Hybrid Connectionist and Classical Approaches in JANUS
An Advanced Speech-to-Speech Translation System

A. Waibel 12, T.S. Polzin', U. Bodenhausen?, F.D. Bug®, N. Coccaro’, H. Hild?, B. Suhm'
Interactive Systems Laboratories
! Carnegie Mellon University, Pittsburgh, USA
2 Karlsruhe University, Karlsruhe, Germany

Abstract— In this paper we report on our efforts to combine speech and language pro-
cessing toward multi-lingual spontaneous speech translation. The ongoing work extends
our JANUS system effort toward handling spontaneous spoken discourse and multiple lan-
guages. After an overview of the task, databases, and the system architecture we will focus
on how connectionist modules are integrated in the overall system design. We will show
that these modules can because of their learning capabilities adapt themselves to the prob-
lem space. Moreover, because of their inherent robustness against noise they seem to be
an adequate tool for analyzing spontaneous speech.

1 Introduction

The goal of the JANUS project is multi-lingual machine translation of spontaneously spoken dialogs in
a limited domain. Currently we are using the scheduling domain, i.e. two people scheduling a meeting
with each other. We are working with German, Spanish, and English as source languages and German,
English, and Japanese as target languages. This paper reports on our efforts to make Natural Language
Processing (NLP) robust over spontaneous speech and to use NLP to constrain speech recognition. In
this article we focus on connectionist approaches to these problems. For statistical and knowledge-based
approaches to robust parsing and dialog modeling within the JANUS project see [19]. We consider the
connectionist modules in JANUS as additional processing stages complementing other alternate modules.
Our investigation of connectionist approaches in JANUS tries to overcome the following problems:

1. So far, specifying the parsing grammars takes most of the time in the development. Note, that each
source language requires its own parsing grammar. In using connectionist learning algorithms we try
to skip this step in the development.

2. When recognizing or parsing spontaneous speech one has to handle phenomena like restarts, repairs and
repetitions. Spontaneous language does not agree with traditional competence based grammar theories.
The inherent robustness of connectionist modules will give us an approximation of the solution even
when the input was noisy.

3. Connectionist systems allow an easy integration of different information sources. Traditional parsers
base their decisions only on syntactic information. The integration of eg. semantic or prosodic in-
formation in a connectionist module stabilizes processing and reduces the amount of ambiguity in its
output.

In the following we will describe the Scheduling Task. Then we will give a brief overview of the system
architecture. Within this architecture we use connectionist modules at three different processing stages:

e Recognition
e Parsing

e Discourse Processing

Each of these connectionist processing stages will be described in the following sections.

2 The Scheduling Task Database

To be able to develop a system for spontaneous speech, we are collecting a large database of human-to-
human dialogs on the scheduling task. Several sites in Europe, the US, and Japan have now adopted
scheduling as a common task under several research projects. These projects include the German Gov-
ernment’s Verbmobil project for German and English translation, the Enthusiast project for Spanish-to-
English translation and the activities of the C-STAR consortium of companies and universities in the
U.S., Germany, and Japan for translation of German, English, and Japanese; other languages are now
being added as new members are joining the consortium.

The data collection procedure involves two subjects who are each given a calendar and are asked to
schedule a meeting. There are 13 different calendar scenarios differing from each other in what is scheduled
and how much overlap there is in the free time of the two participants. Other scenarios/calendars are
periodically added. Data has been collected in English, German, and Spanish using the same data
collection protocols at Carnegie Mellon University, Karlsruhe University, and the University of Pittsburgh.

English German Spanish
dialogs | utterances | dialogs | utterances | dialogs | utterances
recorded 383 4000 451 4628 146 2920
transcribed 328 3300 215 2293 68 1080

Table 1: State of Data Collection March 1994

Speaker 1: /h#/ /um/ when can we get together
again {comma} < on our
[m(eeting)] > {comma} /um/ to discuss
our project {period} {seos}
/um/ how’s @how is@ {comma} /um/ Monday
the eighth {quest} around two
thirty {quest}
#key click# #paper_ruffle## {seos}

Speaker 2: #key_click# /ls/ /h#/ /uh/
Monday afternoon’s @afternoon is@
no good {period} {seos}
I've @I have@ got a meeting from two to
four {comma} {seos}
that’s @that is@ not gonna @going to@
give us enough time to get together
{comma} {seos}
/h#/ /um/ *pause* Tuesday afternoon {comma}
the ninth {comma}
would be okay for me though {comma}

#key click# /h#/ {seos}

Speaker 1: /ls/ /h#/ unfortunately I'll @I will@
be out of town {comma}
from {comma} the ninth {comma} through
the eleventh {period} {seos}
/um/ checking my calendar {comma}
/im/ /h#/ Friday’s @Friday is@ no
good {comma} either {period} {seos}
let’s @let us@ see {comma} maybe next week

{comma} {seos} /h#/ /oh/ /h#/ that’s
@that is@ bad {comma} {seos}

< my class schedule’s @schedule is@

[t] {comma} {seos} >

okay {comma} /h#/ how 'bout on
Tuesday the sixteenth {comma}

any time after twelve thirty {period}

#key _click# /h#/ /h#/ {seos}

Figure 1: Sample Transcription: Text contained in slashes represent human noise; hash marks—non-
human noise; curly braces-intonation (except {seos}); angle brackets—false starts; square brackets—
mispronunciations; @—contractions; {seos}—end of semantic sentence unit.

The advantages of this experimental design using the same calendars for all languages is that it solicits
similar domain-limited dialogs while ensuring a spontaneous, natural (not read or contrived) speaking
style. Thus techniques can be compared across languages, and have enabled us to explore automatic
knowledge-acquisition and MT techniques in several languages on a comparable task. Table 1 specifies
the amount of data collected in each language in terms of the number of dialogs and the number of
utterances that have been recorded and transcribed.

We have developed standard transcription conventions that are employed across languages, ensuring
uniformity and consistency. Words are transcribed into their conventional spelling. The transcription
also indicates human non-speech noises, non-human noises, silences, false starts, mispronunciations, and
some intonation. A sample of part of a dialogue is given in Figure 1.

Recent studies [14] and our own observations show that there are a higher rate of disfluencies in human-
human dialogs and significantly larger speaking rate variations, compared to human-machine database
queries. Table 2 compares disfluencies in human-human spontaneous scheduling tasks (SST) in German,
English, and Spanish and human-machine queries (ATIS). The table shows the utterance length in words
as well as human noises (filled pauses, laughter, coughs, etc. but not intelligible words such as “okay”,
“well”) and false starts (chopped words and repetitions, deletions, substitutions and insertions of words,

but not filled pauses) as percentages of the total number of words in the transcripts '. Table 2 suggests
that human—human dialogs lead to longer utterances which are more disfluent.

In addition, Table 3 shows perplexities for bigram and trigram language models for English, Spanish, and

1To exclude artifacts from differing data collection set—ups we didn’t consider non-human noises (e.g. clicks, paper
rustle) in this statistics.

Figure 2: System Diagram

We employ a multi-strategy approach for several of the main processes. For example, we are experimenting
with TDNN, MS-TDNN, MLP, LVQ, and HMM’s for acoustic modeling; n-grams, word clustering, and
automatic phrase detection for language modeling; statistically trained skipping LR parsing, connectionist
parsing, and robust semantic parsing for syntactic and semantic analysis; and statistical models as well

?Discourse processing has not yet been implemented. In this paper we are reporting our plans for this component.

as plan inferencing for identification of the discourse state. The multi-strategy approach should lead to
improved performance with appropriate weighting of the output from each strategy.

Processing starts with speech input in the source language. Recognition of the speech signal is done with
the acoustic modeling methods mentioned above, constrained by the language model, which is influenced
by the current discourse state. This produces a list of the N-best sentence candidates, which are then
sent to the translation components of the system.

At the core of our machine translation system is an interlingua, which is intended to be a language-in-
dependent representation of meaning. The parser outputs a preliminary interlingua text (ILT) or some
ILT fragments corresponding to the source language input. After parsing, the ILT is further specified by
the discourse processor. The discourse processor performs functions such as disambiguating the speech
act or discourse function, resolving ellipsis and anaphora, and assembling ILT fragments into full ILTs.
It also updates a calendar in the dynamic discourse memory to keep track of what the speakers have said
about their schedules. Based on the current discourse state, a flag is set, which is used by the parser to
resolve ambiguities in the next sentence to be parsed, and by the recognizer to dynamically adapt the
language model to recognize the next utterance. Once the ILT is fully specified, it can be sent to the
generator to be rendered in any of the target languages.

The formalism used to specify an ILT is called a feature structure. Feature structures and variants of
them? is a frequently used representation scheme in computational lingnistics.

Connectionist modules enter this architecture at three places:

1. the recognizer
2. the parser

3. discourse processor

4 Connectionist Speech Recognition

The connectionist speech recognition modules of the system are based on two different approaches: Time-
Delay Neural Networks (TDNN) and Learning Vector Quanitzation (LVQ). These approaches and the
current research issues are briefly introduced in the next sections.

4.1 Continuous Speech recognition using LVQ/HMM-Hybrids

LVQ is a neural network based learning vector clustering technique. We have used LVQ to automatically
cluster speech frames into a set of acoustic features. These features are fed into a set of output units
which compute the emission probability of HMM states.

In the LVQ based speech recognizer designed for the Conference Registration Task and the Resource
Management Task, an LVQ algorithm with context-dependent phonemes is used for speaker independent
recognition. For each phoneme, there is a context independent set of prototypical vectors. The output
scores for each phoneme segment are computed from the euclidean distance using context dependent
segment weights.

Recent improvements of these recognizers include the introduction of noise models as well as the im-
provement of the training algorithms; the 1994 results in table 4 were obtained using triphone clustering,
corrective training and feature weights [18].

1991 1994
Conference Registration 9.1 % 3.7 %
Resource Management 24 % 5.1 %

Table 4: Comparison of error-rates

The noise modeling in the recognizer was recently improved for the spontaneous speech tasks (ESST,
GSST, SSST, see above). In order to generate acoustic models for the human and nonhuman noises,
we have build classes of noises to maximize available training data per model. Frequent human noises
(“ah”, breathing, lip smack, “uh”, “um”) and nonhuman noises (key klick, paper rustle) form a class of
their own. Less frequent human noises build one class and rare nonhuman noises are joined in another
class. A special class was introduced to handle those word fragments which were generated by restarts,
repeats, etc., and could not be modeled as regular words. For each of these 10 noise classes a dedicated
phoneme was added to the list of phonemes. Although approx. 20% of all words in the spontaneous
speech tasks are noises, the lack of training data remains the main problem of acoustic noise modeling.
Current research investigates improvements through clustering of the 10 noise classes [11].

3Basics can be found in [5, 13, 15, 16].

‘Word Layer

27 word units
(only 4 shown)

DTW Layer

27 word templates
(only 4 shown)

unity weights—- I

_'...-.--.-' & Phoneme L.

IETEER TR s 59 phoneme units
i (only 9 shown)

Hidden Layer
15 hidden units

3 time delays—

1 m M Allend i HIH N :: Input Layer

i 16 melscale FFT

||‘ 1 ll \:\ :\ :u HiE i coefficients at a 10
! 1

i

msec {rame rate

Figure 3: The MS-TDNN recognizing the excerpted word “B’. Only the activations for the words ‘SIL’,
‘A’ ‘B’, and ‘C’ are shown.

4.2 Letter Recognition with The MS-TDNN

The recognition of spelled strings of letters is essential for speech recognition application involving proper
names or addresses. However, it is very difficult to get good recognition results on the highly confusable
letters, if they constitute only a small fraction among thousands of words of a large vocabulary recognizer.
In addition, since most letters are very short, they are easily inserted everywhere, and many words are
pronounced like letter sequences, for example“See you” = “C U”, or “R U E C” = “are you easy”. To

achieve reasonable results on letter strings, we developed a specialized letter recognizer, which is based
on the MS-TDNN architecture.

The MS-TDNN [7, 8] is an extension of the TDNN architecture[20]. Tt integrates the time-shift
invariant architecture of a TDNN and a nonlinear time alignment procedure (DTW) into a high accuracy
word-level classifier. Figure 3 shows the MS-TDNN in the process of recognizing the excerpted word ‘B’
represented by 16 melscale FFT coefficients at a 10 msec frame rate. The first three layers constitute
a standard TDNN, which uses sliding windows with time delayed connections to compute a score for
each phoneme for every frame, these are the activations in the “Phoneme Layer”. FEach word to be
recognized is modeled by a sequence of phonemes. In the “DTW (Dynamic Time Warpmg) Layer”,
optimal alignment path, i.e. the path with the highest accumulative phoneme scores is found for each
word, the activations along these paths are then collected in the word output units. The network works
with a relatively small number of parameters. 50 rows of hidden units are used for speaker-independent
recognition, corresponding to about 20000 trainable parameters, i.e. network weights.

Training starts with “bootstrapping”, during which only the front-end TDNN is trained as a frame-by-
frame phoneme classifier, with phoneme boundaries fixed as given in the training data. In a second phase,
training is extended to the word level, where phoneme boundaries within the given word boundaries are
freely aligned in the DTW Layer. Instead of phonemes, the output are now words, and error derivatives
are backpropagated from the word units through the alignment paths and the front-end TDNN.

The choice of sensible objective functions is of great importance. For training on the phoneme level, there
is an output vector Y = (y1,...,yn) and a corresponding target vector 7' = (1, ...,t,) for each frame in
time. 7" represents the correct phoneme j in a “l-out-of-n” coding, i.e. t; = 6;;. Standard Mean Square

Error (MSE =37 | (y; — t;)?) is problematic for “l-out-of-n” codings for large n (n > 50 in our case);
consider for example that for a target (1,0,...,0), the output (0.0,...,0.0) has only half the error than
the more desirable output (1.0,0.2,...,0.2). This problem is avoided by

Enrccieitana(T,Y) ZlOg (1—(y; —t:)%)

which (like cross entropy) punishes “outliers” with an error approaching infinity for |¢; — y;| approaching

1.0.

For the word level training, we have achieved best results with an objective function similar to the
“Classification Figure of Merit” (CFM) [6], which tries to maximize the distance d = y. — yp; between
the correct score y. and the highest incorrect score yp; instead of using absolute targets 1.0 and 0.0 for
correct and incorrect word units:

Ecpm(T,Y) = f(ye — yni) = f(d) = (1 —d)?
The philosophy here is not to “touch” any output unit not directly related to correct classification. We
found it even useful to backpropagate error only in the case of a wrong or too narrow classification, i.e. if

Ye — Yni < 6safety_ma7‘gin

Experiments. The recognizer was trained and tested both on large English and German data bases. The
English performance was measured on the DARPA Resource Management Spell-mode data, consisting of
a total of 1680 spelled words from 120 speakers. We achieved speaker-independent recognition results of
92.0% letter accuracy. The larger German data base consists of a training set of over 8000 strings spelled
by 70 speakers. 90.1% letter accuracy was achieved on a test set of 1316 strings. With every tenth letter
misrecognized, the string accuracy (as required for example to spell a name or word) is still only 56%.
However, we have experimented with several techniques[10] to constrain the search space. When the
search space was limited to a list of 40,000 unique names (from a telephone book with 111,000 entries),
letter and string accuracy could be improved up to 97% and 92%, respectively.

4.3 Automatic Structuring of Neural Networks for Speech Recognition

Despite the use of powerful learning algorithms for most parameters of a speech recognizer, the best
possible performance greatly depends on the tuning of the architecture to the particular task. For fast
adaptation of connectionist speech recognizers to new domains without laborious manual tuning the
following algorithms were developed:

e The Automatic Structure Optimization (ASO) algorithm [1] that does the architectural tuning auto-
matically for neural network speech recognition systems.

e The Automatic Validation Analyzing Control System (AVACS) [2] that is designed to detect overfitting
models on a class by class basis as early as possible and to selectively change their learning and
automatic structuring process.

For the application of neural networks to speech recognition all of the following architectural parameters
have to be well adapted to the task and the given amount of training data (see Figure 3):

e the number of hidden units
e the size of the input windows

e the number of phonemic states that model an acoustic event

The ASO algorithm automatically adapts all of these architectural parameters to the given task and
amount of training data in a single training run. The algorithm offers the flexibility to apply neural net
speech recognition systems to new domains without the need for manual tuning of the architecture.

ASO uses a constructive approach and starts with a small number of parameters for the given number
of training examples and increases this number to improve the performance on the training set. Unlike
the human developer, the ASO algorithm starts making decisions about resource allocations very early
in the training run, i.e. it is tuning the architecture while the network is learning the task (”tuning by
doing”). This allows the algorithm to complete the optimization process in a single training run.

AVACS monitors the learning and tuning process and is designed to detect and avoid overfitting models
on a class by class basis. A validation set is used to test the generalization ability of the system frequently
in the training run. The confusion matrices are computed for both the training and the validation data.
From these matrices a new confusion-difference matrix is computed. Overfitting can be easily detected
from this matrix. In this case, further allocation of new parameters is delayed and all the weights involved
in overfitting are contaminated with 10 - 30% of noise.

In addition to the advantage of offering an automatic architecture optimization that is automatically
validated and controlled, our approach also offers an attempt towards controlled error equalization.

Experiments. The algorithms were applied to the optimization of an MS-TDNN (see above) used for
speaker dependent connected English letter recognition. The automatically tuned MS-TDNN achieved
97.4% letter accuracy compared to a 97.5% letter accuracy of a handtuned MS-TDNN with a manual
tuning effort of more than one person-year.

5 Connectionist Parsing

We use two different approaches to connectionist parsing, both of which are descendants of the PARSEC-
system developed by Jain [12]. However, both systems improved their expressive power compared with

Labels

nvpn
output
i | go | to | boston
Boundaries
= i go to boston
input

Figure 4: Two backpropagation networks that are recursively connected using symbolic procedures to
store interim results. The Boundaries-module computes phrase boundaries. Given a certain context
window of words wy,-w,, the network decides whether a particular word w; (m < i < n) marks a phrase
boundary. The labeling-module computes labels for the phrases found in the former processing stage.
Given a certain context window of phrases p,-ps; (which are represented by the respective words) the
network computes the label l; for a particular phrase py (r < k <s).

the old PARSEC-system which could only output a flat case-based structure without more specific fea-
ture information. As a consequence, the internal structure and features of eg. a noun phrase was left
unanalyzed. The first approach [17] computes a traditional syntax tree for an input sentence. The second
approach [4] tries to output an ILT , or more general, a feature structure (cf. section 3). Both approaches
try to include semantic and prosodic information in their processing. Moreover, both approaches are not
purely connectionist but are based on a hybrid architecture where symbolic procedures are used to map
information from one network to another or to focus on certain information. This hybrid architecture
helps to keep the networks small and accelerate the training process.

5.1 Integrated Compositional Connectionist Parsing (ProPars)

This approach starts with the observations that sentences have no upper bound on their length and
on the depth of the resulting parse trees. This unboundedness of sentence length and output structure
has posed a problem for connectionist based parsing systems so far. Moreover, basing parsing decisions
only on syntactic information would result in ambiguities or wrong parse trees. Therefore we include
semantic and prosodic information in the parsing process. The overall system architecture of this module
(ProPars) consists of two backpropagation networks. The basic architecture is given in Figure 4. The

network labeled Boundaries is responsible for breaking up the input string into phrases.* The second
module, Labels, is responsible for labeling these phrases. The combined work of the Boundaries- and
Labels-module assigns a constituent structure to the string, where the assigned label is the dominating
node and the daughters are the corresponding nodes within the phrase.

Words are represented in the lexicon as binary feature vectors. Within each vector a lexeme has a
unique binary-Id encoding, a vector segment representing syntactic information, and a segment encoding
information about semantic properties (cf. Figure 5). During processing the Boundaries-module checks
for each word in the current input whether it marks a phrase boundary. To do this all vectors of the
words in the current context window are presented to the network. The context window moves over the
string from left to right. After all boundaries have been determined, the symbolic procedures map all
words (i.e. their vectors) and the phrase boundaries to the input nodes of the second Labels-network.
This network assigns labels such as noun (n), noun phrase (np), verb (v), or verb phrase (vp) to each
phrase. The procedure is similar to the one used for computing phrase boundaries. A context window
moves over the phrases in the current input from left to right and for each phrase the network determines
its label. Note the recursion in this architecture. The assigned list of constituent labels at some time
t serves as the input at time #+1. The recursion exits if a string of constituents can be reduced to the
single sentence symbol s. Since the list of constituent labels forms a “sentence” the respective labels have
to be defined in the lexicon, too. Thus, we have to specify lexical items like nouns n and verbs v and
their projections. In this setup we need symbolic procedures for:

e Storing intermediate results: We have to store for each pass (i.e. recursion step) phrase boundaries
and labeling.

e Mapping from the Boundaries-module to the Labels-module.

4 As the discussion below will show, we extend the usage of the word phrase which traditionally refers to wellformed
strings of terminals to wellformed strings of non-terminals as well.

id syntactic semantic prosodic

Figure 5: Lexical vector with additional prosodic information

([((speech-act *confirm)
(sentence-type *state)
(frame *clarify))

(1
([topic] ((frame *simple-time))
(L] by)
([1((day-of-week monday)) monday))
qn (l i))
([1((adverb perhaps))
(01 assume)))
([clarified]
(L] (L] you))
q (1 mean))
([((frame *simple-time))
([1((day-of-week monday)) monday)
q the)
([0 ((day 27)) ([rego] twenty seventh)))))

Figure 6: Sentence aligned with its feature structure

e Assembling the final syntax tree from the information stored during parsing. This procedure involves,
for example, deleting unary productions of the form vy — ~.

As indicated in Figure 5 we integrate prosodic information into the parsing process. Consider an utterance
“Let us talk about the conference on Monday”. The prepositional phrase “on Monday” can either attach
to the verb or to the noun phrase “the conference” giving rise to two different meanings. We hope that
the two different meanings are marked prosodically different such that we can use this information to
disambiguate between these two readings. Another application for an integrated connectionist parsing
approach is what we call utterance parsing. Consider the sample description in Figure 2. The output of
the recognizer - and the input to the parser-modules - is, of course, the unstructured string comprising
most of the time more than one sentence. This means that we have to deal with sentence boundaries
as well. We hope that an integrated approach by using syntactic, semantic, and prosodic information is
needed to handle this problem.

5.2 Feature Structure Connectionist Parsing (FeasPars)

In a different approach we tried to design a connectionist parsing system FeasPars that directly computes
the TILT for a given input sentence (cf. section 3).

When we compare a sentence with its ILT representation, we see that there is a correspondence between
parts of the feature structure, and specific constituents of the sentence.

Aligning our sentence with parts of the feature structure, we get a structure as shown in figure 6. We
note that:

e The sentence 1s hierarchically split into constituents.
e Feature pairs are listed with their corresponding constituent.

e Paths are shown in square brackets, and express how a constituent relates to its parent constituent.
Over 600 sentences from the ESST task where labeled according to this scheme.

FeasPars consists of three main parts:

1. The Chunker

2. The Linguistic Feature Labeler

3. The Constituent Path Finder

The Chunker splits an input sentence into constituents. It consists of three networks. The first network
finds regular expressions, such as numbers. Numbers are classified as being ordinal or cardinal numbers.
These regular expressions are presented as words by the following networks. The next network groups

words together to phrases. The third network groups phrases together to clauses. In total, we get four
levels of constituency; word/regular expressions, phrases, clauses and sentence.

The Linguistic Feature Labeler attaches features and feature values (if applicable) to these constituents.

For each feature, there is a classifier, which finds one or zero atomic value. Since there are many features,
each constituent may get none, one or several pairs of feature and atomic values. Since a feature normally
only occurs at a certain constituent level, the classifier is specialized for deciding about a particular feature
at a particular constituent level. This specialization is there to prevent the learning task from being too
complex, thus rendering it well learnable.

The Constituent Path Finder determines how a constituent relates to its parent constituent. It has one
classifier per constituent level and constituent path element.

The following example illustrates how the three parts work:
The parser receives the English sentence:
Can you meet in the morning

The Chunker segments the sentence before passing it to the Linguistic Feature Labeler, which adds
semantic labels (shown in boldface below):

(((speech-act *suggest)
(sentence-type *query-if))
((frame *free))

((can))

(((frame *you))

(you))

(o meet))
(Eframe *special-time)))
(((speciﬁer deﬁnite)} the) .
(((time-of-day morning)) morning)))

The Constituent Path Finder then adds paths, where appropriate (shown in boldface), and we get:

([I((speech-act *suggest)
(sentence-type *query-if))
(0(frame *free))
(1l can))

[who]((frame *you))

(Il you))

I meet))

(] in)
[J((speciﬁer deﬁnite)) the) .
[J((time-of-day morning)) morning)))

Converting this to a feature structure, we get the ILT:

(((speech-act *suggest)
(sentence-type *query-if)
(frame *free)
(who ((frame *you)))
(when ((frame *simple-time)
(time-of-day morning)))))

6 Connectionist Discourse Modeling

Work is also underway to model the discourse by making predictions of subsequent ILTs based on the
previous ones, using a connectionist implementation. The ILT generated by our LR parser is a language
independent frame structure containing three main slots, speech-act, sentence-type and semantic frame
along with a few other secondary slots. The speech-act refers to the action performed by the sentence,
e.g., suggest, accept, and reject. The sentence type refers to the surface form of the sentence, e.g.,
statement, yes/no question, wh-question, directive. The semantic frame refers to main semantic content
of the sentence, e.g., busy, free, out-of-town. Other slots in the ILT are who, which is the person referred
to by the frame, what, a possible non-person object, and when and topic, a representation of any temporal
component of the utterance.

Spoken Utterance: Actually the twenty sixth and the twenty seventh I'll be at a seminar all day.

((SPEECH-ACT *REJECT)
(SENTENCE-TYPE *STATE)
(FRAME *SCHEDULED)
(WHO ((FRAME *I)))

(TO

((FRAME *TIME-LIST)
(CONNECTIVE AND)
(ITEMS
(*MULTIPLE*
((FRAME *SIMPLE-TIME)
(DAY 26))
((FRAME *SIMPLE-TIME)
(DAY 27))))))
(WHAT ((FRAME *SEMINAR)
(SPECIFIER INDEFINITE)))
(WHEN
((FRAME *SPECIAL-TIME)
(SPECIFIER WHOLE)
(NAME DAY)))
(ADVERB ACTUALLY))

Figure 7: Example for the ILT representation

The top level slots of the most recent ILT are encoded into a pattern of binary inputs. This information
along with a bit indicating whether the next utterance comes from the same or different speaker in the
dialog is fed into a multi layer neural network trained by the back-propagation learning algorithm. The
network has to map the input vectors onto a representation of the subsequent ILT. In preliminary work,
the network was trained on 24 dialogues of hand coded ILTs from the ESST database. The network
learned some characteristics of discourse behavior, and i1s good at making some predictions of likely fillers
for the speech-act and sentence-type slots of the subsequent ILT. The relative strength of the output
units can be used to determine the relative probability of competing fillers for a particular slot.

There are drawbacks with this experiment that are easy to solve: Twenty-four dialogues is not sufficient
for good modeling of discourse. Increasing data for training i1s underway to yield improved results.
Interjections often disrupt the context of a sentence; for instance small utterances, such as Well between
two full sentences interfere with the association of the ILTs for the two sentences. Using the previous
content bearing ILT to predict the next ILT, rather than just the previous ILT, increases context, and
can boost results. With improved results, the predictions will be used to aid speech recognition by
interpolating language models appropriate for sentences containing the predicted slots.

7 Acknowledgments

This work was supported by grants, donations, and discounts from the Advanced Research Project
Agency, ATR, BMFT (Verbmobil), DEC, the National Science Foundation, NEC, the Research Council
of Norway, and Siemens. We gratefully acknowledge their support. The views and conclusions contained
in this document are those of the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the supporting organizations.

References

[1] U. Bodenhausen and S. Manke. Connectionist Architectural Learning for High Performance Character and Speech
Recognition. In ICASSP-93, International Conference on Acoustic, Speech € Signal Processing, San Francisco, CA,
1993.

[2] U. Bodenhausen and A. Waibel. Tuning By Doing: Flexibility Through Automatic Structure Optimization. In EU-
ROSPEECH, Berlin, Germany, 1993.

[3] J. Bresnan. The Mental Representation of Grammatical Relations. The MIT Press, Cambridge, MA, 1982.

[4] F.D. Bug, T.S. Polzin, and A. Waibel. Learning Complex Output Representations in Connectionist Parsing of Sponta-
neous Speech. In TCASSP-94, International Conference on Acoustic, Speech € Signal Processing, Adelaide, Australia,
pages [-365-368, 1994.

[5] G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag. Generalized Phrase Structure Grammar. Blackwell Publishing,
Oxford, England and Harvard University Press, Cambridge, MA, USA, 1985.

[6] J. Hampshire and A. Waibel. A Novel Objective Function for Improved Phoneme Recogn. Using Time Delay Neural
Networks. TEEE Trans. on Neural Networks, June 1990.

[7] P. Haffner, M. Franzini, and A. Waibel. Integrating Time Alighment and Neural Networks for High Performance
Continuous Speech Recognition. In Proc. Intern. Conf. on Acoustics, Speech and Signal Processing, IEEE, 1991

[8] H. Hild and A. Waibel. Multi-Speaker/Speaker-Independent Architectures for the Multi-State Time Delay Neural
Network. In Proc. Intern. Conference on Acoustics, Speech, and Signal Processing. IEEE, 1993.

[9] H. Hild and A. Waibel. Speaker-Independent Connected Letter Recognition With a Multi-Sate Time Delay Neural
Network. In 3rd European Conference on Speech, Communication and Technology (EUROSPEECH) 93, September
1993.

[10] H. Hild and M. Betz. Language Models for a Letter Recognizer. Submitted to: Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing. IEEE, 1995.

[11] T. Schultz and I. Rogina. Acoustic and Language Modeling of Human and Nonhuman Noises for Human- to-Human
Spontaneous Speech Recognition. Submitted to: Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing. IEEE, 1995.

[12] A.J. Jain. Parsing complex sentences with structured connectionist networks. Neural Computation, 3:110-120, 1991.

[13] R. Kaplan and J. Bresnan. Lexical-functional grammar: A formal system for grammatical representation. In In [3],
pages 173-281. The MIT Press, Cambridge, MA, 1982.

[14] S. Oviat. Predicting and managing spoken disfluencies during human-computer interaction. In Proc. the ARPA Human
Language Technology Workshop, Plainsboro, 1992.

[15] C. Pollard and 1. Sag. Information-Based Syntar and Semantics, Volume 1, Fundamentals. Number 13 in CSLI
Lecture Notes Series. Distributed by University of Chicago Press, Stanford: Center for the Study of Language and
Information, 1987.

[16] C. Pollard and 1. Sag. Head-Driven Phrase Structure Grammar. CSLI Lecture Notes Series. Distributed by University
of Chicago Press, Stanford: Center for the Study of Language and Information, 1993.

[17] T.S. Polzin. Parsing spontaneous speech: A hybrid approach. In Workshop on Combining Connectionist and Symbolic
Processing, ECAI-94, Amsterdam, The Netherlands, 1994.

[18] I. Rogina and A. Waibel, Learning State-Dependent Stream Weights for Multi-Codebook HMM Speech Recognition
Systems, ICASSP 1994.

[19] B. Suhm, L. Levin, N. Coccaro, J. Carbonell, K. Horiguchi, R. Isotani, A. Lavie, L. Mayfield, C.P Rose, and C. Van
Ess-Dykema nd A. Waibel. Speech-language integration in a multi-lingua speech translation system. In Proc. of AAAI
1994.

[20] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme Recognition Using Time-Delay Neural
Networks. TEEFE, Transactions on Acoustics, Speech and Signal Processing, March 1989.

