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Abstract

In this paper, we present our first attempts in building a multi-
lingual Neural Machine Translation framework under a uni-
fied approach in which the information shared among lan-
guages can be helpful in the translation of individual lan-
guage pairs. We are then able to employ attention-based
Neural Machine Translation for many-to-many multilingual
translation tasks. Our approach does not require any spe-
cial treatment on the network architecture and it allows us to
learn minimal number of free parameters in a standard way
of training. Our approach has shown its effectiveness in an
under-resourced translation scenario with considerable im-
provements up to 2.6 BLEU points. In addition, we point out
a novel way to make use of monolingual data with Neural
Machine Translation using the same approach with a 3.15-
BLEU-score gain in IWSLT’16 English→German transla-
tion task.

1. Introduction
Neural Machine Translation (NMT) has shown its effective-
ness in translation tasks when NMT systems perform best
in recent machine translation campaigns [1, 2]. Compared to
phrase-based Statistical Machine Translation (SMT) which is
basically an ensemble of different features trained and tuned
separately, NMT directly modeling the translation relation-
ship between source and target sentences. Unlike SMT, NMT
does not require large monolingual data to achieve good per-
formances.

An NMT system consists of an encoder which recur-
sively reads and represents the whole source sentence into a
context vector and a recurrent decoder which takes the con-
text vector and its previous state to predict the next target
word. It is then trained in an end-to-end fashion to learn
parameters which maximizes the likelihood between the out-
puts and the references. Recently, attention-based NMT has
been featured in most state-of-the-art systems. First intro-
duced by [3], attention mechanism is integrated in decoder
side as feedforward layers. It allows the NMT to decide
which source words should take part in the prediction pro-
cess of the next target words. It helps to improve NMTs
significantly. Nevertheless, since the attention mechanism

is specific to a particular source sentence and the considering
target word, it is also specific to particular language pairs.

Some recent work has focused on extending the NMT
framework to multilingual scenarios. By training such net-
work using parallel corpora in number of different languages,
NMT could benefit from additional information embedded in
a common semantic space across languages. Basically, the
proposed NMT are required to employ multiple encoders or
multiple decoders to deal with multilinguality. Furthermore,
in order to avoid the tight dependency of the attention mech-
anism to specific language pairs, they also need to modify
their architecture to combine either the encoders or the atten-
tion layers. These modifications are specific to the purpose
of the tasks as well. Thus, those multilingual NMTs are more
complicated, much more free parameters to learn and more
difficult to perform standard trainings compared to the origi-
nal NMT.

In this paper, we introduce a unified approach to seam-
lessly extend the original NMT to multilingual settings. Our
approach allows us to integrate any language in any side of
the encoder-decoder architecture with only one encoder and
one decoder for all the languages involved. Moreover, it is
not necessary to do any network modification to enable atten-
tion mechanism in our multilingual NMT systems. We then
apply our proposed framework in a demanding scenarios:
(simulated) under-resourced translation. The results show
that bringing multilinguality to NMT helps to improve in-
dividual translations. With some insightful analyses of the
results, we set our goal toward a fully multilingual NMT
framework.

The paper starts with a detailed introduction to attention-
based NMT. In Section 3.1, related work about multi-task
NMT is reviewed. Section 3.2 describes our proposed ap-
proach and thorough comparisons to the related work. It is
followed by a section of evaluating our systems in the afore-
mentioned scenario, in which different strategies have been
employed under a unified approach (Section 4). Finally, the
paper ends with conclusion and future work.



2. Background
An NMT system consists of an encoder which automatically
learns the characteristics of a source sentence into fix-length
context vectors and a decoder that recursively combines the
produced context vectors with the previous target word to
generate the most probable word from a target vocabulary.

More specifically, a bidirectional recurrent encoder reads
every words xi of a source sentence x = {x1, ..., xn} and
encodes a representation s of the sentence into a fixed-length
vector hi concatenated from those of the forward and back-
ward directions:

hi = [
−→
h i,
←−
h i]

−→
h i = f(

−→
h i−1, s)

←−
h i = f(

←−
h i+1, s)

s = Es • xi

Here xi is the one-hot vector of the word xi and Es is
the word embedding matrix which is shared across the source
words. f is the recurrent unit computing the current hidden
state of the encoder based on the previous hidden state. hi is
then called an annotation vector, which encodes the source
sentence up to the time i from both forward and backward
directions. Recurrent units in NMT can be a simple recurrent
neural network unit (RNN), a Long Short-Term Memory unit
(LSTM) [4] or a Gated Recurrent Unit (GRU) [5]

Similar to the encoder, the recurrent decoder generates
one target word yj to form a translated target sentence y =
{y1, ..., ym} in the end. At the time j, it takes the previ-
ous hidden state of the decoder zj−1, the previous embedded
word representation tj−1 and a time-specific context vector
cj as inputs to calculate the current hidden state zj :

zj = g(zj−1, tj−1, cj)

tj−1 = Et • yj−1

Again, g is the recurrent activation function of the de-
coder and Et is the shared word embedding matrix of the
target sentences. The context vector cj is calculated based on
the annotation vectors from the encoder. Before feeding the
annotation vectors into the decoder, an attention mechanism
is set up in between, in order to choose which annotation vec-
tors should contribute to the predicting decision of the next
target word. Intuitively, a relevance between the previous tar-
get word and the annotation vectors can be used to form some
attention scenario. There exists several ways to calculate the
relevance as shown in [6], but what we describe here follows
the proposed method of [3]

rel(zj−1,hi) = va • tanh(Wa • zj−1 + Ua • hi)

αij =
exp(rel(zj−1,hi))∑
i′ exp(rel(zj−1,hi′))

, cj =
∑
i

αijhi

In [3], this attention mechanism, originally called align-
ment model, has been employed as a simple feedforward net-
work with the first layer is a learnable layer via adaptation

factors va,Wa and Ua. The relevance scores rel are then
normalized into attention weights αij and the context vector
cj is calculated as the weighted sum of all annotation vec-
tors hi. Depending on how much attention the target word at
time j put on the source states hi, a soft alignment is learned.
By being employed this way, word alignment is not a latent
variable but a parametrized function, making the alignment
model differentiable. Thus, it could be trained together with
the whole architecture using backpropagation.

One of the most severe problems of NMT is handling of
the rare words, which are not in the short lists of the vocabu-
laries, i.e. out-of-vocabulary (OOV) words, or do not appear
in the training set at all. In [7], the rare target words are
copied from their aligned source words after the translation.
This heuristic works well with OOV words and named en-
tities but unable to translate unseen words. In [8], their pro-
posed NMT models on the preprocessed data using Byte-Pair
Encoding have been shown to not only be effective on reduc-
ing vocabulary sizes but also have the ability to generate un-
seen words. This is achieved by segmenting the rare words
into subword units using the robust, unsupervised compress-
ing method Byte-Pair Encoding in the preprocessing phase.
Then one could use a normal NMT system to translating
those subword units. The state-of-the-art translation systems
essentially employ subword NMT [8].

3. Multilingual Neural Machine Translation
While the majority of previous research has focused on im-
proving the performance of NMT on individual language
pairs with individual NMT systems, recent work has started
investigating potential ways to conduct the translation in-
volved in multiple languages using a single NMT system.
The possible reason explaining these efforts lies on the
unique architecture of NMT. Unlike SMT, NMT consists of
separated neural networks for the source and target sides,
or the encoder and decoder, respectively. This allows these
components to map a sentence in any language to a represen-
tation in an embedding space which is believed to share com-
mon semantic among the source languages involved1. From
that shared space, the decoder, with some implicit or explicit
relevant constraints, could transform the representation into
a concrete sentence in any desired language. In this section,
we review some related work on this matter. We then de-
scribe a unified approach toward a universal attention-based
NMT scheme. Our approach does not require any architec-
ture modification and it can be trained to learn a minimal
number of parameters compared to the other work.

3.1. Related Work

By extending the solution of sequence-to-sequence modeling
using encoder-decoder architectures to multi-task learning,

1But not necessarily syntactic since the embeddings are learned from
parallel sentences which essentially share the same meaning although they
might be very different in word order



[9] managed to achieve better performance on some many-
to-many tasks such as translation, parsing and image caption-
ing compared to individual tasks. Specifically in translation,
the work utilizes multiple encoders to translate from multi-
ple languages, and multiple decoders to translate to multiple
languages. In this view of multilingual translation, each lan-
guage in source or target side is modeled by one encoder or
decoder, depending on the side of the translation. Due to the
natural diversity between two tasks in that multi-task learn-
ing scenario, e.g. translation and parsing, it could not feature
the attention mechanism although it has proven its effective-
ness in NMT.

There exists two directions which are proposed the ways
to leverage attention mechanism for multilingual translation
scenarios. The first one is indicated in the work from [10],
where it introduce an one-to-many multilingual NMT system
to translates from one source language into multiple target
languages. Having one source language, the attention mech-
anism is then handed over to the corresponding decoder. The
objective function is changed to adapt to multilingual set-
tings. In testing time, the parameters specific to a desired
language pair are used to perform the translation.

[11] proposed another approach which genuinely deliv-
ers attention-based NMT to multilingual translation. As in
[9], their approach utilizes one encoder per source language
and one decoder per target language for many-to-many trans-
lation tasks. Instead of a quadratic number of independent
attention layers, however, one single attention mechanism is
integrated into their NMT, performing an affine transforma-
tion between the hidden layer ofm source languages and that
one of n target languages. It is required to change their archi-
tecture to accommodate such a complicated shared attention
mechanism.

In a separate effort to achieve multilingual NMT, the
work of [12] leverages available parallel data from other
language pairs to help reducing possible ambiguities in the
translation process into a single target language2. They em-
ployed the multi-source attention-based NMT in a way that
only one attention mechanism is required despite having
multiple encoders. To achieve this, the outputs of the en-
coders were combined before feeding to the attention layer.
They implemented two types of encoder combination; One
is adding a non-linear layer on the concatenation of the en-
coders’ hidden states. The other is using a variant of LSTM
taking the respective gate values from the individual LSTM
units of the encoders. As a result, the combined hidden states
contain information from both encoders , thus encode the
common semantic of the two source languages.

3.2. Universal Encoder and Decoder

Inspired by the multi-source NMT as additional parallel data
in several languages are expected to benefit single transla-

2An example taken from the paper is when we want to translate the En-
glish word bank into French, it might be easier if we have an additional
German sentence containing the word Flussufer (river bank).

tions, we aim to develop a NMT-based approach toward a
universal framework to perform multilingual translation. Our
solution is to perform some coding on the same word (mean-
ing) in different languages to differentiate them as differ-
ent words in the language-mixed vocabularies. The concrete
idea, referred to as Language-specific Coding, is described
in the following.

Language-specific Coding. When the encoder of a
NMT system considers words across languages as differ-
ent words, with a well-chosen architecture, it is expected
to be able to learn a good representation of the source
words in an embedding space in which words carrying sim-
ilar meaning would have a closer distance to each others
than those are semantically different. This should hold true
when the words have the same or similar surface form,
such as (@de@Obama; @en@Obama) or (@de@Projektion;
@en@projection)3. This should also hold true when the
words have the same or similar meaning across languages,
such as (@en@car; @en@automobile) or (@de@Flussufer;
@en@bank). In this way, the same words in different
languages are treated as synonyms in one language or
as the words having the same meaning across languages.
Our encoder then acts similarly to the one of multi-source
approach[12], collecting additional information from other
sources for better translations, but with a much simpler em-
bedding function. Unlike them, we need only one encoder,
so we could reduce the number of parameters to learn. Fur-
thermore, we neither need to change the network architecture
nor depend on which recurrent unit (GRU, LSTM or simple
RNN) is currently using in the encoder.

We could apply the same trick to the target sentences and
thus enable many-to-many translation capability of our NMT
system. Similar to the multi-target translation[10], we ex-
ploit further the correlation in semantics of those target sen-
tences across different languages. The main difference be-
tween our approach and the work of [10] is that we need only
one decoder for all target languages. Given one encoder for
multiple source languages and one decoder for multiple tar-
get languages, it is trivial to incorporate the attention mech-
anism as in the case of a regular NMT for single language
translation. In training, the attention layers were directed to
learn relevant alignments between words in specific language
pair and forward the produced context vector to the decoder.
Now we rely totally on the network to learn good alignments
between source and target sides.

In comparison to other research that could perform com-
plete multi-task learning, e.g. the work from [9] or the ap-
proach proposed by [11], our method is able to accommodate
the attention layers seamlessly. It also draws a clear distinc-
tion from those works in term of the complexity of the whole
network: considerably less parameters to learn, thus reduces
overfitting, with a conventional attention mechanism and a

3@lang code@a word is a simple way that transforms the word a word
into a different surface form associated with its language lang code. For
example, @de@Projektion is referred to the word Projektion appearing in a
German (de) sentence.



Figure 1: Preprocessing steps to employ a multilingual attention-based NMT system

standard training procedure.
Figure 1 illustrates the essence of our approach. With

the deployment of language-specific coding in the prepro-
cessing phase, we are able to employ multilingual attention-
based NMT without any special treatment in training such a
standard architecture. Other preprocessing steps, for exam-
ple, applying Byte-Pair Encoding (BPE) to address rare-word
problem, are done as in usual NMT systems. Our encoder
and attention-enable decoder can be seen as a shared encoder
and decoder across languages, or a universal encoder and de-
coder. The flexibility of our approach allow us to integrate
any language into source or target side and choose which
kind of translation units (words, subwords or characters) to
be used. As we will see in Section 4, it has proven to be ex-
tremely helpful not only in low-resourced scenarios but also
in translation of well-resourced language pairs as it provides
a novel way to make use of large monolingual corpora.

4. Evaluation
In this section, we describe the evaluation of our proposed
approach in comparisons with the strong baselines in a simu-
lated under-resourced scenario. We believe that in an under-
resourced situation, the benefit of having more data in differ-
ent languages can be observed more clearly, hence empha-
sizes the effectiveness of our approach. Nevertheless, later
we show that our approach can also help to bring noticeable
improvements in well-resourced translation.

4.1. Experimental Settings

Training Data. We choose WIT3’s4 TED corpus[13] as
the basis of our experiments since it might be the only high-
quality parallel data of many low-resourced language pairs.
TED is also multilingual in a sense that it includes numbers
of talks which are commonly translated into many languages.
In addition, we use a much larger corpus provided freely by
WMT organizers5 when we evaluate the impact of our ap-
proach in a real machine translation campaign. It includes
the parallel corpus extracted from the digital corpus of Eu-
ropean Parliament (EPPS), the News Commentary (NC) and
the web-crawled parallel data (CommonCrawl). While the
number of sentences in popular TED corpora varies from 16

4https://wit3.fbk.eu/
5http://www.statmt.org/wmt15/

thousands to 20 thousands, the total number of sentences in
those larger corpora is approximately 3 million sentences.

Neural Machine Translation Setup. All experiments
here have been conducted using the NMT framework
Nematus6. Following the work of [8], subword segmen-
tation is handled in the preprocessing phase using Byte-Pair
Encoding (BPE). Excepts stated clearly in some experiments,
we set the number of BPE merging operations at 39500 on
the joint of source and target data. When training all NMT
systems, we take out the sentence pairs exceeding 50-word
length and shuffle them inside every minibatch. Our short-
list vocabularies contain 40,000 most frequent words while
the others are considered as rare words and applied the sub-
word translation. We use an 1024-cell GRU layer and 1000-
dimensional embeddings with dropout at every layer with
the probability of 0.2 in the embedding and hidden layers
and 0.1 in the input and output layers. We trained our sys-
tems using gradient descent optimization with Adadelta[14]
on minibatches of size 80 and the gradient is rescaled when-
ever its norm exceed 1.0. All the trainings last approxi-
mately seven days if the early-stopping condition could not
be reached. At a certain time, an external evaluation script
on BLEU[15] is conducted on a development set to decide
the early-stopping condition. This evaluation script has also
being used to choose the model achieving the best BLEU on
the development set instead of the maximal loglikelihood be-
tween the translations and target sentences while training. In
translation, the framework produces n-best candidates and
we then use a beam search with the beam size of 12 to get
the best translation.

Language-specific coding and post processing. As
mentioned in the Section 3.2, we performed language-
specific coding in the preprocessing phase, after other pre-
processing steps. It does not affect to which kind of trans-
lation units to be used since we apply it on the already-
segmented texts. In our case, we trained the BPE first, and
performed the language-specific coding on the corpus and the
test sets after applying BPE on them. So here the multilin-
guality is featured on the subword level. In the post process-
ing phase, we did the steps in the reversed order: first remove
the language-specific codes and then remove the BPE tags
to recover the word-based translated sentence in the desired
language.

6https://github.com/rsennrich/nematus



4.2. Under-resourced Translation

First, we consider the translation for an under-resourced pair
of languages. Here a small portion of the available, large
parallel corpus for English-German is used as a simulation
for the scenario where we do not have much parallel data.
When we assume there is no large parallel corpus by using
only the TED corpus, we can simulate the translation task
from English to German as an under-resourced scenario.
The reason that we chose a simulated under-resourced lan-
guage pair but not a real one is to have the comparable im-
provements with the well-resourced scenario using the same
proposed approach. We perform language-specific coding in
both source and target sides. By accommodating the Ger-
man monolingual data (the target language) as an additional
input (German→German), which we called the mix-source
approach, we could enrich the training data in a simple, nat-
ural way. Given this under-resourced situation, it could help
our NMT obtains a better representation and more informa-
tion of the source side, hence, able to learn the translation
relationship better. Including monolingual data in this way
might also improve the translation of some rare-word types
such as named entities. Furthermore, as the ultimate goal
of our work, we would like to investigate the advantages
of multilinguality in NMT. We incorporate a similar por-
tion of French-German parallel corpus, which includes also
TED talks into the English-German one. As discussed in
Section 3.2, it is expected to help reducing the ambiguity in
translation between one language pair since it utilizes the se-
mantic context provided by the other source language. We
name this multi-source. Figure 2 shows those two strategies.

(a) mix-source system

(b) multi-source system

Figure 2: Different strategies of multi-source NMT

Table 1 summarizes the performance of our systems mea-
sured in BLEU7 on two test sets, tst2013 and tst2014. Com-

7We used the script mteval-v13a.pl of the Moses framework

pared to the baseline NMT system which is solely trained on
TED English-German data, our mix-source system achieves
a considerable improvement of 2.6 BLEU points on tst2013
and 2.1 BLEU points on and tst2014. Adding French data
to the source side and their corresponding German data to
the target side in our multi-source system also help to gain
2.2 and 1.6 BLEU points more on tst2013 and tst2014, re-
spectively. We observe a better improvement from our mix-
source system compared to our multi-source system. Due
to the mismatch between the number of sentences in our
English-German and French-German corpora (196k sentence
pairs versus 165k sentence pairs), one reason of the less ef-
fective multi-source versus the mix-source might be because
we have a little bigger corpus in case of the mix-source. We
verified this hypothesis by training mix-source with the same
size of the multi-source corpus when we took the German
side of the French-German as the additional input instead of
the German side of the English-German. It achieved even
better BLEU scores compared to the original mix-source ap-
proach (mix-source 2, table 1). So it is not because of the size
of the training corpus.

We speculate the reason that in the mix-source, the en-
coder utilizes the same information shared in two languages,
while the multi-source receives and processes similar infor-
mation in the other language but not necessarily the same, be-
cause the French-German corpus shares some common TED
talks with the English-German corpus but not all. We might
verify this hypothesis by comparing two systems trained on
a common English-German-French corpus of TED or even
more languages involved. We put it in our future work’s plan.

4.3. Using large monolingual data

A standard NMT system employs parallel data only. While
good parallel corpora are limited in number, getting mono-
lingual data of an arbitrary language is trivial. To make use
of German monolingual data in an English→German NMT
system, [16] built a separate German→English NMT using
the same parallel corpus, then they used that system to trans-
late the German monolingual data back to English, forming a
synthesis parallel data. [17] trained another RNN-based lan-
guage model to score the monolingual corpus and integrate
it to the NMT system through shallow or deep fusion. Both
methods requires to train separate systems with possibly dif-
ferent hyperparameters for each. Conversely, by applying
mix-source method to the big monolingual data, we need
to train only one network. In this scenario, we use all the
parallel data we have been provided by the organizer of the
IWSLT16 machine translation campaign8, which is around
200 times larger than the TED corpus for English-German.
The baseline system is the strong NMT trained with all the
parallel data. We then mix the large parallel corpus with the
larger monolingual corpus using mix-source strategy.

(http://statmt.org/moses/) as the official way to calculate BLEU
scores in main machine translation campaigns.

8http://workshop2016.iwslt.org/



System tst2013 tst2014
BLEU ∆BLEU BLEU ∆BLEU

Baseline (En→De) 24.35 – 20.62 –
Mix-source (En,De→De,De) 26.99 +2.64 22.71 +2.09
Multi-source (En,Fr→De,De) 26.64 +2.21 22.21 +1.59
Mix-source 2 (En,De→De,De) 27.18 +2.83 23.74 +3.12

Table 1: Results of the English→German systems in a simulated under-resourced scenario.

System tst2013 tst2014
BLEU ∆BLEU BLEU ∆BLEU

Baseline (En→De) 25.74 – 22.54 –
(1) Mix-source additional monolingual (En,De→De,De) 27.74 +2.00 24.39 +1.85
(2) Mix-source target monolingual part (En,De→De,De) 28.89 +3.15 24.86 +2.32

Table 2: Results of the English→German system using large monolingual data.

The first result (1) is encouraging when the mix-source
using additional monolingual data achieves the improve-
ments on tst2013 tst2014 nearly as good as in the under-
resourced situation (2.00 and 1.85 BLEU scores, respec-
tively). Not using the same information in the source side,
as we discussed in case of multi-source strategy, could ex-
plain why less improvements are observed in performance of
such a system. As a quick attempt, we train the mix-source
model on only the target-side monolingual part of the parallel
data (2), which refers to the same information in the source
side. Although using a smaller corpus, it brings a big im-
provement of 3.15 BLEU scores on tst2013 and 2.32 BLEU
on tst2014 (Table 2). It is included as one of the systems
in our English-German NMT combination submitted to the
IWSLT’16 evaluation campaign[18].

5. Conclusion and Future Work

In this paper, we present our first attempts in building a mul-
tilingual Neural Machine Translation framework. By treating
words in different languages as different words and leverag-
ing the disambiguation abitily of such a setting, we are able
to employ attention-enable NMT toward a multilingual trans-
lation system. Our proposed approach alleviates the need of
complicated architecture re-designing when accommodating
attention mechanism. In addition, the number of free param-
eters to learn in our network does not go beyond that magni-
tude of a single NMT system. With its universality, our ap-
proach has shown its effectiveness in an under-resourced sce-
nario with considerable improvements. In addition, the ap-
proach has achieved great results when applied to the mono-
lingual data in a well-resourced task.

Nevertheless, there are issues that we can continue work-
ing on in future work. We could conduct more experiments
in a real under-resourced scenario instead of a simulated one.
Our approach could be applied in a zero-resourced scenario
where we do not have any direct parallel corpus. We could
perform detailed analyses of the various strategies under the

framework to show the advantages of our approach compared
to other work on multilingual NMT.
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