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Abstract

In th is paper we present a T ime Delay Neural Network (T O. ' N) ap proach to
phon eme recognition which is character iaed by two important properties: 1.)
u s ing a 3 layer arraagement of simple computing units , a hier archy can be
con s truc ted th at allows for the form a.tion of arbitrary no nlin ear dec:. is ion sur­
faces . T he TDNN learns these decision surfaces au tomacical ly us ing error back­
propa garion jl ]. 2.) The time-delay arrangement enables the network to discover
acoust ic-phonetic features and the temporal relationships between them inde­
pendent oi position in time and hence not blurred by temporal shifts in the
inpu t .

As a recognition task, the sp eaker -d ependent recognition of the phonemes
"8 " , "D" , and "G" in varying phoneti c contexts was chosen. For comparison,
several discrete Hidden Markov Models (HMM) were tr ained to perform the
same task, Performance evaluation over 1946 testing tokens from three speak­
ers showed tha.t tbe TDNN achieves a recognition rate of 98.5 %correct while
the rate obtained by the best of our HMMs was only 93.7 %. Closer inspection
re veals that t he ne twork "invented" well-known acoust. ic-pbcnetic feat ures (e .g.,
F2-rise, F2-fall, vowel-onset) as useful abstract ions. It also developed alternate
int ernal representations to I.in.k: different acoustic real isations to the same con­
cep t .
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Abstract

In this paper 'we present a Time Delay !'IeurO! Network (T ONN) approach to
phoneme recognit ion which is characterized by two important properties: 1.)
using a 3 layer arrangement of simple computing units. a hierarchy can be
construct ed that allows for the formation of "arbitrary nonl inear decision sur­
faces. T he TO N:" learns these decision surfaces au tomati cally using error back­
propagatio n[l]. 2.) The time-delay arran gement enabies the network to discover
accusv ic- phc netrc features and the tem poral relationships between them Inde­
pendent of posit ion in time and hence not blurred by temporal shifts in the
input .

As a recognition task. the speaker-dependent recognit ion of the phonemes
"B" I "D". and 7r G" in varying phone tic contexts was chosen. For comparison,
several discrete Hidden Markov Models (HMM) were trained to perform the
same task . Performan ce evaluation over 1946 test ing tokens from three speak­
ers showed that the TONN achieves a recognit ion rate of 98.5 % correct while
the rate obtained by the best of our HMMs was only 93.1 %. Closer inspect ion
reveals that the network " invented" well-known acoust ic-phonetic features (e.g..
F2-rise , F2-faU. vowel-onset ] as useful abstract ions. It also developed alternate
intern al representations to link diJferent acousti c realizat ions to the same con­
cept .
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1 Introduction

In recen t years, the advent of new learn ing procedures and the availability of
high speed parallel supercomputers have given rise to a renewed interest in con­
nectionist models of int elligence[l]. These models are par ticular ly interest ing
for cogn it ive tas ks that require mass ive const raint sansfacvion, i.e., the parallel
evaluation of many clues and facts and their interpret at ion in the light of numer­
ous interrelated constraints . Cogni tive tasks, such as vision, speech , language
processing and motor control are also characterized by a high degree of uncer­
tainty and var iability and it bas proved difficult to achieve good performance
for these tasks using standard serial programming methods . Complex networks
composed of simple compu ting units are at tractive for these tasks not only be­
cause of their" brain-l ike" appeal . but because they offer ways for automatically
designing systems that can make use of multiple interac ting const raints . In gen­
eral, such const raints are too complex to be easily programmed and require the
use of automatic learnin g strategies. Such learning algorithms now exist (For an
excellent review, see Lippman[2j) and have been demonstrated to discover inter­
est ing internal abstract ions, in their attempts to solve a given prohlem[1.3,4.5].
Learn ing is most effective when used in an architecture that is appropriate for
the task. Indeed, the experiments reported in this paper suggest that as much
prior knowledge as possible should be buil t into the network.

Naturally, these techniques will have far-reaching implicat ions for the design
of automatic speech recognition systems , if proven successful in comparison to
already existing techniques. Lippmann[6J has compared several kinds of neural
net works wit h ot her classifiers and evaluated their abilit y to create complex
decision surfaces . Other stu dies have investigated actual speech recogni t ion
tasks and compared them to psychological evidence in speech percept ion(i J or
to exist ing speech recognition techniques(8,9j. Speech recognit ion exper iments
using neural nets have so far mostly been aimed at isolated word recognition
(most ly the digit recognit ion task) [10,11,12,13J or phonetic recognition with
predefined constan t(14,15] or variable phonet ic contexts[16,14.17].

A number of these studies report very encouraging recognit ion performance(16],
but only few comparisons to existing recognit ion methods exist . Some of these
compar isons found performance similar to existing rnethods[9,11], but others
found that networks perform worse than other techniques(8]. One might argue
that this state of affairs is encouraging considering the amount of fine-tuning
that has gone into optimiz ing the more popular, established techniques. Nev­
ertheless , bet ter comparative performance figures are needed before neural net­
works can be. considered as a viab le alternative for speech recognition systems .

One possible explanation for the mixed performance results obtained so far
may be limi tati ons in computing res ources leadin g to short-cuts that limit per­
formance. Another more serious limitation·, however, is the inab ility of most
neural network architectures to deal properly with the dynamic nature of speech .
Two important aspects of this are for a network to represent temporal relat ion-
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ships between acoustic events. while at the same time providing for invariance
under translation in time. The specific movement of a. formant in time, for
example, is an important cue to determining the identity of a voiced stop , but
it is irrelevant whether. the same set of events occurs a little sooner or later in
the course of time. Without translation invariance a. neural net requires precise
segmentation, to align the input pat tern prope rly. Since th is is not always pos­
sible in practic e. learned features tend to get blurred (in order to accommodat e
slight misalignments ) and their performance deteriorates.

In the present pap er, we describe a T ime Delay Neural Network (T DNN),
which addresses both of th ese aspects and demonstrate through extensive per­
forma.nce evaluat ion that superior recognition results can be achieved using this
approach. In th e following section, we begin by introducing the architecture
and learning strategy of a T DNN aimed at phoneme recognition. Next, we
compare th e performance of our TD NNs with one of the more popu lar cur­
rent recognition techniques. In section 3, we therefore describe several Hidd.n
Mar kov Models (HMM), under developmeat at ATR[l a]. Both techniques are
then evaluated over a testing database. W. report the results in section 4 of this
paper and show that substantially higher recognition performance is achieved
by the TDNN than by "the best of our HMMs. We also take a close look at
the interna! representation that the TDNN learns for this task. It discovers a
number of interesting linguistic abstractions :which.we show by way of examples.
The implicat ions of these results are then discussed and summarized in the final
section of this paper.

2 Time Delay Neural Networks (TDNN)

To be usefulfor speech recognition, a layered feed forward neural networ k must
have a num ber of properriee. First , it should have mult iple layers and sufficient
interconnections between units in each of these layers . T his is to ensure that the
nerwork will have .th. ability to learn complex non-linear decision surfaces[2.6J.
Second , the network should have the abili ty to repr esent r.lationships between
events in time. These events could b. spectral coefficients , but might also b. the
output of high.r level feature detectors. Third, the actual features or abstrac­
tions learned by the n.twork should b. invariant under translation in tim. ' .
Fourth, the l. arnin g procedure should not require precise t.mporal a1ignm.nt
of the labels that are to be learned. Filth, the number of weights in the network
should b. small compared to the amount of training data so that the n.twork is
forced to encode the training data by .xtracting r. guIar ity. In the following, we
describe a TD NN archi tecture that satisfies all of these criteria and is designed
explicitly for the recognition of phonemes, in particular, the voiced stops " B" .
"D" and "G".

l ID viUoa,. lI01u~ to the ai.mi1u' problem of wlt...iD"4riaDce haw bee propoMe:i by \1M

of & " Neocopi"""" [l9J .
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2.1 A TDNN Architecture for Phoneme Recognition

The basic unit used in man y neural network. computes the weighted sum of its
inputs an d then passes this sum through a non-linear function. most commonly
a threshold or sigmoid function[2.IJ. In our TDNN , th is basic unit is modified
by introducing delays 0 , th rough Dr; as shown in Fig.!. T he J inputs of such a

. unit now will be multiplied by several weights . one for each delay and one for the
unde laved input. For ~ =2. and J =16. for example, 48 weights will be needed
to compu te the weight ed sum of th e 16 inputs , with each input now measu red
at three different points in time. In this 'way a TDNN unit has the abi lity to
relate and compare curre nt input with the past history of events . The sigmoid
function was chose n as the non-linear output function F due to its convenient '
mathematical properties[20,5].

For the reeegnirice, of phonemes , a. three layer net lS constructed' . Its overall
arch itecture and a typical set of activities in the units are shown in Fig.2.

At the lowest level, 16 melscale spectral coefficients serve as input to the
network. Input speech, samp led at 12 kHz, was hamming windowed and a 256­
point FFT computed every 5 msee. Melscale coefficients were computed from

. the power spectrum as in[21] and adjacent coefficients in time collapsed result ing
in an overall 10 msec frame rate. The coefficients of an input token (in this case
15 frames of speech centered around the hand .labeled vowel snser) were then
normalized to lie 'between · 1.0 and +1.0 with the average at 0.0. Fig.2 shows
the resulting coefficients for the speech token "BA" as input to the network.
where positive values are shown as black and negative values as grey squares.

This input layer is then fully interconnected to a layer of 8 time delay hidden
uni ts , where J =16 and N =2 (i.e., 16 coefficients over three frames with time
delay 0, I and 2) . An alternative way of seeing this is depicted in Fig.2. It
shows the inputs to these time delay units expanded out spatially into a 3
frame window , which is passed over the input spectrogram. Each unit in the
first hidden layer now receives input (via 48 weighted connections ) from the
coefficients in the 3 frame window . The particular choice of 3 frames (30 msec)
was motivated by earlier stuclies{22] , that suggested that a 30 msec window
might be sufficient to represent low level acoustic-phonetic events for phoneme
recognition. It was aI.o the optimal choice among a number of alternative
designs evaluated by Lang(23] on a similar task.

In the second hidden layer , each of 3 TDNN unitllooks at a 5 frame window
of activity levels in hidden layer 1 (i.e., 1 =8, N =4). The choice of a larger
5 frame Window in this layer was motivated by the intuition that ·higher level
units should learn to make decisions over a wider range in time baaed on more
local abstractions at lower levels.

Finally , the outpu t is obtained by integrating (summing) the evidence from
each of the 3 units in hidden layer 2 over time and connecting it to its pertinen t

'Lippmann{2.6j d...._traced roceDd y <ha& .-laroro .... eDCOdo vbicrary !'A',.... reeeg­
Dic.ioD decisicmsunac.
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output unit (shown in Fig.2 over 9 frames for the " B" out put unit). In pract ice,
thi s summation is implement ed simply as another T DNN unit which has fixed
equa l weights to a row of unit firings over time in hidden layer 23

.
When the TDN~ has learned its internal represen tation , it performs recog­nit ion by passing input spee ch over the TD NN units . In terms of the illust ration

of Fig.:! this is equivalent to passing the time delay windows over the lower levelunits' firing patterns . At the lowest leve l. these firing patterns simply consist of
the sensory input , i.e.. the spectral coefficients .

Each TD NN unit outlined in th is section has the ab ility to encode temporal
relations hips within the ran ge of the N de lays. Highe r layers can at ten d to larger
time spans, so local short duratio n features will be formed at the lower layer
and more complex longer du ration features at the higher layer. The learning
proce dure ensures that each of the units in each layer has its weights adjusted
in a way that improves the network's overall performance .

2.2 Learning in a TD N N

Severa l learning techniques exist for opt imization of neural networks[1.2.24!. For
the present netwo rk we ado pt the Back-propagation Learning Procedure(20.5J.
T his procedure performs two passes through the network. During the forward
pass , an input patt ern. is applied to the network. with its current connect ionstrengths (init ially small random weights ). Th e outp uts of ·all t he units ateach level are comput ed starting at the input layer and working forward to the
output layer . T he output is then compared with the desired out put and its
error calcula ted . During the back ward pass , the derivative of this error is the n
prop agat ed back th rough the network, and all the weights are adjusted so as to
decrease the error[20.5J . This is repe ated man y times for all the trai ning tokens
unt il the network converges to producing the desired output .

In the previous sect ion we described a method of expressing temporal st ruc­
ture in a TDNN and coatrasted this method to traini ng a network on a st a tic
input pattern (spect rogram ), which results in shift sens it ive networks (i.e., poor
perform ance for .lightly misaligned input patterns) as well as less crisp deci­sion malting in the units of the network (caused by misaligned tokens dur ingtraining).

To achieve the desired learning behavior, we need to ensure that the net­
work is exposed to . equences of p..t terns and that it is allowed (or encouraged)
to learn about the most powerful cues and sequences of cues among them. Can­
ceptually, the back-propagation procedure is app lied to speech patterns that are
stepped through in time. An equivalent way of achieving this result is to use a
spatially expanded input pattern, i.e. , a spectrogram plus some constrain ts on

3No te , however , th.al .. {or &1l uniu in tlUl network (except the input UAiu). the outputuniu Me abo con.neeted. to • permanently .etive threshold unit . In this ...y, the dc.biu ofeac:.b output uni t caD still be adju.ted (or optimal d.uaifieac.ion.
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the weights . Each collecti on of TD NN-un its descr ibed above is duplicated for
each one frame shift in time. In this way the whole history of act ivit ies is avail­
able at once. Since t he sh ifted copies of the TD NN-un its are mere duplicates
and are to look for the same acoustic event . the weights of the corresponding
connections in the time shifted copies must be const rained to be tbe same . To
realize this. we first ap ply the regular bac k-propagation forward and backward
pass to all time shi fted copies as if they 'were se parate ev ents . Th is yields dif­
ferent error derivat ives for corresponding (time shifted ) connections. Rather
than changing the weights on t ime-shifted connections sep arate ly, howev er, we
actually update each weight on corres ponding connections by the same value .
name ly by the .vertlge of all corresponding time-delayed weight chan ges' . Fig.2
illustrates th is by showing in each layer only two connections th at are linked to
(const rained to have the same value as) their time shifted neighbors . Of cour se.
this applies to all connect ions and all t ime shifts. In this way, th e network is
forced to discover useful acoust ic-phone t ic feat ures in the input , regardless of
when in t ime th ey actually occurred . This is an importan t property, as it makes
the network independent of errorprone preprocessing algor ithms, that oth erwise
would be needed for time alignment and/ or segmentation. In section 4.3, we
will show examples of grossly misaligned patterns that are properly recognized,
due to this prope rty. .

The procedure described here is computationally rather expensive, due to the
many iter ations necessary for learning a complex multidimensional weight·space '
and the number of learning sam ples. In our case, about 800 learning samp les
were used and bet ween 20,000 and 50,000 iterations of t he back-propagation loop
were run over all training samples . Two steps were taken . to perfo rm learning
within reasonable time . First , we have impleme nted our learning procedure in C
and· FORTRAN on a 4 processor iUliant supercomputer. The speed of learning
can be improved considerably by comput ing the forward and backward sweeps
for several different training samples in parallel on different processors. Further
imp rovements can be gained by vectoriz ing operations and possib ly assem bly
coding the innermost loop. Our present implementation achieves about a factor
of 9 speedup over a VAX 8600, but still leaves room for further improvements
(Lan g[23j for example reports a speedup of a facto r of 120 over a VAXll / i 80
for an impJementuion running on a Convex supercomputer). The second ste p
taken towards improving learnin g t ime is given by a saged learning strategy .
In thia approach we start optimizing the network baaed on 3 prot.otyp ical train­
ing tokens only' . In this caae convergence is achieved rap idly, bu t the network
will have learned a representation that generalizes poorly to new and differen t
patterns. Once convergence is achieved, the network is presented with app rox­
imately twice the number of tokens and learning continues until convergence.

• Note thaL in the aperimcnu reponed below theM wei(ht c:hazla- Weft aetU&1ly carried
ou.t each time the error derivati ves from aJl tra.ininc &amPle. had. been c:olnpu.ted.{5].

~ Note t.bat for optim.a11e.ami.n1. the train.i.nc dat. i. preented by a1.~ a.1t.er'I14tia.l tokena
for each c:.Lua. Hence we sure. the network off by Pre:lGl.tinJ 3 tokeDa. ODe for NCb d.ua.
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Fig.3 shows the progress during a typical learning run. The measured error is
1/2 the squ ared err or of all the out put units , normalized for the number of train­
ing tok ens. In this run the number of training to kens used were 3.6.9.24.99 .249
and 780. As can be seen from Fig.3. the error briefly jum ps up every time more
variability is introd uced by way of more train ing data. The 'network is then
forced to improve its represen tat ion to discover clues t h~t generalize be tter and
to deemphasize those that . tu rn OUt to be merely irrelevan t ideosyncracies of a
limited sample set . Us ing the full training set of 780 tokens th is particular run
was cont inued un til itera tion 35.000 (Fig.3 shows the learning curve only up to
15,000 iterat ions ). With this full tr aining set small learning steps have to be
taken and learning progresses slowly. In this case a step size of 0.002 an d a
momentum[5] of 0.1 was used . The staged learning approach was foun d to be
useful to move the weights of the network rapidly into the neighborhood of a
reasonable solut ion , before the rather slow fine tun ing over all training tokens
begins.

Desp ite these speedups, lear ning runs still take in the order of several days.
A number of programming t ricks(23] as well as modifications to the lear ning
procedure[25] are not implemented yet and could yield another facto r of 10
or more in lear ning time red uction . It is importan t to note , however , that the
amount of computation considered here is necessary only for learning of a TD NN
and not for recognition. Recognition can easily be performed in better than
real time on a workstat ion or personal compute.' . The simp le structure makes
TD NNs also well su ited for standardized VLSI-implementation. The det ailed
know ledge could be learned "off-line" using substantial computing power and
then downloaded in the form of weights onto a real-time production networ k.

3 Hidden Markov Models (HMM)

As an alternative recognition approach we have implemented several Hidden
Markov Models (HMM) aimed at phoneme recognition. HMMs are currently the
most successful and promising approach [26,27,28J in speech recognition as they
have been successfully applied to the whole spectrum of recognition tasks. Excel­
lent performance was achieved at all levels from the phonemic level[29,30,31.32J
to word recognition(33,28] and to continuous speech recognition[34]. HMMs '
success is partially due to their ability to cope with the variability in speech
by means of stochastic modeling. In the following sections, we describe the
HMMs developed in our laboratory. They were aimed at phoneme recognit ion ,
more specifically the voiced stops "B" , "D" and "G" . Several experiments WI th
variations on these models are described elsewhere[18J .

14



Figure 4: Hidde n Markov Model

3.1 .An HMM for Phoneme Recognition

The acoustic front end for Hidden Markov Modeling is typically a vector quan­
tizer that classifies sequences of short-time spectr a. Such a. representation was
chosen as it is highly effective for H:>1M-ba.sed r~ognizers [34J.

Input speech was sam pled at 12kHz, preempbasised by (1 - 0.97 ; - 1) and
windowed using a 256-point Hamming window every 3 rnsec . Then a 12-order
LPC analysis was carried out . A codebook of 256 LPC spectrum envelopes
was gener at ed from 216 pbonetically balanced words . The Weighted Likelihood
Ratio [35,36j augmented with power value. (PWLR)[37,36) was used as LPC
distance measure for vector quantization .

A typical HMM was adopted in this paper as shown in FigA. 1t has four
states and six transit ions .

3.2 Learning in an HMM

The HMM probability values were tr ained using vector sequences of phonemes
acecrding to the forward-backward algorithm(26]. The vector sequences for ' B" ,
"0" and "G" include a consonant part and five frames of tbe following ~owel.

This is to model important transient informations , such as formant movement
and bas lead to improvement. over context insensitive models [18J.

The HMM was trained using about 250 phoneme tokens of vector sequences
per speaker and phoneme (see details of the training database below). Fig.5
shows for a typical t raining run the average log proba.bility normalized by the
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Figure 5: Learning in a Hidden Markov Model

number of frames. Training was continued until the increase of the average log
prob..bility between iterations became less th&li 2 • 10- 3 .

T ypically, about 10 to 20 learning iterations are required for 255 tokens. A
tr&ining run tues about one hour on .. VAX 8iOO. Floor values were set on
the output probabilit ies to avoid errors caused by zero-probabilities. We have
experimented with composite models. which were tra.ined using .. combination of
context-independent and context-dependent probability values &S suggested by
Schwartz et aI.[29.30]. In our case, no significant improvements were attained.

4 Recognition Experiments

We now turn to an experimental evalu..t ion of the t...., techniques described
in the previous sections . To provide .. good framework for comparison. the
same experimental conditions were given to both methods. For both, the same
tr&ining d..t .. loU used and :,oth were tested on the same testing dat&b... e as
described below.

4.1 Experimental Conditions

For performance evalu ..tion, we h..ve used .. large vocabulary database of 5240
common J &panese wordJ[38]. These wordJ were uttered in isol..t ion by three
male n..tive J&panese spea.kers (MAU, MHT and MNM, all professional an­
nouncers) . All utterances were recorded in .. sound proof booth and digit ized
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at a 12 kHz sampling rate . T he datab ase was then sp lit into a training set
(the even numbered files) and a testi ng set (the odd num bered files). Both the
training and the testi ng data , therefore, consist ed of 2620 utterances each, from
which the actual phonetic tokens were ext racted.

T he phoneme recogniuon task chose n for this experiment was the recognition
of the voiced stops. i.e., t he pho nemes "B" , " D" and "G" . T he actual tokens
were extracted from the utterances using manu ally selected aco usr ic-phc ner ic
labels provided with the database[38]. For speaker ~IA U . for example, a total
of 219 "B"s, 203 " D"s and 260 " G" s were ext racted from the training and 227
" B"s. 179 "D"s and 252 "G" s from the testing data. Bot h recogn it ion schemes .
the T DNNs and the HMMs, were trained and tested speaker-dependently. T hus
in both cases , separate net works were trained for each speaker.

In our database, no preselect ion of tokens was performed . All tokens lab eled
as one of the t hree voiced stops were included. It is importan t to note, that
since the conso nan t tokens were extracted from enti re utt erances and not read
in isolation , a significant amount of pho netic variability exis ts. Foremost , there
is the variability .int roduced by the phonetic context out of which a token is
ext racted. Th e actu al signal of a " BA" will therefore look significantly different
from a "BI" and so on. Seco nd, the posi tion of a phonemic token within the
utte rance introduces addit ional vari ability. In Japaaese, for examp le , a "G" is
nasalized , when it oc curs .em bed ded in an utterance , but not in utterance ini­
tial position. Both of our recognition algori tb ms are only given t he pbonemic
identi ty of a token and must find their own ways of representing the fine vari­
ations of speech. Since recognition results based on the training data are not
meaniagful" , we report in the following only the results from open testing, i.e. ,
from performan ce evaluation over the separate test ing data set.

4. 2 Results

Tablel shows the results from the recognit ion experiments described abo ve. As
can be seen , for all thr ee speakers, the TDNN yields considerable performance
improvements over our HMM. Averaged over all three speakers, tbe error rate
is reduced from 6.3% to 1.5%, a more than four fold reduction in error .

Fig.6 through Fig.n show scatter plots of the recognition outcome for the
tes t data for speaker MAU , using the HMM and the TDNN. For the HMM (see
F ig.6 through Fig.8), the log probability of the next best matching ",cOTT, cl
token is plot ted against the log probab ility' of t be correct token, e.g., • B" ,
"0" and " G" . In Fig.9 t hrough Fig.ll , the activation levels from tbe TDNN's
output units are plotted in the same fashion. We should caution the read er
that these plots are not ea.sily compar able, as the two recognition methods have

' Particu1&riy, for neural networks alcD rew.\t••ould 'De cro-l" aU.J.eadinc .mce sood
perfarm..ADce could ill princple be ecb.ie.,ecl by meDllX"i'l&4ica. 0{ the uaiDiDc patt~. ra.c.her
than by pne-a.lls..aUon.

TnOl"lD&i.i.sed by number of frames
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number number Irecogn i tion I TDNN
number Irecogn ition

I H:'Dfspeaker of tok ens of errors rate of er r ors ra te

b(~27 ) 4 I 98.2 IS I 92.1 I
MAU d(79 ) 3 I 98.3 98.8 6 I 96.7

, a " aI ~ .... . ..,J

g( ~52 ) 1 ! 99 .6 23 I 90.9 i

b(~OS ) 2 ! 99.0 I 8 I a " " ! I_C . _

:'13T d1 70) . a I 100 I 99.1 3 ! 98 .2 !
c - r-

; .... .. 4-

Ig(254 ) 4 I 98.4 I 7 I 97 .2 I,

b(216) 11 I 94. 9 27 I 87.5 I
II'L"<M d07S) 1 I 99.4 97 .5 . 13 I 92.7 I 90.9

I g(256 ) 4 I 98 .4 I 19 I 92 .6 I

Table 1: Recognition results for three speakers over test data using TD NN and
HMM

been t rained in quite different way. . We present this result here to show some
interest ing properties of the two techniques. The~t striking observation that
can be made from these plots is that the output units of a TDNN have a tendency
to fire with high confidence as can be seen from the cluster of dots in the lower
right hand corner of the scatter plots . Most output units tend to fire strongiy
for the correct phonemic class and not at all for any other. a property th at is
encour aged by the learning procedure. One possible con.sequence of this is that
rejection thresholds could be introduced to improve recognition performance.
If one were to eliminate among speaker MAU'. tokens all those whOle highest
act ivation level is less than 0.5 and thoee which result in two or more closely
competing activations (i.e., are near the diagonal in the scatter plots ), 2.6% of
all tokens would be rejected , while the remaining substitut ion error rate would
be 1ess than 0.46%.

4.3 The Learned Internal Representations of a TDNN

Given the encouraging performance of our TD NN. , a closer look at the learned
intern al representation of the network is warranted. What are the properties or
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abstrac t ions that the network bas learned that appear to yield a very powerful
description of voiced stops ? Fig.13 and Fig.12 show t wo typical inst ances of
a " 0 " out of two different phonetic contexts (" OA" an d "DO" , respectively).
In both cases, only the correct unit , the " Dcourpu t unit" fi ressrrong ly. despite
the fact that the two input spectrograms differ cons iderably fr om each other. If
we study the internal firings in these two cases we can see that the network has
learned to use alternate internal representations to link variations in the sensory
input to the same higher level concepts. A good examp le is given by the fi r i n ~s

of tbe third and fourth hidden unit in the first layer ab ove tbe input layer. As
can be seen from Fig.13, the fourth hidden unit fires par ticularly strongly after
vowel onset in the case of "DO" I while the third unit' show. stronger acn vauoa
after vowel onse t in the case of " OA" .

Fig.14 shows the significance of these different firing patterns. Here tbe con­
nect ion strengths for the eight moving TO NN units are sbown , where white and
black blobs represent positive and negative weights, respectively, and the mag­
nitude of a weight is indicated by the size of the blob . In this figure. tbe time
delays are displayed spat ially as a 3 fram e window of 16 spectral coefficients .
Conceptually, the weights in this window form a moving acoustic-phonetic fea­
ture detector , that fires when the pattern for wbich it is specialized is encoun­
tered in the input speech. In our example, we can see that hidden unit num ber
4 (wbich was activated for " DO" ) has lea; ned to fire wben·a falling (or rising )
second formant starting at around 1600 Hz is found in tbe input (see filled arrow
in Fig.14). As can be seen in Fig.13, this is the cue for "DO" and hence the
firing of bidden uni t 4 after voicing onset (see row pointed to by the filled arr ow
in Fig.13). In the case of "OA" (see Fig.12) in turn , the second forman t does
not fall significan tl y, and hidden unit 3 (pointed to by the filled arr ow) fires
ins tead . From Fig.. 14 we can verify t hat TDNN-unit 3 has lear ned to look for a
steady (or only sligbtly falling) secon d formant starting at about 1800 Hz. T be
connections in .the second ·and third layer then link the different firing pat terns
observed in the first bidden layer into one and the same decision.

Another interesting feature c"an be seen in the bottom hidden unit in hidd en
layer number 1 (see Fig.12, Fig.13 and compare with the weights of hidden unit
1 disp layed in Fig .14). This unit haa learned to take on the role of finding
the segment boundary of the voiced stop. It does so in reverse polari ty , i.e.,
it is always on e:cept when the vowel onset of the voiced stop is encountered
(see unfilled anow in Fig.13 and Fig.12). Indeed, the. higher layer TD NN-units
subsequently use this " segmenter" to base the final decision on the occurrence
of the right lower features at the right point in tinne.

In the previous example, we have seen that t he TDNN can account for var ia­
tions in phonetic context.. F ig.IS and Fig.16 show examples of variability caused
by the relative position of a phoneme within a word. In Japanese, a " G" em­
bedded in a word tends to be nualized aa seen in the spectrum of a "GA"
in Fig .IS. Fig.16 shows a word init ial " GA". Despite the striking differen ces
between these two input spectrograms , the network 's internal alternate repre-
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sent ations manage to produce in bot h cases crisp output firings for the right
category.

Fig.17 and Fig.18, fi nally, demonstrate the shift- invariance of the network.
The y show the same token " DO· of Fig.13, misaligned by + 30 msec and ­
30 rnsec, respect ively. Despit e the gross misalignment , (note that siznificant
tran sitional information is lost by the misalignment in Fig.18) the correct result '
was obtained reliably. A close look at the internal activation patt erns reveals
tha t the hidden units feature detectors do indeed fire according to the .events
in the input speech, and are not negat ively affected by the relative shut with
respect to the input units .

Three importan t properties of the TD NNs have therefore been observed .
First. our TD:-IN was able to learn with out human interference meaningiul
linguist ic abstrac t ions such as formant trackUlg and segmentat ion. Second . we
have demonst rated that it has lea rned to form alternate representat ions linking
different acoustic events with the same higher level concept . In this fashion
it can implement trading relations between lower level acoust ic events leading
to robust recognition performance. Third, we have seen that the network is
shift-invariant and does not rely on precise alignment or segmentat ion of the
input.

5 Conclusion and Summary

In this paper we have presented a T ime Delay Neural :-Ietwork (T Di':-I ) ap­
proach to phoneme recognit ion. We have shown that this T DNN has two desir­
able properties related to the dynamic structure of speech. First , it can learn the
temporal str ucture of acoustic events and the temporal relat ionships between
such events. Second. it is translat ion invariant , that is, the features learned by
the network are insensitive to shifts in time . Examp les demonstrate that the
network w~ indeed. able to learn acoustic phoneti c features, such as formant
movements and segmentat ion, and use them effect ively as int ernal abstract ions
of sp eech.

The TD NN presented here h.... two hidden layers and has the ability to lear n
complex non-linear decision surfaces . This could be seen from the network 's
ability to use alternate internal represen tations and trading relations among
lower level acoust ic-phonetic features, in order so arrive robus tly at the correct
final decision. Such alternate representations have been par t icular ly useful for
representm g tokens that vary considerably from each other due to their different
phonetic environment or their posit ion within the original speech ut terance.

Finally, we have evalua ted the TDNN on the recognition of three acoustically
similar phonemes , the voiced stops "B"/'D" aad "' G". In extensive performance
evaluat ion over testin g data from three speakers, the TD NN achieved an average
recogniti on score of 98..5 %. For compariso n. we have applied various Hidden
Markov Models to the same task and only been ab le to reach recognize 93." %
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of t he to kens correctl y. lVe would like to note , th at man y vari ations of HMMs
have been attempted and many more variatio ns of bo th H~1Ms an d TD N:'o1s
are conceivab le. Some of these variat ions could pote ntially lead to significan t
improvements over the results reported in this study. Our goal here is to present
TDN~s as a new and successful a.pp roach for sp eech recogn ition . Their power
lies in their abi lit y to develop shift-invari ant internal abstractions of speech
and use them in trading relat ions for making op timal decisions . This holds
SIgnificant promise for speech recognition in general , as it could overcome the
represent ational weaknesses of exist ing techniques when faced with uncerramty
and vari ability in real life signals.

21



' .

-;.' ..,

~ I O . ') "- -' C:: OI"'I"''!'ct

~ .o

Figure 6: Scatter plot showing log prob abilities for the best matching incorrect
case vs. the correctly recognized " B"s using a HMM
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Figure 9: Scatter plot showing act ivat ion levels for the best m&tching incorrect
case vs. the correctly recognized " B"s using &T DNN
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