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ABSTRACT 

We present re-estimation formulae for semi-tied covariance (STC) 
transformation matrices based on a maximum mutual information 
(MMI) criterion. These re-estimation formulae are different from 
those that have appeared previously in the literature. Moreover, 
we presenr a positive definiteness criterion with which the regu- 
larization constant present in all MMl re-estimation formulae can 
be reliably set to provide both consistent improvements in the to- 
tal mutual information of the training set, as well as fast conver- 
gence. We combine the STC re-estimation formulae with their like 
for speaker-independent means and variances, and update all pa- 
rameters during MMI speaker adapted training (MMI-SAT). We 
present the results of two sets of speech recognition experiments 
conducted on the the 1998 Broadcast News evaluation set, as well 
as a corpus of Meeting Room data collected at the Interactive Sys- 
tems Laboratories of the Camegie Mellon University. 

1. INTRODUCTION 

Since Woodland [ll discovered that the word error rate (WER) re- 
ductions provided by discriminative training techniques over and 
above their maximum likelihood counterparts, could be greatly 
enhanced by scaling all acoustic log-likelihoods during lraining, 
MMI training has enjoyed a spate of renewed interest and a con- 
comitant flurry of publications. Perhaps most noteable among 
these was the work by Gunawardana 121 which set forth a much 
simplified derivation of Normandin’s [3] original continuous den- 
sity re-estimation formulae, one which does not require the dis- 
crete density approximations Normandin used. 

In [4] the cunent authors used Gunawardana’s theorem to de- 
rive re-estimation formulae for the speaker-independent (SI) means 
and variances of a hidden Markov model (HMM) when speaker- 
adapted training [SI (SAT) is conducted on the latter under an MMI 
criterion. It would appear that since the publication of [Z], and 
perhaps well before, research into MMI training schemes has fol- 
lowed similar if independent tracks at both the Johns Hopkms Uni- 
versity and the University of Karlsruhe. Indeed, Byme et a1 [6]  
presented a scheme for MMI-SATraining in which all parameters, 
including the speaker-dependent (SD) adaptation parameters, were 
estimated with an MMI criterion. The same authors also presented 
a technique for performing MMI estimation of a transformation 
matrix suitable for use with semi-tied covaiance (STC) matrices 

proposed by Gales [7]. but commented on the tendency of their 
technique to produce a transformation that was “effectively iden- 
tity.” 

In this work, we also present re-estimation formulae for STC 
transformation matrices based on an MMI criterion. As will be 
shown, these re-estimation formulae are different from those in [6],  
and the transformation matrices therewith obtained are distinctly 
different from the identity. Moreover, we present a positive def- 
initeness criterion, with which the regularization constant present 
in all MMI re-estimation formulae can he reliably set to provide 
both consistent improvements in the total mutual information of 
the training set, as well as fast convergence. We also combine 
the STC re-estimation formulae with their like for the SI means 
and variances, and update all parameters during MMI-SATraining. 
To demonstrate the effectiveness of the proposed techniques, we 
present the results of two sets of speech recognition experiments 
conducted on the the 1998 Broadcast News evaluation set, as well 
as a corpus of Meeting Room data collected at the Interactive Sys- 
tems Laboratones of the Camegie Mellon University. 

The balance of this work is organized as follows. In Sec- 
tion 2 we briefly review the MMI-SAT mean and covariance re- 
estimation formulae previously derived in 141. We also present 
our derivation of a MMI re-estimation formula for STC lransfor- 
mation matrices, along with a scheme for optimal regression class 
assignment. In Section 3 we present the results of our initial sets 
of experiments combining the re-estimation of all relevant param- 
eters during MMI-SATraining. Finally, in Section 4 we summarize 
our efforts, and present plans for further work. 

2. MAXIMUM MUTUAL INFORMATION ESTIMATION 

Assume we wish to estimate the kLh mean pk and diagonal covar- 
ance matrix DI. of acontinuous density hidden Markov model. Let 
s be an index over all speakers in the training set, and let zp’ de- 
note the t t h  observation from speaker s. Also let denote the 
posterior probability that I?’ was drawn from the kth Gaussian in 
the HMM whose parameters we wish to re-estimate. Let us define 
the quantities 

.g) = ccti $’ =E$;$) $1 = C$jzi~’’ 
t t 
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which are typically accumulated during fortuard-backward train- 
ing. In the sequel we let Ah = { p k ,  0 s )  denote the parame- 
ters of the kih Gaussian component and A = { A h }  the speaker- 
independent parameters of the entire HMM. 

The mean and covariance re-estimation formulae for maxi- 
mum mutual information speaker-adapted training (MMI-SAT) have 
appeared in prior work by the current authors [41. We summarize 
them here only to introduce the notarion used in the current work. 
Let n(", and w(') respectively denote observation, Gaussian 
component and word sequences associated with an utterance of 
speaker s .  Define mutual information as 

where A(") is the mavix of maximum likelihood linear regres- 
sion [XI parameters for speaker s. Let A' = { A i }  denote the 
current set of parameter values and define the imiliaty funcrion 

(1) Q ( A I A O )  = s ( ~ ) ( A I A ~ )  + E .  S ( ~ ) ( A ~ A O )  

= [ s f ) ( A k / A : )  + E .  Sr'(Ah/.kOk)] 
k 

where 

s("(A1.k') = ~ C ~ ~ l O g p ( X / J ) ; A ( " , h k )  
f . 9  

S ~ ' ( A ( A ' )  =Ed!) / p(x; .4 (S) ,A~) logp(z ;  A(s' ,AX) dx 

In the above, it is necessary to define e t !  as the difference in poste- 
rior probabilities of n(" that comes from knowledge of the correct 
word transcription 

c(*l - - kJw(*) % ( O ) ;  A(S1,hO) k . t  -p(n,  - 
- p(nj"' = lC(d'); A('), A') (2) 

The real constant E > 0 is typically chosen heuristically; for mean 
and variance reestimation, good results have been obtained with 
E = 1. 

Gunawardana 121 showed thatQ(A2JA") > Q(AOIAO) implies 
I (W,O; A) > I(W, 0; A')). In prior work 141, the current au- 
thors used ( I )  and Gunawardma's theorem to derive the maximum 
mutual information mean re-estimation formula p~ = M;' vk 
where 

M a  = ($I + E .  &I) D;' A(") (4) 

The corresponding covariance re-estimation formula is 

where fi:tl is the nth component of fi; = A(')p; and up,' is the 
current value of the variance. 

Semi-Tied Covariance Estimation 

For reasons of brevity, we only summarize our derivation here; full 
details can be found in [9]. Gales 171 defines a semi-tied covari- 
ance matrix as Ck = P DkPT where Dk is. as before, thc di- 
agonal covariance matrix far the kth  Gaussian component, and P 
is a transformation matrix shared by many Gaussian components. 
Both Dk and P can then he updated using a ML criterion. Rather 
than optimizing P directly, however, Gales defines M = P-' and 
then optimizes M instead. According to Gales' original formula- 
tion, this can he achieved by setting 0:"' = 21") -pk  and defining 
the auxiliary function 

where ck = Et,* $: and e t :  is the posterior probability that oh- 
servation xi'' was drawn from Gaussian component k .  If speaker 
adaptation is performed in the model space, Gales' development 
can he readily extend by setting 

= z /J1  - ( .4(s)pk (7) 

The components {mi<\ = M can be updated using a recursive . ., 
procedure 171. 

In order to estimate M using an MMI criterion. we need onlv 
I 

modify (6)  slightly. Firstly, we redefine c r i  as the difference in 
posterior probabilities (2). Now assume that we wish only to opti- 
mize M. Hence the Gaussian normalization factor -$ log / 2 z D r  I 
can be excluded as it does not depend on M; what remains is 

Let mr denote the i th row of M, and let f: denote the ith row 
in the cofactor matrix of M .  Hence (6)  can be rewritten as 

where c = Ck and 

Tuming now to the second term in (I) .  we must write 

l o g p ( z ;  A("), A b ,  P )  dx 

It is straightforward to show that S(') can he expressed as 
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where d = E, dx and 3. SPEECH RECOGNITION EXPERIMENTS 

The speech experiments described below were conducted with the 
Janus Recognition Toolkit (JRTk), which is developed and main- 
tained jointly at Universitzt Karlsruhe, in Karlsruhe, Germany and 
at the Camegie Mellon University in Pittsburgh, Pennsylvania, USA. 

For the experiments reported below, HMM training was con- 
ducted on a combined training set consisting of the Broadcast News 
(BN) corpus, which totals approximately 64 hours of speech, along 
with the ESST set. The complete training set contains speech con- 
tributed by 2,989 speakers. Two test sets were used to determine 
system performance: the first was that set used for the 1998 Broad- 
cast News evaluation which contains 15,310 words; the second 
Meeting Room (MR) test set was collected at the Interactive Sys- 
tems Laboratories (ISL) of the Camegie Mellon University. The 
MR test set contains 11,214 words spoken in discussions of various 
research projects currently underway at ISL. The speech therein is 
conversational and entirely spontaneous. Although the entire MR 
corpus is English, many of the speaker are non-native. As such, it 
makes fora  very challenging automatic recognition task [ I l l .  For 
these experiments, our baseline recognizer was comprised of 4,144 
continuous density codebooks, each of which contained either 16 
or 32 Gaussians. 

A11 speech data was digitally sampled at a rate of 16 kHz. The 
speech features used for all experiments were obtained by first es- 
timating 13 cepstral components, concatenating nine (9) succes- 
sive features together, then performing linear discriminant analy- 
sis to obtain a final feature of length 40. Features were calculated 
every IO ms using a 16 ms sliding window. Speaker-dependent 
frequency-domain vocal tract length normalization (VTLN) was 
used in calculating all speech feaures for both training and test. 

The word lattices annotated with word start- and end-times 
used fordiscriminative training were written with the Ibis decoder [IZ]. 
Training was conducted by first performing a Viterbi alignment 
on the correct transcription for each utterance, and accumulating 
the appropriate numemfor statistics 1131. The correct utterance 
together with its time markings was then inserted into the corre- 
sponding lattice, and Viterbi rescoring was performed on each link 
of this enhanced lattice based on the fixed star- and end-times. 
Using these new acoustic scores, the posterior probability of each 
link was calculated and used to accumulate the denominator statis- 
tics. As recommended in [I], the log acoustic scores were scaled 
by a factor of 1/15 during discriminative training, and a unigram 
language model was used in calculating the link posterior proba- 
bilities. 

Shown in Figure 1 are the results of our initial speech recog- 
nition experiments on the BN and MR test sets. For these systems, 
a STC transformation matrix was estimated during conventional 
speaker-independent (SI) training, and held fixed thereafter for 
both ML- and MMI-SAT. To generate these results, we first did a 
complete decoding with the baseline MLE system, simultaneously 
writing both word lattices and errorful transcripts. The word lat- 
tices were then rescored with the appropriate acoustic models and, 
where necessary, adaptation parameters to generate the subsequent 
results. In our initial experiments, we used an acoustic with rela- 
tively few parameters: 16 Gaussian components for each of 4,144 
codebooks. To determine the susceptibility of the MMI models to 
overtraining, we then trained a model with 32 Gaussians for each 
of 4,144 codebooks. As is clear from the tabulated results, the rel- 
ative gains for both systems were comparable. MMI-SATraining 
gave a substantial improvements over MLE-SATraining, and best 

In the above, pp denotes the iih column of Po. Substituting (8) 
and (9) into (I), we find 

where Wj = W;" + E .  W:". Following the development in 
Gales [7]. it can easily he shown that Q(A(Ao) can be maximized 
by iteratively updating the rows of M according to 

Equation (IO) cannot he used indiscriminately; care must be 
taken to choose E large enough so that each Wj is positive defi- 
nite. From the foregoing, it readily follows that 

A maximum of Q(A1.h') requires that a'Q/ani? am, is negative 
definite. As c + E .  d = E .  d > 0 and j, f: is a symmetric rank- 
one update, and hence positive definite, this will certainly hold if 
W, is positive definite. It may be possible, however, to derive a 
weaker condition. 

Regression Class Estimation 

In order to obtain the largest possible reduction in word emrra te ,  
quite often we estimate not a single global transformation (A('), b(")) 
for each speaker, but a set oftransformations {(A?', l ~ ? ) ) ] .  In this 
case, it is of interest to reassign the kth  Gaussian to a regression 
class T so as to maximize the mutual information. This can he done 
with a slight extension of the prior analysis, to wit: it is necessary 
to calculate the actual value of the auxiliary function in addition to 
the optimal parameters Ah achieving its maximum. Letting 

it can be shown 

Q E ( A ~ ( A ~ )  = a h  +LLTvr - I P r M k P k  (11) 

where 

ak = - _  1 [(cf)bp) - ~ t ) ) ~  0;' (c!g)bp) - of) ) /cp '  
2 s  

+ E . d k  (SI P k  oT~plT~;l~p)~;] 

and MI. and V k  are as given in (4) and (5). With these definitions, 
it is possible to choose the optimal regression class T* as that class 
which minimizes (I 1); see [IO, $4.51. 
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performance was obtained after two iterations of MMI-SAT for 
both large and small models. 

In a set of experiments on two large vocabulary speech recogni- 
tion tasks, we have demonstrated the effectiveness of MMI-SAT in 

MMI-SAT-2 
MMI-SAT-3 

reducing word error rate with respect to that obtained with MLE- 
SAT. We have also enhanced the basic MMI-SAT estimation with 
re-estimation formulae for the transformation matrices used with 
semi-tied covariances. To date no further reductions in WER have 
been obtained from STC estimation with an MMI criterion. This 

System % Word Error Rate 

17.6 38.3 19.1 40.7 
18.2 39.2 62.7 75.1 

Fig. 1. Word error rate results on the 1998 Broadcast News eval- 
uation set (BN) and the Interactive Systems Laboratories Meeting 
Room set (MR). 

The next set of experiments was intended D determine if fur- 
ther reductions in word error rate could be achieved by reestimating 
the STC transformation matrix during both ML- and MMI-SATraining 
These experiments were conducted only on the large 4,144 x 32 
model. Training under both criteria was conducted by making a 
first pass through the training set to re-estimate the STC transfor- 
mation matrix, then making a second pass to re-estimate the SI 
means and variances. As a means of reducing computation, only 
the contribution of each frame to the most likely Gaussian in any 
given state was accumulated during STC estimation. The constant 
Ein(3)wassetasfollmvs: Firstthematrices {W:)) and {W;’)} 
were accumulated for all speakers in the training set. Thereafter E 
was set to the low value of 11128 and successively doubled until all 
matrices W, = W ) ” + E . W ~ )  were positivedefinite. Thevalues 
thereby obtained were E = 1116,112, and 112 for the first, sec- 
ond, and third iterations respectively. This procedure proved very 
robust, providing both consistent improvements in the total mutual 
information of the training set, as well as rapid convergence. 

For the sake of comparison, a second system wds trained by 
holding the STC transformation matrix fixed after ML-SATraining, 
and re-estimating only the SI means and varianes during MMI- 
SATraining. The WER results obtained with both systems are tab- 
ulated in Table 2. 

Fig. 2.  WER results comparing STC transformation matrices esti- 
mated during ML- and MMI-SATraining. 

Unfortunately, re-estimation of the STC transformation matrix 
provides no further reductions in WER, much the opposite in fact. 
At present it is not fully understood why this is so. 

4. CONCLUSIONS 

We have presented a practical technique for performing SAT on a 
continuous density hidden Markov model using an MMI criterion. 

remains an area of active research, however. 
Acknowledgments: The authors wish to acknowledge Hagen 

Soltau, Christian Fiigen, and Florian Metze for their assistance in 
developing the lattice code used to perform MMI training as dis- 
cussed in this work. 

5. REFERENCES 

[I] P. Woodland and D. Povey, “Large scale discriminative train- 
ing for speech recognition,” in ISCA lTRWAuromaric Speech 
Recognirion: Challenges for  the Millenium, 2000, pp. 7-16. 

[2] A. Gunawardana, “Maximum mutual information estimation 
of acoustic HMM emission densities,” Tech. Rep. 40, Cen- 
ter for Language and Speech Processing, The Johns Hopkins 
University, 3400N. Charles St.,Baltimore,MD 21218. USA, 
2001. 

[3] Y. Normandin, Hidden Markov Models, Maximum Mutual 
Information, and rhe Speech Recognition Problem, Ph.D. 
thesis, McGill University, 1991. 

“On maxi- 
mum mutual information speaker-adapted training,” in Proc. 
ICASSP, 2002. 

[51 T. Anastasakos, J. McDonough, R. Schwarz, and I. Makhoul, 
“A compact model for speaker-adaptive training,” in Proc. 
ICSLP, 1996, pp. 1137-1140. 

[6] S. Tsakalidis, V. Doumpiotis, and W. Byme, “Discimina- 
live linear transforms for feature normalization and speaker 
adaptation in HMM estimation,” in Proc.lCSLP; 2002, pp. 
2585-2588. 

[7] M. J .  F. Gales, “Semi-tied covariance matrices for hidden 
Markov models,” IEEE Transactions Speech and Audio Pro- 
cessing, vol. 7, pp. 272-281, 1999. 

[XI C. J. Leggetter and P. C .  Woodland, “Maximum likelihood 
linear regression for speaker adaptation of continuous den- 
sity hidden markov models,” Computer Speech and Lan- 
guage, vol. 9, pp. 171-185, April 1995. 

[91 1. McDonough, T. Schaaf, and A. Waibel, “On maximum 
mutual information speaker-adapted training,” Computer 
Speech and Language, submitted for publication. 

[IO] I. McDonough, Speaker Compensation with All-Pass Trans- 
forms, Ph.D. thesis, The Johns Hopkins University, 2000. 

[ I l l  A. Waibel, H. Yu, H. Soltau, T. Schultr, T. Schaaf, Y. Pan, 
E Metze. and M. Bett, ‘‘Advances in meeting recognition:’ in 
Proc. Human Language Technology Conference, San Diego, 
2001. 

“A one 
pass decoder based on polymorphic linguistic context assign- 
ment:’ in Proc. ASRU, Trento, Italy, 2001 

[I31 V. Valtchev, P. C. Woodland, and S .  I. Young, “MMIE train- 
ing of large vocabulary speech recognition systems:’ Speech 
Communication, vol. 22,  pp. 303-314, 1997. 

[4] J. McDonough, T. Schaaf. and A. Waibel, 

[I21 H. Soltau. F. Metre, C. Fiigen, and A. Waibel, 

I - 131 


