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Abstract

In an increasingly globalized world, there is a rising de-
mand for speech recognition systems. Systems for languages
like English, German or French do achieve a decent perfor-
mance, but there exists a long tail of languages for which
such systems do not yet exist. State-of-the-art speech recog-
nition systems feature Deep Neural Networks (DNNs). Be-
ing a data driven method and therefore highly dependent
on sufficient training data, the lack of resources directly af-
fects the recognition performance. There exist multiple tech-
niques to deal with such resource constraint conditions, one
approach is the use of additional data from other languages.

In the past, is was demonstrated that multilingually
trained systems benefit from adding language feature vec-
tors (LFVs) to the input features, similar to i-Vectors. In this
work, we extend this approach by the addition of articulatory
features (AFs). We show that AFs also benefit from LFVs
and that multilingual system setups benefit from adding both
AFs and LFVs. Pretending English to be a low-resource lan-
guage, we restricted ourselves to use only 10h of English
acoustic training data. For system training, we use additional
data from French, German and Turkish. By using a combi-
nation of AFs and LFVs, we were able to decrease the WER
from 18.1% to 17.3% after system combination in our setup
using a multilingual phone set.

1. Introduction
Language and speech technologies have matured dramati-
cally in recent years. With the emergence of these technolo-
gies into our daily lives and an increasingly globalized world,
there is a growing demand for developing systems for new
languages. Since many methods for system building are data-
driven, a certain amount of training data is required. While
these resources exist for languages like English, only a few
other languages are as well researched and have a compara-
ble amount of training data readily available.

There are approximately 7000 living languages in the
world [1], many of them facing extinction. With the majority
not being of social or economic interest, special methods are
required to handle conditions like, e.g., sparseness of data. A
common approach to build a speech recognition systems in
resource constrained conditions is to incorporate data from

well-resourced, data-rich languages. In the past, it has been
shown that using data from multiple languages is beneficial
in cases where only a limited amount of training data from
the target language is available.

Up until now, we only considered neural networks trained
using phonemes as targets. We trained networks using multi-
lingual phone sets, covering the phoneme inventory of multi-
ple languages. The phoneme inventory, even if based on mul-
tiple languages, is limited as phonemes represent a certain
configuration of the articulators in the vocal tract. A limited
phone set can therefore only represent a limited amount of
different configurations. Considering each articulatory fea-
ture like the position of the tongue or lips is independent of
each other, it is possible to represent human speech sounds
independent of a particular phone set. We add these articula-
tory features as additional input features to the acoustic input
features.

This paper is organized as follows: In the next section,
we provide an overview of related work in the area of mul-
tilingual acoustic modelling. In Section 3, we describe our
proposed method in detail. Sections 4 and 5 relate to our ex-
perimental setup as well as a discussion of obtained results.
This paper concludes with Section 6 where we summarize
our findings and provide an outlook to future work.

2. Related work
2.1. GMM/HMM based multilingual ASR

Multilingual speech recognition has been a research topic for
many years now. Prior to DNNs becoming a standard part of
ASR systems, GMM/HMM based systems were the common
approach. There exist different techniques for building multi-
and cross-lingual systems, e.g. [2]. Common techniques are
ML-Mix and ML-Tag [3]. These methods can also be applied
to cross-lingual system building [4].

2.2. Multilingual neural networks

There also exist methods for training DNN based setups mul-
tilingually. Multilingual training can be seen as a special
form of multi-task learning [5], which has shown to improve
the classification performance of DNNs [6]. DNNs are usu-
ally trained in two steps: Pre-training to initialize the weights
using denoising auto-encoders [7] and fine-tuning. There



are multiple possibilities to include multilingual data into the
training process. The pre-training step is language indepen-
dent [8]. When using data from multiple languages, one ap-
proach is to share the hidden layers between languages and
use language specific output layers [9, 10, 11, 12]. It is also
possible to use just one output layer, but divide it into dif-
ferent independent blocks [13]. By doing so, each language
can be considered a different task with no need to merge the
different phone sets.

2.3. Multilingual phone sets

In contrast to use language specific phone sets, it is also pos-
sible to use a single phone set [14]. Vu investigated two dif-
ferent ways to build a multilingual phone set: Either concate-
nating the phone sets of the different languages, thus keeping
phones distinct between languages, or merging phones which
share the same symbol in the IPA table across languages. We
chose the latter approach because we wanted to train lan-
guage universal phone models.

2.4. Articulatory features

Articulatory features (AFs) are features, that describe the
state of the articulators in the human vocal tract while speak-
ing. A certain combination of AFs represent a phone, re-
spectively phones can be interpreted as a certain configura-
tion of the vocal tract. Multiple approaches towards using
AFs for speech recognition have been proposed. It is pos-
sible to use them as additional feature detectors for speech
recognition systems, rendering the systems more robust to-
wards different channels or speakers [15]. But since AFs are
more universal in nature, it is also possible to use them for
multi- and cross-lingual speech recognition [16, 17], which
increased the performance of multilingual recognizers com-
pared to a multilingual phoneme based system on a new lan-
guage. Neural network based setups do also benefit from
AFs [18], making them more robust against noise. Based
on these two findings, we do want to integrate AFs into our
multilingual system setup.

2.5. Data augmentation

DNN have shown to be able to generalize to a certain degree
cross different speakers or channel characteristics, given that
enough training data is available. But it is also possible to
provide additional cues, that help networks to better adapt
to certain conditions, to the networks, adapting them better
to certain conditions. Using i-Vectors [19, 20] or Bottle-
neck Speaker Vectors (BSV) [21] are common approaches
to provide speaker information to the network. Both meth-
ods append a low dimensional feature vector to the acous-
tic input features encoding speaker characteristics. We have
also shown, that by providing the language information, the
networks are able to adapt to different languages. This in-
formation can either be provided explicitly by encoding the
language information using one-hot encoding [22], or to ex-

tract Language Feature Vectors (LFVs) [23, 24] which leads
to better results.

3. LFV enhanced articulatory features

Speech recognition systems extract acoustic features using
a pre-processing pipeline that uses methods like, e.g., Mel-
Frequency Cepstral Coefficients (MFCC), Minimum Vari-
ance Distortion Response (MVDR) or logarithmic Mel-scale
features (lMel). All these methods aim at transforming the
raw audio signal in such a way, that information relevant for
speech recognition is emphasized in addition to dimension-
ality reduction. These features are then either directly input
into a DNN to estimate the phoneme posterior probabilities,
or they are being first pre-processed by a neural network like
for the extraction of Deep Belief Network Features (DBNFs)
[25]. Similar to this approach, we propose to train neural net-
works to extract AFs that can be used instead of or in addition
to other input features.

There exist different types of AFs [26], with different
subsets being present depending on the language. AFs have
different modalities, e.g., the manner of articulation has dis-
crete values while the position of the tongue has continuous
values. We chose to train the networks for AF extraction on
discrete targets, hence we discretized continuous valued fea-
tures into different bins, similar to [26]. AFs can be grouped
in sets for both vowels or consonants. As each AF only ap-
plies to one set, we added an additional class to each AF that
represented “does not apply”.

We trained fully connected feed-forward networks to
classify AFs, with the AF states as targets using one-hot en-
coding. Although it would have been possible to train net-
works with an output layer that jointly detects the state of
multiple AFs in parallel, we chose only one AF as we wanted
to prevent the networks from learning dependencies between
different AF configurations as they are language specific. As
each language has a limited phoneme inventory, only a sub-
set of all possible AF combinations would be encountered,
which could lead to co-adaptation. But since the extraction
of the different AF types can be considered to be related
tasks, we used multi-task learning by sharing hidden layers
between AF networks with AF specific output layers.

In our setup, we also added LFVs optionally to the
stacked acoustic input features as shown in Figure 1. LFVs
have proven to improve performance of multilingual speech
recognition systems, hence applying them to this task is ex-
pected to also improve the performance of AF extraction.

4. Experimental setup

Our experiments were based on a multilingual corpus. We
trained our systems using the Janus Recognition Toolkit
(JRTk) [27] which features the IBIS single-pass decoder
[28]. For neural network training, we utilized a framework
based on Theano [29] and Lasagne [30].
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Figure 1: Overview of the network architecture used to train
AF DNNs using Multi-Task Learning (MTL). The hidden
layers were shared while individual output layers for each
AF were used.

4.1. Corpus

We used data from the Euronews corpus for our experiments
[31]. This corpus consists of semi-automatic transcribed
broadcast news recordings from the Euronews TV station.
It contains data from 10 languages, as shown in Table 1.
The pronunciation dictionaries were created using MaryTTS
[32].

Language Audio Data # Recordings

Arabic 72.1h 4,342
English 72.8h 4,511
French 68.1h 4,434
German 73.2h 4,436
Italian 77.2h 4,464
Polish 70.8h 4,576
Portuguese 68.3h 4,456
Russian 72.2h 4,418
Spanish 70.5h 4,231
Turkish 70.4h 4,385

Total 715.6h 44,253

Table 1: Overview of used dataset

For our experiments, we pretended English to be a low re-
source language. Hence we restricted ourselves to using only
10h of English acoustic data throughout our experiments. We
selected an appropriate amount of recordings on a random
basis. In addition to English, we used data from French, Ger-
man and Turkish. For these languages, this restriction did
not apply and we used the entire data available in the corpus.
For training the neural networks we, split the training data
into two sets: A training set containing 90% of the data and
a validation set containing the remaining 10% of the data.

4.2. ASR system training

We trained our ASR systems using a combination of data
from 4 languages (English, French, German, Turkish), with
10h per language. Based on data from these languages, we
trained a multilingual system using a joint phoneme set. We
used a combination of lMel or MFCC with MVDR and tonal
features ([33, 34, 35]). To extract the features, we used
a 32ms window with a shift of 10ms. We built an initial
GMM/HMM based system with 8000 CD models using a
flat-start approach. Based on this system, we extracted labels
for training a DBNF which we in turn used to train another
GMM/HMM based system.

The DBNF featured 6 hidden layers with 1,600 neurons
each prior to the bottleneck layer with 42 neurons. The
acoustic input features were stacked using a context of +/−
7 frames. We also added LFVs to this feature stack. The
network was layer-wise pre-trained using de-noising auto-
encoders [36] and fine-tuned using stochastic gradient de-
scent [37] with mini-batch updates with a size of 256 and
cross-entropy as objective function. We chose a learning
rate of 1.0 with new bob scheduling. The exponential decay
phase was started after the gain of the validation error fell
blow 0.005 between two epochs. The training was stopped if
the validation error did improve by less than 0.0001 between
two epochs. Based on this system, we extracted labels for
training a DNN/HMM Hybrid system with DBNFs. The net-
work hyper parameters for the Hybrid system were identical
to those of the DBNF network.

4.3. Articulatory feature extraction

Embedded in the language definition files of MaryTTS are
mappings from phones to AF configurations. We used these
mappings to assign AF configurations to each phone. The
provided MaryTTS models for the different languages were
created using slightly different articulatory parameters per
language for synthesizing speech. This limited the amount of
languages, as only subset of 4 languages (English, German,
French and Turkish) shared a common set of parameters for
the articulatory features.

In total, we used 7 articulatory features and an addi-
tional feature indicating the phoneme type, as shown in Ta-
ble 2, with each type having different targets, e.g. “ctype”
has the targets stop, fricative, affricative, liquid, nasal and
approximant. As additional type, we used “ptype” which
classifies the type of the phoneme as in vowel, consonant,
silence and noise.

These features were selected based on the availability of
AF definitions embedded in MaryTTS. The outputs from all
AF networks combined have 39 dimensions.

4.4. AF network training

We trained the networks for AF classification in the same
manner as our networks for phoneme classification. As in-
put features, we used a combination of lMel and tonal fea-



AF type subclasses

cplace l, a, v, b, d, p, u, g
ctype s, f, a, l, n, r
cvox +, -

ptype v, c, s, n

vfront 1, 2, 3
vheight 1, 2, 3
vlng l, s, a, d
vrnd +, -

Table 2: Overview of AFs used, including the phoneme type

tures that we fed with a context of +/− 7 frames into the
network. In addition to the acoustic input features we ap-
pended the LFV to the feature vector. Each network featured
6 hidden layers with 1600 neurons each. The dimensional-
ity of the output layer is determined by the number of states
each AF has (see Table 2). For training the AF extractors,
we generated frame level AF labels in an automatic fashion:
We first trained a speech recognition system to obtain frame
level phoneme labels by forced alignments of the training ut-
terances and then produced AF labels based on the phoneme
labels.

In addition, we only selected certain frames as training
examples: Each phoneme is modeled using three sub-phone
states (begin, middle, end) representing parts of the phoneme
as it is uttered. It was reported [15] that using only the
frames of the “m”-sub-phone states during training increases
the classification performance because the articulators take a
more stable position in the center of a phoneme.

We trained the AF networks multilingually in two steps.
In the first step, we merged all available data (70h) from
French, German and Turkish. We used an training sched-
ule as described in the previous section 4.2. As final step, we
fine-tuned the networks again using 10h per language from
all 4 languages (English, French, German and Turkish). For
this step, we lowered the initial learning rate to 0.5 while
keeping the other scheduling parameters identical. The same
training schedule was used for training of the model with
joint hidden layers.

To evaluate the performance of AF extraction, we used
the frame error rate (FER) on the validation set as one metric.
In addition to that, we built ASR systems using AFs as input
features and evaluated the recognition performance on the
configuration using LFVs only, without MTL.

5. Results

We first report on results of multilingual AFs and the effects
of adding LFVs to the input features. Based on the best AF
extraction setup, we built multilingual ASR systems incorpo-
rating AFs as input features additional or alternative to DB-
NFs.

5.1. Multilingual articulatory features

We trained networks for AF detection using 70h of data from
3 languages (German, French, Turkish) and evaluated the ex-
tracted AFs using the combined validation sets of these lan-
guages, see Table 3. In addition to this baseline experiment,
we added LFVs to the input features of the DNNs which re-
sulted in a decreased FER. Since DNNs benefit from multi-
task learning, we also evaluated the effects of sharing the hid-
den layers from all AF DNNs and using AF specific output
layers. As shown in Table 3, we got mixed results from MTL
with some AF types having a higher FER while the error
increased for others. With mixed results for multi-task learn-
ing, further experiments evaluating different network config-
urations for multi-task learning are required.

Next, we evaluated the performance using only the vali-
dation set of our target language (English), see Table 4. For
training, we used data from all 4 languages (English, French,
German, Turkish). In the first setup (1), we used 10h from
each language. In a second approach, we used AF networks
which were trained using 70h from French, German and
Turkish and performed another fine-tuning step using 10h of
data from all 4 languages. Performing this second fine-tuning
step leads to a lower FER on the same validation set.

5.2. Systems using only articulatory features

Using AF configurations with and without LFVs (setups 1
and 2 in Table 3), we trained multilingual ASR systems with
AFs as input features and hybrid acoustic models. In order
to extract AFs, we concatenated the outputs of each AF net-
work which resulted in a 39 dimensional feature vector. Dif-
ferent setups for system building with AFs were evaluated,
as shown in Table 5. The acoustic model of all systems was
trained using 10h per language from English, French, Ger-
man and Turkish. Each system featured 8000 CD states and
the systems of our baseline use lMEL as well as tonal fea-
tures. LFVs were added as indicated.

We started by solely using AFs as input features of our
system. We stacked them using a context of +/− 7 frames
for the acoustic model. The resulting setup (2) had a WER
of 22.6% which is higher compared to the baseline (1). The
WER decreases by the addition of LFVs (4) to 21.8%. In the
next step, we used the AF nets which received an additional
round of fine-tuning using data from all 4 languages. This
decreased the WER to 20.2% (5). However, the WER did
not improve beyond the baseline.

5.3. Systems using a combination of input features

Following the experiments using solely AFs as input fea-
tures, we evaluated the system performance using a combi-
nation of different acoustic input features as in [38] where
different kinds of input features were stacked. Each system
uses LFVs and lMel. For system 2 and 3 (Table 6), we added
either AFs trained on 3 languages or AFs with another fine-
tuning setup on 4 languages to the stack of input features.



Setup LFV MTL cplace ctype cvox ptype vfront vheight vlng vrnd

1 - - 8.4 8.2 7.8 14.8 7.2 7.9 7.3 6.2

2 • - 7.0 6.8 6.3 12.7 5.8 6.6 5.7 5.0
3 • • 7.3 6.9 6.2 12.6 5.7 6.6 5.5 4.9

Table 3: FER of AFs on the validation set. Networks were trained using 70h from French, German and Turkish. The addition of
LFVs decreases the error (setup 2), whereas we got mixed results for multi-task (setup 3).

Setup 3L pre-train cplace ctype cvox ptype vfront vheight vlng vrnd

1 - 9.1 9.7 9.5 16.4 8.8 7.9 8.3 6.0
2 • 8.8 8.2 8.2 15.2 7.8 7.2 7.5 5.3

Table 4: Classification error of AFs using different training schedules. Using networks that were already trained on 3 languages
and then fine-tuned again with data from 4 languages (setup 2) leads to better results than using only 10h of data from 4 languages
(setup 1).

Setup Features LFV WER

1 lMel+T - 20.2%
2 AF (3L) - 22.6%

3 lMel+T • 18.7%
4 AF (3L) • 21.8%
5 AF (4L) • 20.2%

Table 5: Comparison of WER using different system config-
urations. Performing an additional fine-tuning step including
data from the target language increases the performance (sys-
tem 5). Using only AFs does not improve the performance
(systems 2, 3), adding LFVs improves the performance, but
systems based on AFs did not improve beyond the baseline.

While using AFs trained on only 3 languages does not show
improvements, using AFs trained on 4 languages results in a
decreased WER of 18.5% compared to 18.7% WER of the
baseline (system 1).

System AF WER

1 - 18.7%
2 AF(3L) 19.0%
3 AF(4L) 18.5%

Table 6: Adding AFs to acoustic features does result in a
slightly improved WER over the baseline.

5.4. System combination

As last evaluation, we combined the outputs of the different
systems using confusion network combination (CNC) [39].
As contrastive experiment, we built a system using MFCC
and MVDR (M2) input features instead of lMel. In total, we
used the outputs of 3 systems. The results of the configura-
tions are shown in Table 7.

For reference, we list the WER of each system individu-
ally (setup 1 - 3). Next, we combine in turn each system with
another system (setup 4 - 6). This lowers the WER to 18.1%
which shows that a system based on AFs contributes as much
as a system based on lMel or MFCC and MVDR to the CNC.
The biggest improvement can be gained by combining all 3
systems (setup 7), which is expected.

Setup lMel M2 AF WER

1 • - - 18.7%
2 - • - 18.7%
3 - - • 20.2%

4 • • - 18.1%
5 - • • 18.1%
6 • - • 18.1%

7 • • • 17.3%

Table 7: Evaluation of different system combinations. Using
AFs lead to identical results as lMel or M2 in system combi-
nation. As expected, combining all 3 systems results in the
lowest WER.

6. Conclusion
We trained AF extractors by using LFVs and MTL. Adding
LFVs to AFs resulted in a decreased FER, using multi-task
learning did not improve the FER in addition to LFVs. Ad-
dition experiments are required. While building multilingual
ASR systems using only AFs as input features did not im-
prove the WER, we showed that using such a system in a sys-
tem combination lowers the final WER. Contrastive experi-
ments using different kinds of pre-processing showed that
AFs lower the WER as much lMel or MFCC with MVDRs
in a system combination.

Future work includes the evaluation of additional net-
work architectures to further lower the FER of the AF ex-



traction and to use data from a wider variety of languages
during training.
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[30] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K.
Sønderby, D. Nouri, D. Maturana, M. Thoma, E. Bat-
tenberg, J. Kelly, J. D. Fauw, M. Heilman, diogo149,
B. McFee, H. Weideman, takacsg84, peterderivaz, Jon,
instagibbs, D. K. Rasul, CongLiu, Britefury, and J. De-
grave, “Lasagne: First release.” Aug. 2015. [Online].
Available: http://dx.doi.org/10.5281/zenodo.27878

[31] R. Gretter, “Euronews: A Multilingual Benchmark
for ASR and LID,” in Fifteenth Annual Conference of
the International Speech Communication Association,
2014.
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