However, compared to re-ranking the baseline with its two other independent runs the
same improvements can be achieved. This implies that at least for the re-ranking scenario,
no unique information is introduced, that could not have been already gained by the data
on (sub-)word level itself.

We also experiment with a system translating to RFTags that uses reduced word em-
bedding and decoder hidden layer sizes of 80 and 512, respectively. This experiment was
conducted because in subsequent sections, experiments are performed where (sub-)word
unit and RFTag prediction are generated synchronously by a single system which will re-
duce the systems capacity for each task. For re-ranking purposes, the dimension reduction
seem not to harm performance.

Lastly, we want to answer the question if the scores from the re-ranking systems alone
are helpful as well. These are given in Table 5.7. The combination of RFTags and lemmas
still slightly outperforms the original baseline. But utilizing the two other baseline runs is
more helpful this time, as their expressiveness is much higher, allowing them to be used
without the original scores.

5.2.2. Serialization of Target Factors

In this experiment, we examine the serialization approach described in Section 4.3.2.
Table 5.8 shows the results in terms of Bleu of our main translation task, i.e., when
scoring against references based on words. We only display the average test set results. A
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Table 5.7.: Bleu scores when using re-score values only
Average Test Set

Rescore only
single best ensemble

RFTags 26.25 26.52
RFTags. dims reduced 26.19 26.46
Lemmas 26.79 27.12
RFTags+Lemmas 27.26 27.56

baseline (run 2) 27.19 27.44
baseline (run 3) 27.33 27.50
baseline (run2 + run3) 27.63 27.82

breakdown by the single test �les and also results for the additional factors however can
be found in the appendix.

In Table 5.8, “X » Y” implies that for each target word, factor X precedes factor Y in
the serialized stream. In order to evaluate whether the order of inserting morphological
information before sub-word units (“BPE”) or afterwards has a relevant impact on transla-
tion quality, both directions were examined in experiments 2.1 – 2.7 regarding RFTags and
lemmas (“LEM”). Also di�erent strategies of mapping word level factors to sub-word level
are compared. The respective column is dubbed as “SWM” for sub-word mapping strategy.
Thereby, “single” means that for words comprising multiple sub-word units the respective
additional tags are used only before (or after, depending on the order) the �rst sub-word
unit. Accordingly, “copy” means that the additional tags are copied for each sub-word unit.
“IOB” implies that the IOB tags are already de�ned on sub-word level.

Additionally, dependency labels (“DEP”) and IOB tags were tested. Lastly, we investi-
gated reduced lemma vocabularies (“LEM (red)”), described in Section 5.1.2. For better
comparability, we �rst state our strongest baseline described in the last section.

We can observe that most systems (2.1 – 2.11) slightly outperform the baseline system
for ensemble decoding, but mostly only by about +0.1 to +0.4 Bleu which might as well
be due to random �uctuations. Only system 2.9, based on the reduced lemmas, seems to
clearly outperform the baseline for ensemble decoding by +0.7 Bleu. Though this result is
not fully transferable to the single best evaluation method. Here, only an improvement of
+0.13 Bleu could be achieved. For single best decoding, none of these systems (2.1 – 2.11)
can improve over baseline by more than +0.35 Bleu.

The results are inconclusive also concerning the order of succession. We assumed the
precedence of additional factors before sub-word units to be bene�cial. Notably, the results
are independent of whether the factor information precedes or succeeds the sub-word
units.

Moreover, it hardly can be stated, which word level to sub-word mapping strategy
succeeds. While for lemmas, “single” outperformed “copy”, the reversed case seems to
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Table 5.8.: Bleu scores for main translation task (prediction of target words), approach
Serializing

Serializing: WORDS Average Test Set
sys-id SWM single best ensemble

baseline (run 2) 26.50 27.53

2.1 RFTags » BPE single 26.82 27.68
2.2 RFTags » BPE copy 26.19 27.22
2.3 BPE » RFTags single 26.48 27.73
2.4 BPE » RFTags copy 26.55 27.71

2.5 LEM » BPE single 26.34 27.76
2.6 LEM » BPE copy 25.85 27.35
2.7 BPE » LEM copy 26.16 27.62
2.8 LEM (red) » BPE single 26.48 27.69
2.9 LEM (red) » BPE copy 26.63 28.24

2.10 DEP » BPE single 26.68 27.82

2.11 IOB » BPE single 26.68 27.92

2.12 DUM » BPE single 26.85 27.94
2.13 DUM » BPE copy 27.06 27.73
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apply for reduced lemmas. Regarding RFTags, “single” seems to be bene�cial at least, when
the RFTags precede subword units.

We are also interested in whether the prediction of the additional factors can bene�t
from the sub-word information. We therefore score those predictions against factor based
references gained by annotating the word based references with the respective external
tools. Results are stated in Table 5.9 to Table 5.12. We chose the dedicated translation
systems from Section 5.2.1 as respective baselines to compare to. We can observe that
only dependency labels and IOB tags seem to pro�t. The latter by up to +20 Bleu which is
not surprising, as we assume the sub-word structure annotation task to be highly coupled
with sub-word units themselves.

Lastly, we are interested in whether the improvements gained are truly due to the
additional information introduced or could be explained by the increased capacity of the
architecture that might be gained, because the serialization e�ectively increases the depth
of the encoder. Therefore, we conducted a comparison experiment (2.13), where single
tags without special meaning is interleaved with the sub-word unit stream (dummy tag,
“DUM”). The results show that still improvements compared to baseline can be achieved,
although no useful information is introduced. For ensemble decoding +0.2 Bleu were
gained which is the scope of most other systems and could imply random �uctuations.
For single best decoding however the best result of +0.5 Bleu in this series of experiments
can be observed. Therefore either the random �uctuations are much higher than our
experiment with three baseline system runs in Section 5.1.3 suggest or side-e�ects due to
the architectural setup are introduced. Also the ensemble decoding results might simply
more stable and reasonable as their single best decoding counterparts. Additionally, as
they always lead to better translation performance in terms of Bleu, we shall give higher
focus to the ensemble decoding results.

We also conducted the latter experiment with the sub-word mapping strategy “single”
(experiment 2.12). We thereby result with a system that annotates the sub-word structure,
as for words that are split to several sub-word units only the �rst unit is tagged. Assuming
that at least the ensemble decoding results are reasonable we can see that the same results
can be reached as when using the slightly more complex IOB tags to annotate subword
structure (as in experiment 2.11).

Table 5.9.: Bleu scores for prediction of RFTags, approach Serializing
Serializing: RFTags Average Test Set

sys-id SWM single best ensemble

RFTags (Baseline) 30.09 31.64

2.1 RFTags » BPE single 30.84 31.76
2.2 RFTags » BPE copy 29.40 30.51
2.3 BPE » RFTags single 30.26 31.53
2.4 BPE » RFTags copy 29.21 30.82
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Table 5.10.: Bleu scores for prediction of Lemmas, approach Serializing
Serializing: Lemmas Average Test Set

sys-id SWM single best ensemble

LEM (Baseline) 30.50 31.23

2.5 LEM » BPE single 29.84 31.13
2.6 LEM » BPE copy 29.19 30.42
2.7 BPE » LEM copy 29.28 30.66

Table 5.11.: Bleu scores for prediction of Dependency Labels, approach Serializing
Serializing: Dependency Labels Average Test Set

sys-id SWM single best ensemble

DEP (Baseline) 43.96 44.55
2.10 DEP » BPE single 44.60 45.21

Table 5.12.: Bleu scores for prediction of IOB tags, approach Serializing
Serializing: IOB Average Test Set

sys-id SWM single best ensemble

IOB (Baseline) 75.66 62.80
2.11 IOB » BPE single 82.95 82.84
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5.2.3. Joint Decoding of Target Factors

We examined the approach of joint decoding of target factors. Table 5.13 shows results
averaged over our test set.

Table 5.13.: Bleu scores for main translation task (prediction of target words), approach
Joint Decoding
Joint Decoding: WORDS Average Test Set

sys-id SWM single best ensemble

baseline (run 2) 26.50 27.53

3.1 BPE | RFTags copy 26.41 27.03
3.2 BPE | LEM copy 25.65 26.72
3.3 BPE | DEP copy 26.03 26.71
3.4 BPE | IOB IOB 26.26 26.90
3.5 BPE | RFTags_IOB IOB 25.99 26.89
3.6 BPE | RFTags | IOB | LEM copy 25.08 25.52
3.7 BPE | RFTags | IOB | LEM (beam 100) copy 25.29

3.8 BPE | NUM – 26.54 27.15

3.9 BPE | RFTags, (red. dec. dim. 1) copy 26.26 26.94
3.10 BPE | RFTags, (red. dec. dim. 2) copy 26.01 26.74
3.11 BPE | RFTags, (red. dec. dim. 3) copy 26.35 26.86
3.12 BPE (emb 10) | RFTags | IOB | LEM copy 24.67 25.33
3.13 BPE (emb 10) | RFTags | IOB | LEM, (TW) copy 24.11 24.92
3.14 BPE (delayed +1) | RFTags | IOB | LEM copy 21.89 22.83

First, we applied di�erent factors individually. In the tables, “X | Y” stands for X and
Y being jointly decoded. Note that the order of factors is irrelevant in this experiment.
We used BPE sub-word units respectively with RFTags, Lemmas, Dependency Labels and
IOB Tags. Moreover, we concatenated RFTags with IOB Tags (“RFTags_IOB”). This is not
feasible with Lemmas, as this would result in a too large vocabulary. When specifying
the dimensions of the dedicated factor embeddings, it is necessary that their sum does
not exceed the embedding layer size of the baseline system (500 units) in order to avoid
the introduction of additional parameters. Table 5.14 shows our choices which give high
priority to the subword units, but are also based on the vocabulary sizes of the respective
factors.

As clearly can be seen, unfortunately, none of our attempts could outperform the
baseline system. Therefore, �rstly, the question arises whether the implementation is
�awed. To motivate the opposite, we designed an experiment where a simple counting task
is multi-tasked in the joint decoder architecture together with translating BPE sub-word
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Table 5.14.: Embedding dimensions chosen for additional target factors. A total size of 500
is used for every experiment. In each case the remaining dimensions are used
for BPE sub-word units.

Embedding dimensions

RFTags 20
LEM 167
DEP 20
IOB 5
RFT_IOB 20
NUM 3
RFT | IOB | LEM 20 | 5 | 175

units, named “NUM” in Table 5.13. The task is to repeatedly count from 0 to 2. Thereto,
the target sentences of the training data are annotated with a “0 1 2 0 1 2...” sequence
instead of linguistic tags. We assume this counting task to use only little of the networks
capacity and to be completely useless information with regard to the sub-word generation
task, while still comprising enough complexity to show that something reasonable could
be learned. The results meet our expectations. The counting task can be learned nearly
perfectly. Meanwhile it could be shown, that the BPE sub-word task was not in�uenced
negatively and achieved a level at least comparable to baseline. This provides evidence,
that our implementation is valid.

The next question to be investigated is whether the utilized beam size of 12 is too small
for the search strategy that includes all factor combinations. Therefore, we repeat decoding
of system 3.6 with a beam size of 100. We only consider single best decoding because the
respective results already highlight, that although small improvements to using a beam
size of 12 for the same system are achievable, the results are still substantially lower than
baseline Bleu scores.

In order to make sure that the translation quality of the BPE segments did not deteriorate
at the cost of improving the generation quality of the additional factors, we also examined
performance in this direction (Table A.8 and following). We state, that also the prediction
quality of the additional factors deteriorate for RFTags, Lemmas and Dependency Labels.
The RFTag-Baseline outperforms all other approaches for every single test set. The
di�erence to the nearest best results achieved by the joint decoding approach varies from
0,13 to 1,76 Bleu for RFTags. So there is no serious deterioration, but also no improvements
could be achieved. The same situation was observed regarding Lemmas and Dependency
Labels. Also in this scenarios the respective baseline systems achieved the best results
regarding best single and ensemble for every single test set. The only exception could be
seen with IOB Tags. But still the results mostly remain lower than the results achieved by
the serializing approach.

We are then interested in whether the di�erent factors are possibly modeled entirely
independent by the system. In order to show that dependencies exist, we modi�ed the
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beam search strategy to randomly hypothesis the additional factors, while the sub-word
unit prediction remains unchanged. That means that in the input layer of the decoder the
previously predicted sub-word unit is combined with random choices for the additional
factors. We could then investigate a drop of translation performance by about 4 Bleu
which implies that the systems sub-word unit generation is in�uenced by the additional
factors but not entirely deteriorates when confronted with wrong choices for the latter.
This shows that factors are not treated independently by the system but suggests that
dependencies are rather weak. Whether a knowledge sharing among factors is performed,
remains unclear. However it seems from the results in Table 5.13 that results worsen the
more information has to be modeled.

In the following, we describe several further experiments conducted, while unfortunately
none of them could show any success as can be seen in the lower part of Table 5.13. Firstly,
we were interested in whether we could force the system to share information about
the factors by simply reducing the decoders hidden layer dimension. Maybe the model’s
capacity was chosen to large in �rst place, allowing the factors to be treated mostly
independent. However, by reducing the decoders hidden layer size to 512, 384 and 256
units in experiments 3.9, 3.10 and 3.11, respectively, no improvements could be shown.
Interestingly, performance does not decrease signi�cantly either.

The next approach was to decrease the embedding dimension for the sub-word units
(3.12 and 3.13). The motivation was that thereby information must mostly be used from
the additional factors due to the decreased expressiveness of the former. Alexandrescu and
Kirchho� (2006) could achieve best results when not using the word factor. For systems
3.12 and 3.13, we use an embedding of size 10 for the sub-word units, and 30, 5, 455 for
RFTags, IOB and Lemmas, respectively. In system 3.13, we also increased the training
weight for sub-word units from being equally weighted to 0.8 (while using 0.1, 0.5 and 0.5
for RFTags, IOB and Lemmas, respectively).

Lastly, we were interested whether the results gained with the serialization approach are
due to the succession of factors in contrast to their parallel application in joint decoding.
Thus, we conducted an experiment where the sub-word units are padded in order to appear
jointly with the additional factors that relate to the direct successor of the sub-word unit
(dubbed as “delayed +1”). This attempt however shows worst results.

In summary, the assumption arises that the decoder is not able to extract the combined
information if the tags are jointly presented.

5.2.4. Combination With Source Factorization

Lastly, we evaluate the combination of target factorization with source factorization. In
order to achieve comparability, it is at �rst necessary to state results that can be gained
when solely applying source factorization.

5.2.4.1. Source Factorization

First, Joint Encoding Source Factors was evaluated. Second, the Serialization approach,
presented in Section 4.3.2 was utilized for Source Factorization.
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For the English source language we use POS, lemmas and IOB as additional factors. POS
and lemmas are derived with the TreeTagger (Schmid, 1994b, 1995), and the generation of
IOB tags is straightforward. Note, that for the source language we use POS tags, because
RFTags are not available for English.

Joint Encoding refers to the approach that all source factors are presented to the encoder
in parallel and was proposed by Sennrich and Haddow (2016). The results are shown in
Table 5.15. The factors’ order is irrelevant in this scenario. The �rst experiments were
conducted by combining sub-word units with POS tags, lemmas and IOB tags. The word
to sub-word mapping strategy “copy” was applied for POS tags and lemmas as reported by
Sennrich and Haddow (2016).

Best results could be achieved with POS tags, slightly outperforming baseline by +0.27
Bleu for single best and +0.09 Bleu for ensemble decoding. All remaining results are
either close or worse than baseline. Especially they are worse than what we expected after
reviewing respective literature. A reason could be that we possibly face a more challenging
translation task.

Table 5.15.: Bleu scores for main translation task (prediction of target words), approach
Joint Encoding

Source Factored Average Test Set
sys-id SWM single best ensemble

Baseline (run 2) 26.50 27.53

4.1 BPE | POS copy 26.77 27.62

4.2 BPE | LEM copy 26.47 27.42
4.3 BPE | IOB IOB 26.48 27.35

4.4 BPE | POS | LEM copy 26.41 27.54
4.5 BPE | POS | LEM | IOB copy 26.41 27.49

Serialization of Source Factors Table 5.16 shows results obtained when following our
proposal to apply the serialization approach to the source language. Thereby, slightly
better results are achieved than for joint encoding stated above. When using all available
source factors, we can achieve improvements of +0.32 Bleu for single best and +0.24 Bleu
for ensemble decoding.

While applying the word to sub-word level mapping strategy “single” with POS tags
achieved better results compared to “copy”, but the opposite case seem to be valid for
lemmas. This could imply a dependency of the strategy on the factor type.

Again, we performed a special experiment to verify that possible improvements are based
on the factor information and not introduced by the design of the architecture (experiment
4.13). Thereby, a single tag that cannot comprise useful information is interleaved with the
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sub-word sequence (dummy tag, “DUM”). Results are at the same level as baseline, which
substantiates that otherwise observed improvements are due the source factor information.

Table 5.16.: Bleu scores for main translation task (prediction of target words), approach
Serialization of Source Factors

Alternating Average Test Set
sys-id SWM single best ensemble

Baseline (run 2) 26.50 27.53

4.6 POS » BPE single 26.98 27.72
4.7 POS » BPE copy 26.47 27.51
4.8 LEM » BPE single 26.20 27.36
4.9 LEM » BPE copy 26.62 27.76

4.10 IOB » BPE IOB 26.43 27.52
4.11 POS » LEM » BPE single 26.52 27.71
4.12 POS » LEM » IOB » BPE single 26.82 27.77

4.13 DUM » BPE copy 26.73 27.54

Table 5.17.: Bleu scores for main translation task (prediction of target words), approach
Combination of Source and Target Factorization
Words Average Test Set

sys-id Source Target single best ensemble

Baseline (run 2) 26.50 27.53

5.1 BPE | POS | LEM copy RFT » BPE single 27.00 28.13
5.2 POS » LEM » BPE single RFT » BPE single 27.60 28.46
5.3 BPE | POS | LEM copy BPE | RFT copy 26.48 27.47
5.4 POS » LEM » BPE single BPE | RFT copy 26.74 27.76

5.5 BPE | POS | LEM copy LEM » BPE single 26.62 28.19

5.2.4.2. Combination of Source and Target Factor Approaches

In Table 5.17, we state our results for the main translation task (target word prediction).
Thereby, we evaluate every combination of source/target serialization (“X » Y”) with joint
encoding/decoding (“X | Y”). As this experiment was designed prior to the availability of
the other experiments’ results, we decided to use POS tags and lemmas on source side and
RFTags on target side together with the respective sub-word units.

The results for using the serialization approach on both sides clearly outperforms
baseline by about +0.9 Bleu for ensemble decoding and even +1.1 Bleu for single best
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Table 5.18.: Bleu scores for prediction of target RFTags, approach Combination of Source
and Target Factorization
RFTags Average Test Set

sys-id Source Target single best ensemble

RFT (Baseline) 30.09 31.64
5.1 BPE | POS | LEM copy RFT » BPE single 31.51 32.47
5.2 POS » LEM » BPE single RFT » BPE single 31.73 32.76
5.3 BPE | POS | LEM copy BPE | RFT copy 29.49 30.55
5.4 POS » LEM » BPE single BPE | RFT copy 29.71 31.00

decoding. Interestingly, the improvements are higher than taking the sum of improvements
from the respective experiments performed solely on source or target side. Moreover, also
the quality of RFTag prediction increases, as can be seen in Table 5.18. This strengthens us
in our assumption that shared knowledge was utilized, maybe even across the language
barrier.

As expected from our �ndings in Section 5.2.3, systems with joint decoding achieve
inferior results. However, the combination of target serialization with joint encoding of
source factors could also outperform baseline.

5.3. Discussion

In order to summarize our �ndings, we display the best results that could be achieved for
each respective experiment in Table 5.19. For a more detailed analysis we also state the
results gained on the individual test set translation tasks. As expected the combination of
source and target factorization outperforms all other approaches, at least with regard to
ensemble decoding. It thereby achieves best results on all four test cases.

Concerning the single best evaluation method its performance is at the same level as
the n-best re-ranking approach using RFTag and lemma information. Note, however, that
for generating the n-best list a beam search of 100 was used. All other systems shown
in Table 5.19 deploy a beam size of 12 for beam search decoding. We assume each of
their respective results to slightly improve when decoded with a beam size of 100 as well.
However, this is not advisable as the decoding duration increases signi�cantly.

Across multiple experiments, the serialization approach showed promising results for
the target as well as the source language factorization and the aforementioned combination
of both.

In contrast, the joint decoding of target factors unfortunately did not show any bene�ts.
Attempts to explain the disparate behaviour include the following aspects. Firstly, for
joint decoding the attention mechanism is shared among all factors. For the serialization
approach, there is conceptually only a single attention mechanism as well, but because each
factor token is decoded by its “own” decoding step, possibly factor dependent attention
mappings may be learned. Secondly, for the joint decoding approach the dimensionality
of the embedding space must be divided among factors, leading to embedding vectors of
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Table 5.19.: Bleu scores for best results for main translation task (prediction of target
words) of each approach

Dev Set Test Set Average
Test Set

2013 2010 2011 2012 2014
sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

baseline (run 2)

28.59 28.96 27.11 27.72 28.74 30.43 25.79 27.05 24.36 24.93 26.50 27.53

exp1: n-best list re-ranking: RFTags+Lemmas

28.05 28.34 30.27 30.87 26.95 27.48 25.15 25.43 27.61 28.03

exp2: target serialization: LEM (red) » BPE (sys-id 2.9)

28.41 29.55 26.62 28.21 29.09 31.19 26.03 27.33 24.78 26.21 26.63 28.24

exp3: joint decoding: BPE | RFTags (sys-id 3.1)

28.14 28.73 26.84 27.35 28.46 29.77 25.91 26.33 24.42 24.66 26.41 27.03

exp4.a: joint encoding (source factors): BPE | POS (sys-id 4.1)

28.59 29.09 27.08 27.72 29.13 30.56 25.88 26.87 24.97 25.34 26.77 27.62

exp4.b: source serialization (source factors): POS » LEM » IOB » BPE (sys-id 4.12)

29.59 29.78 27.01 28.10 28.96 30.65 26.62 27.08 24.68 25.26 26.82 27.77

exp4.c: source&target serialization: (source and target factors): src: POS » LEM » BPE
||| trg: RFT » BPE (sys-id 5.2)

29.74 30.50 27.63 28.38 30.03 31.30 27.01 27.51 25.72 26.65 27.60 28.46

66



5.3. Discussion

reduced dimensionality. Whereas for the serialization approach, each factor may make use
of the entire embedding space. Lastly, we assume the serialization approach to virtually
increase the depth of the decoder. This could allow dependencies among factors to be
better exploited. Whereas the NMT toolkit used in this work did only provide a single
hidden layer for the decoder at the time of experimentation. Possibly a single layer is not
su�cient for the system to �nd common knowledge among factors.

In the following we discuss further aspects related to our experimentation setting.

Target language and translation task German is a morphologically rich language and
therefore is designated to produce data sparseness. As this was one of our main motivations
to integrate additional word level knowledge, we assume the translation direction from
English to German to be well suited to highlight possible improvements.

The domain of spoken language the TED talks cover however is possibly more challeng-
ing when trying to prove the usefulness of mostly linguistic motivated annotations than
working with written language. The RFTagger for example was trained on written news
articles. It is questionable whether its claimed performance is fully transferable to spoken
language. Also, the talks contain rather vivid language which is less grammatical and
therefore possible shows lower performance improvement potential regarding linguistic
knowledge.

BPE segmentation Prior to experimentation, we had to decide on how many BPE merge
rules to use when building our vocabularies of sub-word units. We thereby followed
approaches presented in literature to use approximately 40k vocabulary entries to meet the
memory requirements of modern GPUs while still being able to model the most common
words at word level (i.e., with a single BPE segment). We now wonder whether a reduced
number of merge rules leading to shorter sub-word units that might roughly correlate
with morphemes could be bene�cial. For example due to the introduction of linguistic
information the urge could arise to generate a morphological variant of a target word that
simply is not found in the word vocabulary and therefore cannot be generated. Splitting
the words to morphemes could help in this situation. But the BPE segmentation approach
is not linguistically motivated. Therefore, it is questionable whether it is able to �nd
segments that are useful from a linguistic point of view.

Fromword factorization to multi-tasking We motivated that the use of dedicated tools to
derive the additional knowledge could be bene�cial due to levels of dedicated expertise,
those tools’ design might be in�uenced by. But on the other hand, these tools also introduce
errors due to the tasks they have to solve being intricate likewise. By relying on those
tools to alleviate the translation problem, the problem of complexity is to some extent
outsourced to be solved by the tools. For example, we stated the translation task to su�er
from data sparseness and thereby motivated the usage of lemmas and morphological
information. On the other hand, tools that derive the latter face data sparseness issues
themselves. Therefore, to some extent the problem is only shifted.

However, from a deep learning standpoint, integrating the additional knowledge acqui-
sition task into the main translation systems architecture could lead to superior results.
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5. Evaluation

Using deep learning techniques has been already shown to be successfully applicable to
sequence learning tasks like POS tagging as such (e.g., Graves et al., 2012; Popov, 2016).
The next step is to incorporate all models into a single one that learns from the di�erent
data sources dedicated to the di�erent types of information. This will also relieve us
from the burden to model the additional information at word level. This is dubbed as
multi-tasking and when performed at a basic level, can be already conceptually covered
with similar solutions to those investigated in this thesis. Thereby, a further problem to
incorporate the di�erent data sources into the joint training procedure arises. As the latter
exceeds the scope of this thesis we decided to use the word level approach. Also, as to the
best of our knowledge, at the time of writing no successful multi-tasking approach exists
that covers tagging or parsing tasks of linguistic features for the target language.
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To conclude, we give a summary of this thesis and highlight future work that could not be
covered.

6.1. Summary

This work investigated the research question whether the integration of additional knowl-
edge in form of target factors into an attentional encoder-decoder Neural Machine Trans-
lation system is able to improve translation performance or whether this information is
redundant in this context.

In this work the translation direction English to German was explored, thus target
factors were applied for German as target language. Utilized factors were part of speech
tags enriched with morphosyntactic information (RFTags), lemmas, Dependency Labels
and IOB tags together with words modeled at subword level using BPE segmentation.

We �rst proposed to investigate dedicated word to factor translation systems to be ap-
plied in an n-best list re-ranking study. We then proposed two concepts to integrate target
factors, namely a serialization and a joint decoding approach. Moreover we investigated
a combination with source factorization. We thereby proposed to use the serialization
approach on source side as well.

Evaluation was performed on a low-resource setting. The n-best list re-ranking study
showed improvements of about +0.6 Bleu compared to baseline when using the combi-
nation of scores produced by systems translating to RFTags and Lemmas respectively.
Regarding the serialization of Target Factors best results of +0.7 Bleu above baseline
could be achieved when subword units are preceded by lemmas based on an optimized
vocabulary.

For the concept of joint decoding, we must state, that no signi�cant improvements over
baseline were achievable. We therefore suggest that the decoder is not able to extract the
additional information, if the factors are presented in parallel. This �nding is consistent
with recent literature.

In order to establish basis for comparison we performed a brief evaluation of source
factorization. We found our suggestion to transfer the serialization approach to the source
language to perform slightly better than the proposed approach found in recent literature.
We then combined source and target factorization and found that serialization used on
both sides simultaneously lead to our best result of +0.9 Bleu above baseline.
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6.2. Future Work

We are interested whether the linguistic information can be more bene�cial when using a
di�erent word segmentation approach that better correlates with linguistic concepts like
morphemes. The system then possibly could generate morphological variants that were
not seen during training. Maybe a segmentation that is optimal in that respect could be
learned automatically.

Further, as the joint decoding approach could not achieve the same results as the
serialization approach, we would like to investigate whether the former would bene�t
form a deeper decoder architecture comprised of multiple stacked layers.

Instead of utilizing external tools to derive the additional linguistic information for the
bilingual training corpus we are interested whether the data those tools were trained on
could be integrated into the training procedure of the NMT system directly.

Finally, we believe that in the future the integration of additional knowledge will be vital
for neural machine translation systems to gain deep semantic understanding. However
this will presumably not be rather simple linguistic information expressed at word level.
Instead the future might reveal architectures that are able to learn from highly diverging
tasks in order to gain the world knowledge necessary whenever the translation task is not
easily solved by low level pattern matching. First approaches are taken by e.g., Kaiser et al.
(2017), who combined tasks as heterogeneous as image captioning, speech recognition,
machine translation and parsing. These e�orts are promising but at the time of writing
they unfortunately could not yet lead to state-of-the-art results.
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Table A.1.: Bleu scores for Re-Ranking

Re-Ranking Test Set Average
Test Set

2010 2011 2012 2014
sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

baseline (run 1. beam 12) 26.71 27.90 29.53 30.11 25.65 26.74 24.19 24.78 26.52 27.38

baseline (run 1. beam 100) 26.91 27.93 29.53 30.18 25.76 26.85 24.21 24.76 26.88 27.43

RFTags 27.16 28.26 29.74 30.34 26.25 27.22 25.05 25.27 27.05 27.77

RFTags. dims reduced 27.39 28.12 29.80 30.63 26.28 26.96 24.63 25.26 27.03 27.74

Lemmas 27.90 28.15 30.25 30.55 26.54 27.05 24.78 25.14 27.37 27.72

RFTags+Lemmas 28.05 28.34 30.27 30.87 26.95 27.48 25.15 25.43 27.61 28.03

baseline (run 2) 27.84 28.16 30.53 30.75 26.38 26.97 24.94 25.04 27.42 27.73

baseline (run 3) 27.81 28.42 30.49 30.79 26.89 27.08 25.01 25.13 27.55 27.86

baseline (run2 + run3) 28.20 28.45 30.76 30.98 27.06 27.10 25.22 25.39 27.81 27.98

Average Random 24.15 25.03 26.56 27.37 22.78 23.63 21.89 22.41 23.84 24.61
Variance 0.02 0.09 0.04 0.02 0.02 0.05 0.03 0.07 0.03 0.06

WORST 16.70 18.86 17.44 19.60 17.58 19.09 17.21 19.30 17.23 19.21
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Table A.2.: Bleu scores for main translation task (prediction of target words) – approach Serializing

Serializing
Develop-

ment
Set

Test Set Average
Test Set

WORDS 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

baseline (run2) 28.59 28.96 27.11 27.72 28.74 30.43 25.79 27.05 24.36 24.93 26.50 27.53

2.1 RFTags » BPE single 29.04 30.04 27.38 27.86 29.04 30.49 26.09 26.83 24.78 25.53 26.82 27.68
2.2 RFTags » BPE copy 28.78 29.57 26.11 27.21 28.78 29.78 25.53 26.51 24.32 25.39 26.19 27.22
2.3 BPE » RFTags single 28.80 29.29 26.74 28.16 28.65 30.46 26.16 26.80 24.36 25.49 26.48 27.73
2.4 BPE » RFTags copy 28.55 29.14 26.88 28.21 28.82 30.87 26.02 26.72 24.48 25.03 26.55 27.71

2.5 LEM » BPE single 29.17 29.93 26.84 28.13 28.15 30.16 25.75 27.17 24.62 25.58 26.34 27.76
2.6 LEM » BPE copy 28.14 29.32 25.63 27.60 29.04 29.99 25.19 26.95 23.55 24.84 25.85 27.35
2.7 BPE » LEM copy 28.54 29.48 26.68 27.95 28.22 30.21 25.76 27.14 23.99 25.19 26.16 27.62
2.8 LEM (red) » BPE single 28.50 29.48 26.65 28.04 28.88 30.46 25.96 27.05 24.41 25.22 26.48 27.69
2.9 LEM (red) » BPE copy 28.41 29.55 26.62 28.21 29.09 31.19 26.03 27.33 24.78 26.21 26.63 28.24

2.10 DEP » BPE single 29.32 30.06 26.71 27.98 29.28 30.58 25.91 27.16 24.83 25.56 26.68 27.82

2.11 IOB » BPE single 28.81 29.63 27.03 28.27 29.04 30.88 26.10 27.25 24.53 25.26 26.68 27.92

2.12 DUM » BPE single 28.69 29.12 27.33 28.77 29.81 30.94 25.81 26.76 24.43 25.29 26.85 27.94
2.13 DUM » BPE copy 29.06 29.60 27.61 28.47 30.01 30.96 26.03 26.55 24.60 24.93 27.06 27.73
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Table A.3.: Bleu scores for prediction of RFTags – approach Serializing

Serializing
Develop-

ment
Set

Test Set Average
Test Set

RFTags 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

RFTags (baseline) 32.60 33.80 30.48 32.34 31.77 33.94 29.61 31.08 28.48 29.20 30.09 31.64

2.1 RFTags » BPE single 32.97 33.97 31.64 32.31 33.06 34.45 30.12 31.01 28.54 29.28 30.84 31.76
2.2 RFTags » BPE copy 31.10 32.66 29.52 30.61 31.70 32.73 28.72 30.17 27.64 28.52 29.40 30.51
2.3 BPE » RFTags single 32.60 33.04 30.89 32.31 32.75 34.25 29.69 30.50 27.71 29.07 30.26 31.53
2.4 BPE » RFTags copy 31.62 32.50 29.71 31.47 31.30 33.34 28.70 30.31 27.12 28.15 29.21 30.82
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Table A.4.: Bleu scores for prediction of Lemmas – approach Serializing

Serializing
Develop-

ment
Set

Test Set Average
Test Set

Lemmas 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

Lemmas (baseline) 32.37 33.23 30.50 31.13 32.80 33.83 30.11 30.84 28.57 29.13 30.50 31.23

2.5 Lemmas » BPE single 32.89 33.45 30.02 31.29 31.89 33.72 29.28 30.50 28.15 29.02 29.84 31.13
2.6 Lemmas » BPE copy 31.41 32.56 28.98 30.49 32.03 32.80 28.45 30.03 27.28 28.34 29.19 30.42
2.7 BPE » LEM copy 31.57 32.53 29.60 30.82 31.36 33.06 28.79 30.01 27.38 28.75 29.28 30.66
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Table A.5.: Bleu scores for prediction of Dependency Labels – approach Serializing

Serializing
Develop-

ment
Set

Test Set Average
Test Set

DEP 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

DEP (baseline) 46.35 46.57 44.88 45.74 44.86 45.75 42.81 43.27 43.28 43.43 43.96 44.55

2.10 DEP » BPE single 46.99 47.43 45.20 45.87 46.51 47.57 43.32 43.87 43.37 43.52 44.60 45.21
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Table A.6.: Bleu scores for prediction of IOB tags – approach Serializing

Serializing
Develop-

ment
Set

Test Set Average
Test Set

IOB 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

IOB (baseline) 69.64 56.54 76.83 60.58 77.14 66.69 76.00 65.44 72.67 58.50 75.66 62.80

2.11 IOB » BPE single 84.26 84.16 83.52 83.37 83.53 83.51 82.49 82.58 82.27 81.89 82.95 82.84
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Table A.7.: Bleu scores for main translation task (prediction of target words) – approach Joint Decoding of Target Factors

Joint Decoding
Develop-

ment
Set

Test Set Average
Test Set

WORDS 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

baseline (run 2) 28.59 28.96 27.11 27.72 28.74 30.43 25.79 27.05 24.36 24.93 26.50 27.53

3.1 BPE | RFT copy 28.14 28.73 26.84 27.35 28.46 29.77 25.91 26.33 24.42 24.66 26.41 27.03
3.2 BPE | LEM copy 28.00 28.58 25.90 27.02 28.15 29.56 25.08 25.98 23.47 24.32 25.65 26.72
3.3 BPE | DEP copy 28.22 28.57 26.71 27.26 28.04 29.35 25.32 25.83 24.06 24.39 26.03 26.71
3.4 BPE | IOB IOB 28.34 28.73 26.59 27.11 28.92 29.75 25.47 26.15 24.04 24.58 26.26 26.90
3.5 BPE | RFT_IOB IOB 28.47 28.73 26.16 27.06 28.98 30.17 25.23 25.88 23.58 24.46 25.99 26.89
3.6 BPE | RFT | IOB | LEM copy 26.73 27.04 25.52 26.16 27.65 28.12 24.33 24.66 22.83 23.14 25.08 25.52
3.7 BPE | RFT | IOB | LEM (Beam100) copy 26.83 25.83 27.73 24.48 32.11 25.29
3.8 BPE | NUM - 28.13 28.48 26.76 27.54 29.13 29.70 26.03 26.30 24.22 25.06 26.54 27.15
3.9 BPE | RFT (red. dec. dim. 1) copy 28.37 28.49 26.65 27.26 28.84 29.67 25.59 26.14 23.97 24.68 26.26 26.94

3.10 BPE | RFT (red. dec. dim. 2) copy 27.89 28.79 26.18 27.11 28.72 29.50 25.37 26.13 23.77 24.20 26.01 26.74
3.11 BPE | RFT (red. dec. dim. 3) copy 28.08 28.65 26.43 27.07 28.68 29.51 26.16 26.59 24.13 24.25 26.35 26.86
3.12 BPE | RFT | IOB | LEM (red. emb. dim.) copy 26.91 27.37 25.18 25.84 26.93 27.90 24.04 24.33 22.54 23.26 24.67 25.33
3.13 BPE (emb 10) | RFT | IOB | LEM copy 26.02 26.72 24.26 25.42 25.99 27.03 23.68 24.44 22.50 22.78 24.11 24.92
3.14 BPE delayed +1 | RFT | IOB | LEM copy 24.52 25.11 22.49 23.21 24.05 25.36 21.29 22.06 19.74 20.68 21.89 22.83
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Table A.8.: Bleu scores for prediction of RFTags – approach Joint Decoding of Target Factors

Joint Decoding
Develop-

ment
Set

Test Set Average
Test Set

RFTags 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

RFT (baseline) 32.60 33.80 30.48 32.34 31.77 33.94 29.61 31.08 28.48 29.20 30.09 31.64

3.1 BPE | RFT copy 31.11 32.21 29.63 30.46 30.96 32.23 28.81 29.13 27.82 28.05 29.31 29.97
3.5 BPE | RFT_IOB IOB 29.55 30.40 28.09 28.78 29.71 31.02 27.03 27.80 25.94 26.90 27.69 28.63
3.6 BPE | RFT | IOB | LEM copy 30.46 31.00 29.27 29.97 30.72 31.05 28.39 28.97 26.69 27.53 28.77 29.38
3.9 BPE | RFT (red. dec. dim. 1) copy 31.27 31.83 29.47 30.24 31.64 32.16 28.68 29.21 27.16 28.21 29.24 29.96

3.10 BPE | RFT (red. dec. dim.2) copy 30.51 31.58 29.59 30.58 30.82 31.95 28.14 28.96 26.97 27.98 28.88 29.87
3.11 BPE | RFT (red. dec. dim. 3) copy 30.43 31.77 28.90 30.05 31.07 31.90 28.63 29.37 26.69 27.51 28.82 29.71
3.12 BPE | RFT | IOB | LEM (red. emb. dim.) copy 31.04 32.19 29.22 30.24 30.81 31.70 28.07 28.91 27.12 27.89 28.81 29.69
3.13 BPE (emb 10) | RFT | IOB | LEM copy 29.55 30.19 27.78 28.80 29.07 29.99 27.12 27.80 25.64 26.38 27.40 28.24
3.14 BPE delayed +1 | RFT | IOB | LEM copy 26.92 27.39 25.97 26.34 26.86 28.06 24.46 25.56 22.26 23.39 24.89 25.84
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Table A.9.: Bleu scores for prediction of Lemmas – approach Joint Decoding of Target Factors

Joint Decoding
Develop-

ment
Set

Test Set Average
Test Set

Lemmas 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

LEM (baseline) 32.37 33.23 30.50 31.13 32.80 33.83 30.11 30.84 28.57 29.13 30.50 31.23

3.2 BPE | LEM copy 31.20 32.26 28.96 30.26 31.60 32.86 28.65 29.78 27.82 28.41 29.26 30.33
3.6 BPE | RFT | IOB | LEM copy 30.63 30.82 28.85 29.61 30.87 31.55 28.16 28.75 27.10 27.33 28.75 29.31

3.12 BPE | RFT | IOB | LEM (red. emb. dim.) copy 31.41 32.17 29.25 30.27 31.73 32.52 28.55 29.06 26.72 27.59 29.06 29.86
3.13 BPE (emb 10) | RFT | IOB | LEM copy 29.24 30.00 27.56 28.42 29.32 30.18 27.12 28.02 25.20 26.20 27.30 28.21
3.14 BPE delayed +1 | RFT | IOB | LEM copy 26.94 27.72 25.38 26.10 26.64 28.17 24.43 25.35 22.01 23.17 24.62 25.70
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Table A.10.: Bleu scores for prediction of Dependency Labels – approach Joint Decoding of Target Factors

Joint Decoding
Develop-

ment
Set

Test Set Average
Test Set

DEP 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

Dependency Lables (baseline) 46.35 46.57 44.88 45.74 44.86 45.75 42.81 43.27 43.28 43.43 43.96 44.55

3.3 BPE | DEP copy 44.54 45.32 42.78 43.73 43.77 44.37 40.93 41.95 41.31 41.70 42.20 42.94
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Table A.11.: Bleu scores for prediction of IOB tags – approach Joint Decoding of Target Factors

Joint Decoding
Develop-

ment
Set

Test Set Average
Test Set

IOB 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

IOB (baseline) 69.64 56.54 76.83 60.58 77.14 66.69 76.00 65.44 72.67 58.50 75.66 62.80

3.4 BPE | IOB IOB 83.41 83.51 82.84 83.06 83.49 83.54 82.13 82.32 81.44 81.92 82.48 82.71

3.13 BPE (emb 10) | RFT | IOB | LEM IOB 82.03 82.23 81.06 81.50 81.14 81.65 80.09 80.55 78.76 79.60 80.26 80.83
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Table A.12.: Bleu scores for main translation task (prediction of target words) – approach Source Factorization, Joint Encoding

Source Factored
Develop-

ment
Set

Test Set Average
Test Set

WORDS 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

baseline (run 2) 28.59 28.96 27.11 27.72 28.74 30.43 25.79 27.05 24.36 24.93 26.50 27.53

4.1 BPE | POS copy 28.59 29.09 27.08 27.72 29.13 30.56 25.88 26.87 24.97 25.34 26.77 27.62
4.2 BPE | LEM copy 28.82 28.82 26.94 28.05 28.21 29.65 26.03 26.78 24.71 25.19 26.47 27.42
4.3 BPE | IOB IOB 28.28 28.92 27.03 27.78 28.77 29.71 25.98 26.71 24.14 25.20 26.48 27.35
4.4 BPE | POS | LEM copy 28.40 29.16 26.43 27.85 28.93 30.47 25.96 26.61 24.31 25.23 26.41 27.54
4.5 BPE | POS | LEM | IOB copy 28.93 29.64 26.45 27.57 28.80 29.95 25.70 26.98 24.69 25.45 26.41 27.49
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Table A.13.: Bleu scores for main translation task (prediction of target words) – approach Source Factorization, Serialization of Source
Factors

Alternating
Develop-

ment
Set

Test Set Average
Test Set

WORDS 2013 2010 2011 2012 2014

sys-
id SWM

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

baseline (run 2) 28.59 28.96 27.11 27.72 28.74 30.43 25.79 27.05 24.36 24.93 26.50 27.53

4.6 POS » BPE single 29.07 29.04 26.87 27.85 29.90 30.78 26.42 26.98 24.72 25.26 26.98 27.72
4.7 POS » BPE copy 28.62 29.51 26.73 27.43 28.57 30.13 25.91 26.90 24.67 25.59 26.47 27.51
4.8 LEM » BPE single 28.92 29.08 26.37 27.98 28.32 29.57 25.37 26.59 24.75 25.31 26.20 27.36
4.9 LEM » BPE copy 29.01 29.50 26.86 28.26 28.72 30.54 26.34 26.90 24.56 25.33 26.62 27.76

4.10 IOB » BPE - 28.47 29.41 26.95 27.82 28.59 30.39 25.93 26.65 24.24 25.23 26.43 27.52
4.11 POS » LEM » BPE single 29.48 29.52 26.60 27.82 28.37 30.58 26.24 26.90 24.87 25.52 26.52 27.71
4.12 POS » LEM » IOB » BPE single 29.59 29.78 27.01 28.10 28.96 30.65 26.62 27.08 24.68 25.26 26.82 27.77

4.13 DUM » BPE copy 28.63 29.01 27.12 27.55 29.20 30.61 26.20 26.91 24.41 25.08 26.73 27.54
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Table A.14.: Bleu scores for main translation task (prediction of target words), approach Combination with Source Factorization
Serialization of
Source and Target
Side

Develop-
ment
Set

Test Set Average
Test Set

WORDS 2013 2010 2011 2012 2014

sys-
id

Source Target
sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

baseline (run 2) 28.59 28.96 27.11 27.72 28.74 30.43 25.79 27.05 24.36 24.93 26.50 27.53

5.1 BPE | POS | LEM copy RFT » BPE single 29.45 30.27 27.08 28.23 29.13 30.60 26.18 27.43 25.59 26.27 27.00 28.13
5.2 POS » LEM » BPE single RFT » BPE single 29.74 30.50 27.63 28.38 30.03 31.30 27.01 27.51 25.72 26.65 27.60 28.46
5.3 BPE | POS | LEM copy BPE | RFT copy 28.31 29.15 26.57 27.37 28.51 30.13 26.22 27.16 24.62 25.22 26.48 27.47
5.4 POS » LEM » BPE single BPE | RFT copy 28.89 29.22 26.98 27.75 29.32 30.65 25.87 27.26 24.8 25.36 26.74 27.76
5.5 BPE | POS | LEM copy LEM » BPE single 29.19 30.36 26.5 28.25 28.8 30.77 26.3 27.86 24.86 25.86 26.62 28.19
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Table A.15.: Bleu scores for prediction of (target) RFTags, approach Combination with Source Factorization
Serialization of
Source and Target
Side

Develop-
ment
Set

Test Set Average
Test Set

RFTags 2013 2010 2011 2012 2014

sys-
id

Source Target
sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

RFTags (Baseline) 32.60 33.80 30.48 32.34 31.77 33.94 29.61 31.08 28.48 29.20 30.09 31.64

5.1 BPE | POS | LEM copy RFT » BPE single 33.38 34.06 31.77 32.82 33.91 34.92 30.59 31.75 29.76 30.40 31.51 32.47
5.2 POS » LEM » BPE single RFT » BPE single 33.13 33.93 32.16 32.91 34.00 35.65 31.21 31.68 29.53 30.80 31.73 32.76
5.3 BPE | POS | LEM copy BPE | RFT copy 32.11 32.92 29.78 30.68 31.29 32.46 28.91 30.03 27.96 29.04 29.49 30.55
5.4 POS » LEM » BPE single BPE | RFT copy 31.91 32.89 29.93 31.32 31.29 33.27 29.23 30.38 28.37 29.02 29.71 31.00
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Table A.16.: Bleu scores for prediction of (target) Lemmas, approach Combination with Source Factorization
Serialization of
Source and Target
Side

Develop-
ment
Set

Test Set Average
Test Set

LEM 2013 2010 2011 2012 2014

sys-
id

Source Target
sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

sin-
gle
best

en-
sem-
ble

LEM (Baseline) 32.37 33.23 30.50 31.13 32.80 33.83 30.11 30.84 28.57 29.13 30.50 31.23

5.5 BPE | POS | LEM copy LEM » BPE single 32.67 33.56 29.80 31.26 32.48 34.47 29.72 31.01 28.31 29.02 30.08 31.44
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