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Abstract In this paper we present a Time Delay Neural Ne twork (TDNN) approach to phon eme recognition

which is characterized by two important properties: 1.) Using a 3·1ayer arrangement of simp le computing un its ,
a h ierarchy can be constructed that allows for the formation of arbitrary nonlinear decision surfaces. Th e TDN N

learns these decision surfaces automatically using error back-propagation[l]. 2.) The time-delay ar rangemen t

ena bles th e network to discover acousti c-phonetic fea tures and the temporal relation sh ips between them

indepe ndent of position in time and hence not blu rred by temporal shifts in the input. Ali; a recogni tion task , the

speak er-dependent recogn iti on of th e phonemes "'B", ''D'' and "G" in varying phonetic contexts was.chosen. For

comparison, several discrete Hidden Markov Models (HMM) were trained to perform. th e same task. Performan ce

evalua tion over 1946 testing tokens from three speakers showed that the TDNN achieves a recogni tion rate of

98.5% correct. whi le th e ra te obtained by the hestofour HMMs was only 93.7%. Closer inspec tion revea ls th at the

network "in ven ted" well -known acous tic -phoneti c features (e .g ., F2 -ri se, F2-fall, vowel-onset> as usefu l

abstractions. It a lso deve loped. alternate in te rnal representations to link different acoustic realizations to the

same concept.

1 Introduction

In recent year s, th e advent of new learning procedures
and the availabili ty of high speed parallel supercomput­
ers have given rise to a renewed interest in connecti onis t
models of intelligeacejf]. Th ese models are par ticularly
interesting for cognitiv e t asks that require massive con­
straint satisfaction, i.e., the parallel evaluation of many
clues and facts and their interpretation in th e light of
numerous inte rrelate d const rain ts . Because of the far­
reaching implications to speech recogni tion , neural net­
works have recently been compared with other pattern

recognitio n classifiers[2] and with other speech recogni­
tion teehniques (see [3] for review) . Although a number
of studies report encouraging recognition performance ,
superior performance figures in comparison to existing
techniques are needed before neural networks can be
considered as a viable alternative for speech recognit ion
systems. One possible explanation for the mixed per­
formance resul ts obtained so far might be given by the
inability of most neural network architectures to deal
properly with the dynamic nature of speech . Two im­
por tant aspects of this are for a. network to represent
tempor al relationships between acoustic events , while at
th e same time providing for invariance under translat ion
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in time. The specific movement of a formant in time . for
example, is an impor tan t cue to determining the identity
of a voiced stop , but it is irrelevant whether the same
set of events occurs a lit tle sooner or later in the course
of time . Without tr anslation invarience a neural net re­
quires precise segmentat ion, to align the input patter n
properly. Since this is not always possible in pr actice,
learned features tend to get blurred (in order to accom­
moda te slight misalignments) and their performan ce de­
terio rates.

In the present paper , we describe a. Time Delay Neu­
ral Network (TDNN ), which addressee botb of these
aspects . We demonstrate through extensive perfor­
man ce evaluation that superior recognit ion results can
be achieved.

2 Time Delay Neural Networks

To be useful for speech recognition. a layered feed for­
ward neural network must have a number of prope rties.
First , it should have multiple layers and sufficient inter­
conn ect ions between units in each of these layers. This
is to ensure . that the net work will have the ability to
learn complexnon-linear decision surfaces[2] . Second ,
the network should have the ability to represent rela­
tionships bet ween events in time . These events could
be spectral coefficients, but might alsohe the output of
higher level feature detectors. Third , the actu al features
or abstractions learned by the network should be invari­
ant under translation in time. Fourth . the learning pro­
cedure should not require precise temporal alignment of
the labels th at are to be learned . Fifth, the number of
weights in the network should be small compared to the
amount of training data so that the network is forced to
encode the training data by extracting regularity. In the
following, we describe a TDNN architecture that satis­
ties all of these criteria and is designed explicitly for the
recognition of phonemes, in-par ticular , the voiced stops
"E", "0" and "G" .

2.1 A T DNN for Phoneme Recognition

The basic uni t used in many neural net workscomputes
the weight ed sum of its inputs and then passes this sum
through a non-linear function. most commonly a thresh­
old or sigmoid function[2.1]. In our TDNN. this basic
unit is modified by introducing delays D, through DN

as shown in Fig.1. The J inputs of such a unit now
will be multiplied by several weights , one for each delay
and one for the undeleyed' inpu t . For N = 2, and J =
16, for example, 48 weights will be needed to compute
the weighted sum of the 16 ~puts . with each inpu t now
measured at three different points in time . In this way
a TDNN unit has the ability to relate and compare cur­
rent input with the past histo ry of events . T he sigmoid
funct ion was chosen as the-non-linear out put funct ion
F due to its convenient mathematic al properties[1,4].

For the recognition of phonemes. a th ree layer net is
constructed. Its overall architecture and a typical set of
activities in the units are shown in Fig.2.

At the lowest level, 16 me1sca1e spectr al coefficients

Figure 1: A T ime Delay Neural Network (T DNN) unit

BO G

Output Layer

integration

Hidd en Layer 2

Hidd en l aye r 1

Input layer

. .. ... ......... .
15 fram es

10 msec fram e rate

Figure 2: The TDNN architecture (input : " DA")

serve as input to the network. ~p¥~ speech; sampled at
12 kHz, was hamming windowed and a 256-point FIT
compu ted every 5 msec. Melscale coefficients were com­
puted from tbe power speetrum[3] and adjacent coeffi­
cients in time collapsed resulting in an overall 10 msec
frame rate. Th e coefficients of an input token (in this
case 15 Ieemes of speech centered around the hand le­
beled vowel onset ) were then normalized to lie between
-1.0 and + 1.0 with the average at 0.0. Fig.2 shows the
resulting coefficients for the speech token ..DA" as in­
put to the network, where positive values are shown as
black and negative values as grey squares.

t
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This input layer is then fully intercon nected to a
layer of 8 time delay hidden units , where J = 16 and
N = 2 (i.e. , 16 coefficients over three fram es wit h time
delay 0, 1 an d 2) . An alternative way of seeing this
is depicted in Fig.2. It shows the inputs to these t ime
delay units expanded out spat ial ly into a 3 frame win­
dow, which is passed over the input spectrogram. Each
unit in the first hidden layer now receives input (via.
48 weighted connect ions) from t he coefficients in t he 3
frame window . Th e particular delay choices were mo ti­
vat ed by earlier studies [5,6}.

In the second hidden layer, each of 3 TDNN units
looks at a 5 frame window of activity levels in hid den
layer 1 [i.e., J = 8, N = 4) . T he choice of a larger 5 frame
window in th is layer was motivated by t he intuit ion that
higher level units should learn to make decisions over a
wider range in time based on more local abstract ions at
lower levels.

Finally, th e output is obtained by integrating (sum­
ming) the evidence from each of the 3 units in hidden
layer 2 over time and connecting it to its per tinent out­
put uni t (shown in Fig.2 over 9 frames for the "D" ou t-­
put unit). In practice, this summation is implemented
simp ly as another TDNN unit which has fixed equ al
weights to a row of unit firings over time in hidden layer
2.

When the TDNN has learn ed its intern al rep resen­
tat ion , it performs recognition by passing inpu t speec h
over the T DNN units. In "terms of the illustration of
Fig.2 this is equivalent to passin g the t ime delay win­
dows over the lower level units ' firing pat terns . At the
lowest level, these firing patterns simply consist of the
senso ry inpu t , i.e., the spe ctral coefficients.

Each T DNN un it outlined in this section has th e
ability t o encode temporal relationships within th e range
of the N delays. Higher layers can attend to lar ger t ime
spans, so local short duration feat ures will be formed
at the lower layer and more complex longer durat ion
featu res at the higher layer . T he learning procedure en­
sures that each of the units in each layer has its weights
adjusted in a way that improves the net work's overall
perform ance .

2.2 Learning in a TDNN

Several lear ning techniques exist for optimizatio n of neu­
ral networks[1,2]. For the present network we adopt the
Back-propagation Learning Procedure[1 ,4]. T his pro­
cedure ite ratively adjusts all the weights in the ne t-­
work so as to decrease the error obtained at its output
units. To arr ive at a tr anslat ion invariant network, we
need to ensure during learning tha t the network is ex­
pose d to sequences of patterns and th at it is al lowed
(or encouraged) to learn a.bout the most powerful cues
and sequences of cues among them. Conceptually, the
back-propagat ion proced ure is applied to speech pa t­
terns tha.t are ste pped through in t ime. An equiva­
lent way -of ach ieving this result is to use a spatially
expanded inputpattern , i.e., a spectrogram plus some
constraints on the weights . Each collection of TDNN­
units described above is dup licated for each one frame

shift in time . In this way the whole his tory of activ­
ities is available at once . Since the shifte d copies of
the TDNN-units are mere duplicates an d are to look
for the same acoustic event , the weights of the corre­
sponding connect ions in the t ime shifted copies must
be const rained to be the same. To realize this , we first
apply the regular beck-propagation forward and back­
ward pass to all time shifted copies as if they were sep­
arate events . T his yields different error derivati ves for
corresponding (time shifted) connections. Rather than
changing the weights on time-shifted connections sep­
arately, however , we act ually update each weight on
corresponding connections by the same value, namely
by the average of all corresponding time-delayed weight
changes". Fig .2 illustrates this by showing in each layer
only two connections that are linked to (constrained to
have the same value as) their t ime sh ifted neighbors .
Of course, this app lies to all connections an d all t ime
shifts. In this way, the network is forced to discover use­
ful acoust ic-p honetic features in the input , rega rdless of
when in time they actually occurre d. This is an im­
portant property , as it makes t he network independent
of erro rprone preprocessing algorith ms, that otherwise
would be needed for time alignment an d/ or segmenta­
t ion.

Th e procedure described here is computationally ra­
ther expensive, due to the many ite rations necessar y
for learning a complex multidimens ional weight space

and the number of learn ing samples. In our case , about
800 learni ng samples were used and between 20,000 and
50,000 it erations (step-size 0.002, momentum 0.1) of the
back-propagation loop were run over all training sam­
ples . For greater learning speed, simulat ions were run
on a 4 processor Alliant supe rcomputer and a staged
learning strategy[3] was used to achieve faster conver­
gence an d good generalization . Learning still took about
4 days , but additional substantial increases in learning
speed are poss ible[3]. Of course , this high computa­
tional. cost applies only to learning. Recognit ion can
easily be run in better than real-time.

3 Hidden Markov Models

As an alternative recognition approa ch we have imple­
mente d several Hidden Mark ov Models (HMM) aimed
at phoneme recognit ion. HMMs are curre ntl y the most
successful and promising approach [8,' ,7J in speech re­
cognition as they have been successfully applied to the
whole spect ru m of recognit ion tasks . HMMs' success is
partially due to their ab ility to cope with the veriabil­
ity in speech by mean s of stochastic modeling . In the
following sections, we describe the HMMs developed in
our laboratory. They were aimed at phoneme recogni­
t ion , more specifically the voiced stops ItB", "D" and
"G" . More detail including results from exp eriments
with variations on these mode ls are given elsewhere[1tl,3J
and we will restr ict ourselves to a brief desc ript ion of

INot e th at in th e experiments reported below tbese weight
changes were ~tua1ly carried out each t ime the error deri vatives
£rom all tnU ning samples bed been COn'ipu ted [4J.
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our best configuration.
The acoustic front end for Hidden Markov Mod­

eling is ty pically a vector quantizer that classifies se­
quences of short-time spect ra. Input speech was sam­
pled at 12kHz, preemphasized by (1 - 0.97 . - 1) and
windowed using a 256-point Hamming window every
3 msec. Then a 12-order LPC analysis was car ried
out. A codebook of 256 LPC .spectrum envelopes was
generated from 216 phonetically balanced words . The
Weighted Likelihood Ratio augmented with power val­
ues (PWLR)[ Il) was used as LPG distance measure lor
vecto r quantization. An HMM with four st ates and six
transitions (the last state without'S selfloop] was used in
this study. The HMM probability values were trained
using vector sequences of phonemes according to the
forward-backward algorithm[7}. The vector sequen ces
for "B", "0" and "G" include a consonant part and five
frames of the following vowel. This is to model impor­
tant transient informations, such as formant movement
and has lead to improvements over context insensitive
models jre]. The HMM was trained until convergence us­
ing about 250 phoneme tokens of vector sequences per
speaker and phoneme . Typically, about 10 to 20 learn­
ing iterations were required for 256 tokens. A training
run took about one hour on a VAX. 8700. Floor val­
ues were set on the outp ut probabilities to avoid errors
caused by zero-probabilities. We have expe rimented
with composite models , which were trained using a com­
bination of context-independent and context-dependent
probability values[CJ1 , but in our case no significant im­
provements were at tai ned.

4 R ecognition Experiments

We now turn to an experimen tal evaluation of the two
techniques described. in the previous sections . To pre>
vide a good framework for comparison, the same ex­
periment al condi tions were given to both methods. For
both, . the same tr aining data was used and both were
tested on t he same testing database as described below .

4.1 Experimental Conditions

For performance evaluat ion, we have used a large VI(>.

cahulary database of 5240 common Japanese words[3).
These words were uttered in isolation by th ree male na­
t ive Japanese speakers (MAU, MHT and MNM, all pro­
fessional announcers). All ut teran ces were recorded in
a sound proof booth and digitized at a 12 kHz sampling
rate. The da.tabase was then split into a training set
and a testing set of 2620 utterances each, from which
the actu al phonetic tokens were extracted.

Th e phoneme recognition task chosen for this exper­
iment was the recognition of the voiced stops, i.e ., the
phonemes "B", "D" and " G" . The actual tokens were
extracted from the ut terances using manually selected
acoustic-phonetic labels provided with the database[3].
For speaker MAU, for example, a total of219 " B?s, 203
"Dvs and 260 "G" s were extracted from th e training
and 227 " B"s , 179 "O"s and 252 "G"s from the testing
dare. Bot h recognit ion schemes, the TDNNs and the

HMMs, were trained and tested speaker- dependently.
Thus in both cases, separate networks were trained for
each speaker .

In our database, no preselection of tokens was per­
formed . All tokens labeled as one of the three voiced
sto ps were includ ed. It is important to Dote , that since
the consonant tokens were extracted from entire ut ter­
ances and not read in isolat ion , a significant amou nt
of phonet ic variability exists . Foremost, th ere is the
variability introduced by th e phonetic context out of
which a token is ext racted. Second, the positi on of a
phonemic token within the utterance introdu ces addi­
tional variabilitr . Both of our recognition algorithms
are only given t he phonemic identity of a token and must
find their own ways of representing the fine variations of
speech. Since recognition results based on the training
data are not meaningful, we report in the following only
t he resu lts from open testing , i.e., from performance
evaluation over the separate testing dat a set.

4.2 Resu lts

Ta ble 1 shows the results from the recognit ion exper­
iments described above. As can be seen, for all three
speakers, the TONN yields considerable performance
improvements over our HMM. Averaged over all three
speakers, the error rate is reduced from 6.3% to 1.5%,
a more than four fold reduction in error .

number TDNN TDNN HMM HMM
speaker of tokens , errors "correct I errors .. correct

\)(227) , 18
MAU d(l79l 3 98 .8 G 92.9

g(252l 1 23

b(208 ) 2 8
MIlT d(170 0 99 .1 3 97 .2

g(254) , ,
b(21&) 11 2'

MNM d(l 78) 1 ".5 13 90.'
g(25 6) • "

Table 1: Recognition results for three speakers over test
data using T DNN and HMM

Fig.3 and Fig .4 show scatter plots of the recogni­
t ion outcome for the "0"5 in the test data for speaker
MAU, using tbe HMM and t he TD NN. For the HMM
(Fig.3), the log probability olthe next best matching in­
correct token is plotted against the log probability (nor­
malized by number of frames) of the correct token, " 0" .
In Fig.4 , the activation levels from the TONN's output
units are plotted in t he same fashion. T he most st riking
observat ion th at can be 'made from these plots is that
theoutput units of a TDNN have a tendency to fire with
high confidence as can be seen from the cluster of dots
in the lower right hand corner of the scatter plots. Most
output units tend to fire str ongly for the correct phone­
mic class and not at all for any other , a property that
is encouraged by the learning procedure. One possible
consequence of this is that rejection thresholds could be
introd uced to improve recogn ition performance. If one
were to elimina.te among speaker MAU's t okens all those

'In JapMlese. foc example, & "0" i ' nasalized, when i t OCCUJ'I

embedded in aD utteraDce, b ut no t in UUeranc:e initial position .
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whose highest activation level is less than 0.5 and those
which result in two or more closely competing active­
tiona (l.e., dots near the diagonal of the scatter plots ;
see[3] for complete set) , 2.6% of all tokens would be re­
jected , while the remaining substitution error rate would
be less than 0.46%.

0.'

Figure 3: Scatter plot showing log probabilities for the
best matching incorrect case vs. the correctly recog­
nized "D" 8 using a. HMM

L O

the input layer. As can be seen from Fig.5, the fourth
hidden unit fires particularly strongly after vowel onset
in the case of"OO" . while the third unit shows st ronger
activation after vowel onset in the case of "DA" .

Fig.6 shows the significance of these different firing
patterns. Here the connection st rengths for four of the
eight moving T DNN units are shown, where white and
black blobs represent positive and negative weights , re­
spectively, and the magnitude of a weight is indicated
by the size of the blob. In this figure, the time delays are
displayed spati ally as a 3 frame window of 16 spectral
coefficients. Conceptu ally, the weights in this window
form a moving acoustic-phonetic feature detector I that
fires when the pattern for which it is specialized is en­
countered in the input speech . In our example, we can
see th at hidden unit number 4 (which was activated for
"DO" ) has learned to fire when a falling (or rising) sec­
ond formant start.ing at around 1600 Hz is found in the
input (see filled arrow in Fig.6). ~ can be seen in Fig.5,
this is the ease for" DO" and hence the firing of bidden
unit 4 after voicing onset (see row pointed to by the

• I I . I
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Figure 5: TONN Activation patterns for centered and
misaligned (30 msec] "DO"

-.-

"
Figure 6: Weights on connect ions from 16 coefficients
over 3 time frames to four of the 8 hidden units in the
first layer

L O'.0
:-:,- -'--'-__.:..".c:or .-..: t.

Figure 4: Sca.tter plot showing activation levels for the
best matching incorrect case VB. the correctly recog­
nized "D"s using a T DNN

4.3 T he Learned Int ernal Represen t a­
t ions of a TDNN

Given the encouraging performance of our TDNNs , a
closer look at the learned int ernal representation of the
network is warranted. Additional examples illust rat­
ing the observations in the following can be found in
[3). Fig .2 and tbe left side of Fig.5 sbow two typical in­
stances of a " 0 " out of two different phonet ic contexts
("DN' and " DO", respect ively). In both cases, only
the correct unit, the "O-output unit" fires strongly, de­
spiLe the fact that the two input spectrograms differ
considerably from each other. If we study the internal
firings in these two cases we can see that the network
has learned to use alternate internal represent ations to
link variations in the sensory input to the same higher
level concepts . A good example is given by the firings of
the third and fourth hidden unit in the first layer above
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filled arrow in Fig .5) . In the case of "DA" (see Fig.2)
in turn , the second formant does not fall significan tly,
and hidden unit 3 (pointed to by the filled arrow) fires
instead. From Fig.6 we can verify tha.t T DNN-unit 3
has learned to look for a steady (or only slightly falling)
second formant st arting at about 1800 Hz. The conn ec­
tions in the second and th ird layer then link the different
firing patterns observed in the first hidden layer into one
and the same decision .

Another interesting feature can be seen in the bot­
tom hidden unit in hidden layer numb er 1 (see Fig.2
and Fig.5, and compare with the weights of hid den unit
1 displayed in Fig.6). This unit has learned to take on
the role of finding the segment boundary of the vo iced
st op. It does so in reverse polarity, i .e., it is always on
except when the vowel onset of the voiced stop is eo- I

countered (see unfilled arrow in Fig.5(left ) and Fig .2).
Ind eed, the higher layer TDNN-units subsequently use
thi s "segmenter" to base the final decision on the oc­
cur rence of the right lower feat ures at the right point
in time. T he right side of Fig.5, finally, demonstrates
the shift-invanance of the network. Here the same to­
ken " DO" is misaligned by 30 msec. Despite the gross
misalignment , the correct result was obtained reliably.
A close look at the internal activation pa tte rns reveals
that th e hidden uni ts ' feature detectors do indeed fire
accord ing to the events in the input speech , and are not
nega tively affected by the relati ve shift with respect to
the input units .

5 C onclusion

We have presented a Ti me Delay Neural Network for
phoneme recognition. By use of two hidden layers in
addition to an input and output layer it is cap able
of repr esenting complex non-linear decision surfaces.
T hree important pr operties of the TDNNs have been
observed. First , our TDNN was able to invent with­
out human interference meaningful linguist ic abstrac­
tions in time and frequency such as fonnant t racking
and segmentation. Second, we have demonstrated th at
it has teemed to form alternate representations link­
ing different acoust ic events with. the same higher level
concept. In this fashion it can implement trading rela­
tions be tween lower level acoustic events leadin g to ro­
bust recognition performance despite conside rable vari­
abil ity in the inpu t speech. Third, we have seen that
the network is translation-invariant and does not rely
on precise alignment or segmentation of the input. We
have compared the TDNN's performance with the best
of our HMMs on a speaker-dependent phoneme recogni ­
tion t ask. The TDNN achieved a recognit ion of 98.5%
compared to 93.7% for the HMM, i.e., a fourfold reduc­
t ion in error.
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