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0.1. Zusammenfassung iii

0.1 Zusammenfassung

Folgende Ergebnisse sind im Rahmen einer Masterarbeit entstanden. Das Ziel der Arbeit
ist, Methode zu entwickeln, um besser geeignete Daten für maschinelle Übersetzungssys-
teme zu gewinnen. Einfach mehr Daten zu benutzen, resultiert durchaus nicht in bessere
Übersetzungssysteme. Wenn eine gewisse Breite an Daten erreicht ist, muss eine inhaltliche
Tiefe an Daten angestrebt werden, um Verbesserungen für Übersetzungssysteme zu erhal-
ten.
Für viele Thematiken existieren jedoch nicht genügend Daten, die als solche gekennzeich-
net sind. Techniken basierend auf Perplexität erlauben, syntaktisch ähnliche Daten aus
einen allgemeinen Corpus zu extrahieren. Experimente habe gezeigt, dass diese Art der
Datenselektion Übersetzungssysteme deutlich verbessert. Ein kleiner Datensatz wird dabei
als Repräsentation der gewünschten Domäne betrachtet. Um noch mehr Daten selektieren
zu können, wird in dieser Arbeit untersucht, wie Information über Synonyme ausgenutzt
werden kann. Der domän-spezifische Datensatz wird durch Reformulierungen erweitert,
sodass das Selektionsverfahren auf einem breiteren Datensatz beruht.
Von Online-Archiven deutscher Hochschulen werden Dokumente über akademische Ar-
beiten geladen und Textstücke extrahiert. Dazu wird ein Heuristik basiertes Verfahren
vorgeschlagen und dargestellt. Das Verfahren erfolgt in einem Bottom-Up Ansatz. Aus-
gehend von Textboxen werden zusammengehörige Elemente ermittelt. Nur geometrische
Informationen werden benutzt. Das Ergebnis ist eine Liste von Textstücken, die aneinander
gehören. Da keine vollständig logische Struktur von Nöten ist, werden falsche Entschei-
dungen und Datenrauschen minimiert. Der so gewonnene Corpus dient als allgemeiner
Datensatz, von welchem Daten selektiert werden sollen. Da dieser Corpus jedoch immer
noch Rauschen beinhaltet, wird ein weiterer Corpus, zusammengestellt aus verschiedenen
Quellen, benutzt, um den Einfluss des Rauschens zu untersuchen.
Information über Synonyme wird mit Hilfe zweier Arten ermittelt. Die erste Art nutzt
Zuordnungen (Alignment) in multilingualen Datensätzen aus. Zurdnungsverfahren werden
für Übersetzungsmodelle gebraucht, um Übersetzungspaare auf Wort- und Phrasenebene
zu gewinnen. Mit Hilfe einer Pivot Sprache können Zuordnungen zwischen Phrasen der-
selben Sprache erstellt werden. Semantische Verwandschaftsbeziehungen lassen sich so
innerhalb einer Sprache erlangen. Die zweite Möglichkeit erfolgt über rekursive Autoen-
coder, einer Architektur von neuronalen Netzen. Mit Hilfe eines Kodebuch für Wörter wer-
den Satzteile gemäß eines zuvor ermittelten Grammatikbaum rekursiv gefaltet. Durch die
Kodierung von Phrasen innerhalb eines Semantik-Vektor Raum, können Nachbarschafts-
beziehungen hergestellt werden und letztendlich ein Lexikon mit semantisch verwandten
Phrasen-Paaren aufgebaut werden.
Die Synonymlexika werden mit zwei Prozeduren auf den domän-spezifischen Datensatz
angewendet. Zufälliges Austauschen von Synonymen produziert Reformulierungen von
Sätzen, in welchen gemäß einer Bernoulli-Verteilung Phrasen durch Synonyme ersetzt wer-
den. Welches Synonym dabei genommen wird, wird durch eine Gleichverteilung entschieden,
also unabhängig von Synonymwahrscheinlichkeiten. Die zweite Prozedur basiert auf das
Dekodieren von statistischen Übersetzungssystemen. Statt von einer Sprache in eine an-
dere Sprache zu übersetzen, wird innerhalb einer Sprache übersetzt. Dabei ersetzt das
Synonymmodel das Übersetzungsmodel.
Zur Evaluierung werden die Kombinationen von Synonymgewinnung und Reformulierung-
stechniken auf Perplexität bezüglich eines der domän-spezifischen Daten ähnlichen Cor-
pus getestet. Außerdem werden die Kombinationen auf Verbesserung in einem Englisch-
Deutsch Übersetzungssystem geprüft. Paraphrasieren für Selektion erzielt marginale Verbesserun-
gen auf dem Corpus mit Textstücken akademischer Arbeiten. Auf dem Corpus, zusam-
mengestellt aus verschiedenen Quellen, wird keine Verbesserung durch Paraphrasierung
für Selektion verzeichnet.
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0.2 Abstract

With more and more data available, the focus of acquiring training data for statistical
Machine Translation shifts towards obtaining more domain specific data. The challenge
lays in identifying sentences which belong to a specific domain. A technique to extract
text snippets from PDFs is illustrated. PDFs from the Web about academical topics are
used to select from as well as a low-noisy collection of different sources.
An extension to the perplexity based selection by Moore and Lewis is presented. The
small in-domain corpus is enlarged by paraphrases of its own sentences. To accomplish
this extension, informations about synonyms is gathered from two different approaches.
The first approach - suggested by Bannard and Callison-Burch - exploits alignments in
multilingual corpora. Several criteria are defined to prune such lexica. The second ap-
proach employs recursive autoencoders to encode phrases in a semantic vector space. From
positions in the semantic vector space, synonyms are derived. Two paraphrasing methods
are used. Random replacement produces sentences of which phrases are replaced randomly
according to some synonym lexicon. Decoding of Statistical Machine Translation allows to
translate from one into another language. Here, it is used to translate within one language.
A synonym lexicon serves as translation model.
All combinations of obtaining synonym informations and paraphrasing are tested in a sta-
tistical Machine Translation system as well as in perplexity comparison. Comparing to
selection by Moore and Lewis, selection with enriched in-domain corpus doe yield small
improvement on the corpus with academical PDFs and no improvement on the corpus
composed from different sources.
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1. Introduction

Language is the most sophisticated and powerful way of communication for human beings.
Nowadays, many languages exist which shows its strength as well the need of humans to
adapt for local conditions and individual ways of expressing themself. But languages can
be barriers as well. Due to globalisation, people move more freely around in the world for
reasons of business and travel. Even though there are few languages which are widespread
and spoken by many people, it is still difficult to learn these languages. Most people only
speak their native language and maybe an optional second language. But knowledge of
languages are not only bounded to locality but also to social status. In parts of south
America or Africa, neither Mandarin nor English will be of much help in speaking with
locals.
An additional urgency to overcome language barriers comes from sharing knowledge. It
is usually either done over the internet or by attending some school or university abroad.
The most dominant language on the internet is English which also commonly serves as a
lowest common denominator if it comes to speaking with foreigners. With the Internet
growing, more and more people want to access content like Massive Open Online courses
(MOOCs) but may not speak English in a proper way. The more specialised some in-
formation is, the more likely it is that this information will not be available in English.
The same issue is valid for universities. Internationally oriented universities offer lectures
in English. Universities which do not primarily aim for international students, still hold
often their lectures in the native language. International students may struggle to follow
if the language or the content is too complex. In particular, disciplines which have many
traditional technical terms, can make international students understand less.

Engaging interpreters for such tasks will surely not be feasable. Industry and universities
have started off to find solutions for these problems in an financially and qualitatively
acceptable form. Usually, they all build upon Statistical Machine Translation (SMT),
statistical methods to automatically perform translations between languages. Recent in-
dustrial products are Skype translator1 and Google translate2. Skype translator supports
translation for some of the most popular languages in almost real-time for text and video
conferences. It not only involves actual language translation but also speech recognition.
Google translate offers similar features. Besides textual translations, Google translate can
be used for simultaneous translation of spoken language. It also allows to translate signs
and written text captured by some camera.

1http://www.skype.com/de/translator-preview/
2https://translate.google.de/
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2 1. Introduction

In academia, few technical approaches exist to deal with the language issue. The Euro-
pean Union has funded the EU Bridge3 project to bundle and focus academical research
and industrial implementation for automatic language translation. Within this project,
the project lecture translator4 has been set up to bring simultaneous machine transla-
tion into the lecture halls. Similar to industrial products, it provides services to obtain
translations for presentations, lectures and speeches. Thereby, students can watch the
translation of what a speaker says in their preferred language. Another project targeting
machine translation for academical use is named TraMOOC 5. It is as well funded by the
European Union in the Horizon 2020 6 program. The intention of the project is to provide
usable automatic translation for specifically MOOCs and textual documents in general for
European languages, Russian and Chinese as well.

These advancements in augmented reality and artificial intelligence come along with sev-
eral improvements on different areas like computer vision, speech recognition or natural
language processing. In particular, deep network architectures have brought enhancements
in research by giving methods to acquire features automatically and not manually. Addi-
tionally, improvements in hardware allow to analyse and oversee more data than before.
Latter is often referred to as Big Data. All of these developements have shifted artificial
intelligence closer to actually comprehend and understand semantics, be it visual, tex-
tual or acoustical. Statistical Machine Translation has also profited from this progress.
Different tasks of Natural Language Processing have been enhanced such as word sense
disambiguation, semantic role labeling or bilingual semantic representations.
Contrary to Computer Vision, Statistical Machine Translation or Speech recognition are
more crucially evaluated publicly because of the language’s nature of reliable means of
communication. The saying ”More data are better data” holds only to some extend. At
some point, new data does not generally deliver more information, especially if it does not
cost much to obtain big text corpora from the internet. More domain-specific data, how-
ever allows to specialise models and hence can bring better performance. The difficulty is
to harverst domain-specific data. Usually such coropora are not easily available but have
to be extracted from more general or rather noisy corpora. Some approaches already exist
to apply filtering methods on big general data.

In this thesis, semantic analysis will be incorporated into filtering methods to evaluate
translation performance. The intention is to provide a procedure to build a Statistical
Machine Translation system upon a small domain-specific text corpus and a big non-
domain specific corpus.
For semantic analysis, two methods will be tested. The first method exploits alignments
in bilingual corpora. Using one language as pivot facilitates associations between german
phrases which are likely to be synonyms assuming they translate to the same phrase in the
pivot language. The second method builds upon word embedding with skip-gram neural
networks. According to a grammatical topology, a recursive autoencoder maps the folding
of two grammatical entities into the same semantic vector space. Synonyms are deduced
from nearest neighbours within the semantic vector space.
The lexicon of synonyms is used to generate new sentences which are semantically close to
sentences in a small domain-specific text, but differ in their syntacs, that is new words and
phrases, yet with the meaning preserved, are introduced. Two techniques are examined for
paraphrase generation. Random replacement substitutes phrases with synonyms accord-
ing to a Bernoulli distribution. The second technique employs decoding from Statistical
Machine Translation considering a language model and the synonym lexicon.

3http://www.eu-bridge.eu/
4http://www.lecture-translator.kit.edu/
5http://www.tramooc.eu/
6http://ec.europa.eu/programmes/horizon2020/
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Enriched versions of the domain-specific text are used in data selection from a big non-
domain sepcific corpus. Two corpora are tested as non-domain specific corpus. The first
corpus is taken from PDFs from academical reports and theses. An heuristic is illustrated,
how to extract text from PDFs. Since this corpus is rather noisy, a second corpus col-
lected from various sources is tested as well, in order to minimise the factor of noise in the
experiments.
All combinations of semantic analysis and paraphrase generations are evaluated in an
English-German Statistical Machine Translation system.

3





2. Related work

Various research has been done on semantics of natural languages. Roughly, two kinds
of applications exist, the analysis of semantics and the synthesis of semantics. Whilst
analysis is about extracting semantic informations from a corpus, synthesis handles the
procedures to apply these semantic informations on some text to modify this text in some
particular ways.

2.1 Semantic Analysis

Semantics origins from ancient Greek and refers to the research field of meanings in lin-
guistics. Even though somehow related to syntax, is difficult to capture. It is as well
difficult to represent semantics.

For syntax, two different kinds of representation are in use. The first representation is
grammar. Rules describe the way words are adapted or changed according to which con-
text, where words and phrases are positioned and how sentences are nested. It basically
tells what a correct way of writing is, or how to group words and phrases when reading,
regardless of the actual meaning. Grammar is used in school to teach languages and their
structure. Computer linguists themself construct manually rules and theories for gram-
mar representation with the intention to apply these models automatically on text. The
advantages are exploiting hugely a-Priori knowledge, a minimum of internal logical errors
and very detailed and precise models. It nevertheless comes with some disadvantages.
Creating such models takes not only many experts but also costs time due to doing it
manually. Without having the knowledge of an expert, the models cannot be created. If
the input is expected to contain noise, it will perform badly because such noise would need
to be modeled manually too. And modeling noise by hand will explode complexity. An
alternative approach is to employ statistics. It can be performed automatically and does
require very little a-Priori knowledge. Noise tolerance can be easily obtained by adapting
the statistical model. Yet models will hold errors by default.
The second representation goes with empiriscm that is statistical models are built over
text samples to gather information about the language or a specific domain in this lan-
guage. Contrary to information which is encoded in a continuous vector space like images
or sounds, the nature of text is an unbounded discrete vector space and therefore cannot be
easily normalised. To make model building feasable, the bag-of-word concept, also known
as histogram, is applied. From the text sequence, characteristic elements are extracted
and their appearances is counted. Maximum-Likelihood is used as an estimator on how

5



6 2. Related work

likely a characteristic element is based on its frequency in text samples. Markov assump-
tion then allows to find a probability for a specific sequence of characteristic elements. In
Computer Linguistics n-gram models have become wildely used. Word sequences up to n
words are extracted from texts as characteristic elements. To consider unseen sequences,
more sophisticated methods like discounting and smoothing are emploid. N-Grams have
been prooven to be simple yet powerful in many applications.

For semantic capturing, thes two approaches can be followed too. In a manually created
database or ontology, these words and terms are put in relations. Such projects usually
suffer from the sheer complexity of ambiguities and context as well as domain dependency.
It also takes experts and time to build such databases. Some semantic relations can be
found in many languages. Other terms are very specific to one language due to more
abstract ways of formulating or due to the locality where the language is spoken. It is
for these reasons that statistics is applied as well. Some approaches for semantic analysis
exploiting statistics will be presented here.

2.1.1 Pseudo Semantic Analysis with Perplexity

Perplexity illustrates the distance of two propability distributions. In Natural Language
Processing (NLP) it is used to measure how close two text are based on n-gram models[23].
Hence, it does not capture semantics but only syntax. Assuming a connection between
semantics and syntax, it however can be used to find subcorpora which are syntactically
close and therefore related in their semantics. The perplexity can be expressed by the
cross-entropy H(p, q) with an empirical n-gram distribution p given a language model q:

2−
∑
x p(x)logq(x) = 2H(p,q) (2.1)

2.1.1.1 Selection in monolingual corpora (Moore and Lewis)

Initially, Moore and Lewis[23] presented the perplexity based semantic analysis as a way to
extend some corpus, be it monolingual or bilingual. Their intention is to easily and rapidly
enlarge some corpus and in the outcome better whilst constraining it to some specific
domain. Usually, in-domain data is rare and obtainable only at high expense. Big general
data, however, exists more frequently. But the more the training data is tailored towards
the applied domain, the better the quality of the model for this particular domain will be.
In a feature based decoding system, such as decoders for statistical machine translation,
different language models and translation models can be included with different weights.
It allows to make individual features more important if they contribute more to some
domain or environment. Therefore, adaptation of the system can be reached quickly by
modifying the appropriate weights. Nevertheless, this modification requires some tuning
set of the targeted domain and the model of the bigger general corpus will contain more
information and hence will need a larger memory footprint. Moore and Lewis suggest to
extract the useful data from the large general corpus and abandon the rest. The extracted
data will be added to the in-domain corpus. This way, only the small corpus will need to
be trained and noise contributed by the big general corpus will be reduced.

Evaluation of information, that is phrases, shows how likely this information is in the
context of the text data. Statistical n-gram models allow to model a non parametric
distribution over some corpus. Hence, it can be used to compute the probability that some
phrase appears in the context of the corpus which the n-gram model has been created on.
The perplexity which is monotonically related to cross-entropy, delivers some measurement
on how much some phrase is not expected to appear in a context of some specified corpus.
As bits in the cross-entropy measurement Moore and Lewis use words, so that the cross-
entropy, basically, counts the expected information for each word appearance in the context

6
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Figure 2.1: Perplexity based selection according to Moore and Lewis

of the corpus. Two models are used to evaluate the phrases. The first model is trained on
the in-domain data and the second one is trained on some corpus which ideally represents
non domain specific data. Having both models, a phrase can be valued how close it is
to the targeted domain as well as how close it generally is to the language itself. The
resulting score then is the difference between the cross-entropy on the in-domain corpus
HI and the cross-entropy on the general corpus HG.

HI(s)−HG(s) = H(s, I)−H(s,G) (2.2)

For the in-domain set, Moore and Lewis use parts of the English side of the English-French
parallel text from realease v5 of the Europarl corpus. The general corpus is taken from the
LDC English Gigaword Third Edition (LDC Catalog No.: LDC2007T07) drawing random
samples such that this corpus has about the same size as the Europarl training corpus.
Both corpora are preprocessed and modified such that any vocabulary, which appears at
most once in the Europarl training corpus is handled as unknown token. The resulting
language models are a four-gram model with backoff absolute discounting.

Moore and Lewis compare their approach with three different baselines. First one is lan-
guage models trained on randomly drawn subsets from the Gigaword corpus. These subsets
have similar size like the ones used for training the language models for cross-entropy pre-
diction. Second one is using solely the cross-entropy on the in-domain corpus as score.
This approach is equivalent to the method used by Lin et al[19] and Gao et al[13]. The
last method is proposed by Klakow[16]. Each sentence in the Gigaword is scored by the
difference in the logarithmic likelihood of the Europarl corpus according to the unigram
model trained on the Gigaword corpus with and without that sentence. Varying the size
of the respective training corpora, the cross-entropy on some held-out set is computed.
The cross-entropy for the random selection decreases with increasing training size. For
the taken training sizes, the cross-entropy is always the highest of all methods. The in-
domain cross-entropy scoring decreases as well with increasing training size, but it reaches
an optimal cross-entropy of 124 with a training size of 36% of the Gigaword corpus from
whereon it starts to increase. The method of Klakow even outperforms this result with a
minimal cross-entropy of 111 with a training size of 21% of the Gigaword corpus. However,
their own approach yields better results with an optimum cross-entropy of 101 which is
performed with a model built of less than 7% of the Gigaword corpus. Nevertheless, this
comparison does not include the out-of-vocabulary (OOV) rate. Since different vocabu-
lary are used even amongst the same method, the set of unknown vocabulary varies too.

7



8 2. Related work

Considering all models, the range of OOV rate goes from 0.75% (smallest training set
based on in-domain cross-entropy scoring) to 0.03% (full Gigaword corpus). Considering
only instances with minimal cross-entropy per method, the range of OOV rate is smaller,
starting at 0.10% (cross-entropy difference) going down to 0.03% (random selection).

Even though, Moore and Lewis only tested on cross-entropy rather than BLEU (Bilingual
Evalution Understudy) improvement with a state-to-the-art Statistical Machine Transla-
tion (SMT) decoder, there is strong evidence which supports the idea that lower cross-
entropy of general corpus on in-domain corpus eventually leads to improvement in the
output. Nonetheless, Moore and Lewis show that selection targeting some domain can be
achieved easily and with small outcome in the end.

2.1.1.2 Selection in bilingual corpora (Axelrod et al)

Axelrod et al[1] extend the work of Moore and Lewis by applying the cross-entropy mea-
surement onto bilingual corpora. Equivalent to Moore and Lewis, Axelroad et al argue
that general parallel corpora exist much more frequently than domain specific parallel cor-
pora. As seen before, adaptation can be achieved roughly in two ways. The first one is
to operate on corpus level, that is select, join or weight corpora or subelements of corpora
according to some model. The second option is to operate on model level, that is combin-
ing different models in some way. This combination is often linear where weights define
the impact of a single model on the result. Contrary to Moore and Lewis, Axelrod et al
try both categories. With the assumption that some general corpus contains information
about the targeted domain, Axelrod et al design a technique to extract this information
and to incorporate it into a state-of-the-art SMT decoder. Since in-domain data is small
and therefore lack information, operating on model level may help to improve the qual-
ity. Rather than concatenating different phrase tables together, Axelrod et al follow two
methods. The first method is proposed by Foster and Kuhn[12]in which they interpolate
entries of different phrase tables with either linear or log-linear weights before overlapping
entries are combined.

P (target|source) = λPgeneral(target|source) + (1− λ)Pin-domain(target|source) (2.3)

Koehn and Schroeder[17] suggest a second method. The general and in-domain phrase ta-
bles are passed on to the decoder separately, rather than combining them before decoding.
The decoder keeps track of multiple decoding paths to obtain the final translation.

Moore and Lewis already presented the procedure of exploiting cross-entropy on some
language model to find syntactically close data within another text corpus. This can be
achieved either by by scoring according to the language model of the targeted corpus or
by scoring according to the difference between the language models of the targeted corpus
and some corpus which represents some general data of the language. Axelrod et al extend
the cross-entropy difference approach to consider both sides of some parallel corpus. That
is some arbitrary sentence or phrase is scored with the sum of the cross-entropy differences
on the source and the target side.

(HI-source(s)−HG-source(s)) + (HI-target(s)−HO-target(s)) (2.4)

Following Moore and Lewis, Axelrod et al ensure that the language model built on the
subset of the general corpus only contains vocabulary which appears in the in-domain cor-
pus as well. As in-domain data, they use the International Workshop on Spoken Language
Translation (IWSLT) Chinese-to-English DIALOG task which is a transcription of conver-
sational speech in a travel setting. It contains approximately 30, 000 sentencens in Chinese
and English. The general corpus consists of 12 million parallel sentences put together from
web data, private translation texts and publicly available datasets. For both corpora, the
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Method Sentences Dev Test

General 12m 42.62 40.51
IWSLT 30k 45.43 37.11

Cross-Entropy 35k 39.77 40.66
Cross-Entropy 70k 40.61 42.19
Cross-Entropy 150k 42.73 41.65

Moore-Lewis 35k 36.86 40.08
Moore-Lewis 70k 40.33 39.07
Moore-Lewis 150k 41.40 40.17

bilingual Moore-Lewis 35k 39.59 42.31
bilingual Moore-Lewis 70k 40.84 42.29
bilingual Moore-Lewis 150k 42.64 42.22

Table 2.1: Translation results using perplexity based selection in Axelrod et al

Chinese side is identically segmented as well as the English side is identically tokenised.
The system in use is a standard Moses framework with GIZA++1 and MERT (Minimum
Error Rate Training). The created language models are used twice, for ranking in the per-
plexity computation and in the machine translation process. With SRI Language Modeling
Toolkit, 4-gram language models with interpolated modified Kneser-Ney discounting and
Good-Turing threshold of 1 for trigrams are created. The first baseline configuration is a
SMT system on IWSLT with 37.11 BLEU and the second one is a SMT system on the
entire general corpus achieving 40.51 BLEU. For all three methods of perplexity based
selection, the best 35k, 70k and 150k sentences are used as a training corpus for SMT sys-
tems. All three methods show results such that the selected corpora are feasable to train a
productive SMT system. Using cross-entropy with 70k and 120k outperforms the baseline
system trained on the general corpus. Taking only 35k delivers slightly better tests than
the general baseline, although having 0.3% of its size. The method of Moore and Lewis
does not show a particular improvement over the general baseline system, but needs still
much less size of training corpus. Best performance comes from the bilingual Moore-Lewis
approach with an improvement of 1.8 BLEU while using at most approximately 1% of the
general corpus.

Even though it appears that perplexity based selection allows to find in-domain data in a
general-domain corpus, there is strong evidence which supports the opposite. Perplexity
of the in-domain corpus on the tuning (dev) set gives low perplexity due to the fact
that the dev set has been held out from the in-domain corpus. It would be reasonable
to assume that subcorpora selected with any of the three proposed methods would give
similar perplexity on the tuning set. But they do not. Whilst the language model of
the in-domain corpus reaches a perplexity of 36.96, the perplexities of the three methods
vary from 77 to 120. To go one step further, Axelrod et al train SMT systems with the
concatenation of the in-domain corpus and the selection based on bilingual Moore-Lewis.
Considering that both contain related data, one could assume that they reinforce each
other. In fact, results worsen if both corpora are concatenated. Axelrod et al conclude that
pseudo in-domain data is selected, that is relevant data to the targeted domain but having a
different distribution than the in-domain corpus. That is reason as well, to train translation
models from the in-domain corpus and the selected general subcorpus separately. Both
methods of combinations, as explained before, are tested. The interpolation is tested
with the weight starting at 0 with an increase of 0.1 until 1. For the method proposed
by Koehen and Schroeder, the two phrase tables are given directly to the decoder which
are used to track multiple decoding paths. In the decoding system the phrase tables are

1http://www.statmt.org/moses/giza/GIZA++.html
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System Dev Test

IWSLT 45.43 37.17
General 42.62 40.51

Interpolate (λ = 0.9) 48.46 41.28
Multiple decoding paths 49.13 42.50

Table 2.2: Translation results using phrase table combinations in Axelrod et al

Method Dev Test

IWSLT 45.43 37.17
General 42.62 40.51
IWSLT + General 49.13 42.50

IWSLT + Moore-Lewis 35k 48.51 40.38
IWSLT + Moore-Lewis 70k 49.65 40.45
IWSLT + Moore-Lewis 150k 49.50 41.40

IWSLT + bil Moore-Lewis 35k 48.85 39.82
IWSLT + bil Moore-Lewis 70k 49.10 43.00
IWSLT + bil Moore-Lewis 150k 49.80 43.23

Table 2.3: Translation results using in-domain and pseudo in-domain translation models
for multiple decoding paths in Axelrod et al

weighted automatically on the tuning set. The two methods gain an improvement over
both baselines. Best performance with the interpolation is reached with a weight λ of 0.9.
The approach of using multiple decoding paths even gives an improvement of over 2 BLEU
points over the baselines and 1.3 BLEU over the best interpolation instance.

In a last step, Axelrod et al connect the data selection with multiple decoding paths.
Rather than using the whole general corpus, only subcorpora selected with Moore-Lewis
and bilingual Moore-Lewis serve as training set for a second translation model alongside
a translation model trained on the in-domain corpus. Both the in-domain translation
model and the pseudo in-domain translation model are passed on to the SMT decoder.
Whilst the simple Moore-Lewis approach in combination with IWSLT does not bring any
enhancement compared to the baselines, combining the bilingual Moore-Lewis approach
with IWSLT does. Considering approximately 1% of the original general corpus with
bilingual Moore-Lewis selection returns an increase of over 3 BLEU points compared to
using the whole general corpus instead, and an increase of over 6 BLEU points compared
to using the in-domain corpus alone.

2.1.1.3 Selection with vocabulary (Mediani et al)

Mediani et al expand the idea of using perplexity for in-domain selection even further[20].
Their aim is to improve a SMT system targeted towards some quite small in-domain
corpus such that using solely this in-domain corpus will not be feasable. Three points
are suggested to reach improvement: the selection of the non-domain specific corpus,
vocabulary selection for n-gram cut-offs and language model extension.

In previous proposals, including Moore and Lewis as well as Axelrod et al, a language model
is created to represent non-domain specific language. Therefore, random samples are drawn
from some general corpus on which the non-domain specific language model is trained.
Mediani et al argue that taking randomly a subcorpus might result in having in-domain
data as well for forming the non-domain specific language model. By nature, the non-
domain specific subcorpus should have the highest perplexity on the in-domain language
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model. Depending on the nature of the general corpus, it might include as well some
useless data which will score high on any proper language model perplexity. This useless
data originates mostly from web crawls or document text extraction. Mediani et al rank
all entries in the general corpus to their respective perplexity on the in-domain language
model. To keep useless data out of the the non-domain specific language model, some
range around the median perplexity is taken. From sentences with a perplexity in range of
m±0.5m (m being the median perplexity), Mediani et al select randomly with a probability
proportional to the corresponding perplexity. For the next point, vocabulary selection for
n-gram cut-offs, Mediani et al suggest additional three ways to bound the vocabulary in
the in-domain and non-domain specific language models. So far, only grams which appear
frequently in the in-domain corpus are considered in the language models whilst others are
mapped to the unknown word tag. The first suggested bound is the intersection of grams in
both corpora. The second one extends the first bound by adding the high frequency grams
in the in-domain corpus. The third bound incorporates the second bound and adds high
frequency grams in the general corpus. These different configurations are used not only
to cut off the gram models but to also create an association lexicon between words inside
the vocabulary to words outside the vocabulary. These outside-of-vocabulary words are
adjoined with a certain weighting to the language model. The association between some
word in the vocabulary and one outside the vocabulary is based upon a perfectly aligned
parallel corpus. Assuming such perfect alignment, aligned words share some common
meaning. Two words on the source side of the parallel corpus can be associated over target
words which they are jointly aligned to. Using the alignment probability and Baye’s rule,
the joint probability P (wi, wj) of words wi and wj on the source side can be expressed via
the joint probability P (wi, z) of some source word wi and some target word z. This joint
probability is induced by the alignment information.

P (wi, wj) =
∑
z

P (z)P (wi, wj |z)

≈
∑
z

P (z)P (wi|z)P (wj |z)

=
∑
z

P (wi, z)P (wj , z)

P (z)

(2.5)

Since only scoring and no probability is required, it can be reduced further to the scoring
function D(wi, Dj) which takes use of the alignment appearance frequency f .

D(wi, wj) =
∑
z

f(wi, z)f(wj , z)

f(z)
(2.6)

Mediani et al only use unigrams in the lexicon, but this procedure is not certainly limited
to this order. With the lexicon, both the in-domain and the non-domain specific language
models are extended such that the out-of-vocabulary words are considered as well. Some
a priori fixed probability mass m0 is reserved by discounting the probabilities of the vo-
cabulary words. Each word from the lexicon, then, obtains a share from m0 proportional
to the LM probability of its associated vocabulary words and the strength of the lexicon
association connecting the out-of-vocabulary word with the vocabulary word.

P (w) =

{
m0PLM(w) if w ∈ Vocabulary

(1−m0)
∑

v t(w|v)PLM(v) otherwise
(2.7)

This way, a n-gram language model is obtained whose vocabulary is a superset of the orig-
inal vocabulary. Only unigrams are added whilst grams of higher order remain unchanged.
For the general corpus, several German monolingual corpora are choosen and reduced to
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Retained Sentences in % 1 2 5 6 10

Moore-Lewis 222.7 202.4 190.3 190.0 190.5
Enhancements 211.9 195.4 185.3 184.5 185.9
Ext. Enhancements 208.1 192.9 183.4 183.3 185.0
Extension 206.2 191.9 183.0 182.5 184.4
Double Extension 203.0 189.1 181.3 181.0 183.3

Table 2.4: Perplexity on test set of LMs obtained on different techniques in Mediani et al

Retained Sentences in % 5 10 20

Moore-Lewis 13.24 13.04 12.84
Enhancements 13.47 13.19 13.06
Extension 13.52 13.16 13.00

Table 2.5: BLEU score for translation results with different configurations in Mediani et
al

20 million lines (281 million tokens). For the lexicon alignment, Mediane et al use the
German-English parallel corpus of public parallel corpora distributed for the WMT eval-
uation campaign (2014) with 3.3 million lines. From transcription of several university
lectures, an in-domain corpus of 11000 lines (237000 tokens) as well a held-out corpus of
similar size for perplexity evaluation is collected. Different configurations are tested. First,
the extension by the lexicon is taken out which results in the configuration Enhancements.
The second configuration uses both, the enhancement through carefully selecting the non-
domain specific language model as well as extending the in-domain language model by high
frequency in-domain vocabulary which is named Ext. Enhancements. The configuration
Extension only extends the language models without any enhancement beforehand. Last,
the language model after the enhancement step and the models after the extensions are
combined, refered to as Double Extension. Whilst no selection gives a perplexity of 301.9,
Moore-Lewis approach’s results with 6% of the general corpus a perplexity of 190.0. The
four configurations still excel Moore-Lewis for each tested proportion. Best perplexity is
obtained by Double Extension with 181.0 (6%) and 181.3 (5%). Mediani et al test the
translation quality with a SMT system whose translation model is trained on EPPS, NC,
TED and BTEC German-English parallel corpora. Tuning and test set are parts of a
computer science lecture. Tuning corpus has approximately 1000 entries whereas the test
corpus incorporates about 2000 entries. First baseline is to just use the whole general
corpus and the second baseline is to perform Moore-Lewis with 5%, 10% and 20% of the
general corpus respectively. The first baseline reaches 12.47 BLEU. Moore-Lewis gains
best with 5% of retained sentences (13.24 BLEU). Using Enhancements and Extension
gives better results than both baselines. Nevertheless the improvement is slight. Best
performance is reached by Extension on 5% of the general corpus with 13.52 BLEU.

2.1.2 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a method to map words and phrases into some vector
space model (VSM) which is continuous, contrary to words and phrases themselves. The
vector space represents some semantical or syntactical locality. That means that instances
which are close in the vector space are close as well in their semantics or syntax. LSA works
on a closed set of vocabulary. Therefore, unknown phrases and words cannot be handled.
Documents are mapped linearly onto tokens. The matrix is called type-by-document
matrix where type refers to the type of tokens, be it words, terms, phrases or concepts and
documents be paragraphs, sentences, books, chapters or any other large text segments,

14
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depending on the application. The element aij in the type-by-document matrix indicates
the frequency of the i-th type in the j-th document. For further improvement, a weighting
function is typically applied on the elements to put more information into the system.
Once, the type-by-document matrix is created, it will be decomposed orthogonaly in order
to gain a mapping into some subspace which contains almost all information but still has
reduced dimensionality. Single value decomposition (SVD) and Lanczos’ algorithm[18]
allow to perform such orthogonal decomposition. With the subspace matrix, document
instances which are close to some query can be located. The query is a pseudo document,
that is a sequence of words weighted to match the wanted information as much as possible.
LSA is widely used to perform information retrieval within large text document systems
and it shows ways to compute semantics of text.

2.1.2.1 Multidimensional Latent Semantic Analysis (Zhang et al)

An extended version of the Latent Semantic Analysis, the multidimensional latent semantic
analysis (MDLSA), which combines features on a global scale with features on a local scale
is proposed by Zhang et al[33]. The aim is to not only capture the statistical relationships
between terms and documents but also to consider a very small context to infer a term
affinity graph. Latter will help to define a spatial distribution of terms within a document.
With such distribution the context of two documents should be distinguishable even if
both documents have the similar term frequencies.

The global feature, Zhang et al use, is the regular LSA feature, called tf-idf weighting wu
for some token u. The term frequency f t over all documents multiplied by the inversed
document frequency idf which accounts the amount of documents where some particular
term appears, results into a description following the bag-of-word concept.

wu = f tu · idfu (2.8)

As stated before, terms origin from a closed set, hence unknown terms - like typically in
bag-of-word concepts - cannot be used and will be dropped. The closed set of vocabulary
origins from a training corpus. This corpus is preprocessed, so any formated information is
removed in order to obtain the raw text content. The raw text snippets are tokenised into
words which are stemmed. This way, variations in grammatics are cut off to a normalised
word. Any stop words like articles are removed and each resulting word u is stored with its
respective term frequency f tu (amount of appearance u in all documents) and its document
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frequency fdu (number of documents where u appears). The inverse document frequency
idfu normalises the document frequency.

idfu = log2(
n

fdu
) (2.9)

Since not all words help to deliver some improvement to the system, the basic tf-idf
weighting can be used to further limitate the set of vocabulary M . Therefore, only the m-
best based on tf-idf weighting are taken. Tokens with lower weights might be noise. So far,
documents can be represented by some vector xi = [w1, w2, . . . , wm]T with associations wj
to the j-th word in the vocabulary M . To incorporate varieties in documents such as length
and deviation from means, term weighting schemes are applied. The schemes normalise
term weightings on different ways by expanding the tf-idf equation. For more details
on these schemes, see parapgraph III.B of Zhang et al. The dimensionality reduction
aims on finding internal structures which reflect semantic relations between documents.
Though the new vector space will have considerabely lower dimensionality than the original
vector space, it should be an almost accurate representation of the original one. As well,
transformation between the two vector spaces should go on in a linear fashion. Each
instance X in the original vector space is transformed to an instance Y in the new vector
space by some linear transformation Vg.

Y = V T
g X (2.10)

The transformation matrix Vg can be computed via traditional dimensionality reduction
techniques. Zhang et al use the Principal-Component-Analysis technique (PCA). PCA is
designed to maximise the variance of projected vectors.

maxVg

n∑
i=1

‖yi −
1

n

n∑
i=1

yi‖22 (2.11)

To gather spatial term distribution information, Zhang et al produce an in-depth document
representation, a word affinity graph that indicates which words appear often together and
which do not. The training documents are segmented into paragraphes. Since Zhang et al
use HTML formated documents, they are able to exploit information from this formation
to identify paragraphes in the document. Starting from the beginning, text blocks are
merged subsequently until some threshold in total number of words is exceeded. If a
paragraph falls below some minimum threshold, the next block is added to the paragraph.
For each document i, term occurrences gi,u,v are counted. The word affinity graph Gi will
consider the frequency Fu,v of cooccurrence of word u and v in a paragraph, the document
frequency DFu,v as well the term frequency f t and document frequency fd.

gi,u,v =

{
Fu,v · log2(n/DFu,v)/‖Gi‖2 u 6= v

f tu · log2(n/fdu)/‖Gi‖2 u = v
(2.12)

By design, graph Gi is symmetric and stores information which will help to deduce infor-
mation about local semantics. Word affinity graphes are rather spare and have large sizes.
So it will be hard in terms of computation to carry out comparisons with them. To achieve
feasable size for computation, the word affinity graphes need to be compressed which will
allow to work accurately in a lower dimensional space. The proposed Multidimensional
Latent Semantic Analysis (MDLSA) delivers this exactly. A word affinity graph G of di-
mensions mxm is mapped to some lower dimensional matrix Z of dimensions dxd with an
mxd linear transformation matrix V .

Z = V TGV (2.13)
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For reduction, Zhang et al use 2DPCA which is a variation of the Principal Component
Analysis (PCA). Whilst PCA works on vectors, 2DPCA works on matrices. The objective
to maximise the variance is the same. Finding the orthogonal eigenvectors of the co-
variance matrix C associated with the largest eigenvalues allows to construct the optimal
transformation matrix V . Nevertheless, using only the first column of Z empirically gives
a good semantic representation of the respective document. Using just a vector rather
than some matrix permits easy and fast comparison between documents. Contrary to
latent semantic analysis (LSA) or PCA, MDLSA captures local semantic information. For
feature vector comparison, Zhang et al use the cosine distance criterion which determines
the magnitude of the angle between two vectors a and b.

Ŝ(a, b) =
a · b

‖a‖2‖b‖2
(2.14)

To compare two documents p and q which have local features pl and ql and global features
pg and qg, the features similarity on global and local scale are measured separately with
the cosine distance criterion and then combined linearly.

S(p, q) = µŜ(pl, ql) + (1− µ)Ŝ(pg, qg) (2.15)

Zhang et al design their MDLSA system for two purposes. The first one is document
retrieval whereas the second is document classification. Baselines are various methods
used in text information retrieval. These are:

• Multi-Level-Matching Hybrid (MLM-Hybrid)

• Multi-Level-Matching Local (MLM-Local)

• Term-Connection-Frequency (TCF)

• Principal-Component-Analysis (PCA)

• Latent Semantic Indexing (LSI)

• Vector-Space-Model (VSM)

• Rate-Adapting Poisson Model (RAP)

• Probabilistic Latent Semantic Indexing (PLSI)

• Direct Graph Matching (DGM)

Zhang et al implement two versions of their own algorithm. The first uses only local
features (MDLSA) and the second comprises local as well as global features. The dataset
contains text documents harvested via Yahoo Science, Web crawling and taken from other
authors. A ten-fold cross-validation is performed. Metrics in use are precision, recall and
AUC (Area Under the precision-recall Curve) which combines precision and recall.

AUC =

nmax∑
iA=2

(Prec(iA) + Prec(iA − 1)) · (Rec(iA)−Rec(iA − 1))

2
(2.16)

Regarding solely the AUC metric, MDLSA-Hybrid with Norm weight scheme outperforms
all other methods. Noticable is that hybrid methods which means feature use on local
and global scale, gain better results with respect to AUC than methods which consider
only local or global features. Retrieving only few documents, MLM Local tops MDLSA
methods. However, for retrieving just one document, MDLSA related methods yield best
results. For document classification, Zhang et al use two datasets, YahooScience and

17



18 2. Related work

WebKB4. Three metrics are in use. First, accuracy is tested. It compares the amount of
correctly classified documents NC with the amount of all documents nT .

Accuracy =
NC

nT
(2.17)

With the F-measure Fi, both recall Ri and precision Pi of some class i are combined.
The overall F-measure FO averages F-measures of all classes by the total amount ni of all
documents in all classes.

FO =

∑
i(niFi)∑
i ni

(2.18)

The last metric, Zhang et al use, is entropy Ej for some predicted class j. It measures
how homogenous a predicted class is.

Ej = −
∑
i

pijlog(pij) (2.19)

The total entropy over all classifications is a linear combination of all entropies weighted
according to the relative share of documents.

EO =
∑
j

(
nj∑
i ni

Ej

)
(2.20)

Optimising a classification task means to maximise accuracy and F-measure as well min-
imise the entropy of predicted classes. To perform classification, different techniques can
be taken; support vector machines (SVM), Bayesian networks or neural networks can be
exploited. Zhang et al take use of nearest neighbour as it is simple in use and implemen-
tation. The classification operates on the latent semantic features in the reduced space.
The first dataset, YahooScience, origins from documents in the Open Directory Project.
A four-fold cross-validation is performed with 25% test and 74% training data. Results are
averaged over the four folds. As seen in the retrieval task, hybrid methods deliver best re-
sults. Considering traditional techniques, MDLSA-Hybrid NORM gives an accuracy boost
(over 7% compared to VSM and 5% compared to LSI). Both local and global features con-
tribute to the improvement as the linear combination parameter for interpolating global
and local features in MDLSA-Hybrid NORM is approximately 0.45. Compression of data
as well yields some enhancement. With over 20% accuracy gain, MDLSA outperforms
DGM which operates on word affinity graphs without any dimensionality reduction. The
second dataset, WebKB4, is a filtered corpus collected from university computer science
departments. As before, the dataset is split in 25% test and 75% training data and re-
sults come from a four-fold cross-validation. MDLSA-Hybrid methods show best results.
Lowering the impact of global features in MDLSA-Hybrid NORM and MDLSA-Hybrid BI-
AC-BCA outperforms PCA and indicates that the local information generated by MDLSA
delivers more information about classification than the global feature of PCA. Zhang et al
also carry out tests on sentence rather paragraph level. Results are similar to working on
paragraph level. MDLSA-Hybrid SMART obtains around 1% accuracy improvement. All
the results presented by Zhang et al, show clear indication that semantic analysis profits
from features describing local context.

2.1.3 Neural Networks

Neural networks are essential in the area of artificial intelligence and machine learning.
The basic elements of neural networks are perceptrons. A perceptron y basically is a linear
combination of input weights xi plus some bias b applied to an activation function f .

y = f(b+
∑
i

wi · xi) (2.21)
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Figure 2.5: A perceptron takes an input vector x = (x1, x2, . . . , xn) and feeds the weighted
sum plus a bias b to an activation function f which gets activated (that is
returns one) for an input greater zero and gets inactivated (that is zero or
minus one) for an input less than zero.

The activation function allows to incorporate non-linearity into the perceptron. A percep-
tron itself is rather limited to its functionality[22]. However, using multiple perceptrons
in specific arrangements allows to train for any possible function. Mostly known is the
Multi-Layer Perceptron architecture (MLP), also known as Feed-Forward network which
consists of layers that places perceptrons parallel. Perceptrons inside a layer are not con-
nected with each other whilst perceptrons of neighbouring layers are fully interconnected.
A MLP contains at least two layers, the input and output layer. Arbitrarily many lay-
ers, called hidden layers, can be batched between input and output layer. Several other
architecture exists which are partly presented in this section.

The advantage of a neural network is its ability to learn any function possible and that it
has fairly simple basics. The challenge lays in mapping discrete values, aka words, phrases
or sentences, onto continuous values. This task is called word embedding and it is one of
several tasks belonging to the field of Natural Language Processing (NLP). Techniques of
NLP offer solutions to find semantics of languages.

2.1.3.1 Probabilistic Language Model (Bengio et al)

A very basic but critical task in NLP is to model language itself. Language consists of
words which are made up from some alphabet. Whilst the alphabet usually is limited, the
amount of words is not. The typical question is how likely some token is in some specific
context. Therefore, joint probabilities of words are trained. Considering a closed set of
vocabulary V and a fixed size of context w, the amount of free parameters is exponential
to the size of context, that is |V |w. Every new token in the vocabulary brings exponential
many posibilities. The inherent problem is to get enough data for training. This problem
is called curse of dimensionality and it is imminent to machine learning in general. The
standard technique is n-gram. It bases on the Markov assumption stating that only a
fixed size of history is relevant for prediction. Histograms for phrases up to n tokens are
registered and certain methods help to smooth the empirical model. As n-grams are simple
and easy to construct, they lack certain information which help to deduce the probability
for unseen phrases. Due to its limited context size as well as solely exploiting appearances,
semantic and grammatical variations are not considered. Bengio et al[4] propose a way
to overcome these two problems to a certain extend. With a distributed representation,
words are mapped into a continuous vector space. These code vectors are used to learn
parameters for a joint probability function. Words which are similar in their semantic or
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Figure 2.6: A feed forward network consists of several layers which have perceptrons in
parallel and in which values (aka activations) are forwarded to the next layer.
The first layer is the input, and hence is called input layer, the last one is called
output layer and all layers in between are called hidden layers.

syntax, aka grammar, are supposed to be similar in the continuous vector space. Having a
smoothed joint probability function, small changes in the code vectors only produce small
changes in their probabilities.

The joint probability of a sequence of words w1, . . . , wT can be reformulated by the
product of condition probabilities of a single word depending on its previous words.

P (w1, w2, . . . , wT ) =

T∏
t=1

P (wt|w1, . . . , wt−1) (2.22)

Bengio et al design a model whose objective is to learn the prediction of a word depending
on previous words. Thereby, the model should only consider some limited context of size
n.

f(wt, . . . , wt−n+1) = P (wt|w1, w2, . . . , wt−1) (2.23)

Multiplying the objective function with increasing context results in the joint probability
for the particular text phrase. The function is constraint to be positive and to sum up to
one for all words in the vocabulary V .∑

v∈V
f(v, wt−1, . . . , wt−n+1) = 1 (2.24)

To receive the output of the objective function f , two steps have to be taken. Words must
be mapped into a continuous vector space C. The mapping is provided by some matrix
with dimensionality |V | ×m, functioning as look-up table. Second, a function g computes
the condition probability distribution with word codes as input for the next word. The
output of g is a vector with the i-th element estimating the probability of the i-th word
being the next word.

f(i, wt−1, . . . , wt−n+1) = g(i, C(wt−1), . . . , C(wt−n+1)) (2.25)
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i-th ouptut = P (wt = i|context)
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Figure 2.7: The architecture proposed by Bengio et al predicts the next word based on a
history of previous words.

The first mapping, the word embedding, is done by using sparse vectors, that is a vector
of size |V | where the i-th word is refered by the i-th unit vector. Hence, the i-th column
represents the i-th word. This lookup mechanism can be seen as a single perceptron layer
with no bias and no full interconnection between input and the layer, as well as the layer
and output. It should be also noted for training that the lookup matrix, as free parameter,
is shared amongst all input slots. The propability mapping g consists of a feed-forward
network with softmax output layer. The suggested model scales linearly with |V |, the
size of vocabulary V , and n, the size of context. With advanced models like time-delay
neural nets or recurrent neural nets - Bengio et al mention - the space complexity could
be pushed down to sub-linear complexity. All in all, two hidden layers, the shared word
features layer C and an ordinary tangens hyperbolicus layer are used to obtain an output
y which is topped with a softmax layer that guaranties positive probabilities summing up
to one.

P (wt|wt−1, . . . , wt−n+1) =
eywt∑
i e
yi

(2.26)

Therefore, entries in the output vector y are estimations of the unnormalised log-probabilities
for each word in the vocabulary. The output layer is not only fed from the tangens hyper-
bolicus layer but optionally from the word vector layer as well.

y = b+Wx+ Utanh(d+Hx) (2.27)

The connection between the word feature layer and the softmax layer can be disabled with
W set to zero. The input x of the tangens hyperbolicus layer is the concatenation of the
word code vectors.

x = (C1(wt−1), . . . , Cd(wt−1), . . . , C1(wt−n+1), Cd(wt−n+1)) (2.28)

The training objective L is to maximise the log-likelihood of the objective function f with
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some regularisation term R(Θ).

L =
1

T

∑
t

logf(wt, wt−1, . . . , wt−n+1; Θ) +R(Θ) (2.29)

Free parameters Θ are the biases b, d and connection weights W , U , H and C. Regu-
larisation, weight decay penalty, is performed only in the connection weights W , H and
U . Performing no regularisation on the word features connection weights C might lead
to unstable behaviour. Bengio et al report that however using stochastic gradient ascent
such behaviour does not occur.

Bengio et al use two corpora, Brown corpus containing a text size of about 1.2 million
words from English texts and books and Association Press (AP) News from 1995 to 1996
containing a text size of about 16 million words. The data is split into training, validation
and test set. In particular for the Brown corpus, the training set has 800 000, the validation
200 000 and the test set 181041 words. Removing words with appearances lower than
4, the size of vocabulary is 16 383. For the AP corpus, the training set has about 14
million words, the validation set 1 million and the test set about 1 million words as well.
Due to preprocessing and keeping only frequent words, the size of vocabulary is 17 964.
The choosen metric is perplexity, computed with the geometric average of the reciprocal
conditional probability P−1(wt|w1, . . . , wt−1). For comparison, back-off n-gram models
with Modified Kneser-Ney as well as class-based-n-gram models are put in place with
different configurations. The neural network, designed by Bengio et al, also runs with
different configurations. All neural net configurations perform better than the n-gram
models. The perplexity difference between the best n-gram configuration and the best
neural net configurations yields about 24% on the Brown corpus and 8% on the AP corpus.
Hidden layers give an improvement which shows that latent information is extracted and
helps to find the right prediction. Further more, Bengio et al also test model mixture with
the neural net and a tri-gram model. Different configurations show that mixing models
always helps to reduce the perplexity. A gained improvement with simply averaging the
results of the neural net and the tri-gram illustrate that both models produce errors at
different places. Whether the direct connection between the word feature layer and the
softmax output layer has some influence, cannot be concluded from the results.

2.1.3.2 Deep Multitask Learning (Collobert and Weston)

Collobert and Weston[9] approach the field of Natural Language Processing (NLP) from a
more distant point of view. The wholistic idea of fully understanding semantics of natural
languages is yet to reach. Usually, NLP is divided into tasks which are handled separately,
such as part-of-speech tagging, chunking, parsing, word-sense disambiguation or semantic-
role labeling. Putting systems for all these tasks together will not help, as Collobert and
Weston mention, because they often use simple, aka shallow, complexity (mostly linear
ones), rely on many hand-engineered features specificly designed to the task; due to its low
complexity and cascade features learnt separately from other tasks, propagation of errors
is induced. Collobert and Weston suggest a general convolutional network architecture
that is deep in terms of its complexity and only learns features which are important for
the aimed tasks with very little prior knowledge. To bundle different tasks, they are all
integrated into one system and trained jointly. All but the language model are trained
on labeled data, thus training an unsupervised task with other supervised tasks together
induces a new kind of semi-supervised learning. All in all, Collobert and Weston look into
six standard NLP tasks:

• Part-Of-Speech Tagging (POS) estimates a syntactic label for each word such as
plural noun, adverb and so on
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Figure 2.8: Deep multitasking works on exclusvive and shared lookup tables with own
objectives for each task.

• Chunking parses text for grammatical roles such as noun-phrase or article

• Named Entity Recognition (NER) maps atomic elements in a sentence to some
categories

• Semantic Role Labeling (SRL) estimates semantic relations of syntactic con-
stituents of a sentence

• Language Model estimates the likelihood of a word sequence belonging to some
language

• Semantically Related Words estimates the semantic relation between two words

Collobert and Weston put their attention towards SRL believing it to be the most complex
task. By integrating all tasks into one system, they intent to show its general purpose as
well as the improvement gained by multitask learning.

Contrary to traditional NLP systems where mostly hand-crafted features are extracted
to be fed to some linear classifier like SVM, Collobert and Weston favour a deep neural
network architecture consisting of several hidden layers whose objective is to extract useful
features of the previous layers. Training is done on a wholistic approach which allows to
make the system find features suiting best to the task. Stacking several layers, as seen
in ordinary feed-forward networks, allows to generalise feature extraction layer by layer.
Working with text, four issues appear.

1. Neural networks operate with continues values whilst words or any other token in
text processing are discrete values. Like in the work of Bengio et al[4], words are
mapped into some lower dimensioned continuous vector space via some lookup table
such that each word in the vocabulary owns an instance in this vector space. Passing
a sequence of words as input, the layer will provide the concatenation of word feature
vectors originating from the words in the sequence.

2. Reducing data sparsity helps to avoid curse of dimensionality, that is reducing the
amount of possible combinations. Since Collobert and Weston try to bring in as few
prior knowledge as possible, they limit preprocessing to lowercasing and adding a
feature per word indicating whether it was upper or lower cased.
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3. Classification might depend on additional information which is passed on to the
neural network. In SRL, labels depend on a given predicate, stating which word
should be labeled. An additional lookup tables encodes the features for some word
with a relative distance to the predicate.

4. Sentences have variable length of words. However, usual neural networks take a fixed
length of input. A common solution is to consider only the context of fixed size.
Tasks where mostly direct context influences the result show good performance with
considering only a fixed-sized context. Yet SRL relies on information of far reaching
dependencies. To handle a variable size of input, different techniques like recurrent
neural nets or recursive neural nets exist. Collobert and Weston take use of Time-
Delay Neural Networks (TDNN)[32] which are basically convolutional networks with
overlapping input windows. This way, a whole sentence can be taken into account.
On top, a max layer takes the maximum over time for each convoluation, so that the
most relevant features of the sentence are fed forward.

Deepness in neural networks is obtained by using one or more hidden layers so the system
can model non-linearity. The output layer is a softmax layer producing probabilities for
each class. The whole system is trained at once, meaning that especially lookup tables at
the input layer are tailored towards the classification tasks and hence are already adapted.
Backpropagation is applied with the objective to minimise the cross-entropy. Next to
deepness, Collobert and Weston implement multitasking in their neural network archi-
tecture. They reason that related tasks can help each other by sharing deep layers and
hence improving generalisation. To do so, lookup tables are shared amongst task specific
systems whilst deeper layers are separated. For training, task by task is taken for which
random samples are drawn with which shared layers as well as the task-specific layers are
updated. Since training samples depend on the task, different datasets can be taken if
data is labeled. Besides labeled data, Collobert and Weston also exploit unlabeled data.
Contrary to labeled data, unlabeled data can be gathered at considerably lower cost. A
language model that predicts whether some word within some context fits in or not, is
joined to the system and is able to use unlabeled data. To train the positive and negative
class, a monolingual corpus is used without any modification (positive) and with replace-
ment of random words (negative). No softmax is put on the output layer,thus regression
is performed with a ranking-type cost objective which maximises the output between a
positive sample and a negative one. Samples are drawn from a set S of fixed-sized sen-
tence windows. A positive sample s is a sentence window without any modification and a
negative sample sw is a sentence window where the word in the center is replaced by some
other word w. ∑

s∈S

∑
w∈V

max(0, 1− f(s) + f(sw)) (2.30)

For SRL tasks, a subcorpus of PropBank dataset is taken for training and testing. POS
and chunking use PennTreeBank dataset, whilst NER labeled data comes from parsing
the subcorpus of the PennTreeBank. The language model data is taken from the English
wikipedia which then is preprocessed to eventually hold only the 30 000 most frequent
words. Instances of the neural network architecture are varied to have different convolu-
tion dimensionality, amount of hidden layers and units. First, only the language model
is trained and compared with WordNet, a database containing semantic relations. The
coverage of their own language model is bigger than the WordNet database. Testing the
SRL task, the choosen metric is the word error rate. Best performance is reached with
semi-supervised learning. Testing POS and Chunking, Collobert and Weston see only
modest enhancement. Nevertheless, their system does not use POS tags as input contrary
to the other systems in their benchmark.
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Figure 2.9: The general concept of deep NN architecture takes an input sentence with k
features like POS tags. The respective representations are taken from lookup
tables for each input word and feature. In a convolutional layer, neighbouring
word instances are merged together in an overlapping fasion. For each feature,
the maximal value of all merges is considered as input in an optional classic
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Figure 2.10: An autoencoder maps the input onto a lower dimensioned hidden layer from
which it tries to reconstruct to original input layer.

2.1.3.3 Deep Learning in NLP (Du and Shanker)

A short overview about deep learning techniques in NLP is given by Du and Shanker[11].
Deep learning techniques enable feature learning over different levels of abstraction with
help of multiple layers of nonlinear operations. Until 2006 deep learning was a too expen-
sive task to perform that meanwhile is affordable thanks to new learning algorithms and
hardware dedicated to massive parallel computing.

Strongly but not necessarily connected to deep learning is so-called pretraining. It coins
the approach to conveniently initialise free parameters through layerwise unsupervised
training. Each layer is trained with features put through the previous layers. Eventually,
the extracted features can be used for standard supervised predictors or as initialisation
for deep supervised neural networks. Two kind of pretraining are presented.

The first is a stacked-autoencoder. It is based on autoencoders that are architectures
to aim for dimensionality reduction or compressed representation. An autoencoder is a
feed-forward network and typically has hidden layers with fewer units than the input layer
and an output layer that tries to reconstruct the input layer. Forcing reconstruction as
the training objective provides a smaller representation in the hidden layers. In a stacked
autoencoder training, each layer takes the extracted features from the previous layers as
input and tries to reconstruct them via a hidden layer. The hidden layer then will be put
on top for training the next layer.

The second method of pretraining is a deep boltzmann machine. It is based upon restricted
Boltzmann machines (RBMs), a generative two layer architecture where the second (hid-
den) layer tries to reconstruct the first (input) layer. Layer for layer, the feature activations
of the previous layers are taken as input to train the next layer in the stack. Eventually,
all Boltzman machines are unrolled to get a deep feed-forward network which then is
fine-tuned using standard backpropagation with reconstruction error.

Deep learning allows multitasking and transfer learning of related tasks which means that
different systems with different objectives share some layers and thus transfer learned
information. Sharing features not only enhances generalisation but also might deliver
information that would not be extracted without multitasking. Empirical applications so
far have shown very good results.

2.1.3.4 Word embedding (Mikolov et al)

Contrary to previous language models, Mikolov et al propose a new approach to modeling
language based on neural networks[21]. They, as well show extensions and improvements
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(k)
n

h
(k)
1 h

(k)
2 h

(k)
3 h

(k)
n 1

h′1 h′2 h′m 1

h
(2)
1 h

(2)
2 h

(2)
3 h

(2)
n 1

h
(1)
1 h

(1)
2 h

(1)
3 h

(1)
n 1

x2 x3 x4 xn−1 xnx1 1

Input layers

Trained hidden
layer

Autoencoding

layer

Decoding layer

Figure 2.11: A stacked autoencoder trains the hidden layer sequentially with an autoen-
coder which tries to reconstruct the last layer in the stack considering the
previous layers as input layer.

30

500

500

1000

1000

2000

2000

input

Top RBM

RBM

RBM

RBMW1

W2

W3

W4

input

2000

1000

500

30

500

1000

2000

reconstructed input

Encoder

Decoder

Code
layer

W1

W2

W3

W4

WT
4

WT
3

WT
2

WT
1

input

2000

1000

500

30

500

1000

2000

reconstructed input

W1 + ε1

W2 + ε2

W3 + ε3

W4 + ε4

WT
4 + ε5

WT
3 + ε6

WT
2 + ε7

WT
1 + ε8

Pretraining Unrolling Fine-tuning

Figure 2.12: In a stacked RBM, different layers are pretrained sequentially from the bottom
(input layer) up to the top layer. Pretraining gives initialisation for weights.
After pretraining, all layers are stacked and with backpropagation, the weights
get tuned through the whole layer stack.

27



28 2. Related work

w(t)

w(t-1)w(t-2) w(t+1) w(t+2)

Output

Projection

Input

Figure 2.13: A skip-gram model predicts the surrounding word representations based on
the input word representation.

for training. Thereby, they use Skip-gram models from their previous works. Usually,
language models are trained to predict words based on previous words or the context. As
mentioned before, neural nets operate with continuous values and hence words are mapped
into a continuous vector space. The objective of the Skip-gram architecture is to find a
representation that is most useful to predict the surrounding words of a sequence of words
w1, w2, . . . , wT .

max
1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logp(wt+j |wt) (2.31)

For classification, a log-linear classification layer is in use. In a naive implementation, its
complexity goes linearly with the size of the vocabulary W . Performing backpropagation
will be not feasable due to the typically big vocabulary set W .

p(wj |wi) =
exp(v(wj)

T v(wi))∑
wk∈W

exp(v(wk)T v(wi))
(2.32)

Computationally more efficient is an hierarchical softmax layer, first introduced by Morin
and Bengio[24]. It is an approximation of the full softmax-layer, aka log-linear classifier.
A binary tree represents the layer with the vocabulary words as its leafs and branch nodes
containing the relative probabilities of its child nodes. Defining random walks allows to
assign probabilities to words. Due to its hierarchy just logarithmically many of the words
in the vocabulary have to be evaluated which gives it better time complexity than the
standard formulation of the softmax layer. As reported, the structure of the tree used in
the hierarchical softmax layer effects performance and the accuracy of the resulting model.
Mikolov et al use a binary Huffman tree. Length of codes are distributed according to the
entropy of the words, that is frequent words are assigned to short codes whilst rare words
are assigned to longer codes. This will indeed fasten the training. An additional speed up
can be gained through grouping words by their frequency.

Another approach to efficiently replace the standard softmax layer is Noise Contrastive
Estimation (NCE). The intention is to train a model such that it distinguishes actual data
from noise. NCE is able to maximise the log probability of softmax. Nevertheless, Skip-
gram model is designed to produce word representations of good quality. Any simplification
on NCE is allowed as long as word representations retain their quality. The simplified
objective function to maximise is named Negative Sampling (NEG) and rewards correct
linear classification, smoothed with sigmoid function σ for logistic regression and punishes
positive classification of random words drawn from some noisy distribution Pn(w). NEG
only considers samples and does not require to approximately maximise the log probability
of softmax. However, NCE works both on samples and numerical probabilities of the noise
distribution which shows the enhancement of NEG.

logσ(v’
wO

T
vwI ) +

k∑
i=1

Ewi∼Pn(w)

[
logσ(−v’

wi

T
vwI )

]
(2.33)
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Dependig on the size of the training set, the amount k of negative samples is choosen.
Empirically, Mikolov et al see that a range of 5 to 20 is appropriate for small training
set whilst for a large training set two to five samples deliver good results. The noise
distribution Pn(w) is a free parameter both in NEG and NCE. Mikolov et al determine
the unigram distribution U(w) raised to the 3/4rd power to give best results comparing
to the unigram and the uniform distributions. This counts for NCE as well as NEG on
every task.

A last improvement is realised by Mikolov et al regarding very frequent words. The most
frequent words in a text are usually functional words, which are words that have almost no
semantical information but exist for grammatical reason like ”the”, ”or”, ”and”, ”a”, ”is” or
”are”. It also does not make a great difference to spend much training time on high frequent
words after having already trained much then. For these reasons, a heuristic method is
applied to subsample the vocabulary. Each word wi in the vocabulary is discarded with
the probability PDiscard(wi) that takes the word frequency f(wi) and some threshold t into
account.

PDiscard(wi) = 1−
√

t

f(wi)
(2.34)

The threshold t is choosen to be typically around 10−5 and does improve accuary as well
as training time. To evaluate the Hierarchical Softmax (HS), Noise Contrastive Estima-
tion, Negative Sampling and subsampling, the analogical reasoning task, introduced by
Mikolov et al [21], is performed. It contains analogies such as ”Germany” to ”Berlin”
as ”France” to unknown. The challenge lays in finding some word w (best case would
be ”Paris”) so vec(”Berlin”) − vec(”Germany”) + vec(”France”) is closest to vec(w) with
cosine distance (of course w 6∈ {Berlin,Germany,France}. Semantic analogies like the
mentioned country-capital relationship are contained as well as syntactic analogies like
adjective-adverb antonyms, e.g. ”quick” : ”quickly” :: ”slow” : ”slowly”. The Skip-gram
models are trained on a data comprising various news articles of about one billion words.
After cutting off all words that appear less than five times, the resulting vocabulary has
an approximate size of 692K. Negative sampling gives best results both with and without
subsampling. Adding more negative samples enhances the semantic accuracy but not the
syntactic. Undertaking subsampling helps to improve the semantic accuracy of negative
sampling; however, it diminishes the syntactic accuracy. Subsampling significantly reduces
training time to a factor of a third.

Mikolov et al address the problem of phrases. Sometimes phrases build a semantic entity
that cannot be expressed by the semantics of its components. A computational issue is to
figure out which combination or n-gram forms such semantic entity. In theory, all n-grams
can be built and tested, but this procedure will most certainly exhaust the memory fast.
Mikolov et al limit themself to bigrams and a simple approach which scores two words wi
and wj with some discounting coefficient δ.

score(wi, wj) =
count(wiwj)− δ

count(wi)× count(wj)
(2.35)

The discount δ influences how frequent words have to be grouped together. Phrases with a
score above some specified threshold are merged. To allow for phrases with more than two
words, several runs with decreasing threshold are carried out. With the same dataset of
testing the skip-gram model, Negative Sampling and Hierarchical Softmax with Huffman
coding are tested on phrase building. Without subsampling Negative Sampling exceeds
Huffman. Performing subsampling, Huffman coding significantly improves and tops Nega-
tive Sampling. Accuracy can be improved further by increasing the training set. A training
set of 33 billion words gives an accuracy of 77%. Lowering the size to 6 billion reduces
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fixed-sized matrix whether the two sentences are paraphrases or not.

accuracy to 66% as well.
There are interesting relations in the word vector representations. The analogy relation
allows to deduce linear structures as mentioned before. The vector distribution contains
another linear structure. Adding local information and some topic words results in phrases
that are examples of this topic at the specified local place. When adding ”French” and ”ac-
tress”, so Mikolov et al report, the closes phrases are ”Juliette Binoche”, ”Vanessa Paradis”,
”Charlotte Gainsbourg” and ”Cecile De”. Their explanation is that the training objective
is to find a distribution of context of some specific word w which is expressed by the vector
instance of w. Words of the context of w are related logarithmically to the probabilities
computed by the output layer. Hence, adding two words of this context is analogous to
multiplying the respective context distribution. The result will be a soft AND opera-
tion of both contexts, meaning that words, that have high probabilities in both context
distributions, will be scored high whereas words with low probabilities will be scored low.

2.1.3.5 Paraphrase detection based on recursive autoencoder (Socher et al)

The next step from semantics of words towards semantics of phrases is taken by Socher et
al[28]. They propose an unsupervised recursive neural network or - to be more precise -
a recursive autoencoder, that delivers a sequence of feature vectors used with a dynamic
pooling layer for mapping on a fixed dimensioned vector space. This feature vector then
is fed into a classifier to determine whether two sentences are paraphrases or not.

Paraphrase detection is about deciding whether two phrases carry the same meaning. Var-
ious tasks like information retrieval, question answering, plagiarism detection and evalu-
ation of machine translations profit from paraphrase detection. Comparing phrases on
their semantic level is rather difficult. First, phrases have arbitrary lengths. Semantics
also appear at different positions to a different extend. Second, a classificator must be
trained on where to draw the line between same or approximately same semantic and dif-
ferent semantic. Third, a phrase can contain more than one semantic information and may
still be encountered to be semantically identical or close to identical. To address semantic
meaning on different phrase levels, Socher et al use a recursive autoencoder. A recursive
autoencoder is applied hierarchically from the bottom up. It takes an input vector i ∈ R2n

and maps it on some output vector o ∈ Rn. With a given tree topology, the phrase or
sentence is folded. Each fold results in a vector value representing the semantic of the
word sequence at its leafs. The semantic of an individual word is taken from a lookup
table which embedds the vocabulary into a continuous vector space. Such lookup table
can be obtained from word embedding systems such as word2vec from Mikolov et al[21].
The topology that describes the order of folding either origins from a grammatical parser
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Figure 2.15: A standard recursive autoencoder encodes two nodes into one new node with
shared weights We and bias b and computes reconstruction error on the direct
decoding of child nodes with shared weights Wd and bias b′.

or is built on the fly with a greedy algorithm. In their work, Socher et al use the Stanford
grammatical parser. The heuristic approach performs a fold over the nodes that gives
a minimal reconstruction error. The mapping of the autoendocer is performed with the
same weight matrix We and bias vector b for all folds for two node vectors c1 and c2.

p = f(we[c1; c2] + b) (2.36)

As usual for autencoders, the accuracy is tested on how well the input can be decoded or
reconstructed. A decoding matrix Wd and bias vector b

′
decomposes a fold vector p into

two vectors c
′
1 and c

′
2. As the encoding weight matrix We and bias vector b are shared, so

are the decoding weight matrix Wd and bias vector b
′
.

[c
′
1; c

′
2] = f(Wdp+ b

′
) (2.37)

The reconstruction error is the Euclidian distance between the input vectors c1, c2 and
their reconstruction vectors c

′
1, c

′
2.

Erec(p) = ‖[c1; c2]− [c
′
1; c

′
2]‖2 (2.38)

A reconstruction error is assigned to each node in the folding tree. The training objective
is to minimise the overall reconstruction error, that is the sum of reconstruction errors
over all branch nodes T .

Erec(T ) =
∑
p∈T

Erec(p) (2.39)

A length normalisation layer p = p
‖p‖ prevents weight implosion in the hidden layer. This

situation appears if the autoencoder shrinks the norm of the hidden layer in order to follow
the training object, stating to minimise the reconstruction error. Rather than limiting the
reconstruction of a fold node to its direct child nodes, it can be totally unfolded. It then
tries to reconstruct the sequence of words of its subtree. Reconstruction or decoding is
carried out by recursively decoding all branch nodes in the subtree. The reconstruction
error of a node p is obtained by the Euclidian distance between the word sequence w1, w2,
. . . , wn which it spans, and its respective decoded words w

′
1, w

′
2, . . . , w

′
n.

Erec(p) = ‖[w1;w2; . . . ;wn]− [w
′
1;w

′
2; . . . ;w

′
n]‖2 (2.40)

To completely unfold a subtree for reconstruction error computation has two advantages.
Since it tries to reconstruct each node so that it best encodes its spanned word sequence
w1, w2, . . . , wn, it will not shrink the normal of the hidden layer. Hence, no normalisation
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Figure 2.16: An unfolding recursive autoencoder merges two nodes into a new node with
shared weights We and bias b. The reconstruction error is computed on the
complete sub tree rather than the child nodes for which the subtree is fully
unfolded with shared weights Wb and bias b′

has to be performed. Second, the more words is contained in a spanned sequence, the
more important it is for reducing the reconstruction error. So, total unfold considers the
size of the subtrees at its leafs and will give more regard towards bigger subtrees. Socher
et al call the recursive autoencoder architecture Unfolding Recursive Autoencoder, whilst
the previous approach is named Standard Recursive Autoencoder. The general architecture
of recursive autoencoder can be extended to a deep recursive autoencoder. In this deep
architecture, multiple levels of semantic representation, hereby called layers, exist for each
node. Folding a node x(i+ 1, τ) in layer i+ 1 depends on both child node representations
x(i + 1, ψl(τ)) and x(i + 1, ψr(τ)) in layer i + 1 and on its node representation x(i, τ),

one layer underneath. Each layer i has its own encoding weight matrix W
(i)
e for the child

nodes, an encoding weight matrix V
(i)
e for its predecessor node and an encoding bias vector

b
(i)
e which all are shared within layer i.

x(i+ 1, τ) = f(W (i)
e [x(i+ 1, ψl(τ));x(i+ 1, ψr(τ))] + V (i)

e x(i, τ) + b(i)e ) (2.41)

Uncoupling the encoding weight matrices W
(i+1)
e and W

(i+1)
e allows for different dimen-

sionalities per layer. Training in general, that is deep or shallow architecture and standard
or unfolding, is conducted via standard backpropagation with minimising the overall re-
construction error as training objective. The training objective is not convex. Nevertheless
L-BFGS with mini-batches does a good job in converging smoothly and finding a good
local optimal solution.

Applying the recursive autoencoder results in semantic representations for subphrases
of the input sentence. The set of subphrases taken from the sentence depends on the
topology. The extracted features need to be transformed to a new feature vector of fixed
size in order to feed it to some classifier. First, a sentence similarity matrix is computed
with the feature vectors of the two input sentences. It contains the Euclidian distances
of the extracted feature vectors between both sentences. The similarity matrix contains
word representations as well. Further on, the similarity matrix is partitioned into p × p
approximately equaly sized areas. From each partition, the minimal value is taken. It is
also possible to consider the average of the partition or other functions. It would be possible
as well to apply overlapping regions instead of partitions. For the sake of simplicity, Socher
et al only use partitioning with minimal value. Finally, the pooled matrix is normalised
such to have 0 mean and variance 1.
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Socher et al evaluate first the unsupervised recursive autoencoder training and then pro-
ceed to paraphrase classification. The recursive autoencoder is trained with 150k sentences
from the NYT and AP sections of the Gigaword corpus. Topologies are produced with
the Stanford grammatics parser. The word lookup table, aka word embedding, is taken
from Turian et al[31] who use the unsupervised method of Collobert and Weston[9]. The
word embedding has a dimensionality of 100. Paraphrase experiments are performed on
the Microsoft Research paraphrase corpus (MRPC) provided by Dolan and Brockett[10].
For deep encoding and decoding, an additional layer of dimensionality 200 is applied. In
a qualitative test, Socher et al perform a qualitative nearest neighbour analysis on stan-
dard and unfolding recursive autoencoder as well on recursivly averaging over the syntax
tree-topology. Deep recursive autoencoders are left out due to their poor performance.
Sentences from the Gigaword corpus are embedded into the vector spaces and represen-
tations of random phrases are taken to find the nearest neighbour in this space. Whilst
recursive averaging tries to match the two last words of the current phrase in the tree.
Standard recursive autoencoders (standard RAEs) performs quite well, nevertheless tends
to put its focus on the last merge. Closest comes the unfolding RAE to obtain the correct
syntax and semantic information. Socher et al undertake a decoding process to see how
well a sentence can be decoded. Sentences encoded with an unfolding RAE are decoded.
Up to five unfolds, the syntactic and semantic information is almost retained which shows
the capacity of representation. In a last analysis, Socher et al examine the correctness of
paraphrase detection. A 10-fold cross-validation on the training set delivers parameters
for regulation and the size of the pooling matrix. The size of latter is slightly less than
the average sentence length. A performance improvement of 0.2% is gained by adding the
symmetric pairs to the training set, which means that for each pair (S1, S2) in the training
set S the pair (S2, S1) is added as well. First, recursive averaging, standard RAEs and
unfolding RAEs with dynamic pooling on top are tested. For each three of the unsuper-
vised systems, a cross-fold validation is performed to obtain the best configuration. The
less powerful systems, recursive averaging and standard RAE, yield an accuracy of 75.5%
and 75.9% respectively. Unfolding RAE without hidden layers gives a 76.8% accuracy.
Using hidden layers in the unfolding RAE lowers the performance by 0.2%. Dynamic
pooling certainly helps to capture well syntactic and semantic information for comparing
two sentences. Second, dynamic pooling is compared with other feature extraction. These
are:

• histogram over all feature values with an accuracy of 73.0%; as it appears, word-of-
bag methods do not capture global similarities that well

• set matching of all vectors with an 73.2% accuracy; only three features are used to
describe whether the extracted features are identical, close or subset of each other;
simple paraphrases can be detected, but more complex cases cannot be handled

• dynamic pooling without set matching with an accuracy of 72.6%; some essential
information are not taken into the pooling matrix. Applying overlapped regions
might help

• top unfolding RAE node with an accuracy of 74.2%; the euclidian distance is taken
as feature; it certainly shows the strength of the unfolding RAE but gives clear
indication that features from lower nodes are necessary too

The figures show the strength of unfolding RAEs which still needs the dynamic pooling
in order to find the relevant comparisons between both sentences. Lastly, Socher et al
compare their approach with techniques of previous works. Applying unfolding RAE with
dynamic pooling exceeds all other approaches in terms of accuracy and F1-measure. And
in contrast to other methods, it does not need manually designed features.
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2.2 Paraphrase generation

As seen in the section about semantic analysis before, various ways exist to measure the
semantic context of text. Besides bag-of-word approaches, most of these techniques are
based on considering the context to a certain extend, mapping it into a continuous vector
space that is reduced in specific ways to eventually represent semantic information. For
creating paraphrases, different paths need to be followed. There are a two kinds of models:
generative and discriminative models.

Generative models work with join probabilities of observation and label. Therefore, they
can be used to generate synthetic observations, that is data points whose appearances are
distributed according to the trained join probability. Generative machine learning systems
are Naive Bayes, Restricted Boltzmann Machines, Mixture models, Hidden-Markov-Models
and others.
Discriminative models work with conditional probabilities for observation given some label.
The essential difference to generative models is that deducing the most likely observation
in a discriminative model framework requires to know the label or the a-Priori probabili-
ties of all labels beforehand. Often, discriminative models can be described and searched
more efficiently. However, the set of possible labels is usually predefined and thus training
will use it to find thresholds and hyper-planes as separation in the feature space. Unseen
labels will not be considered. This might lead to an unstable and incorrect system. Typ-
ical discriminative systems are Support-Vector-Machines, Logistic Regression or Neural
Networks.

With Bayes’ rule, joint probability can be expressed with conditional probability and vice
versa.

P (a, b) = P (a|b)P (b) (2.42)

This relation can be exploited to accomplish generating data points with conditional prob-
abilities and a-Priori distributions or to find the most likely data point given some label.

2.2.1 SMT Approach

Paraphrasing sentences can be seen as a translation within the same language where the
typical bilingual translation information is replaced by paraphrased information. Addi-
tional information like language model, syntactical structure and so on, can be considered
as well. As usual in statistical machine translation tasks, it is based on discriminative
modelling since the input sentence is known.

Statistical Machine Translation (SMT) systems exploit the Noisy Channel model of Brown
et al[7]. Given some input sentence S, the most likely translation T̂ has a maximum a-
Posteriori probability P (T |S) over possible target sentences T . This a-Posteriori proba-
bility is proportional to the a-Priori probability P (T ) of the possible target sentence and
the a-Posteriori probability P (T |S) of the possible target sentence.

T̂ = arg max
T

P (T |S) = arg max
T

P (S|T )P (T ) (2.43)

This basic model can be extended to more complex models like the Log-Linear models
which can incorporate several features and their importance.

2.2.1.1 Monolingual Machine Translation (Quirk et Al)

Tools to form and train a SMT system already exist. A standard SMT system needs a
parallel bilingual corpus for training at least. Comparable bilingual corpus can be used
with certain preprocessing steps. Quirk et al[27] conclude that applying these techniques
on monolingual parallel corpora should deliver semantic translations.
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Figure 2.17: Paraphrase generation based on SMT tools with monolingual corpora accord-
ing to Quirk et al

Alignment Precision Recall AER

Giza++ 87.47 89.52 11.58
Identical word 89.36 89.50 10.57
Non-Identical word 76.99 90.22 20.88

Table 2.6: Evaluation of alignment in Quirk et al

Monolingual parallel corpora are even more expensive than bilingual parallel corpora.
Comparable monolingual data, however, is quite easily to gain. From news aggregation
sites like http://news.yahoo.com or http://news.google.com, Quirk et Al collect URLs of
news articles which are clustered regarding different topics. Within one cluster, sentences
are compared pairwise with the Levenshtein edit distance. Pairs of sentences are filtered
out according to these criteria:

• sentences are identical or only different in punctuation

• duplicates

• sentences’ lengths differ to much regarding the lengths quotient

• Levenshtein edit distance greater 12.0

The resulting pairs of sentences are aligned wordwise with Giza++. Alignment goes both
directions which is then heuristically recombined into a single bidirectional alignment. The
alignment is evaluated with a heldout cluster from which 250 sentence pairs are randomly
drawn. An independent human evaluator ensures that the sentence pairs contain para-
phrases. Two annotators label assignments as either sure (that is correct) or possible (that
is allowed but not necessary). Conflicts are resolved by annotators firstly reconsidering
their decision and secondly setting the label sure only if both annotators consider the case
as sure. Otherwise the label possible is taken. Alignment with Giza++ on monolingual
data is higher than on usual bilingual data indicating noisy training data. That is the
training set is rather comparable than parallel. The AER of non-idential words falsely
indicates poor support for paraphrase generation. For the paraphrase table, synonymous
phrases are identified with a phrasal decoder and a probability according to IBM-Model-I
is assigned. Intra-phrase reordering allows for grammatical variatons like margin of error
replacing error margin. A language model is trained on the whole news corpus which
includes about 24 million words. The model is a trigram model with interpolated Kneser-
Ney smoothing. Generating paraphrases is implemented that a standard SMT decoding
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Method of 59 of 59 + 141

1-best PR 54 (91.5%) 177 (89.5%)
2-best PR 53 (89.8%) 168 (84.0%)
3-best PR 46 (78.0%) 164 (82.0%)
4-best PR 49 (74.6%) 163 (81.5%)
MSA 46 (78.0%) -
5-best PR 44 (74.6%) 155 (77.5%)
WN 23 (39.0%) 25 (37.5%)
WN+LM 30 (50.9%) 53 (27.5%)
CL 14 (23.7%) 26 (13.0%)

Table 2.7: Human acceptability judgmenent in Quirk et al

Paraphrase technique MSA (of 59) PR#1 (of 100)

Rearrangement 28 (47%) 0 (0%)
Phrasal alternation 11 (19%) 3 (3%)
Information added 19 (32%) 6 (6%)
Information lost 43 (73%) 31 (31%)

Table 2.8: Qualitative analysis of paraphrases in Quirk et al

approach which only considers the paraphrase model. A lattice is built upon the prepro-
cessed input sentence with all paraphrase replacements. Edges labeled by input subphrases
are assigned some uniform probability u. A high probability u results in a more conser-
vative generation, whilst a low probability u will try more paraphrase replacements. The
Viterbi algorithm supports an effective way of computing the n-bests paths within the
lattice. Post-processing transforms the paraphrasing sentence into its eventual form.

For evaluating the whole system, Quirk et al form corpora (sentences with corresponding
paraphrases) from MSA and WordNet (59 sentences). 141 randomly selected sentences
are added from held-out clusters. Paraphrases are produced with three systems: WordNet
with a trigram LM, statistical cluster with a trigram LM and 5-bests phrasal replacements.
which is the system from Quirk et al. The output is assessed by two human judges.
On disagreed sentences, the judges reassess, which increases their agreement from 84%
to 96.9%. WordNet and statistical clusters perform badly even with a language model.
MSA, however, gives better results, although n-bests of phrasal replacement significantly
outperform the MSA. The previously reported high AER for non-identical words is shown
to be a false indicator for the paraphrasing performance. For the most input sentences,
up to 200 distinct paraphrases could be produced with phrasal replacement. Quirk et al
also analyse the kind of paraphrasing involved in MSA and phrasal replacement. Since
phrasal replacement involves simple replacements, it might appear that MSA uses more
in-depth and complex paraphrasing techniques like active-passive transformation. Quirk
et al test on rearrangements, phrasal alternations and added and lost informations. At first
glance, MSA shows extremly complex paraphrasing applications. However, an in-details
inspection of MSA delivers template translations which can bring brilliant results if the
input is semantically close to the template. If it is not the case, the output will be much
more general. That is information gets lost. Simple replacements are modest in their
way of paraphrasing, but consistently keep information, so far, more on hand than more
complex techniques. By now, monotone decoder systems are pretty effective in producing
paraphrases, as Quirk et al present. The initial data for training a paraphrase generator
on monolingual data costs quite a lot and is rather sparse. Quirk et al spent about eight
months on crawling and observing articles to gather their corpus. The eventual data leads
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to more comparable than parallel shape. For different domains than news topics, it will
not be easy to find the required mas of data and range of cover. Quirk et al propose to
focus more on preprocessing to filter out noise in order to to make the corpus more parallel.

2.2.1.2 Alignment via bilingual pivoting (Bannard and Callison-Burch)

Rather than monolingual parallel or comparable corpus, Bannard and Callison-Burch sug-
gest to exploit bilingual data for paraphrasing task[2]. The second language (which is
not aimed to paraphrase within) serves as pivot to find paraphrase relations between two
sentence in the first linguage which are aligned to one sentence in the pivot language. As
argued before, gathering monolingual parallel corpora is expensive and sparce not only in
its amount but also in the coverage of domains. Bilingual corpora are neither redundant
in depth or in coverage, yet there is more data than considering monolingual data. The
assumption, Bannard and Callison-Burch build on,is that different phrases in one language
are semantically related if they all are aligned to the same phrase in the pivot language.
This is, however, converse to the idea that due to multiple meanings different phrases are
aligned to the same phrase in the pivot language. Paraphrases in aligned monolingual data
are concluded from matching context. Hence each alignment of different phrases delivers
at most one potential paraphrase. Incorporating a pivot layer increases the amount of po-
tential paraphrases by how many times the phrase in the pivot language has been aligned
to. Alignment is performed with the heuristic algorithm of Och and Ney[25]. It incre-
mentally detects alignment from words and phrases which have adjacent alignment points.
Probabilities of alignments (s1, s2) between target and pivot languages are estimated with
maximum likelihood.

p(s1|s2) =
count(s1, s2)∑
s

count(s, s2)
(2.44)

Probabilities of alignments (e1, e2) within the target language are derived from align-
ment probabilities from target-to-pivot language and vice versa and marginalising over all
alignment phrases f in the pivot language.

ê = arg max
e2 6=e1

p(e2|e1) = arg max
e2 6=e1

∑
f

p(f |e1)p(e2|f) (2.45)

Bannard and Callison-Burch extend finding the most likely paraphrase of e1 by considering
the context or sentence S where e1 appears.

ê = arg max
e2 6=e1

p(e2|e1, S) (2.46)

The context information S allows for reranking. Various models can be brought in. Ban-
nard and Callison-Burch limit themself to a simple language model which estimates the
sentence S with e1 replaced by the potential paraphrase e2.

The bilingual corpus for evaluation is the German-English section of the Europarl corpus,
version 2. Alignment is performed automatically with Giza++ and manually as golden
standard. 46 random English phrases which are in WordNet as well appear multiple times
in the first 50000 sentences of the bilingual corpus. The manual alignment only corrects the
selected English phrases based on the automatic alignment. Since paraphrasing depends on
the context, the paraphrases are regarded inside some sentences where the original phrase
appears. Two native English speakers evaluate to whether the produced sentences pre-
serve the semantic information and is grammatically correct. Sentences which fulfill both
conditions are considered correct whilst failing one condition will be labeled incorrect. The
inter-annotator agreement reaches κ = 0.605. Different configurations are tested: Manual
alignments, automatic alignments produced over the German-English section of Europarl
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Configuration Paraphrase prob Paraphrase prob and LM Correct meaning

Manual Alignments 74.9 71.7 84.7
Automatic Alignments 48.9 55.3 64.5
Using Multiple Corpora 55.0 57.4 65.4
Word Sense Controlled 57.0 61.9 70.4

Table 2.9: Paraphrase accuracy and correct meaning for different configurations in Ban-
nard and Callison-Burch

and over multiple corpora indifferent languages. Optional reranking with language model
and optional candidate paraphrases limitation to the same sens as the original phrase are
applied too. The baseline reaches an accuracy of 74.9%, that is grammatically and semanti-
cally correct. Disregarding grammatics, accuracy is enhanced to 84.7%. This increasement
indicates that context information is rather important for grammatics. Reranking para-
phrase candidates with a trigram LM model makes the context to influence paraphrasing.
The result shows a small decrease and suggest that manual alignment already considers
the context. Automatic alignment performs worse, giving only 48.9% accuracy considering
semantics and grammatics. Leaving out grammatics shows improvement to 64.5% like in
the manual alignment. Applying the trigram LM noticeably raises accuracy to 55.3%.
More information about context and grammatics might help to improve the performance
of automatic alignments. To overcome the sparsity of data, multiple pivot languages are
used and ranking is adopted accordingly to marginalise over a set C of parallel corpora of
different language combinations.

ê = arg max
e2 6=e1

∑
c∈C

∑
f∈c

p(f |e1)p(e2|f) (2.47)

Bannard and Callison-Burch exploit the French-English, Spanish-English and Italian-
English section of the Europarl corpus as well. Approximatelly 4000000 sentence pairs
are used for training. Paraphrasing without LM reranking significantly imrproves accu-
racy up to 55.0%. Using a LM for reranking as well considering only semantics do not
show big improvements comparing it with using only German-English data. More data
apparently results in better understanding of grammatics. To avoid ambiguities which
might result in false paraphrases, candidate paraphrases are filtered in order to preserve
meaning. Considering the pivot phrase as well gives a mechanism to avoid ambiguities.
Word sense controllation not only hands out grammatical information but also carries
more semantic information. Without LM, accuracy reaches 57.0%. Incorporating a LM
increases accuracy to 61.9%. Disregarding grammatics delivers an accuracy of 70.4%.

Bannard and Callison-Burch illustrate an approach on how to exploit bilingual data for
paraphrase generation. Whilst it offers some advantages over the monolingual approaches,
there is still space for improvement. In particular, modeling grammatics would increase
performance.

2.2.1.3 Machine Translation Within One Language as a Paraphrasing Tech-
nique (Barancikova and Tamchyna)

Exploiting paraphrasing, Barancikova and Tamchyna develop a method of enriching ma-
chine translation evaluation[3]. Their aim is to make automatic evaluation of MT systems
more accurate. In particular, BLEU score serves as baseline which then will be extended
to take use of paraphases. Since actual translation is not deterministic and can be seen as
some form of interpretation, arbitrarily many translations are possible. Human judges are
able to qualitatively determine the correctness of translations. However, automatic evalu-
ation relies on a set of reference translations. By nature, this set will never be exhausting.
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BLEU counts how many phrases overlap between the candidate and reference translations.
Only direct matches are considered but no synonyms or paraphrases. If the set of refer-
ence translations contains only few entries, BLEU will perform badly. Barancikova and
Tamchyna aim on enriching the set of reference translations by adding paraphrases. Since
paraphrasing can be seen as a translation within one language, standard tools for SMT
are adapted and applied.

Barancikova and Tamchyna work on data from the English-Czech translation task of
WMT12. Czech paraphrases are taken obtained from the Czech WordNet 1.9 PDT and
the Czech Meteor paraphrase tables. Whilst Czech WordNet 1.9 PDT has only few but
qualitatively good paraphrases, the Meteor Paraphrase tables are large but quite noisy.
Noise is reduced with folowing scheme:

1. Only pairs consisting of single words are kept; Barancikova and Tamchyna are not
able to reduce noise on multi-word paraphrases.

2. Morphological analysis; word forms are replaced by their lemmas.

3. Pairs with same lemmas are removed.

4. Pairs whose words differ in their part of speech are removed.

5. Pairs with unknown words are removed.

In case of numeral and corresponding digits, the last two rules are not active. After
applying these rules, the Meteor corpus is reduced from almost 700k pairs of paraphrases
to just 32k pairs. Moses is used as SMT system in phrase-based setting. A language
model is trained on Czech part of the Czech-English parallel corpus CzEng[6] with SRILM.
Two phrase models are trained. Each model contains phrases, their translations and
several feature scores like transition probability or lexical weight. These models can be
produced from large parallel data. Due to the scarceness of large parallel Czech-Czech
data, the required data will be synthesised. The first phrase model is created from the
Czech Paraphrase Metero table. Using pivot languages according to Bannard and Callison-
Burch[2] allows acquiring paraphrases based on alignments. Since the pivot score does not
serve well, new paraphrase scores are introduced based on distributional semantics. The
context similarity of paraphrases are measured via cosine distance. In total, six scores are
used according to the context window (one to three words) and considering word order.
For the second phrase model, a set of words which appear more than five times in the
Czech part of the CzEng corpus is merged with the set of words appearing in the MT
outputs and reference sentences. Next, a morphological analysis is run on the words in
the resulting set. Every pair of words which fulfills one of the following four conditions, is
added to the phrase model for each word x from the set:

• (x, x) (allows to suspend paraphrasing for x)

• (x, y), if lemma of x is lemma of y (morphological variation is a way of paraphrasing)

• (x, y), if lemma of x and lemma of y are paraphrases according to Czech WordNet
PDT 1.9

• (x, y), if lemma of x and lemma of y are paraphrases according to the filtered Meteor.

The first four scores determine whether the respective condition is fulfilled. A fifth score
expresses POS similarity between the two words. Besides language model and phrase
models, an additional feature is used to make the MT decoder favour output closer to the
hypotheses. It counts words in the hypothesis which is confirmed by the reference trans-
lation. Their implementation not only incorporates the feature into the beam search but
also gives an estimator for future phrase score which is the number of reference translation
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Configuration correlation avg BLEU

Baseline 0.75 12.8
Paraphrased 0.50 15.8
LM+0.2 0.24 9.1
LM+0.4 0.22 6.7

Table 2.10: Configurations and their Pearson’s correlation of BLEU and human judgment
and additionally average BLEU score in Barancikova and Tamchyna

Configuration correlation avg BLEU

Lexical 0.56 15.1
Lexical and LM+02 0.33 9.5
Monotone 0.61 18.1

Table 2.11: Additional Configurations and their Pearson’s correlation of BLEU and human
judgment and additionally average BLEU score in Barancikova and Tamchyna

words covered by the given phrase. Parameters are tuned with minimum error rate train-
ing (MERT) on the reference sentences on the highest rated MT output. This approach
does not deliver good weights. The language model is weighted low whilst the feature
for steering towards the hypothesis is estimated to be very important. Barancikova and
Tamchyna start off setting parameter weights by hand.
Four different configurations are compared on the Pearson’s correlation of BLEU and
human judgment as well the average BLEU score. Using paraphrases does not yield an
improvement. Even though applying paraphrases with automatically tuned weights gives a
better BLEU score, the correlation to human judgment decreases. Most of its output is not
grammatically correct. Increasing the weight for the language models rectifies the quality
of grammar but also reduces the semantic information. Both phrase models and targeting
feature introduce noise. The former might need more preprocessing and better descriptive
scores. The latter is not sophisticated enough to know good translation and rather prefers
to have as many word matches with the reference translation as possible. Dealing with the
poor results, Barancikova and Tamchyna test three additional configurations in which the
Enhanced Meteor table is omitted due to its noise. The last configuration goes without
reording using monotone decoding. In particular, monotone decoding shows improvement
of correlation with increasing BLEU score. However, none of these configurations reaches
the baseline.

2.2.2 Randomised Aproach

SMT offers one way of transforming a sentence into a paraphrased version of itself. There-
fore, a lattice is built upon the input sentence to express possible translations. Evaluation
of all paths within the lattice requires the decoder to have exponential time complexity.
Usually heuristics like beam search and future cost estimation are applied to make the
decoding process more feasable. Since paraphrase generation is a translation into the
original language, not all words or phrases need to be translated. Adding identity trans-
lations allows to suspend translations whilst applying SMT decoders which are designed
to translate all but phrases for which no translations are known.

A different approach to SMT decoding is the use of randomised algorithms. They include
randomness into their logic to achieve a probabilistic solution. There are two kinds of
randomised algorithms.
Monte-Carlo algorithms are bounded in their time complexity but produce results which
are good or correct with a certain probability. This is usually achieved by taking random
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input several times and returning the averaged or best outcome.
The second kind of randomised algorithms is named Las-Vegas-algorithm. Randomness in
this case refers to time or space complexity. A Las-Vegas algorithm always returns a correct
answer on some random input but with reduced expected time or memory consumption.

2.2.2.1 Monte-Carlo based paraphrase generation (Chevelu et al)

Chevelu et al propose an approach of paraphrase generation which is based on a Monte-
Carlo algorithm[8]. Regarding SMT decoding, Chevelu et al criticise that paraphrases
are built step by step following the entries of the paraphrase table. The relevance of
steps should be evaluated according to the global paraphrase model. Nevertheless, the
computed score depends on the taken path in the decoding lattice. Hence, different paths
may produce the same paraphrase but get scored differently. SMT decoding also needs
to handle exponentially many solutions. Heuristics like beam-search help to reduce time
complexity but do not certainly deliver an optimum. In fact, it is not known whether the
true a-Posteriori score will be returned. This might lead to wrong n-best outputs as well.
Chevelu et al suggest to regard paraphrase generation rather as an exploration problem
than translation task.

The search space consists of states which are connected by actions. A state contains
a sentence and a set of possible actions. An action is a phrase replacement with the
position where the replacement takes place. State transformation is done by applying
one action of the set of possible actions on the sentence and removing all actions which
are not applicable any more. All but the root state belong to the set of final states.
An action is not applicable any more if it would modify some phrase which already has
been modified by another action. Because sentences are evaluated after complete and not
intermediate transformation, computing paraphrases becomes feasable. The sequence or
order of transformation is replaced by an unordered set of transformation.
The Monte-Carlo based paraphrase generation (MCPG) of Chevelu et al derives from
Upper Confidence bound applied to Tree algorithm (UCT). UCT is a Monte-Carlo planning
algorithm, basically a search tree and brings along some features:

• The search tree is expanded non-uniformly. Without pruning branches, the most
promising sequence is favoured.

• High branching factors can be dealt with.

• At any time, even on interruption, the so-far best solution can be returned.

• State evaluation does not require expert domain knowledge.

Monte-Carlo tree search usually has four phases which are iterated for some time. The
amount of iterations can be a fixed value or some function depending on external or internal
parameters. Often, the search finishes (and so do the iterations) as soon as some final state
has been reached. The phases in the applied order are:

1. Selection: From the root node R follow recursively nodes which have best score
until some leaf node L has been reached.

2. Expansion: If iterations should not end with node L then create at least one child
node and from the set of child nodes, select one node C.

3. Simulation: Compute or simulate consequences for going for node C which eventu-
ally returns a score value for this particular decision.

4. Backpropagation: With the score of node C in mind, update nodes from L up to
R.
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In the selection phase, the most promising path should be taken. Since only a few states are
evaluated, the selection process has to decide between areas of nodes which have not been
so much explored and areas of nodes which have been thoroughly visited. It is basically
a question of exploration or exploitation. An upper confidence bound can be formulated
with the estimated value vi of some node i, the number of times ni has been visited, the
number of times N its parent nodes have been visited and a bias parameter C.

UCB(i) = vi + C

√
ln(N)

ni
(2.48)

Extending the UCB algorithm to minimax tree search results in the Upper Confidence
bound applied to Tree (UCT) which Chevelu et al build upon. A minimax search tree
looks for a path of minimal length to maximise the estimated outcome or score. MCPG
of Chevelu et al incremently builds the paraphrase.
The root node virtually shifts down in the tree leaving a path of confirmed actions. Each
time a new confirmed action is selected, several episodes are sampled. An episode is a path
from the current root node to some final state, that is a partially generated paraphrase.
The episode is constructed until a stop rule is drawn. The next action is selected depending
on whether the state which the episode is currently leading to, has been visited before. If
so, the next action is selected according to the exploration-exploitation estimation UCB.
If the state has not been visited, its score will be estimated with Monte-Carlo sampling.
The episode construction will be finished and all state-action pairs of the episode will be
updated. If enough episode constructions are done, a new root state is selected from the
child nodes of the current root node considering the maximum score. Then sampling starts
off again.
Disregarding the order of replacements and constraining that no segments which already

have been replacement might be replaced a second time, delivers an efficiently computable
procedure to obtain a true a-Posteriori probability of whether a sentence is a paraphrase
or not. In their evaluation, Chevelu et al first test the output of a SMT decoder (MOSES)
with the true a-Posteriori procedure. The used models in the decoder are n-gram language
model with back-off (SRLIM tool with default parameters and order of 5) and a paraphrase
table built with pivoting according to Bannard and Callison-Burch[2]. In order to decrease
the size of the paraphrase table, three heuristics are applied:

• Probability threshold : Entries with a probability lower than some threshold ε are
filtered out to decrease noise of coincidences or misspelled words.

• Pivot cluster threshold : Large clusters of pivot phrases, that is alignments with some
specific pivot phrase might be caused by ambiguous phrases. Thus, pivot clusters
which exceed some threshold τ are removed.

• N-best list : For computing efficiency, the κ most probable paraphrases for each source
phrase are taken.

Chevelu et al empirically set the heuristic parameters to ε = 10−5, τ = 200 and κ = 20.
Weight parameters in the log-linear model of the MOSES decoder are usually tuned on a
validation set. Chevelu et al argue that for paraphrasing tasks no such validation set exist
and hence tuning becomes redundant. The four basic models in MOSES are weighted
such that both translation and language model are assigned the same weight (αLM = 1,
αΦ = 1), no reordering is allowed (αD = 10) and no specific sentence length is preferred
(αW = 0). The training corpus is taken from Europarl with French as the targeted
paraphrasing language and English as the pivot language. The test corpus consists of 100
randomly drawn sentences. The MOSES decoder produces a 100-best distinct paraphrases
list which is reranked by means of the true a-Posteriori procedure. Both rankings are
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Figure 2.18: Chevelu et al apply the MPCG algorithm on paraphrase generation by succe-
sively replacing phrases with synonyms. Partially paraphrased sentences are
scored with a language model to identify the most likely sentence

consequently compared with Kendall rank correlation coefficient τA. It considers each pair
of paraphrases in the n-best list and evaluates how many pairs have kept their relative
order (np) and how many have changed their relative order (ni).

τA =
np − ni

1
2n(n− 1)

(2.49)

With 5-best, MOSES gets the worst correlation of 0.73 which indicates different output
but no clear decorrelation. Increasing the size of the n-best list gives better but only mod-
est correlation with about 0.85 at the 100-best list. All in all, MOSES decoder shows to
have no strong correlation to the true a-Posteriori probability. In a second step, Chevelu
et al take the same paraphrase table and corpora as used in the SMT test. The 1-best
output of MOSES reranked by the true a-Posteriori function and MCPG in translator and
true-score modes are compared. MCPG in translator mode means that transformations or
actions are applied until the whole sentence is covered. MCPG in true-score mode shows
that the transformation process can be stopped early with phrases of the sentence not cov-
ered. MCPG in this test carries out 100k iterations. Reranked MOSES output gives best
results, but it is approximated by MCPG in true-score mode. MCPG in translator mode
performs worst. The second test gives evidence that MCPG can reach the performance
of SMT systems which are reevaluated whilst working more efficiently due to its reduced
exploration space.
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Moore and Lewis[23] give evidence that smaller but more specific domains perform better
in Statistical Machine Translation (SMT) than bigger but more general data. Their sug-
gested approach takes use of small in-domain corpus and extracts from a general corpus on
sentence level data which is closely related based on some n-gram language model. This
idea comes in hand for situations in SMT where the domain of application is too specific
to be covered by general corpora and resources to fully describe the application domain
are scarce. Employing the small in-domain data set in the approach of Moore and Lewis
should allow to harvest closely related data from some big general corpus, bringing along
better performance than using the general corpus itself.
In this thesis, several approaches are carried out to examine whether the presented tech-
nique of Moore and Lewis can be extended to exploit semantic relations. Synonyms and
paraphrases can be seen as fuzzy equality relations. Though paraphrase replacements do
not entirely preserve the full meaning, the variations in semantics are low. Moore and
Lewis’ approach employs an n-gram language model and therefore restricts itself to syn-
tactic patterns. These syntactic patterns which are the n-grams surely carry semantic
information but do not exploit semantic information. With the help of additional para-
phrase and synonym informations, the small in-domain corpus can be extended. The
resulting corpus will be close in its semantic content because paraphrases and synonyms
will change semantics only slightly. However, more syntactic patterns can be harvested for
selection. Crucial parts are the quality and sensitivity of the semantic information, that
is paraphrasing models like synonym tables, and of applying these semantic information
in gaining new sentences.

3.1 Synonym Lexicon

Two approaches for semantic analysis are presented. Alignment over pivot language re-
quires a bilingual corpus and exploit indirect alignments. Recursive autoencoder performs
a mapping into a semantic vector space and builds upon monolingual data.

3.1.1 Alignment over Pivot Language

Following Bannard and Callison-Burch[2], an approach based on SMT is taken. An issue
is to get hands on parallel corpora in order to build an appropriate translation model. The
language model can be built in a normal fashion because it requires only a monolingual
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dataset. Several methods are suggested to extract paraphrases from bilingual or monolin-
gual corpora with SMT tools. It eventually results in a paraphrase table. Our intention
is to exploit the pivoting method of Bannard and Callison-Burch to identify synonyms.

With Giza++, an alignment over a bilingual corpus is constructed. The resulting phrase
table is marginalised over the pivot language. So two phrases in the non-pivot language,
which are aligned to the same phrase in the pivot language, are assumed to be semantically
similar, aka synonyms, and hence will be connected. Any alignments which appear less
than three times are ignored. Also, alignments whose phrases contain anything else than
alphabetical characters or whitespace are removed before computing the margins. The
score gives a normalised similarity measure which can be used as joint probability of being
synonyms. Each entry then is assigned additional scores, besides the joint probability:

• Levenshtein ratio

• conditional probability for second phrase, assuming the first one

• conditional probability for first phrase, assuming the second one

• difference between these conditional probabilities

• word coverage ratio

The Levensthein ratio rL allows to identify pair of phrases that differ only in few positions.

rL(a, b) =
Levenshtein-distance(a, b)

max(length(a), length(b))
(3.1)

The conditional probabilities give insight into how strong synonyms are for both phrases.
The difference is a measure on the symmetry between the conditional probabilities. Word
coverage ratio rwc considers, how many words are shared regardless of the ordering.

rwc(a, b) =

∑
w∈vocabulary(a,b) abs(appearance(a)− appearance(b))

max(length(words(a)), length(words(b)))
(3.2)

Lastly, entries are filterd, so that source phrases have to be in the domain-specific corpus
and target phrases have to be in the non-domain specific corpus and additionally not in
the domain-specific corpus. After applying all thresholds, a translation table is left. Both
conditional probabilities are considered as features.

3.1.2 Recursive Autoencoder

The last approach which will be undertaken, is to exploit recursive autoencoders (RAE) in
order to determine paraphrases and therefore to obtain paraphrase lexica of good quality.
The idea is to assign semantic representations for phrases with encoding and then to cluster
these instances based on their semantic representations.

Because Socher et al report to have gained better results in their RAE application with
a grammatical parser [28], the heuristic topology technique is completely omitted. First
monolingual corpora are preprocessed via tokeniser and true-caser script from the Moses
toolkit. Additionally, any German umlaute and special symbols are escaped, since the
parser will not handle such input correctly. We use the same grammar parser, Socher et al
uses which is the Stanford parser1. The TED corpus is split to be used as test and training
data set. The other corpora are EPPS and NC. The amount of sentences increases during
parsing because the parser will split some of the sentences. The increase, however is small
by tendency. The parser applies a length limitation to filter out any sentence whose length

1http://nlp.stanford.edu/software/lex-parser.shtml
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Corpus input 50 cut 100 cut 300 cut

TED test 1500 1675 1700 1701
TED train 168179 187813 191684 191778
NC 201288 200664 208932 209079
EPPS 1920209 1983259 - -

Table 3.1: Size of corpora in lines in raw (input) and parsed by the Stanford parser with
sentence limitations of size 50, 100 and 300 words.

exceeds a certain threshold.
A RAE also requires a code book which maps words into a semantic vector space. The
basic corpus for obtaining this code book is built by concatenating EPPS, TED and NC.
As before, the total corpus is preprocessed with a tokeniser and a true-caser from the
Moses toolset. Like Socher et al[28], we employ word2vec for word-embedding. The tool
word2vec filters any word whose frequency does not exceed a given amount. It aims
on removing mispelled or rare words. Some normalisations are applied to bring down
non-semantic variations. First, numbers are replaced by some special tag. Second, out-
of-vocabulary words (OOVs) are replaced by some other special tag. The idea is to get
a special semantic representation for unknown words. For both, the numbers-normalised
and the solely-preprocessed corpora, vocabulary histograms are drawn. OOV-mapping
then is performed for frequencies beneath 1 (that is in fact empty vocabulary), 3 and 5.
All-in-all, eight different code books are built.
The topologied TED test and training corpora are normalised accordingly.

Training is undertaken by grouping the respective topology corpus (regular, number nor-
malisation and oov normalisation) together and varying the semantic vector space dimen-
sion, the oov threshold and the cut length for topologied sentences. Besides that, five
different combination of activation functions are tried. These are the:

• identity function on both encoding and decoding, making the autoencoder purely
linear

• logistic sigmoid on encoding and identiy function on decoding

• logistic sigmoid on both encoding and decoding

• hyperbolic tangent on encoding and identity function on decoding

• hyperbolic tangent on encoding and decoding

In a first run, all combinations for codes of dimension 100 are trained. Using logistic
sigmoid as the activation function in both combinations always results distinctively in the
worst reconstruction errors compared to the other activation functions. The hyperbolic
tangent function sometimes reaches the performance of the identity function. Enabling
linear decoding or not shows no big difference.
Adding words with very low frequency (at least one) sharpens the sensitivity but might
make thesystem endangered to noisy input. Thresholding the code book to frequency of
3 or 5 appears to make no difference.
It is also not clear whether normalisation delivers any improvement. It seems that the code
book already arranges the code instances in a way which makes normalisation obsolent.
Normalisation actually might confuse the system due to its artifical nature.
Differences between using maximum sentence length of 300 and 100 are small which is due
to the fact that there are only few sentence longer than 100 words and hence, using these
as well will not have such an impact on the end result. Using only sentences with at most
50 words however helps to lower the reconstruction errors to a certain extend. Having
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min length activation none numbers oov numbers + oov

1 50 id 379.594 435.377 435.797 456.301
1 50 lsigmoid 668.52 637.034 618.902 749.864
1 50 lsigmoid (linear) 479.534 475.753 471.187 497.981
1 50 tanh 439.784 449.719 435.010 463.735
1 50 tanh (linear) 440.396 451.873 432.722 462.207

1 100 id 472.604 475.764 468.901 471.897
1 100 lsigmoid 716.813 694.693 674.291 795.074
1 100 lsigmoid (linear) 519.576 514.068 511.527 539.433
1 100 tanh 480.693 485.626 473.496 503.052
1 100 tanh (linear) 478.506 490.601 475.361 502.473

1 300 id 441.453 468.156 473.025 493.863
1 300 lsigmoid 699.228 697.898 672.009 838.851
1 300 lsigmoid (linear) 521.876 517.664 514.758 541.531
1 300 tanh 480.273 491.605 487.478 505.055
1 300 tanh (linear) 482.382 486.353 476.474 506.114

3 50 id 450.992 426.722 443.235 424.468
3 50 lsigmoid 710.169 691.515 663.007 687.999
3 50 lsigmoid (linear) 492.861 491.620 490.391 503.164
3 50 tanh 456.520 455.296 452.228 463.507
3 50 tanh (linear) 456.592 456.809 453.749 461.396

3 100 id 475.696 491.690 459.191 471.188
3 100 lsigmoid 754.850 732.664 731.109 737.663
3 100 lsigmoid (linear) 533.862 535.297 534.113 545.278
3 100 tanh 494.015 498.998 500.602 505.789
3 100 tanh (linear) 497.645 493.637 493.529 509.388

3 300 id 494.656 486.480 487.093 4.6647e-14
3 300 lsigmoid 760.372 742.777 685.974 7.24753e-14
3 300 lsigmoid (linear) 536.636 538.054 536.179 4.97145e-14
3 300 tanh 503.249 499.694 500.213 5.33157e-14
3 300 tanh (linear) 492.954 497.400 501.665 4.76862e-14

5 50 id 437.275 392.708 433.034 426.571
5 50 lsigmoid 671.787 674.920 687.753 715.170
5 50 lsigmoid (linear) 494.425 490.194 493.358 487.401
5 50 tanh 457.728 451.806 455.255 455.734
5 50 tanh (linear) 458.210 451.295 453.039 454.950

5 100 id 485.604 481.938 475.330 468.741
5 100 lsigmoid 730.144 733.383 740.096 752.486
5 100 lsigmoid (linear) 537.519 530.173 530.902 528.202
5 100 tanh 495.274 494.902 486.637 487.785
5 100 tanh (linear) 497.513 490.339 498.721 490.866

5 300 id 493.470 490.639 4.65301e-14 484.883
5 300 lsigmoid 717.856 7.17853e-14 7.16708e-14 751.192
5 300 lsigmoid (linear) 538.615 5.21704e-14 5.19634e-14 531.765
5 300 tanh 500.07 5.08646e-14 5.12652e-14 496.545
5 300 tanh (linear) 503.971 5.12016e-14 4.69358e-14 490.374

Table 3.2: Minimal reconstruction errors of trained recursive autoencoders; min is the
minimal allowed frequency for words; length indicates the maximum length
used sentences, activation explains the used activation function where linear
indicates an identity activation in the decoding part
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Dimension max length min freq error (50) error (100) error (300)

100 50 1 379.594 415.762 418.324
100 100 1 434.213 472.604 475.175
100 50 5 437.274 476.984 479.295
100 100 5 446.000 485.604 487.865

300 50 1 1313.38 1429.14 1436.59
300 100 1 1307.76 1422.59 1430.00
300 50 5 1335.70 1453.17 1459.73
300 100 5 1325.51 1442.68 1449.20

500 50 1 2145.85 2334.71 2346.66
500 100 1 2155.25 2344.38 2356.46
500 50 5 2186.79 2379.52 2390.42
500 100 5 2181.63 2374.31 2385.14

Table 3.3: Minimal reconstruction errors on choosen configurations for recursive autoen-
coders on TED test with cutting length of 50, 100 and 300 words

less words to reconstruct of course keeps in general the sum of reconstruction errors lower.
The amount of sentences of size between 50 and 100 however are only 1.5% for test and
2% for training compared to the amount of sentences with length lower 50 words. One
potential explanation is that it is much more difficult to correctly find representations for
grammatical entities which span over more words.
Proceeding the tests, additional models with dimensions of 300 and 500 are trained with
following configuration:

• dimensions: 100, 300, 500

• minimal word frequency in code book: 1, 5

• maximal sentence length: 50, 100

• activation: identity

• normalisation: none

To see the influence of employing models on data with differently cutted sentence length,
all configurations are tested with TED test cutted to 50, 100 and 300 words.
As seen in 3.3, the differences between the different test sets are constant considering each
code dimension separately. Dividing these differences by the respective code dimensions
gives approximatley the same figures. It indicates that training settings do not prefer
cutting lenghts of test data.
Increasing the minimum frequency of code words worsen the performances. Since the
model works on such a fine-grained level in terms of semantics it is essential to have as
few unknown words as possible.
The cutting length of training corpus works in relation with the code dimension on the
performance. High dimension of the semantic space allows to encode more information.
But too much information can oversaturate the model and decrease its quality. For a
dimension of 100, it appears that latter is the case. With higher cutting length in the
training set, test results get worse. Taking a semantic space of dimension 300, longer
training sentences actually increase performances on the test corpora. A semantic space
of dimension 500 tends to overfit. Employing a code book with a minimum frequency of
1 leads to a decrease in the performance when using longer training sentences. Having a
minimum frequency of 5 in the code book results in a performance increase when using
longer training sentences.
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To draw conclusion from the preliminary test runs, the configuration with dimension 100,
cutting-length 50 and minimum frequency 1 is taken. Configurations with dimension 300
and 500 are dismissed due to their time consumption.

• Dimension: 100, Cutting-length: 50, Minimum frequency: 1

• Dimension: 300, Cutting-length: 100, Minimum frequency: 1

• Dimension: 500, Cutting-length: 100, Minimum frequency: 1

Monolingual corpora are emploid to these three models with cutting-length 50. The output
is a list of phrases and their code representation in the semantic space. For all phrases
which appear as well in the domain-specific corpus, the 50 closest neighbours and respective
distances are computed. To apply normalisation, the sum of all distances for target sides is
required as well. For this reasons, sum of distances to 50 closest neighbours for all phrases
on the target sides are computed too.
Each pair of neighbours is assigned the same metrices as done before for the n-gram pivot
alignment. Normalisation is performed with distance t1 and t2 to the 50-closest neighbours.
Then, normalised distances d are transformed to normalised similarities s1 and s2.

si =
ti − d
ti ∗ 49

(3.3)

Subsequently, thresholds for metrices are applied. Any pair whose target side does not
appear in the non domain-specific corpus is removed. Any pair whose target side does
appear in the domain-specific corpus is removed too.

3.2 Paraphrasing

Two methods are applied in order to enrich the domain-specific corpus with information
of synonyms. The first method is a simple random replacement. And the second method
follows a SMT based approach.

3.2.1 Random Replacement

Random replacement takes a synonym lexicon, a number indicating how many iterations
of replacements per input sentence should be carried out, and a parameter value for a prob-
ability distribution which tells whether some word should be replaced or not. Latter value
is used as parameter in a Bernoulli distribution. The outcome of a Bernoulli distribution
is dual, that is {0, 1} or {true, false}. In the implementation of random replacement, 1
(or true) is understood as performing the replacement whilst 0 (or false) will keep the
respective word or phrase untouched. Basically, drawing a sample from the Bernoulli dis-
tribution delivers an answer to the question if replacement should be carried out or not.
A parameter value close to zero will cause only few replacements and a parameter value
close to one will result in many replacements. To allow for replacements of phrases and not
only words, the sentence is scanned in a forward pass and each time, possible paraphrase
candidates are found, the Bernoulli distribution is drawn for replacement decision. If this
decision is yes, one paraphrase will be drawn randomly from all possible paraphrase candi-
dates with a uniform distribution. This paraphrase will be written to the output and the
scan will continue behind the position to which the paraphrased phrase reaches. If no re-
placement is undertaken, the scanned word will be printed to the output and the scan will
continue with the next word. No language model is applied and neither are probabilities of
paraphrases considered in this random replacement algorithm. The outcome is not correct
in terms of syntax but should extend the sentences semantically, depending on the quality
of the lexicon. With the risk of uncorrect output, noise is introduced which might have an
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Algorithm 1 Random replacement: argument l is the index of the left most leaf index
in the subtree, r is the index of the root node in the subtree and f defines an action for
nodes

Function replaceRandomly (lexicon, nIteration, param):
for all sentence in input do

words = split sentence into words
// paraphrases is array of (startIndex, endIndex, target)
paraphrases = lexicon.lookup(words)
for cIteration = 1 to nIteration do

// ip is index of array paraphrases
ip = 0
// i is index of array words
i = 0
while i < #words do

if ip ≥ #paraphrases or paraphrases[ip].startIndex > i then
write words[i] to output
i = i + 1

else if bernoulli(param) is yes then
q = #(filter paraphrases by startIndex equals i)
j = randomly drawn from uniform distribution in [0 . . . q-1]
write paraphrases[j].target to output
i = paraphrases[j].endIndex + 1
ip = find first index in paraphrases[ip . . . ] such that startIndex > i

else
write words[i] to output
i = i + 1
ip = find first index in paraphrases[ip . . . ] such that startIndex > i

end if
end while

end for
end for
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effect on the eventual translation performance. For selecting one paraphrase from the set
of possible paraphrase candidates, a uniform distribution is choosen because paraphrase
candidates may comprise different source phrases which only share the first word. With-
out language model, it is difficult to give appropriate probability proportions. So, uniform
distribution is choosen due to simplicity. The domain-specific corpus is fed to the random
replacement algorithm with different Bernoulli pararameters ten times. Subsequently, the
extended corpora, that is the domain-specific corpus concatenated with the newly formed
sentences, are freed from duplicates.

3.2.2 SMT

Quirk et al show that an SMT system can be used to carry out translation within one
language rather than translation between two languages[27]. The idea is that rather than
allowing randomness to decide which phrase to replace, a score will indicate which new
sentence will be the most appropriate. The translation model puts contraints to firstly
which phrase can be potentially replaced by which other phrases and secondly, how se-
mantically close these replaced phrases are. The language model evaluates a sentence
according to its correct syntax. Assessing each possible combination will lead to expo-
nentially many branches and therefore is not feasable. It is the same problem, SMT is
faced with. Heuristic pruning, also called decoding in SMT, helps to bring complexity
down to linearity. The modern standard of SMT decoding is a log-linear model of features
like translation or language model. Each feature is assigned a weight which represents the
impact of the feature in the final score. These weights are determined on a held-out corpus
to get best results. In our scenario, the translation model translates synonyms within one
language. Like in the random replacement approach, the domain-specific corpus is fed to
the decoder and the 20 best translations are put out. Subsequently, the extended corpus,
that is domain-specific corpus and the 20-best translations, are concatenated and freed
from duplicates.

3.3 Text extraction from PDFs

Many reports and theses are packed as PDF (Portable Document Format). Not only is
it the standard text document format on the internet. It also is supported in various
document editor frameworks such as Microsoft Word, Open Office or pdflatex.

The design of PDF aims to obtain a device-independent representation of enriched text
documents, that is text documents with optional graphics and images as well as format
information. PDF itself uses PostScript, a stack based language which is Turing complete.
PostScript is developed by Adobe for describing document pages in vector format. Ex-
ploiting the nature of vector graphics allows to find a graphical visualisation independent
on display devices. But contrary to HTML, no logical structure of the document is nec-
essarily stored. This fact makes it rather difficult to retrieve the logical relations between
different items in the document. Hence, any text extraction will be noisy.
Some tools are presented and two heuristic approaches are proposed, one for general text
extraction and another for abstract extractions.

3.3.1 PDF format

PDF is designed to display documents in a device-independent fashion. Different specifi-
cations and extensions exist. Yet three components are in place.
A general system allows to store objects with associated content which - depending on
certain factors - will be compressed. Second, fonts can be stored as well to not rely only
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on fonts given in the specification. The third component is a subset of the PostScript lan-
guage. With loop and decision controls as well as commands, the document is described
which allows for rescaling and any pixel-based post-processing without further information.

Since the focus is on visualising the document, any logical information will be omitted.
Some specification permit PDFs to store the logical structure which is refered to as tagged
PDF. Elements are hierarchically connected allowing to identify logical entities. PDF
producing tools nowaday store the logical hierarchy of the document. Nevertheless, it
cannot be assumed to be used everywhere for reason of parameter settings or modifier
tools which may omit logical informations for reasons of complexity and ambiguity.

3.3.2 Tools

Several tools for extracting information out of a PDF already exist. Usually, these tools
are designed to convert or filter out informations.

3.3.2.1 XPDF

A widespread tool set is XPDF 2 which contains open source tools to view and filter PDFs.
The original aim is to provide a graphical viewer for PDFs called xpdf. Since PDF is based
on PostScript (PS), there is also a PDF to PS converter (pdftops). Additional tools allow to
extract images, fonts, attachements or meta informations. Besides to its bitmap converter,
XPDF offers a PDF to text converter (pdftotext). The PDF to text converter displays the
textual content of the PDF as precise as possible onto a text file. That, however, does
not deliver an appropriate output for text processing. Text in columns is still displayed in
columns and if for some reason lines of two parallel columns differ more than slightly, an
empty line will be alternately inserted in both columns.

3.3.2.2 Popple

An extension of XPDF is Popple 3. It not only contains alternative implementations of
the XPDF tool set. The tool pdftotext supports different outputs like raw output, that is
strings appear in the order they appear in the document, with bounding boxes or in html
format. Another tool, pdftohtml, offers similar features. pdftohtml converts a PDF into an
HTML formated document. Besides basic html formating, it also can print out the text
content in XML format, including information about bounding boxes formated document.
Besides basic html formating, it also can print out the of pages and text snippets. formated
document. Besides basic html formating, it also can print out the

3.3.2.3 PDFExtract

Besides simple tools for working with PDF, there are some approaches which aim towards
extracting textual content from more complex PDF documents. In particular, scholar
documents have been the target of a text extraction application developed by Raddum
Berg et al [5]. The source code is publicly available4.

Raddum Bert et al reconstruct the logical structure of a PDF with techniques similarly
used in Optical Character Recognition (OCR). The logical structure is derived from a
layout analysis which consists of two consecutive processes: geometric layout analysis
which groups elements in the document together according to their geometric properties,
and logical layout analysis which determines what belongs to the text flow and what is
additional information.

2http://www.foolabs.com/xpdf/
3http://poppler.freedesktop.org/
4https://github.com/CrossRef/pdfextract
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The analysis starts off by finding whitespace delimiters. That is empty rectangles which
are maximed over their space. A set of rectangles is held, initialised with a rectangle
covering the whole page. As long as some rectangle exists in this set which is not empty,
that is it contains some bounding box, the iteration of whitespace delimitation does not
stop. Each rectangle which is not empty, will be replaced by four sub rectangles. Therefore
a pivot bounding box which lies within the rectangle is selected and the sub rectangles
above, underneath, left and right from the pivot bounding box are take instead. With some
heuristics, small issues in quality and performance are adressed. In particular, whitespace
rectangles within contiguous text segments and small whitespace rectangles between lines
within some paragraph need to be avoided.
Next, geometrical layout analysis is performed. The set of whitespace rectangles is taken

Figure 3.1: Illustration of one iteration in the whitespace covering algorithm: as long as a
rectangle contains any bounding box (blue boxes), it will be recursively sepa-
rated into four rectangles with a pivot bounding box (red box).

in order to find blocks of homogenous content. First, column boundaries are detected in a
three-step approach, whilst erroneous whitespace rectangles need to be dealt with:

1. extract initial set of candidate boundaries

2. heuristically expand column boundary candidates vertically

3. combine logically equivalent boundaries and filter unwarranted boundaries

Second, non-whitespace elements are grouped into blocks which ideally are paragraphs,
headings, footings and so on. Adjacent and non whitespace elements are grouped together
if no intervening whitespace rectangle divides these elements. Mathematical equations
which are identified by content or font properties, are treated differently to avoid them
causing a block separation. Horizontally oriented whitespace rectangles around mathemat-
ical equations are ignored to some amount. At last, the reading order is recovered, that is
which block succeeds which other block. The recovery is based on topological sorting of
lines with help of relation of hierarchical nesting and relative geometric positions.

Geometric analysis highly depends on accurate coordinate information of glyphes used in
the documents. For several reasons, however, these information become incorrect. These
are variations in font types, missing informations for embedded fonts and bugs in PDFBox
which is the underlying PDF library used in PDFExtract. Most of the problems can be
resolved with patching PDFBox and special handling of unknown fonts. Besides font han-
dling, Raddum Berg et al identify another issue which is word segmentation. Whitespaces
are used between words to separate them as well within a word to separate its characters.
Spaces between words are distinctively longer than in between words. Yet both kind of
spacing can vary frequently. To figure out whether spacing is set to separate two words or
just two characters within a word, Raddum Berg et al average a selection of small char-
acter distances within a line. This average distance is compared to all character distances
within the line to segment the characters into words.
Logical layout analysis tries to reconstruct the logical hierarchy with the blocks coming
from the geometrical layout analysis. First, a set of text styles is inferred, that is unique
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combinations of formating properties such as font type and size. Then, different compo-
nents are identified with heuristic rules:

• Body text: In terms of number of characters, take the most frequent text style.

• Title: Take the text style from the header-like text blocks on the first page which
has the largest font size.

• Abstract: If on the first page some single line text block contains the word ”abstract”
and has a bigger or bolder text style than the the body text, its text style will be
taken for the abstract and all body text until the next heading is added to the
abstract.

• Footnote: Text blocks placed in the lower part of the page are searched for starting
with a number or some footnote indication symbol and for smaller font size than the
text style of the body text.

• Sections: A list of style is compiled such that it contains styles which are larger
than the body text or contain an emphasis on the body text. Text blocks having
these text style are tested on initiative enumeration instances. All remaining text
blocks are seen as section headers. The nesting level of the sections is inferred from
the order of occurences.

The text blocks which are assigned to the body text are merged such that merging text
blocks are consecutive and have identical styles. From there, paragraphs are formed based
on indented initial lines. Eventually, dehypenation is carried out with a lexicon and a set
of orthographic rules.

3.3.3 Heuristic text extraction

Based on bounding box and formation style information of text snippets in a PDF, a
heuristic approach can be taken to derive related text snippets. It follows a bottom-
up process in which related text entries are identified and merged. Consequently, no
direct logical structure is produced. Rather, text snippets are grouped to ensure that
they belong together. For Statistical Machine Translation (SMT) or Natural Language
Processing (NLP), text snippets should work fine, since both SMT and NLP only need a
limited context information to infer statistical models.

Bounding box and formation style information can be obtained by tools like pdftotext or
pdftohtml from the Poppler tool set. In fact, for experiments pdftohtml with XML output
and no paragraph merging is used5. On the way to reconstructing the logical relations
between text boxes, some problems arise:

• Page break: The xml input is partitioned into pages which induces page breaks.
However, page breaks, of course, can introduce logical entities like new chapters. But
page breaks appear as well within chapters if a page is fully exhausted. Sentences
or even words may be split by page breaks. A top-down approach should consider
neighbouring pages to figure out where the text flow continues on the next page.
In Western languages one usually can assume that the text flow starts in the top left
corner and ends in the bottom right corner. Lines are read from left to right and
multiple lines are read top down. In some languages the reading/writing order is
different. Japanese knows a traditional way of reading/writing which is column-wise
top down and going from the left column to the right column. Japanese has a mod-
ern way of reading/writing which is the same as Western languages like English do.
In our bottom up approach, we assume mostly Western languages such as German,

5pdftohtml -xml -noframes -stdout -nomerge -enc UTF8 -nodrm
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French or English. Thus, the direction of reading/writing is believed to be line-wise
left to right and lines are read top down. A more sophisticated system might check
upon characters to identify the correct writing/reading direction. In our implemen-
tation, pages are processed individually, that is we do not handle page breaks but go
without extended context and hopefully see less noise. Finding the entry group of
text boxes on the next page will require considering different features like formating
style, position patterns, patterns of annotation and a language model. Annotations
are covered in the next point. The language model is designed to test the most con-
vincing continuation in thze text flow over the page break. Some non continuous text
elements like graphics, tables, page annotations or titles will make it more difficult
to find the right entry point.

• Page related annotations: Almost every document annotates its pages in some
way. Often, the page numbers are placed at some specific position. The current
chapter name or copyright information can be found at the right, left, upper or lower
margin. Foot notes, as the name suggests, give extra information and are placed in
the lower margin. Additionally, some superscript number is inserted into the text.
One can also find temporary annotations at the left or right margin which comment
on the text at this position. It may contain some small summary, key words or
corrections. These annotations typically have regular patterns of formatting style,
positions and content. Nevertheless, it is not trivial to identify these annotations
because some might appear on almost every page whilst other occur rarely. If the
document is composed in book style, variation increases because left and right page in
a book are designed differently. Hence every second page might share some patterns
in their annotation. Since annotations usually contain little information, it should
lower noise, if these annotations were filtered out. It can be achieved by some
classification process for which features have to be selected. Another approach is to
find a big box on the page which will only contain the actual text and remove all
elements outside of this box. A third approach we are using, is to group text boxes
and to filter out groups which fulfill certain criteria like containing only numbers.

• Caption text: Other potential sources of noise are captions of tables or graphics.
They might contain phrases which increase contextual information. The issue lies in
the placement of these elements relative to the text. Tools like pdftotext or pdftohtml
only pass on text boxes, any graphical information like images or simple geometric
elements such as lines are filtered out. There are few ways left to identify captions. If
captions are printed differently, formating style or relative positioning might help to
conclude a classification. It is however not given for sure that captions are formated
differently. Scanning on key phrases at the beginning is another approach. Often,
captions are composed of an identification and a description. The identification starts
with some word like T̈ablë, F̈igure¨ or G̈raphics¨ and continues with an enumeration
like 1̈.2.ä. Combined with formatting style and information about the position, it will
give a better decider on whether some group of textboxes is a caption or not. The key
phrase is not best because some documents use different words in the identification
part or even do not use any identification. The set of key phrases also depends
on the language in which the document is written. With the information about
graphics, tables and other non-text elements, it should be easier to find possible
captions. Going bottom up, situations exist where captions can be missinterpretated
as preceding paragraphs. At higher computation cost, language models can be used
to find the most likely text flow.

• Mathematical equations: In many scientific documents, mathematical equations
appear in an emphasized setting. The text flow stops and the equation is printed
underneath the text. The equation or list of equations is optionally enumerated at
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the right or left margin. The text flow then continues underneath the last equation.
The equation itself consists of various text boxes which are differently aligned due to
fractions, indices, subscript or superscript expressions or symbols which are placed
separately. Two characteristics help to detect equations. The first one is the set
of math symbols used in the equation. The second characteristic is the distinctive
placing in the text flow. It allows to draw a bounding box around the equation which
is complete in a sense that the whole equation is inside whilst no element which does
not belong to the equation is inside. The semantic value of equations is rather low, so
adding it to the corpus might introduce unnecessary noise. Sometimes, the equation
is part of a sentence. If the full sentence should be reconstructed, the whole equation
might be reduced to some special entity word which indicates an equation. Since we
are interested in limited context, the full sentence reconstruction is not important.
Therefore, an equation is seen as separation. The equation with all its text boxes is
put into its own group which then can be filtered out during the post processing. If
the equation is part of a sentence, the prior and posteriour part of the sentence will
end up in different groups.

• Tables: Tables in a PDF document are built by lines and text boxes. Lines will
be filtered out by tools like pdftotext or pdftohtml. The textual content of a table is
therefore arranged in columns and rows. Since tables can be arranged freely, they
also produce noise in situations where they are put within some text. The absence of
drawn line information makes it more difficult to detect tables in the converted PDF
document. Entries in a table might have meaningful text, but often are few words,
numbers or abbreviations with small context information. Filtering out table entries
should help to keep down noise in the data. Similar to mathematical equations,
grouping from bottom-up allows to exclude table entries from the remaining text,
because tables are framed and naturally bring along some bounding box. Entries
with only few words will be filtered out in post processing. Of course, this method
does not directly identify a table as such. To detect tables, more data like information
about drawn lines or captions with key words are required. Another way would be to
apply a language model which extracts the main text content. All remaining elements
then are classified. Arrangements and positions of the remaining elements should
allow to find out whether they are tables, page numbers or some other element.

• Columns and blocks: Grouping text into columns is a widespread technique for
document design. It is easier for the human eye to comprehend at a first glance a
line with few words than a line with many words. It is for this reason that text is
arranged in columns and not extended to cover the whole page width. In the process
of text extraction, the amount of columns have to be determined or somehow taken
into consideration. Typical for columns is the shared left boundary on each line
(with the optional exception of the first line) and the mostly shared text style as
well mostly same or similar distances between lines. Some obstacles can separate a
column into two blocks, even though the two blocks belong together. Obstacles can
be mathematical equations, tables, pictures or even text like citations. In the spirit
of needing only limited context, handling these obstacles can be ignored. This will
cause a column to be split in some upper and lower part for which the respective
context is limited to. Grouping text in columns is necessary if the context should
extend over a line which are aiming for. A new complexity is introduced if a logically
different text block is placed partly into a column such the text of the columns flows
around the text block. Solving such a situation needs more complex handling.

• Emphasising formatting: Formatting is rather a soft than a hard criterion for
distinguishing logical entities. In some situations it should be used to decide for
having found a new logical entity like in titles whilst in other situations it should
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be better ignored. Latter often happens in continuous text. Variables are usually
set differently. Some greek characters are placed lower than the surrounding text.
A popular method for emphasising is to exploit bold or italique fonts. Sometimes,
the first character in a section is enlarged to some size. Handling this character as
a word will break the actual word and hence will introduce noise in the data. In
situations, like this enumerations, the initial expression is emphasised to illustrate
that this particular expression is described in more details. Separating the two
differently formated text does not introduce noise. A non-wholistic approach such as
our implementation should take different features into considerations. Patterns on
the initial text as well as relative positioning within the text give better indication
on how to proceed with differently formated text.

• Non semantic characters: To support document layout, a variety of graphical
symbols exist. Primarily, bullet points and enumeration instances are put in place
with holding no semantic information and yet being handled as part of the text. In
a more extended point of view, mathematical equations, variables and terms can be
seen as non semantic characters as well. In a top-down procedure, such characters
can help to conclude the kind of logical entity a text block owns. However in our
bottom-up approach with limited context interest, these non semantic characters
usually do not contribute in any way. Post-processing should remove them from
the data. Bullet points can be easily detected and mathematical equations too.
Mathematical variables and terms though are not simply distinct from the context.
Enumeration instances at the beginning of a line like in titles can be detected with
pattern matching. References which are expressed by enumeration instances and
are placed within text are much harder to detect. The simplest way to avoid noise
caused by these non semantic characters is pattern matching in the post-processing
step.

Some of the problems Rannon Berg et al experience, do not appear in our implementa-
tion. In particular, Popple seems to deliver well formed text snippets which consists of
words next to each other with the same text style configuration. Besides font style, the
bounding boxes are given so any coordinate infering based on fonts is obsolote. Issues with
incorrect coordinates does not appear although some letters, especially greek ones, are put
slightly lower. Spacing between words differs slightly too. Considering these variations
are incorporated into the extract procedure. Contrary to PDFBox, word segmentation is
not an issue apart from some seldom cases. As discussed before, we follow a bottom-up
approach and do not aim towards fully reconstructing the logical structure. Instead, only
text snippets with a context length of some sentences at most is expected. Each page of a
document is handled separately, that is no entry point on the next page is identified and no
order of text flow is determined. Our procedure rather limits itself to a geometrical layout
analysis compared to the solution by Rannon Berg et al. Pages are composed of levels,
columns and paragraphs. Levels are the most general entity spanning over the document
in vertical direction. It should separate headings, body text and footings from each other.
In particular, title pages can be correctly segmented with levels. Containing only titles
and some information about the author, supervisor and institution, the logical direction
usually is from the top going down. Often, the body text already starts on the first page
and is placed beneath the title and the name of the authors as well some contact infor-
mations and optional sub titles. Assuming a column oriented ordering would create noise.
Additional, headings and footings would require to get somehow separated from the body
text. Within a level, columns are assumed, that is blocks are positioned from the left to
the right. In title areas, no two logicaly different text entities are placed horicontally next
to each other. No columns in body text actually means exactly one column in the body
text. The lowest grouping is paragraph and it is vertical segmentation within a column.
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Paragraphs allow to separate text within a column where titles or some graphic with cap-
tion appear. Generally, the separation are infered from relative positioning and expecially
spacing, that is the minimal vertical distance between two text blocks. The text extraction
which we propose, is built on two basic methods: clustering and merging. Heuristics are
subsequently applied. The input is a list of text boxes which contain information about
the bounding box, text style and the text itself.

1. Grouping to lines: The intention of grouping text boxes to lines is to find coherent
lines. The list of text boxes is recursively clustered in horizontal and vertical orien-
tation. The clustering starts with an initial set of text boxes which at the beginning
holds all boxes. The set is sorted by the left coordinate of the bounding boxes. Then
boxes are grouped together if neighbouring instances overlap or closely overlap. For
each resulting group, the same procedure is performed on the vertical direction, that
is sorting by the top coordinate of text boxes and grouping if neighbouring instances
overlap. On horizontal clustering, no close overlapping is allowed. The clustering is
continued on the resulting groups of the vertical clustering. The clustering stops as
soon as no further change happens. Allowing for close overlap in horizontal direction
brings closely positioned text boxes together into one cluster. Each cluster then is
sorted from the left to the right which is the text flow direction of a regular line. All
clusters are reboxed, that is a line cluster is assigned a bounding box with a minimax
box resulting from the bounding boxes its text boxes, and the content of the text
boxes is concatenated with whitespace in the order of the left-to-right sort.

2. Grouping to paragraphs: Paragraphs are built of lines which are direclty under-
neath each other. Distances between lines may vary. But lines usually hold on to
the same indentation. First, associations between tuples of lines are created. The
association tells if the second line in the tuple is a potential successor of the first
line in the tuple. Each line box has a set of potential succeding line boxes. Initially,
all line boxes which are completely lower and have some overlap on the horizontal
projection, are considered. Each set is further reduced by removing any line boxes
which lie below some other line box in this set. Additionaly, any line box b of a
candidate set belonging to some line box c is removed if the vertical distance be-
tween c and b is more than 3

4 of the height of b or c. Eventually tuples are built
from each line box and each line box remained in the asssociated set. These tuples
are sorted by their vertical distance, smallest first. After that, tuples are grouped
together if the next tuple’s distance is at most 10% larger than the lowest distance
in the current group. The idea is that association between two lines is stronger if
the two lines are closer. Ranging the accepted distance upt to 10% accounts for
variation in character settings or indices. Subsequently, any tuple of line boxes is
removed if the minimum height differs more than 10% of the maximum height and
if the lower box is more right than the upper box. Latter requires the upper line to
have equal or smaller indentation than the lower box. Finally, tuples are cleaned to
have no duplicate line boxes. To do so, groups are filtered (in the order of smallest
distance to largest distance) to have only tuples of line boxes which do not appear in
any previous group. Tuples are clustered seeing the association pairs as equivalence
relation. Any line box which does not appear in any cluster, builds its own cluster.
The clusters contain line boxes which have almost identical in-between distances and
are placed one underneath the other. These clusters usually build paragraphs and
are boxed, that is each cluster has a minimax bounding box and its line boxes as
data.

3. Grouping to columns: The paragraph boxes are clustered recursively in horizontal
and vertical orientation once again to account for fractions and bigger variations in
spacing. Contrary to clustering the text boxes, no small gap is tolerated. The newly
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created clusters are boxed and form columns.

4. Grouping to levels: The last step in reconstructing the geometrical layout is
to determine which column boxs are next to each other. It mostly is necessary
to distinguish document titles, headings and footings from the body text. First,
column boxes are once clustered vertically and then clusters which have more than
one column are grouped together in descending order. These groups build the levels.

5. Text flow order: The layout is sorted to follow the text flow. Levels are sorted top
down, columns are sorted left to right and paragraphs are sorted top down again.

The output actually considers only paragraph level because no entry point has to be found
and it fulfills our requirement. Before printing a paragraph, dehyphenation is applied. If
longer context is required, the next paragraph has to be determined based on stylistic,
geometrical and optionally lexical information.
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For all experiments, a random selection of 40 000 sentences is taken from the TED corpus as
domain-specific corpus. It is referred to as TED in-domain. For perplexity measurements,
a second corpus is created which is close to TED in-domain. But it is neither a super nor a
sub set. 30 000 senteces are taken randomly from TED in-domain and concatenated with
10 000 sentences randomly drawn from TED. It is referred to as TED close-in-domain.
Both share 43 748 monograms. TED in-domain has 6 661 unique monograms and TED
close-in-domain has 6 485 unique monograms.
Two non domain-specific corpora are taken. A collection of academical papers is col-
lected from the Web. Many German universities operate Hochschulschriftenservers. These
are servers dedicated to offer theses, reports and any other academical text written at
the respective university. The mostly used software for these Hochschulschriftenservers
is OPUS 1. It is fairly simple to write a script that goes through the directories of a
Hochschulschriftenserver and searches for any PDF document. A list of Hochschulschriftenservers
is available on the internet2. Subsequently, text snippets are extracted from the PDFs with
the method presented in 3.3.3. With three language models for German, French and En-
glish, the text snippets are grouped. For this work, only text snippets assigned to German
are exploited. It is referred to as Papers. The second non domain-specific corpus is a
collection of sources taken from Mediani et al [20]. It is referred to as Collections.

4.1 Evaluation

Two kinds of evaluation are performed. The intrinsic evaluation measures the perplexity
targeting TED close-in-domain. Taking orientation from Mediani et al, limitations will
be set on the considered vocabulary. The first limitation is the intersection of vocabulary
from selected subcorpora. The second limitation is the union of vocabulary from selected
subcorpora. Also, perplexity with no limitation for vocabulary is tested. Different selec-
tion sizes are taken: 0.1%, 0.2%, ..., 2.0%, 2.5%, ..., 10% Minimal perplexity on the TED
close-in-domain decides which selection size is considered in the evaluation system.
The extrinsic evaluation is BLEU scoring for an English-German translation system. The
SMT system in use is taken from the research team of Prof Waibel at Karlsruhe Insti-
tute of Technology (KIT)[14]. The metric for comparison is BLEU. It scores translation
hypotheses against translation references considering precisions in n-gram model of order

1http://elib.uni-stuttgart.de/opus/
2http://www.dini.de/dini-zertifikat/liste-der-repositorien/
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Corpus lines

NC 201 288
TED 171 721
EPPS 1 920 209
TED tuning 1 433
TED testing 1 700
Papers 8 289 555
Papers filtered 18 270
TED rest 129 678
TED in-domain 40 000
TED close-in-domain 40 000
Collections 10 428 543

Table 4.1: Corpora used in experiments

four. BLEU is regarded as having high correlation with human judgement. Features are a
language model and a translation model. The language models will be varied for different
configurations.All language models are n-grams of order four with Knesser-Ney smooth-
ing. The translation model is built from EPPS, TED and NC corpus and aligned with
GIZA++. The test and tuning sets are done on small heldout TED corpora.

4.2 Baseline

Eleven different baselines are drawn for further comparison. The first baseline (Baseline1)
takes a language model which is trained on EPPS, NC and TED rest corpus which is the
TED corpus minus the TED in-domain corpus. The second baseline (Baseline2) uses an
additional language model trained on the whole papers corpus. To show the quality of
the papers corpus, the third baseline (Baseline3) only uses the language model trained
on the Papers corpus. Since the Papers corpus contains a lot of noise, a language model
is built upon a filtered version of the Papers corpus. The filter is a threshold (≥ 0.9) of
alphabetical characters to all characters and a threshold (≥ 4) upon word counts. The
filtered Papers corpus contains 18 270 sentences. That is about 0.22% of the unfiltered
Papers corpus. Likewise, baseline configurations are drawn with Collections.
With the TED in-domain corpus, selection according to Moore and Lewis is performed on
the papers corpus. Perplexity is tested for various sentence lengths of the final selected
corpus. According to Median et al, intersected and unified vocabulary are considered on
the analysis on TED close-in-domain. Both vocabularies show a minimal perplexity at 2%
with 93.5783 (intersection) and 3% with 151.467 (union). Both show as well the typical
curve that is described by Moore and Lewis6.4. Applying the selection by Moore and Lewis
on Collections results in a minimal perplexity of 95.4604 at 4% for intersected vocabulary
and 221.132 at 7.5% for unified vocabulary6.5.

The selection with minimal perplexity on intersected vocabulary is used as training corpus
for another language model which is considered in combination with the language model
used in Baseline1 (Selection1, Selection3) and alone (Selection2, Selection4).

Even though the papers corpus is eight times the size of EPPS, NC and TED rest combined,
it significantly performs worse due to its noiseness (about 3 BLEU points). The affect of
noise in the papers corpus appears as well in Baseline2 configuration where both language
models are combined. Slight decrease of 0.36 BLEU points show the raw nature of the
papers corpus. Emploing harsh filtering on the Papers corpus removes much noise but
not much is left. Baseline4 delivers best results with a BLEU score of 19.61. So, Papers
corpus contains some - though few - information related to the test set. Using only the
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Configuration LM1 LM2 LM3 LM4 LM5 LM6 BLEU

Baseline1 x 19.56%
Baseline2 x x 19.20%
Baseline3 x 16.62%
Baseline4 x x 19.61%
Baseline5 x 16.25%
Baseline6 x x 19.53%
Baseline7 x 19.38%

Selection1 x x 19.13%
Selection2 x 16.54%
Selection3 x x 20.90%
Selection4 x 19.19%

Table 4.2: Baseline configurations and evaluations; LM1 (EPPS, NC, TED rest corpora),
LM2 (Papers corpus), LM3 (Papers selection), LM4 (filtered Papers corpus),
LM5 (Collections), LM6 (Collections selection)

filtered Papers corpus for the language model (Baseline5), the worst BLEU score is reached
(16.25).
In the selection process, noise is filtered out as a byproduct. It nevertheless does not exceed
the performance of only using EPPS, NC and TED rest (0.43 BLEU points difference).
This low-performance indicates that the content of selection from papers corpus is not so
closely related to the TED test corpus as it would bring any enhancement with Moore and
Lewis’ approach. Using the selection of papers corpus alone confirms its semantic distance
to the TED test corpus with achieving 0.05 BLEU points less than using the whole papers
corpus alone.

Approximately equal in size to Papers, Collections has less noise. Its language model can
be used alone (Baseline7) and achieves comparable BLEU score to Baseline1. Combining
its language model with the language model used in Baseline1 (Baseline6) shows that the
information from both sources are vastly equal according to the BLEU score. Collections
neither add new information nor does it pollute the information coming from EPPS, NC
and TED rest.
Applying the selection alone, that is using its language model alone, gives a slight decrease
in the BLEU score. Collections contains abundant information and considering only a part
nevertheless returns in a system which performs slightly worse than Baseline1, Baseline6
or Baseline7. Best BLEU score is reached with Selection3, considering a language model
trained with EPPS, NC and TED rest and a language model built upon the seleciton.

4.3 Alignment via Pivot Language

The German-English part of EPPS is taken for alignment via pivot language. The pivot
language is English, so synonyms are obtained for German. After constructing the align-
ments via Giza++, following thresholds are applied on the metrices:

• Levenshtein ration: ≥ 0.6

• conditional probability: ≥ 0.001

• word coverage ration: ≥ 0.34

4.3.1 Random Replacement

Applying random replacement results in a similar result for Papers and Collections over
all three Bernoulli parameters 0.2, 0.5 and 0.9. Limiting vocabulary to the intersection or
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union gives the typical curve of perplexity. Using no restrictions on the vocabulary results
in a rather flat line 6.6 6.7. Perplexities on intersection and union have respectively similar
minima regarding the different distribution parameters. Compared with the perplexities in

limitation distr. parameter min. perplexity selection size

Papers intersection 0.2 92.9244 207239 (2.5%)
Papers intersection 0.5 93.3294 165791 (2.0%)
Papers intersection 0.9 90.2959 165791 (2.0%)
Papers union 0.2 158.736 149212 (1.8%)
Papers union 0.5 159.418 157502 (1.9%)
Papers union 0.9 159.465 140922 (1.7%)

Collections intersection 0.2 98.7232 417142 (4.0%)
Collections intersection 0.5 99.1992 469284 (4.5%)
Collections intersection 0.9 97.2917 521427 (5.0%)
Collections union 0.2 221.187 729998 (7.0%)
Collections union 0.5 226.687 729998 (7.0%)
Collections union 0.9 229.723 1042854 (10.0%)

Table 4.3: Perplexity of selections for TED in-domain with random replacement and pivot
alignment; the target of the perplexity is TED close-in-domain

the baseline (Selection1, Selection2), the minimal perplexities with union limitation in the
Papers selction are higher by about 7. However, using intersection of vocabularies yields
marginaly better perplexity compared with the baseline (up to 3). Minimal perplexities of
selections from Collections are higher than those of Papers. For intersection vocabulary,
the difference is around seven. For unified vocabulary the difference is from 61 to 70. The
size of respective selections differs between minimal perplexities of Papers and Collections.

For extrinsic evaluation, selections with minimal perplexity on the intersected vocabulary
are considered. Selections with minimal perplexity on the unified vocabulary are larger
and may introduce more noise. In the SMT evaluation system, configurations with the
respectively trained language models and additional language model from Baseline1 are
tested. Both, Papers and Collections show similar tendencies. The higher the distribution

distribution BLEU with BL1 BLEU without BL1

Papers 0.2 19.65 % 16.87 %
Papers 0.5 19.53 % 16.70 %
Papers 0.9 19.35 % 16.48 %

Collections 0.2 19.98 % 19.18 %
Collections 0.5 19.50 % 18.98 %
Collections 0.9 19.49 % 18.83 %

Table 4.4: Extrinsic evaluation of random replacement and pivot alignment with additional
language model based on EPPS, NC and TED rest corpora (BL1) and only with
language model built on the respectively selected corpus

parameter is high, the lower is the BLEU score. BLEU scores for Collections are almost
consistently lower than BLEU scores for Papers. Including the language model of Base-
line1, the difference in BLEU score is small. Excluding the language model of Baseline1
from the configuration results in difference of about 2.3 BLEU points. The best baseline
(Selection3) is not exceeded by any of these configurations.
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4.3.2 SMT

The synonym table is used in a German-German system combined with a German language
model trained on the German part of the EPPS corpus. Weights are obtained from the
hand-made tuning set held out from TED. The TED in-domain set is translated and
the 20 best hypotheses are considered. The hypotheses are concatenated with the TED
in-domain set, any duplicates are removed and subsequently used as target corpus for
selection according to Moore and Lewis. Perplexities for no vocabulary limitation and

distribution limitation min. perplexity selection size

Papers intersection 111.131 787508 (9.5%)
Papers union 224.239 828956 (10.0%)

Collections intersection 105.849 834283 (8.0%)
Collections union 262.084 1042854 (10.0%)

Table 4.5: Perplexity of selections for TED in-domain with SMT decoding and pivot align-
ment; the target of the perplexity is TED close-in-domain

union limitation show atypical behaviour for both Papers and Collections. However, the
curves of perplexity for intersection limitation appears typical, even though not perfect 6.8
6.9. The perplexities are worse compared to random replacement. Collections yields
a better perplexity than Papers with intersected vocabulary. With unified vocabulary,
Papers gets a better perplexity.

The selected subcorpora are subsequently used for extrinsic evaluation. Two configurations
are tested for Papers and Collections. The first one uses solely the built language model.
The second configuration considers also considers the language model from Baseline1. On

BLEU with BL1 BLEU without BL1

Papers 19.34 % 16.68 %
Collections 19.81 % 18.78 %

Table 4.6: Extrinsic evaluation of SMT decoding and pivot alignment with additional lan-
guage model based on EPPS, NC and TED rest corpora (BL1) and only with
language model built on the respectively selected corpus

Papers, paraphrasing with SMT decoding is worse than paraphrasing with random replace-
ment. On Collections, SMT decoding outperforms random replacement with parameters
0.5 and 0.9. Collections got better results. Without the additional language model, the
difference in BLEU score is higher than with the additional language model from Baseline1.

4.4 Recursive autoencoder approach

In the process of building a synonym lexicon, following thresholds are applied on metrices:

• Levenshtein ration: ≥ 0.7

• conditional probability: ≥ 0.015

• word coverage ration: ≥ 0.3

• similarity distance: ≤ 0.1

A lexicon with about 1.5M entries comes out. The nature of this lexicon is not so much
synonyms but more semantic relations like name of countries or phrases belonging to the
same field of topic.
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4.4.1 Random replacement

Random replacement is performed with 0.2, 0.5 and 0.9 as Bernoulli-distribution param-
eter and 10 iterations. As before, the outcome is concatenated with TED in-domain and
any duplicates are removed. The behaviour of perplexities on selection size is almost iden-
tical for all three parameters for Papers. Intersected vocabulary results in typical line of
perplexity described by Moore and Lewis and no vocabulary limitation or unified vocabu-
lary show atypical behaviour 6.10. For Collections, minimal perplexities with intersected
vocabulary are about the same, whilst minimal perplexities on unified vocabulary ranges
from 221 to 230. Only the patterns of perplexity for unified and intersected vocabulary
result in a way described by Moore and Lewis 6.11. For all combinations, the minimal

limitation distr. parameter min. perplexity selection size

Papers intersection 0.2 100.598 538821 (6.5%)
Papers intersection 0.5 100.422 455926 (5.5%)
Papers intersection 0.9 101.512 538821 (6.5%)
Papers union 0.2 190.475 828956 (10.0%)
Papers union 0.5 188.855 828956 (10.0%)
Papers union 0.9 191.12 828956 (10.0%)

Collections intersection 0.2 98.7232 417142 (4.0%)
Collections intersection 0.5 99.1992 469284 (4.5%)
Collections intersection 0.9 97.2917 521427 (5.0%)
Collections union 0.2 221.187 729998 (7.0%)
Collections union 0.5 226.687 729998 (7.0%)
Collections union 0.9 229.723 1042854 (10.0%)

Table 4.7: Minimal perplexity of selections for TED in-domain with SMT decoding and
RAE; the target of the perplexity is TED close-in-domain

perplexities are higher than minimal perplexities in the selection baselines. The minimal
perplexities for Collections are consistently closer to its respective selection baselines with
intersected vocabulary. With unified vocabulary, the minimal perplexities for Papers are
consitently farther away from its respective selection baselines.

Selections according to minimal perplexity on intersected vocabulary are considered in the
extrinsic evaluation system. Configurations with and without additional language model
from Baseline1 are tested. With additional language model, BLEU scores for Collections

distribution BLEU with BL1 BLEU without BL1

Papers 0.2 19.44 % 16.55 %
Papers 0.5 19.39 % 16.52 %
Papers 0.9 19.49 % 16.58 %

Collections 0.2 19.07 % 17.95 %
Collections 0.5 19.24 % 16.52 %
Collections 0.9 19.26 % 17.95 %

Table 4.8: Extrinsic evaluation of random replacement and RAE with additional language
model based on EPPS, NC and TED rest corpora (BL1) and only with language
model built on the respectively selected corpus

are lower than BLEU scores for Papers. Without additional language model, the perplex-
ities for Collections are higher compared to BLEU scores for Papers.
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4.4.2 SMT

The German-German system, that is applied for pivot alignment, is used as well with
the lexicon taken from RAE as translation model. TED in-domain is translated and the
20 best hypotheses are taken. After concatenation with TED in-domain, duplicates are
removed.

For selection on Papers, unified vocabulary and no vocabulary limitation results in an
atypical behavour of perplexities. Putting no limitation on the vocabulary or limiting to
unified vocabulary results in an atypical behaviour of perplexities. The most restrictive
limitation, intersected vocabulary, delivers a curve of perplexity that resembles the de-
scription from Moore and Lewis 6.12.
For selection on Collections, only perplexities based on no vocabulary limitation show
atypical behaviour. The line of perplexity for unified vocabulary somehow resembles the
typical pattern of perplexities according to Moore and Lewis. Like in Papers, only inter-
sected vocabulary gives a line of perplexity that is typical to data selection described by
Moore and Lewis 6.13. Minimal perplexities are higher than respective results obtained

limitation min. perplexity selection size

Papers intersection 107.457 704612 (8.5%)
Papers union 220.499 828956 (10.0%)

Collections intersection 103.962 782141 (7.5%)
Collections union 258.739 1042854 (10.0%)

Table 4.9: Minimal perplexity of selections for TED in-domain with SMT decoding and
RAE; the target of the perplexity is TED close-in-domain

with random replacement. Likewise for random replacement, minimal perplexity with in-
tersected vocabulary is lower for Collections than for Papers but minimal perplexity with
unified vocabulary is higher for Collections than for Papers. Minimal perplexities of se-
lections from Collections get closer to its selection baselines than minimal perplexities of
Papers do.

The selection with minimal perplexity on intersected vocabulary is tested in the SMT eval-
uation system. Configurations with and without additional language model from Baseline1
are tried. Selections on Collections show better BLEU scores than selections on Papers,

BLEU with BL1 BLEU without BL1

Papers 19.47 % 16.62 %
Collections 19.74 % 18.59 %

Table 4.10: Extrinsic evaluation of SMT decoding and RAE with additional language
model based on EPPS, NC and TED rest corpora (BL1) and only with lan-
guage model built on the respectively selected corpus

in particular without additional language model. With and without additional language
model and on Papers and Collections, BLEU scores outperform or lay on the upper range
compared to applying random replacement.
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Even though improvement has been seen only in one case, some insights can be taken out
of it. Selection by Moore and Lewis works worse on a noisy corpus than keeping the noisy
corpus out at all. Since the selection operates on sentence level, noise within sentences will
be carried on or the whole sentence is filtered out. Considering this sensitivity of selection
by Moore and Lewis, noisy data must be preprocessed in a way that noise on phrase level is
diminished as well. With a noise-poor corpus, selection by Moore and Lewis succeds with
1.3 BLEU points over the baseline configuration which uses the whole noise-poor corpus
without any selection.
The intrinsic evaluation (perplexity) appears to be influenced by noise in a negative way.
Even though the noisy corpus Papers scores lower BLEU points, the perplexities of its
selections are lower compared to the corpus Collections. More noise in the data may lead
to a smaller selection size for minimal perplexity. With less data lower perplexity can be
gained. Regarding vocabulary limitations, intersection gives the most reliable output com-
paring it with the typical perplexity curve described by Moore and Lewis. So it appears
that the most restrictive limitation increases robustness. This assumption goes in hand
with the previous observance that selection by Moore and Lewis is not robust to noise.
The two paraphrasing techniques turn out to require a lot of improvement to produce
feasable paraphrases. Random replacement shows promising advances. For pivot-alignment
based lexicon, BLEU scores drop with increasing Bernoulli parameter on both corpora. For
RAE based lexicon, BLEU scores inrease with increasing Bernoulli parameter on Collec-
tions corpus. On Papers corpus, no clear tendency is visible. Despite its simplicity, random
replacement outperforms SMT decoding on intrinsic evaluation. On extrinsic evaluation,
both techniques deliver comparable figures. SMT decoding appears to introduce less new
words in the paraphrases. It also lays focus more on reordering phrases which gives a
different n-gram distribution and hence a higher perplexity. In the extrinsic evaluation,
this disadvantage disappears mostly.
Regarding only scores with the synonym lexicon based on pivot alignment, small improve-
ment can be reached for the noisy Papers corpus in extrinsic and intrinsic evaluation. For
the noise-poor Collections corpus, no improvement can be seen, both in the intrinsic and
in the extrinsic evaluation. Also, random replacement works better than SMT decoding.
With the lexicon based RAE, no improvement can be reached.
To draw a conclusion, perplexity based evaluation does not go entirely hand in hand with
BLEU scoring. Even though the motivating idea sounds plausible, the realisation requires
more careful design to avoid production of noise in all steps. First, paraphrasing turns
out to be difficult. Not only should be the output correct in terms of syntax but also in
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terms of semantics. Applying tools from SMT requires parallel data, which is not broadly
available, and the consideration, that translation is performed within the same language.
Specific filtering of the lexicon is necessary to reduce noise. But apparently, it is not
enough.
Second, lexicon based on pivot alignment gives good synonyms. Postprocessing as dis-
played is nevertheless required to minimise noise. RAE based lexica do not only contain
synonyms but also pairs of other semantic relations. Here, more analysis has to be per-
formed from position and neighbours to find actual synonyms.
Third, perplexity only measures similarity based on syntax. With an improved para-
phrasing technique, it is interesting to investigate if perplexity as selection criterium then
correlates higher with the resulting BLEU score. In particular, exploring ways to apply
perplexity effectively in noisy data might be helpful as well, given the cost in time and non
optimal thresholds.

A first step towards improvement is starting at the source, that is the text extraction from
PDF files. More sophisticated methods can be applied to identify actual text from math-
ematical equations, titles, foot notes, annotations and other formating elements. Raddum
Berg et al used a Support Vector Machine (SVM) on the geometrical properties. It appears
to be quite interesting to train language models on titles, text continuation and identifi-
cation of mathematical symbols as well on annotations. Combined with spatical features
and considering as well the preceding and succeding page should give a stronger method
to filter out noise. In particular, punctuations and mathematical equations are used which
often transforms to noise (”a = al 2 o 3 , s = sio 2 + p 2 o 5 , c = [...] die variation der
chemischen zusammensetzung ist ...”) It is nevertheless remarkable that with the approach
of Moore and Lewis noisy sentences can be filtered out. Decreasing the noise in the text
extraction of PDF files does not only aim on having less noise in the data because this can
be removed by applying Moore and Lewis’ method. But it primarily should deliver more
meaningful text from a resource which is rather domain specific, limited and therefore
more expensive.
Another step is to refine the methods for harvesting or producing paraphrases. Because
the level of granularity is pretty deep, models must be sensitive to operate as exact as
possible. Decoding systems described in this thesis only rely on language and translation
models. Additional models are not considered. Reordering models, any post-processing,
labeling or factorised models might help to produce better paraphrasing. This will ultima-
tively help to raise the quality of in-domain corpus using the approach of Moore and Lewis.
The recursive autoencoder architecture can be improved as well. The idea of multitasking
from Collobert and Weston can be applied on recursive autoencoders too. The difficulty is
to allow variable input length for tasks which require as well context information. Giving
more information at hand may push semantic representation even further. Other neural
network architectures like recurrent neural networks handle variable input length as well
and have achieved good results as shown by Irsoy and Cardie[15]. So far, the proposed
models deduce from singular instances of phrases without considering the context of these
particular phrases. With words having only one semantic meaning, this concept will work
properly. But since sensitivity is important for semantic analysis on word level, context
becomes more important to be aware of. To acomplish it, Paulus et al suggest a new
recursive neural network architecture [26]. Rather using a strictly feed forwarding archi-
tecture, the inference of semantic representations involves considering representations of
topology-wise higher terms, that is feedbackwarding is performed. Paulus et al report an
improvement over the feedforward recursive neural networks. Although their objective is
sentiment prediction and not direct semantic representations.
At last, the process of selection can be modified. Mediani et al report an increase in
performance when decreasing the size of the domain-specific corpus. It comes also closer
to many scenarios where not much data for the translation system is at hand. Improve-
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ment may not only be reached by a smaller domain-specific corpus but also through closer
relationship between domain-specific and general corpus. In particular, Papers might be
too distant to TED in-domain in terms of semantics. Testing the presented techniques
for two corpora more close to each other, like Papers as general corpus and some lecture
transcripts as domain-specific corpus, might result in better outcome.
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6. Appendix

6.1 Recursive Autoencoder

Recursive neural networks are a variation of feed forward neural networks. Rather applying
different layers subsequently on the respective output, only one layer is used to merge two
output instances together to eventually obtain one output instance. The order of merging
goes according to a specific hierarchy, henceforth called topology instance.
The topology instance can be either derived from an heuristic algorithm or obtained from a
grammatical parser. A recursive neural network can be seen as well as an autoencoder with
dynamically dimensioned input. In the fashion of autencoder, training uses reconstruction
as objective. Hence an additional layer of weights is required. Finding the semantic
representation of two phrases corresponds to encoding and decomposing a phrase into two
semantic entities is adequate to decoding. Socher et al [28] propose such a neural network
architecture to measure the semantic content of phrases. Although Socher et al offer code
for performing encoding with a given model of parameters, no code for training is published
(effective May 1st 2015). Therefore, an own implementation is presented for both model
training and semantic analysis.

6.1.1 Architecture

Like the name tells it, the neural network is applied recursively, folding a tree of semantic
values. Values at its leafs are the semantic representation of the corresponding words or
phrases. Merging two nodes in the tree results in a semantic representation for the phrase
which is spanned over the words at the leafs of the subtrees both merging nodes are root of.
The neural network, therefore, can be described as a function θ which maps two instances
of a semantic space into the very same space. The initial semantic representations for
words are taken from a lookup table which holds the semantic representations for a closed
vocabulary set. Unknown words are assigned to the null vector. That is no activation
is triggered for unknown words. Google’s word-embedding tool word2vec offers a way to
compute this particular lookup table in an easy way.
The choosen tree topology is binary. The reason therefore is almost only simplicity. An

architecture with more than two child nodes could be used as well. Grammatical parsers
themselves produce syntax trees with varying amount of child nodes. Some architecture
which is able to consider such kinds of syntax tree should - in theory - delivers better
results. The complexity herein lies in merging an arbitrary amount of child nodes such
that weights reflect and organise themselves to cope with this inconsistency. Expecting
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youtowalkI

to you

I walk to you

walk to you

Figure 6.1: A recursive autoencoder takes a sentence of arbitrary length and folds it ac-
cording to some tree topology. The nodes’ values are semantic representations
of the respective phrases. Semantic representations for input words can be

a fixed amount of child nodes brings along the issue that grammar of natural languages
cannot be correctly represented by trees with fixed amount of child nodes per parent node.
Hence, architectures of such kind need routines how to solve situations where the actual
amount of child nodes differs from the branching factor of the merging tree. If more
child nodes in the syntax tree exist than merging is expecting, these child nodes have
to be regrouped in an hierarchy which will introduce noise since the hierarchy is artifical.
Additionally, the last merge in the made up hierarchy might have less nodes than expected.
This also happens if fewer child nodes exist in the syntax tree than merging is expecting.
Using a branching factor of two, that is using a binary tree, will solve latter problem.
Merging a specific amount of nodes in binary mode works that two nodes are merged
and replaced by the merging result. Hence, no node will be left. The artifical hierarchy
is either simple, that is starting from one end going to the other one, or more complex,
that is employing some heuristics to find the least noise producing hierarchy. Heuristics
commonly depend on the model which in training is about to be formed. It can cause
complexity and unnecessary noise. In our approach, we omit heuristics for these reasons
and apply a left to right merging process.

6.1.1.1 Untied input layer dimension

A variation of the standard recursive neural network employs a different input dimension
on the first layer. Rather mapping into the same space, the semantic value representations
reside in a differently dimensioned space. It can be both higher or lower. Consequently,
semantic representations at the leaf nodes cannot be simply compared with semantic rep-
resentations at the branch nodes due to their different dimensions. Lowering dimension
can find use in making representations on higher level more compact. More low frequent
noise will be filtered out and computation time will decrease. In combination with an
output function at all or some nodes, a reduced inner semantic space can bring improve-
ment. Socher et al perform logical regression on a recursive autoencoder for sentiment
prediction[29]. On the last merged node, a softmax layer is placed to carry out predic-
tions for different sentiments. The training objective is to minimise the overall prediction
error as well as the reconstruction error. The output does not directly uses the semantic
representations. So, the dimension of the inner semantic space is free to vary.

Using higher dimensions as well can make sense. For reasons of grasping more information,
the dimension of the inner semantic space can be increased. Mechanisms have to be put
in place to avoid overfitting. The result is a sparse autoencoder. Via additional penalty
constraints in the objective function, the weights are encouraged to have an impact which
is as little as possible.
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Figure 6.2: A recursive autoencoder can be extended with labeling, that is classification,
for all or only the root node. The training objective then is the labeling er-
ror plus the reconstruction error. Socher et al use classification of semantic
representations for predicting sentiment distributions.

Low dimensioned semantic spaces aim towards removing low frequencies in the data. It
goes according with the idea that the general structure is hidden by low frequencies, like
typos or unusual expressions. The more frequent some data appears, the more likely is
it to be important and to be not noise. Any correct data which seldom appears will be
removed like it was noise. With highly dimensioned inner space, the intention is to capture
small details much better. The issue, of course, is to decide what is likely to be noise and
what is real data. Defining the separation between data and noise makes the design of
sparse autoencoders difficult.

Since our target is to compare phrases semantically, semantic representations have to be
comparable as well. We also do not want to restrict ourself to compare only merged phrases
but also intent to include word representations in the comparisons. Hence, recursive au-
toencoder we deploy will have a tied input layer dimension and will use only one set of
parameters. For the sake of illustrating recursive neural networks, untied variations have
been discussed.

6.1.1.2 Reconstruction

Training goes according to some objective function which is aimed to get minimised. In
a standard recursive autencoder with no additional layers on top, the training objective
JSRAE is the direct reconstruction error; that is the sum over the euclidean distances
between the actual and the decoded child nodes of each parent node τ ∈ P in the folding
tree.

JSRAE =
∑
τ∈P
‖x(l(τ)) − x̂(l(τ))‖22 + ‖x(r(τ)) − x̂(r(τ))‖22 (6.1)

Two problems arise. The first problem is that reconstructing only the direct child nodes
means equal contribution of the respective reconstruction errors disregarding the size of
the respective subtrees. If the first child node represents one word and the second child
node represents a phrase of ten words, reconstructing solely these representators will make
paying the same attention towards the word of the first node as towards the ten words of
the second node. This misproportion leads to better encoding for words close to the root
node whilst words far away from the root node. Consequently, the semantic representation
of the whole sentence is dominated by words close to the root node.
The second problem is caused by the fact that training computes the parent nodes which it
then tries to reconstruct. The training algorithm can achieve a lower reconstruction error
by lowering the norms of the branching nodes, that is weights tend towards zero which
is also called weight implosion. To overcome this issue, Socher et al[28] suggest adding a
normalisation layer on top of each parent node which will ensure that any representation
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Figure 6.3: Standard recursive autoencoder decodes only the direct children for all its
branch nodes. Unfolding recursive autoencoder decodes fully to the leaf nodes
for all its branch nodes. The reconstruction error sums over all leaf nodes of
the decoding trees.

has exactly length one and does not diminish towards zero.

An alternative to employing direct reconstruction error is to fully unfold the subtree of
each parent node τ ∈ P and then to sum over the reconstruction errors at the leaf nodes
π ∈ L(τ) of each subtree with root τ .

JURAE =
∑
τ∈P

∑
π∈L(τ)

‖x(π) − x̂(π)‖22 (6.2)

Because the training algorithm tries to reconstruct in unfolding mode the leafs which of
course are fixed, exploding or imploding weights do not bring any advantages in the task
to minimise the training objective JURAE. Thus, no normalisation layer has to be put on
the parent nodes. The other problem of the standard recursive autoencoder has been faced
as well. The size of the reconstruction error depends on the magnitude of the individual
reconstruction errors as well on the amount of leaf nodes to be reconstructed. Merging
two nodes of which one represents one word and the other node represents ten words, the
reconstruction error of the latter will be in general higher than the reconstruction error of
the first one. The training algorithm will therefore pay more attention towards the node
with ten words. Weights are also trained such that the model does not overwhelmingly
considers words close to the root, but allows for words farther away from the root to
contribute substantially to the eventual semantic representation of the sentence.

6.1.1.3 Deep network

The recursive autoencoder as presented so far belongs to the class of shadow networks.
No actual latent or hidden layers are used in this particular architecture. Similar to other
shallow network architectures, it can be extended to a deep network architecture which
holds one or more hidden layers. The idea of such hidden layers is to find more abstract
features of the input whilst traversing through the layers of the network. Deep networking
can also be seen as a technique to pass through features of features which actually is
equivalent to finding more abstract features for describing the input. Each layer in a deep
recursive autoencoder holds representations according to the topology of the merging tree.
Thereby, a node τ in layer i not only depends on its child nodes l(τ) and r(τ) in the same
layer i but also on the equivalent node τ in the lower layer i− 1.

x(τ,i) = f(L(i)x(l(τ),i) +R(i)x(r(τ),i) + P (i−1)x(τ,i−1) + b(i)) (6.3)
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The lowest level i = 0 has no lower level by nature. So it gets simplified to the dependencies
like in the shallow network architecture.

x(τ,0) = f(L(0)x(l(τ),0) +R(0)x(r(τ),0) + b(0)) (6.4)

Each layer operates in its own semantic space and can have its dimensionality. To filter
more and more information out traversing through the layers, the dimensions are designed
to decrease going up the the stack of layers. Weights P (i) map representations from the
semantic space of the lower layer into the semantic space of the upper layer. Representa-
tions of the subphrases are taken from the uppermost layer.
Training is performed layerwise. That is first, weights of the lowest layer are trained with
the objective to minimise the reconstruction error solely on this layer. After enough iter-
ations, any input is put through the lowest layer and its results are present to the second
lowest layer whose weights are trained subsequently with the objective to minimise the
reconstruction error on that layer. From the second lowest layer on, leaf nodes are all
nodes in the previous layer. Reconstruction error then is computed based on this set of
nodes rather nodes in the current layer representing single words.
Despite successful results of deep network architectures in other domains, Socher et al[28]
report that they see not any improvement using deep recursive autoencoders. It appears
rather that due to complexity, the deep recursive autoencoder gets stucked more easily in
local minima.

6.1.2 Mathematical background

A shallow recursive autoencoder encodes a parent node τ with its left child node l(τ)
weighted by L, its right child node r(τ) weighted by R and some bias b whose result is
transformed by the activation function f .

x(τ) = f(Lx(l(τ)) +Rx(r(τ)) + b) (6.5)

In the standard version, decoding is limited to only the direct children. Therefore, decoded
child nodes l(τ) and r(τ) solely depend on the parent node τ which contributes with
respective weights L̂ and R̂ as well on biases c(l) and c(r) respectively.

x̂(l(τ)) = f(L̂x(τ) + c(l)) (6.6)

x̂(r(τ)) = f(R̂x(τ) + c(r)) (6.7)

The objective function of training a standard recursive autoencoder is the overall sum of
euclidean distances between the actual and reconstructed child nodes of each parentnode.
For the purpose of easier differentitation, factor 1

2 is added.

JSRAE =
1

2

∑
τ∈P
‖x(l(τ)) − x̂(l(τ))‖2 + ‖x(r(τ)) − x̂(r(τ))‖2 (6.8)

Applying backpropagation in model training requires to find out how much each weight
contributes to the overall reconstruction error JSRAE. Differentiating the objective function
to the decoding bias, that is c(l) or c(r), only takes to traverse over all parent nodes,
measuring the respective distance of actual and decoded child nodes and scaling it up
entrywise by the ascend of the activation function f .

∇c(l)JSRAE = −
∑
τ∈P

[
(x(l(τ)) − x̂(l(τ)))⊗ f ′(L̂x(τ) + c(l))

]T
(6.9)

∇c(r)JSRAE = −
∑
τ∈P

[
(x(r(τ)) − x̂(r(τ)))⊗ f ′(R̂x(τ) + c(r))

]T
(6.10)
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Gradient for the decoding weights L̂ and R̂ works almost similar. For each left node, the
reconstruction error is scaled entrywise by the derivation of the activation function and
with the left node representation, the outer product is built. Summing over all left nodes
results in the gradient of the left decoding weights. Computing the gradient for the right
decoding weights works analogously.

DL̂JSRAE = −
∑
τ∈P

[
(x(l(τ)) − x̂(l(τ)))⊗ f ′(L̂x(τ) + c(l))

][
x(l(τ))

]T
(6.11)

DR̂JSRAE = −
∑
τ∈P

[
(x(r(τ)) − x̂(r(τ)))⊗ f ′(R̂x(τ) + c(r))

][
x(r(τ))

]T
(6.12)

Involving length normalisation in the encoding makes the case rather more complicated,
although it follows the same pattern as without length normalisation. For better illustra-
tion, the gradient of encoding bias and weights without length normalisation is derived.
First, some auxiliary variables are defined. The activation a(τ) of a node is the raw repre-
sentation value before feeding it entrywise to the activation function f .

a(τ) = Lx(l(τ)) +Rx(r(τ)) + b (6.13)

If length normalisation is emploid, the direct output of the activation function is labeled
y(τ) and the actual representation value x(τ) then will not only have dependency on same
components of y(τ) but will need all components of y(τ) to compute at least one of its
components.

y(τ) = f(a(τ)) (6.14)

x(τ) =
y(τ)

‖y(τ)‖ (6.15)

First, the gradient of the encoding bias is derived from the objective function JSRAE

without employing length normalisation. The Jacobian matrix Dbx
(τ) of some encoding

node representation x(τ) regarding the encoding bias, builds a simple linear combination
of the Jacobian matrices Dbx

(l(τ)) and Dbx(r(τ)) of its left and right child nodes.

Dbx
(τ) = diag(f ′(a(τ))) ·L ·Dbx

(l(τ)) + diag(f ′(a(τ))) ·R ·Dbx
(r(τ)) + diag(f ′(a(τ))) (6.16)

The Jacobian matrix Dbx
(τ) of any leaf node τ will be zero and therefore will terminate the

recursion. The gradient ∇bJSRAE(τ) for reconstructing only one node τ and differentiating
it to the encoding bias b is as well a linear combination of the Jacobian matrizes Dbx

(l(τ))

and Dbx
(r(τ)) of its left and right child nodes.

∇bJSRAE(τ) = zl(τ)Dbx
(l(τ)) + zr(τ)Dbx

(r(τ)) − β(τ)Tdiag(f ′(a(τ)))

with

zl(τ) = [εl(τ)− β(τ) diag(f ′(a(τ)))L]T

zl(τ) = [εr(τ)− β(τ) diag(f ′(a(τ)))R]T

β(τ) = εl(τ) diag(f ′(â(l(τ))))L̂+ εr(τ) diag(f ′(â((r(τ))))R̂

εl(τ) = x(l(τ)) − x̂(l(τ))

εr(τ) = x(r(τ)) − x̂(r(τ))

(6.17)

For the overall gradient ∇bJSRAE of reconstructing all parent nodes in a tree, all gradients
of reconstructing a single node are accumulated.

∇bJSRAE =
∑
τ∈P
∇bJSRAE(τ) (6.18)
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The linear combination of the recursive gradients can be exploited to obtain a recursive
function ξb which starts at the root node and propagates towards the leafs while leaving
behind summands whose accumulated result in the wanted gradient.

ξb(τ, µ) =

{
0, if τ is leaf

ξb(l(τ), pl(τ, µ)) + ξb(r(τ), pr(τ, µ)) + po(τ, µ), else

with

pl(τ, µ) = εl(τ)T + (µ− β(τ)T ) diag(f ′(a(τ)))L

pr(τ, µ) = εr(τ)T + (µ− β(τ)T ) diag(f ′(a(τ)))R

po(τ, µ) = (µ− β(τ)T ) diag(f ′(a(τ)))

(6.19)

Mathematical induction helps to conclude that for each node π and some factor µ, function
ξ(π, µ) holds the sum over all reconstruction gradients ∇bJSRAE(τ) of parent nodes τ in
the subtree rooted by π and the Jacobian matrix Dbx

(π) weighted by µ.

ξ(π, µ) =
∑

τ∈P(π)

∇bJSRAE(τ) + µDbx
(π) (6.20)

The basis case is a simple tree with just one branch node π which refers to two child
nodes. Due to both child nodes being leafs, the recursion does not exist and the term can
be reduced easily.

ξb(π, µ) = ξb(l(π), pl(π, µ)) + ξb(r(π), pr(π, µ)) + po(π, µ)

= (µ− β(π)T ) diag(f ′(a(π)))
(6.21)

∑
τ∈P(π)

∇bJ(π) + µDbx
(π) = ∇bJ(π) + µDbx

(π)

= −β(π)T diag(f ′(a(π))) + µ diag(f ′(a(π)))

= (µ− β(π)T ) diag(f ′(a(π)))

(6.22)

For two arbitrary trees with respective roots π1 and π2 and some arbitrary factor µ, it is
assumed that both hold the hypothesised equation individually.

ξb(πi, µ) =
∑

τ∈P(πi)

∇bJ(τ) + µDbx
(πi), for i = 1, 2 (6.23)

The induction step then is taken, by putting both trees together with a new root node π
having π1 to its left and π2 to its right. Factor µ is supposed to be arbitrary. Decomposing
into the linear combination gives the opportunity to apply the assumption which eventually
produces the overall sum of partial gradients ∇bJ(τ) and the Jacobian matrix Dbx

(π)

weighted by µ.

ξb(π, µ) = ξb(π1, pl(π, µ)) + ξb(π2, pr(π, µ)) + po(π, µ)

=
∑

τ∈P(π1)

∇bJ(τ) + pl(π, µ)Dbx
(π1) +

∑
τ∈P(π2)

∇bJ(τ) + pr(π, µ)Dbx
(π2) + po(π, µ)

=
∑

τ∈P(π)

∇bJ(τ)−∇bJ(π) + µDbx
(π) +∇bJ(π)

=
∑

τ∈P(π)

∇bJ(τ) + µDbx
(π)

(6.24)
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Using µ = ~0 as factor for the root node π from where as well the recursion starts, delivers
the overall sum of gradients for partial reconstruction.

ξb(π,~0) =
∑
τ∈P
∇bJ(τ) (6.25)

For left and right encoding weights, L and R, deriving gradients works similar to deriving
the gradient for encoding bias. Only the gradient DLJSRAE for the left encoding weights is
derived. More details on deriving the right encoding weights can be studied in the appendix
since it follows the same scheme. The gradient DLJSRAE for left encoding weights is the
overall sum of gradients DLJSRAE(τ) of reconstructing only parent nodes τ .

DLJSRAE =
∑
τ∈P

DLJSRAE(τ) (6.26)

The gradient DLJSRAE(τ) for reconstructing node τ is a linear combination of the partial
differentiation of child node representations for left encoding weights.

DLJSRAE(τ) =

[∑
k h

(l)
k (τ) · ∂x

(l(τ))
k
∂Lij

+ h
(r)
k (τ) · ∂x

(r(τ))
k
∂Lij

]
ij

+H(o)(τ)

with

h(l)(τ) = εl(τ)+

[(
R̂ · diag(f ′(a(τ))) · L

)T (
εr(τ)� f ′(â(r(τ)))

)]
+[(

L̂ · diag(f ′(a(τ))) · L
)T (

εl(τ)� f ′(â(l(τ)))
)]

h(l)(τ) = εr(τ)+

[(
R̂ · diag(f ′(a(τ))) ·R

)T (
εr(τ)� f ′(â(r(τ)))

)]
+[(

L̂ · diag(f ′(a(τ))) ·R
)T (

εl(τ)� f ′(â(l(τ)))
)]

H(o)(τ) =
[(
L̂T
(
εl(τ)� f ′(â(l(τ)))

))
� f ′(a(τ))

]
⊗ x(l(τ))+[(

R̂T
(
εr(τ)� f ′(â(r(τ)))

))
� f ′(a(τ))

]
⊗ x(r(τ))

(6.27)

The partial differentation
∂x

(τ)
k

∂Lij
of child node’s τ representation for left encoding weight Lij

itself is a linear combination of the partial differentation of its child nodes’ representations.

∂x
(τ)
k

∂Lij
= f ′(a

(τ)
k )

[∑
l

Lkl ·
∂x

(l(τ))
l

∂Lij
+Rkl ·

∂x
(r(τ))
l

∂Lij

]
+ f ′(a

(τ)
i )x

(l(τ))
j (6.28)

Correspondingly to computing the gradient for encoding bias, a recursive function ξL(τ, µ)
can be defined which starts at node τ and goes down recursively in the subtree of τ being
root. On leaf nodes, a zero matrix is returned. On branch nodes, a summand matrix is
returned as well the child nodes are called with ξ and new factors.

ξL(τ, µ) =

{
0, if τ is leaf

ξL(l(τ), ql(τ, µ)) + ξb(r(τ), qr(τ, µ)) + qo(τ, µ), else

with

ql(τ, µ) = h(l)(π) + LT ·
(
µ⊗ f ′(a(π))

)
qr(τ, µ) = h(r)(π) +RT ·

(
µ⊗ f ′(a(π))

)
qo(τ, µ) = H(o)(π) +

(
µT ·~1

) (
f ′(a(π))⊗ x(l(π))

)
(6.29)
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It can be proven via mathematic induction that ξL(π, µ) accumulates all partial recon-
struction gradients DLJSRAE(τ) within the subtree and the partial differentation of its

representation
∂xπk
∂Lij

weighted by µ.

ξL(π, µ) =
∑

τ∈P(π)

DLJ(τ) +

[∑
k

µk ·
∂xπk
∂Lij

]
ij

(6.30)

The proove follows the scheme as presented for the encoding bias. Details can be found in
the appendix.
Applying length normalisation changes equations only slightly. The partial differentation

of node representations, that is
∂x

(τ)
i

∂bj
and

∂x
(τ)
i

∂Ljk
, are multiplied with some denormalising

matrix Dx(τ)y
(τ).

Dx(τ)y
(τ) =

1

‖y(τ)‖E −
4

‖y(τ)‖3

(
y(τ) ⊗ y(τ)

)
(6.31)

The second architecture’s version is an unfolding recursive neural network. No length
normalisation is required as discussed before. What remains, are unfolds on the tree for
each node. That is, for each parent node in the tree, the complete subtree is unfolded and
the distances of actual and reconstructed leaf nodes are computed to obtain the objective
function JURAE. As before, representations x(τ) of some node τ is encoded by a linear
combination of the respective child nodes l(τ) and r(τ).

x(τ) = f(a(τ)) = f(Lx(l(τ)) +Rx(r(τ)) + b) (6.32)

Unfolding some node τ depends on the relative position to its parent node p(τ), that is it
is either left or right. Both ways, the decoded node is a linear combination of its parent
node as well.

c(l(τ)) = L̂y(τ) + l̂

c(r(τ)) = R̂y(τ) + r̂

y(τ) = f(c(τ))

(6.33)

The representation y(π) of the root node π in a subtree is equal to the representation x(π)

of the encoded node, that is y(π) = x(π). The objective function JURAE can be decomposed
into the sum of objective functions JURAE(π) for parent nodes π.

JURAE(π) =
∑

τ∈L(π)

1

2
‖y(τ) − x(τ)‖2 (6.34)

The decoding biases l̂ and r̂ and decoding weights L̂ and R̂ only depend on the subtree.
Gradients of the objective function for decoding parameters start off with the error distance
as weight and go up recursively in the unfolded tree.

∂JURAE(π)

∂r̂j
=

∑
τ∈L(π)

∑
i

(
y

(τ)
i − x

(τ)
i

) ∂y(τ)
i

∂r̂j

∂JURAE(π)

∂l̂j
=

∑
τ∈L(π)

∑
i

(
y

(τ)
i − x

(τ)
i

) ∂y(τ)
i

∂l̂j

∂JURAE(π)

∂L̂jk
=

∑
τ∈L(π)

∑
i

(
y

(τ)
i − x

(τ)
i

) ∂y(τ)
i

∂L̂jk

∂JURAE(π)

∂R̂jk
=

∑
τ∈L(π)

∑
i

(
y

(τ)
i − x

(τ)
i

) ∂y(τ)
i

∂R̂jk

(6.35)
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Even though computing the gradient of the objective function works the same for all four
decoding parameters, the left decoding bias and weights are illustrated here to show the
different approaches for matrix and vector differentitation. The gradients of the objective

function depend on the differentiations
∂y

(τ)
i

∂l̂j
and

∂y
(τ)
i

∂L̂jk
, respectively. The decoding subtree

is folded together, that is two nodes l(τ) and r(τ) are merged together and - besides a
weighted dependency on the parent node τ - leave behind a term which contributes towards
the respective gradient.

∂
(
y

(l(τ))
j + y

(r(τ))
i

)
∂l̂j

= f ′(c
(l(τ))
i )δ(i, j) +

∑
k

[
f ′(c

(l(τ))
i )L̂ik + f ′(c

(r(τ))
i )R̂ik

] ∂y(τ)
k

∂l̂j

∂
(
y

(l(τ))
j + y

(r(τ))
j

)
∂L̂jk

= f ′(c
(l(τ))
i )y

(τ)
k δ(i, j) +

∑
l

[
f ′(c

(l(τ))
i )L̂il + f ′(c

(r(τ))
i )R̂il

] ∂y(τ)
l

∂L̂jk

(6.36)

The intention of the recursive merging is to retrieve an expression which only depends on
the root node π of the decoding subtree because it is the only node in the subtree whose
gradient itself does depend neither on any other node’s gradient in the decoding subtree
nor on any decoding parameters. An effective way of computing the gradients of biases and
weights is to go bottom-up in the decoding tree and storing a weights vector λ(τ) for each
node τ . The weights vectors λ(τ)are the same for biases and weights. The computation
of weights starts at the leafs of the decoding subtree with the respective reconstruction
distance. Weights of some parent node τ is a linear combination of weights from the child
nodes l(τ) and r(τ).

λ(τ) =

{
(y(τ) − x(τ))T , if τ is leaf(
λ(l(τ))� f ′(c(l(τ)))

)
L̂+

(
λ(r(τ))� f ′(c(r(τ)))

)
R̂, else

(6.37)

Once the subtree of weights is put together, the previously mentioned terms are added
according to the weights of the respective nodes.

∇l̂JURAE(π) =
∑

τ∈L(π)

(y(τ) − x(τ))TDl̂y
(τ) !

=
∑

τ∈P(π)

λ(l(τ))� f ′(c(l(τ)))

DL̂JURAE(π) =
∑

τ∈L(π)

∑
i

(y
(τ)
i − x

(τ)
i )

∂y
(τ)
i

∂L̂jk

!
=

∑
τ∈P(π)

(
λ(l(τ))� f ′(c(l(τ)))

)
⊗ y(τ)

(6.38)

The equality relation can be proven via mathematical induction. The simplest case is a
tree which has root π and two leafs τ1 = l(π) and τ2 = r(π). Writing out the equations
delivers the equality for gradients of bias l̂.

∇l̂JURAE(π) = (y(τ1) − x(τ1))T � f ′(c(l(τ1)))

= λ(τ1)� f ′(c(τ1))

=
∑
τ∈P

λ(l(τ))� f ′(c(l(τ)))

(6.39)
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For left weights L̂ it works the same way.

DL̂JURAE(π) =
((
y(τ1) − x(τ1)

)
� f ′(c(τ1))

)
⊗ y(π)

=
(
λ(τ1)� f ′(c(τ1))

)
⊗ y(π)

=
∑

τ∈P(π)

(
λ(l(τ))� f ′(c(l(τ)))

)
⊗ y(τ)

(6.40)

It is further assumed that for two arbitrary trees which are rooted by π1 and π2, the
gradients can be achieved by summing over the weighted terms.

∇L̂JURAE(πi) =
∑

τ∈P(πi)

λ(l(τ))� f(cl(τ)), for i = 1, 2

DL̂JURAE(πi) =
∑

τ∈P(πi)

(
λ(l(τ))� f(cl(τ))

)
⊗ y(τ), for i = 1, 2

(6.41)

The inductive step is taken by building a new tree with the two previous ones. The
new tree has root π and the root’s left and right children are π1 = l(π) and π2 = r(π).
The sum of weighted terms can be decomposed into two sums of weights terms belonging
to the subtrees of π1 and π2 and some term which can be extended by the right node

differentiation Dl̂y
(π2) and

∂y
(π2)
i

∂L̂jk
which are in fact simply zero.∑

τ∈P(π)

λ(l(τ))� f ′(c(l(τ)))

=
∑

τ∈P(π1)

λ(l(τ))� f ′(c(l(τ))) +
∑

τ∈P(π2)

λ(l(τ))� f ′(c(l(τ))) + λ(l(π))� f ′(c(π))

=∇l̂J(π1) +∇l̂J(π2) + λ(π1)� f ′(c(π1))

=∇l̂J(π1) +∇l̂J(π2) + λ(π1)Dl̂y
(π1) + λ(π2)Dl̂y

(π2)

=∇l̂J(π) (6.42)

Carrying out the inductive step for left weights L̂ follows the same procedure.

DL̂JURAE(π) =DL̂J(π1) +DL̂J(π2) +

[∑
i

λi(π1)
∂y

(π1)
i

∂L̂jk
+ λi(π2)

∂yπ2i
∂L̂jk

]
jk

=
∑

τ∈P(π1)

(
λ(l(τ))� f ′(c(l(τ)))

)
⊗ y(τ) +

∑
τ∈P(π2)

(
λ(l(τ))� f ′(c(l(τ)))

)
⊗ y(τ)

+
(
λ(π1)� f ′(c(π1))

)
⊗ y(π)

=
∑

τ∈P(π)

(
λ(l(τ))� f ′(c(l(τ)))

)
⊗ y(τ) (6.43)

For gradients of the right parameters, the right branch is taken instead of the left one.
Weights λ(τ) are the same as used for left decoding parameters.

∇r̂JURAE(π) =
∑

τ∈P(π)

λ(r(τ))� f ′(c(r(τ)))

DR̂JURAE(τ) =
∑

τ∈P(π)

(
λ(r(τ))� f ′(c(r(τ)))

)
⊗ y(τ)

(6.44)

Gradients for encoding parameters b, L and R can be formulated simpler in the unfolding
scenario than in the standard scenario due to two facts. Full recursion allows to express co-
efficients in a much easier way. The second reason is that the objective function JURAE(π)
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for a subtree with root π uses directly just leaf representations from which the actual
representations are constant over any parameter and only reconstructed representations
show dependency.

∂JURAE(π)

∂bj
=

∑
τ∈L(π)

∑
i

(
y

(τ)
i − x

(τ)
i

) ∂y(τ)
i

∂bj

∂JURAE(π)

∂Ljk
=

∑
τ∈L(π)

∑
i

(
y

(τ)
i − x

(τ)
i

) ∂y(τ)
i

∂Ljk

∂JURAE(π)

∂Rjk
=

∑
τ∈L(π)

∑
i

(
y

(τ)
i − x

(τ)
i

) ∂y(τ)
i

∂Rjk

(6.45)

In the decoding subtree, no encoding parameters appear directly. It is therefore that no
contribution towards any gradient of encoding parameters is performed in the decoding
subtree. It, however, has an indirect dependency since the representation y(π) of the root
node π refers to the encoded representation x(π). Hence, only coefficients, aka weights,
are derived from the decoding subtree. For simplicity, only bias b is used to derive the
coefficients’ definition. For encoding weights L and R, the derivation works analogously.

∂y
(l(τ))
i

∂bj
=
∂y

(l(τ))
i

∂c
(l(τ))
i

(∑
k

L̂ik
∂y

(τ)
k

∂bj

)
∂y

(r(τ))
i

∂bj
=
∂y

(r(τ))
i

∂c
(r(τ))
i

(∑
k

R̂ik
∂y

(τ)
k

∂bj

) (6.46)

As seen with the decoding weights, recursion merges two nodes l(τ) and r(τ) together into
one node τ whilst both bringing along some coefficients µ(l(τ)) and µ(r(τ)).

∑
i

µi(l(τ))
∂y

(l(τ))
i

∂bj
+ µi(r(τ))

∂y
(r(τ))
i

∂bj

=
∑
k

∑
i

µi(l(τ))
∂y

(l(τ))
i

∂c
(l(τ))
i

L̂ik
∂y

(τ)
k

∂bj
+ µi(r(τ))

∂y
(r(τ))
i

∂c
(r(τ))
i

R̂ik
∂y

(τ)
k

∂bj

=
∑
k

[(
µ(l(τ))� f ′(c(l(τ)))

)
L̂+

(
µ(r(τ))� f ′(c(r(τ)))

)
R̂
]
k

∂y
(τ)
k

∂bj

=
∑
k

µk(τ)
∂y

(τ)
k

∂bj

(6.47)

Coefficients µ(τ) follow the same rules and are initialised the same way as coefficients λ(τ)
for decoding parameters, that is they are identical. In the follow-up, λ(τ) replaces µ(τ) to
indicate coefficients of encoding parameters’ gradients. The gradient ∇bJURAE(π) can be
reduced to a single dependency of its root’s representation y(π).

∇bJURAE(π) = λ(π)Dby
(π) = λ(π)Dbx

(π) (6.48)

The same goes for encoding left and right weights, that is L and R.

DLJURAE(π) =

[∑
i

λi(π)
∂y

(π)
i

∂Ljk

]
jk

=

[∑
i

λi(π)
∂x

(π)
i

∂Ljk

]
jk

DRJURAE(π) =

[∑
i

λi(π)
∂y

(π)
i

∂Rjk

]
jk

=

[∑
i

λi(π)
∂x

(π)
i

∂Rjk

]
jk

(6.49)
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The gradient ∇bJ of the overall objective function now can be described with only encoded
representations.

∇bJURAE =
∑
τ∈P
∇bJURAE(τ) =

∑
τ∈P

λ(τ)Dbx
(τ) (6.50)

Similar to expressing gradient contributions in the encoding tree for standard recursive
autoencoders, the contributions towards encoding parameters for unfolding recursive au-
toencoders can be recursively formulated as well. The contribution ρ towards gradient
∇bJURAE from node τ is influenced by parent node p(τ) with γDbx

(τ) and by the decoding
subtree with λ(τ)Dbx

(τ).

ρ =γDbx
(τ) + λ(τ)Dbx

(τ)

= (γ + λ(τ))

[
∂x

(τ)
i

∂a
(τ)
i

(∑
k

Lik
∂x

(τ)
k

∂bj
+Rik

∂x
(τ)
k

∂bj
+ δ(i, j)

)]
ij

= (γ + λ(τ))� f ′(a(τ)) +
[
(γ + λ(τ))� f ′(a(τ))

]
· L ·Dbx

(τ)

+
[
(γ + λ(τ))� f ′(a(τ))

]
·R ·Dbx

(τ)

(6.51)

Thus, a recursive procedure σb(τ, γ) can be defined which goes top-down in the encoding
tree and increments the gradient ∇bJURAE accordingly.

σb(τ, γ) =

{
0, if τ is leaf

zo(τ, γ) + σb(l(τ), zl(τ, γ)) + σb(r(τ), zr(τ, γ)), else

with

zo(τ, γ) = (γ + λ(τ))� f ′(a(τ))

zl(τ, γ) = (γ + λ(τ))� f ′(a(τ)) · L
zr(τ, γ) = (γ + λ(τ))� f ′(a(τ)) ·R

(6.52)

The recursive function σb(π, γ) effectively computes the sum of partial gradients of parent
nodes in the subtree rooted by π plus the differentiation Dbx

(π) weighted by γ.

σb(π, γ) = γ ·Dbx
(π) +

∑
τ∈P(π)

∇bJURAE(τ) (6.53)

Starting with a simple tree rooted by π and having two leaf nodes τ1 = l(π) and τ2 = r(π),
the equation is trivial.

σb(π, γ) = (γ + λ(π))� f ′(a(π))

= γ � f ′(a(π)) + λ(π)� f ′(a(π))

= γ ·Dbx
(π) +∇bJ(π)

= γ ·Dbx
(π) +

∑
τ∈P(π)

∇bJURAE(τ)

(6.54)

Furthermore, we assume two trees rooted by π1 and π2. The trees can be arbitrary.
Starting σb at root node π1 or π2 is assumed to deliver the sum of parent nodes in the
particular subtree plus the differentiation over the root node weighted by γ.

σb(πi, γ) = γ ·Dbx
(πi) +

∑
τ∈P(πi)

∇bJURAE(τ) (6.55)

To carry out the inductive step, another tree which puts together the two previous ones
is assumed. It has root node π and the root’s child nodes are π1 = l(π) and π2 = r(π).
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Going one level down in the recursion σb(π, γ) allows to regroup such that the assumed
equation on the root node’s level π is proven.

σb(π, γ) =zo(π, γ) + σb(pi1, zl(π, γ)) + σb(π2, zr(π, γ))

=zo(π, γ) + zl(π, γ)Dbx
(π1) +

∑
τ∈P(π1)

∇bJURAE(τ)

+ zr(π, γ)Dbx
(π2) +

∑
τ∈P(π2)

∇bJURAE(τ)

= (γ + λ(π))� f ′(a(π))
[
E + L ·Dbx

(π1) +R ·Dbx
(π2)
]

+
∑

τ∈P(π)

∇bJURAE(τ)−∇bJURAE(π)

=γ ·Dbx
(π) + λ(π) ·Dbx

(π) +
∑

τ∈P(π)

∇bJURAE(τ)−∇bJURAE(π)

=γ ·Dbx
(π) +

∑
τ∈P(π)

∇bJURAE((τ)

(6.56)

The recursive functions σL(π, γ) and σR(π, γ) for left and right encoding weights L and R
follow the scheme of the recursive accumulation σb(π, γ) but with different coefficients in
the non-recursive term.

σL(τ, γ) =

{
0, if τ is leaf

ẑo(τ, γ) + σL(l(τ), zl(τ, γ)) + σL(r(τ), zr(τ, γ)), else

with

ẑo(τ, γ) = (γ + λ(τ))� f ′(a(τ))⊗ x(l(τ))

(6.57)

σR(τ, γ) =

{
0, if τ is leaf

z̃o(τ, γ) + σR(l(τ), zl(τ, γ)) + σR(r(τ), zr(τ, γ)), else

with

z̃o(τ, γ) = (γ + λ(τ))� f ′(a(τ))⊗ x(r(τ))

(6.58)

6.1.3 Topology

There are two ways to obtain a tree topology as discussed before. Using a syntax parser like
the Stanford parser[28] gives a description of the grammatical hierarchy. The trees have
no fixed degree, that is parent nodes have arbitrary amount of child nodes. The advantage
of getting a syntax tree beforehand is that it removes additional free parameters out of the
learning system. Otherwise different topologies have to be tried with an heuristic objection
which does not certainly guarantee a correct grammatical description of the sentence.
Since the recursive autoencoder takes exactly two nodes to encode a new parent node,
the syntax tree has to be transformed into a binary one. It most definitely should exploit
the information it has been given from the syntax tree. Nodes which have been lower in
the hierarchy than other nodes should stay lower in the binary tree. Nodes which have
been higher in the hierarchy than other nodes should stay higher in the binary tree as well.
These constraints can be kept by rearranging only sibling nodes when there are not exactly
two. In case of only one child node, the parent node is replaced by this child node. If there
are more than two child nodes, the binary constraint can be approached on different ways.
A heuristic can be applied which - on the curren stand of learning - suggests a solution.
In training, the stand of learning can vary and hence the heuristic can vary which can
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cause counter-productive learning. The other way is to use some transformation which
does not change over training because it does not rely on the current stand of learning.
A constant transformation should theoretically improve training by shrinking down the
space of possibilities and errorneous decisions. A simple transformation is to fold child
nodes from the left to the right or vice versa.

The second way of deriving a topology for an input sentence is to create it on the fly. To
do so, information in the system help to decide which two nodes are encoded into a new
parent node. The heuristic is to achieve a tree topology for which the overall reconstruction
distance is minimal[28]. The heuristic assumes that a good system knows grammar that
well to assign minimal reconstruction error to the topology which best represents the
grammatical hierarchy of the sentence. Socher et al suggest in a different work[29] to use
a greedy algorithm to gain such a tree with minimal reconstruction error.
Starting with an ordered list filled with the input nodes, two neighbouring nodes which
have minimal reconstruction distance are merged together. The selected nodes are removed
from the list and replaced by the newly encoded parent node of these nodes. This procedure
iterates until only one node is held in the list. A rough description of this greedy prediction
is given in 2. A more detailed view into predicting a topology is given in the next section

Algorithm 2 Greedy Topology Prediction

Require: nInput : Index > 0
Require: select : (Index, Index)→ Index
Require: score : (Index, Index)→ Index
children : [Index]← [0..(nInput− 1)]
merges : [(Index, Index, Index)]← []
while children.size > 1 do
ñ← children.size− 1
scores← map (i→ (i, score(children[i], children[i+ 1]))) [0..ñ]
(i, s)← min ((i, s)→ s) scores
î← select(children[i], children[i+ 1])
merges← merges+ [(children[i], children[i+ 1], î)]
children← children[0..i− 1] + [̂i] + children[i+ 1..ñ]

end while
return merges

about implementation.

6.1.4 Ill-conditioning

Getting a neural network trained to an objective function brings along some hurdles which
are mostly due to numerical reason. Given the complex nature of the function which the
neural network tries to learn, slow convergence or local minima can lead to non-optimal
outcome. It is quite the opposite to memorising the training set rather than generalising
from the training set. We can also say that a neural net may tend to generalise too much,
that is it stops the learning process too early. Besides some noisy or uncomplete training
set, it can be caused by the architecture and initial configuration of the neural network
itself, called ill-conditioing. Precautions can be met to minimise these issues.

6.1.4.1 Input normalising

Depending on the architecture of the neural network, different input and/or output nor-
malisation are recommended to be applied. In the recursive autoencoder architecture, the
objective function is the reconstruction error. Hence, standardising, that is mean of zero
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and variance of one, will not be applied. To ensure normalised input for the succeding
layer, min-max normalisation is applied to transform input into the range [−1; 1]. This
will speed up the learning time due to numerical reasons explained in the next paragraph
about weight initialisation.

6.1.4.2 Weight initialisation

Weights of a neural nets are usually initialised with some uniform distribution over some
range [−r; r]. The intention is to provide some white noise in the weights which should
allow to start at a position which hopefully will lead to a good local , if not global minimum.
It is crucial to have proper weights. If weights are too small, activation signals will die
propagating through the layers. On the other hand, big weights will saturate activation
functions and their derivatives will tend close to zero which will block backpropagating
error signals. Latter one is refered to as paralysis.

To keep activation and backpropagating error signals from the two extrem situations,
normalisation must be applied such that signals stay in range. With aplying the previous
paragraph, we assume a normalised input layer. Furthermore, we assume independence
between the different input dimensions for simplicity. Our aim is to gain approximate
normalisation in the outcome of hidden units. The variance of some hidden unit’s weighting
neti can be bounded by the cardinality of node set Ai with an incoming connection to this
hidden unit.

V ar(neti) ≈
∑
j∈Ai

V ar(wijyj) =
∑
j∈Ai

w2
ijV ar(yj) ≈

∑
j∈Ai

w2
ij ≤ |Ai| r2 (6.59)

For normalisation with variance 1, the range bound r can be determined accordingly.

ri =
1√
|Ai|

(6.60)

For layers which do not have saturating activation functions, such weight initialisation
surely makes sense to prevent any overflow. Although, normalised output has to be guar-
anteed on different ways like with standard normalisation or softmax.

6.1.4.3 Local learn rate

Like the architecture influences how the activation signals propagate through the net, it
also influences the backpropagating error signal. The variance of the error signal δj can
be bounded by the weighted sum of error signals from the layer Pj behind.

V ar(δj) ≈
∑
i∈Pj

V ar(δiwij) =
∑
i∈Pj

V ar(δi)w
2
ij ≤

∑
i∈Pj

V ar(δi)

|Ai|
(6.61)

The variance of the error signal can be recursively computed.

vj =

{
1
|Ao| j is output

1
|Ai|
∑

i∈Pj vi else
(6.62)

Due to the normalisation of activations, gradient for weights wij will be expected to scale
with the square root of the variance of the respective error signal. Eventually, the charac-
teristic size of the weight, ri, needs to be considered:

µi =
µ

|Ai|
√
vi

(6.63)
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6.1.5 Implementation

Because mathematical models and textual descriptions put light on only some issues which
come across the implementation, more details will be given here. For some problems,
appropriate libraries already exist, like efficient algebraic calculations. Other areas need
more work in order to obtain a feasable solution.

6.1.5.1 Algebraic routines

As shown in the section about mathematical models, most computation are of algebraic
nature, that is linear operations on matrices and vertices. Various libraries exist which help
to make efficient use of different techniques on the CPU. They as well offer simple-to-use
interfaces and partly also exploit meta-programming to find better suited rearrangements
of slightly more complex terms. For our implementation, we decided to go with blaze1.
Amongst other things, it gives a portable implementation, it takes use of parallelism with
OpenMP and thread library of the C++11 standard and is based on BLAS libraries which
stands for Basic Linear Algebra Subprogramms and offers CPU-efficient methods to carry
out specific mathematical operations.
Another advantage of using a widely used library is to be ensured that this library is well
and intensively tested. Developing such library on its own carries the risk of many small
bugs, especially index related ones.

6.1.5.2 Topology

To carry out the right recursions in the neural network, information about the topology
need be easily accessible. Several requirements will help to find a suitable approach:

• unfolds and folds arbitrarily within the node

• build routine based on the greedy topology prediction

• independence of actual nodes’ representation instances

• simple representations of the topology’s state

The independence of the actual nodes’ representation instances should help to minimise the
coupling to other logical domains within the software. Hence, tests are easier to formulate
and to carry out and hopefully bugs are reduced drastically. Template-programming gives
a method to achieve some independence from the actual object while still expressing the
object itself. We would rather use a complete independent representation and therefore
choose to use indices. As tree topologies can be handled on its own without knowing what
nodes actually represent, so should the implementation of tree topologies. Any action
then is performed with help of these indices which in fact are integers. This way, the
topology implementation does not have to hold the actual representation instances and so
on, defining a topology and holding the representations are separated as well. To make
fulfillment of the remaining requirements easier, the arrangement of the indices need to be
carefully designed. Since the indices should allow for access of the nodes’ content, indices
for the input nodes start by design at zero and go up incrementally, that is the i-th input
node will have index i − 1 (first input node has index 0). Indices of parent nodes are
incremented as well in the order of their merge. The reason for this is discussed later on.
The index of the parent node to be merged firstly, is n where n is the amount of input
nodes and consequently, the root node will have index 2n− 1.
The main operations on a tree topology is unfold and fold from arbitrary nodes. To keep
the folding order consistent, only nodes which are input nodes or already merged parent

1https://code.google.com/p/blaze-lib/
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nodes should be used in a merge. For unfolding procedures, the opposite order is required,
that is starting from the specified node, only nodes whose parents have been unfolded, can
be unfolded. The logical equivalents are recursive functions which ensures that a consistent
order is kept. Folding is done in post-order traversal which ensures that the tree or any
subtree is traversed bottom-up: Unfolding is done in pre-order traversal to make sure that

Algorithm 3 Post-traversal folding

Function fold (n, f):
if n is parent then

fold(left(n), f)
fold(right(n), f)
f(left(n), right(n), n)

end if

the tree is traversed top-down: Various folding and unfolding operations are offered to

Algorithm 4 Pre-traversal unfolding

Function unfold (n, f):
if n is parent then
f(left(n), right(n), n)
fold(left(n), f)
fold(right(n), f)

end if

allow for folding and unfolding over the whole tree or to start an unfolding of some subtree
with subsequently iterating over the leaf nodes of the subtree and optionally continuing
with folding back to the root node of the subtree. To allow for easy design of combinations
of these operations, any information about the current state of unfolding or folding is not
part of the state of the topology itself, but encapsulated into methods. To reduce coupling
further along, any action in the folding or unfolding process must be generic. Therefore, a
function has to be defined as parameter for each folding and unfolding method. On each
fold or unfold, this function is called with the respective indices.
Another aim is to keep the state of tree topologies simple in structure and easy in use.
Folding and unfolding methods as main operations should be carried out easily and no
complex data structure is required since nodes are represented by indices. All in all, two
arrays describe a tree topology. The first array stores all the left child nodes, aka the
respective indices, and the second array stores all the right child nodes, aka the respective
indices. Any two nodes from both arrays at the same position belong together to form a
parent node. The order of child nodes goes according to the folding order, that is the first
child nodes from both arrays are required to encode the first parent node, the second two
child nodes from both arrays are required to encode the second parent node and so on.
Folding and unfolding a tree is equivalent to iterate through both arrays at the same time.
Any state of folding and unfolding procedure can be described by the position within the
array iteration. Folding over the complete tree corresponds to iterate from the first to
the last elements, whilst unfolding the complete tree requires to iterate from the last to
the first elements. Leafs are characterised by having an index lower than the amount of
leafs. Branches have the opposite attribute, that is an index which is at least equal to
the amount of leafs. To make folding and unfolding from various positions within the tree
possible, an additional constraint has to be set upon the order of the array’s elements.
Not only should no index i+ n until the i-th position in both arrays appear.

∀i = 1 . . . n− 1 : ∀j < i : l[j] < i+ n ∧ r[j] < i+ n (6.64)
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But subtrees should be also grouped together, that is the previous position should always
refer to a child one of the actual node or both child nodes should be leafs.

∀i = 1 . . . n− 1 : (l[i] < n ∧ r[i] < n)∨
(l[i] < n ∧ r[i] = i− 1 + n)∨
(r[i] < n ∧ l[i] = i− 1 + n)∨
(r[i] ≥ n ∧ l[i] ≥ n ∧ (r[i] = i− 1 + n ∧ l[i] = i− 1 + n− j))
with j being the amount of leaf nodes in the right subtree

(6.65)

With these constraints put in place, unfolding from an arbitrary node within the tree
works by starting at the respective index position and iterating to the left until no parent
node is left which can be checked with simple counting. Folding on only a subtree rooted

Algorithm 5 Subtree unfolding: variable c counts the expected unseen leafs in the subtree;
argument i is the index of the subtree root node and f defines a functor which is called
with single nodes

Function unfoldSubtree (i, f):
c = 1
n = #leafs
while c > 0 do
l = left[i− n]
l = right[i− n]
if l ≤ n then
c = c+ 1

end if
if r ≤ n then
c = c+ 1

end if
c = c− 1
f(l, r, i)
i = i− 1

end while

by some node with index n has to start from the leftmost leaf node with index leftLeafof
this particular subtree. In case of both child nodes being parents, the right subtree is
placed next to the root node and further down the left subtree is placed next to the right
subtree. This way, folding corresponds to iterating from the position in the left children
array where leftLeaf appears until position r. The leftmost leaf node can be either stored

Algorithm 6 Subtree folding: argument l is the index of the left most leaf index in the
subtree, r is the index of the root node in the subtree and f defines an action for nodes

Function foldSubtree (l, r, f):
i = find l in leftChildren[0 . . . n]
while i ≤ r do
f(leftChildren[i], rightChildren[i], i+ n)
i = i+ 1

end while

or deduced in combination with unfold.
Building a topology based on the previously discussed heuristics will be illustrated here
more in depth. Parameters for predicting the topology are the amount of leaf nodes nLeafs
and some procedures select which marks the next selected merge, score which calculates
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the score of merging two neighbouring nodes and sort which is called at the end of the
building procedure to allow for resorting of parent nodes’ representations. The building
process consists of two subprocesses. The first subprocess aims towards constructing a
topology which is conform with the first constraint 6.64. The greedy prediction algorithm
2 is improved to minimise calls of score and to reduce memory space. Arrays for left and
right child nodes and scores are held whose length is constant over the building process.
Initially, left and right child nodes’ arrays hold all potential parent combinations and the
scores array stores all the respective reconstruction errors. Starting with a range spanning
over all elements, on each iteration the left and right nodes with minimal score are moved
to the leftmost position in the range while all elements left of this particular position
within the range are moved one to the right. The range is moved to the right and scores
and child nodes are updated where necessary. The iteration ends if only one candidate
is left. Hence only nLeafs − 1 iterations are necessary for this iteration. The second
subprocess rearranges merges such that subtrees of child nodes are placed directly left of
the parent node position. It corresponds to reinforcing the second constraint 6.65. Parent
nodes are enumerated incremently via post-order traversal. This enumeration marks the
wanted order of parent merges. Next, an array is instantiated with corresponding indices
of left and right child nodes and the position where they should be placed. The array is
subsequently sorted by the targeted position. Eventually, indices of the left and right child
nodes need to be remapped if they are parent nodes. Lastly, sort is called with the new
arrangement to allow for repositioning of associated data.

6.1.5.3 RAE

The recursive autoencoder holds matrices and vectors for encoding weights L and R, en-
coding bias b as well for respective instances for untied architectures. Decoding weights L̂
and R̂ and biases l̂ and r̂ for tied and untied architectures are attributes of the recursive
autoencoder too.
The main methods are training, testing and encoding. Training can be carried out in batch-
ing mode with optional stochastic sampling. For a training set which is small enough, all
samples are considered to apply correction on the network parameters. Large training
data sets cause long computation times and may potentially lead to numeric overflows.
Taking only small batches of samples represent the whole training set with some statistic
error. Taking these statistic errors into account, training cycles are computed much faster
and numerical problems usually do not arise. To make the system more robust, artificial
noise is added by randomly leaving out samples when grouping samples to batches. This
way, batches should be different for each training cycle. In our implementation, stochastic
sampling can be activated with a parameter for a geometric distribution from which the
amount of samples to leave out is drawn. Despite using batches in a recursive autoencoder,
numerical overflows still appear. Variable length of the input sentence makes it difficult to
find a feasable size for batches. Two methods are implemented to overcome this struggle.
The first method is length normalisation. If length normalisation is activated, gradients of
one sample will be normalised to a specific length (concatenating the gradients to a vector)
in each training batch. All normalised gradients which are free of overflows are summed
up and onc again length normalisation is applied, before correcting any parameters. The
second method is clipping and works similar to length normalisation. Another name for
clipping is max normalisation which refers to the mechanism that normalisation is only
applied if the respective length exceeds some threshold. It will be then clipped or scaled
down to the specific length. Differences of both methods are that length normalisation is
always applied and not only handles values which are too big but also too small. This
methods can be used as well for preempting weight explosion and implosion, that is oszil-
lating and vanishing weights. Another method for preventing weight explosion is weight
decay, also called l2-Penalty. The idea is to punish parameters which become to large. It
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Algorithm 7 Heuristic construction of topology: n is the size of leafs, functor select
indicates which nodes are merged next, score evaluates a potential merge and sort can be
used to sort associated data to have correctly indices

Function build (n, select, score, sort):
lefts[0, . . . , n− 1] = [0, . . . , n− 1]
rights[0, . . . , n− 1] = [0, . . . , n− 1]
scores[0, . . . , n− 1] = [score(0, 1), . . . , score(n− 1, n)]
for i = 0 to n− 1 do
j = argmin scores[k] over k = i, . . . , n− 1
l = lefts[j]
r = rights[j]
select(l, r)
move lefts[i, . . . , j − 1] to lefts[i+ 1, . . . , j]
move rights[i, . . . , j − 1] to rights[i+ 1, . . . , j]
move scores[i, . . . , j − 1] to scores[i+ 1, . . . , j]
lefts[i] = l
rights[i] = r
if j + 2 < n then

lefts[j + 1] = i+ n
scores[j + 1] = score(i+ n,rights[j + 1])

end if
if j > i then

rights[j] = i+ n
scores[j] = score(lefts[j], n+ i)

end if
end for
newOrder = []
g = [c = n](p){newOrder[p− n] = c+ +}
traverse post-order lefts and rights with g
for i = 0 to n− 1 do

if lefts[i] < n then
l = lefts[i]

else
l = newOrder[lefts[i] −n]

end if
if rights[i] < n then
r = rights[i]

else
l = newOrder[rights[i] −n]

end if
indexedChildren[i] = (l, r, i)

end for
sort indexedChildren by (a, b){newOrder[a.i]<newOrder[b.i]}
sort(newOrder)
for i = 0 to n− 1 do

lefts[i] = indexedChildren[i].l
rights[i] = indexedChildren[i].r

end for
return (lefts, rights)
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is based on the heuristic that information and importance should be distributed roughly
equally on the system. Therefore, one parameter should not carry that much impact to
make a decision on its own. Numerically speaking, norm of parameter values should be as
low as possible. This behaviour can be achieved by extending the objective function with
a sum over all weight components’ quadrats.

Jl2 = J +
∑
i

∑
j

L2
ij +R2

ij + L̂2
ij + R̂2

ij (6.66)

Only parameters of matrix weights are included whilst biases are omitted. The derivation
for a single weight Lij is extended by its own value. If it has a big value, it will be pushed
far into the different direction. Small values are not much corrected by l2-Penalty.

∂Jl2
∂Lij

=
∂J

∂Lij
+ Lij (6.67)

Introducing additional noise into the system leads to more robust solutions since the system
has learned to expect small variations. Two related techniques are implemented which can
be used at the same time. The first technique is input dropping. Each training batch will
use a mask to set input components to zero. Which components are set to zero is decided
by a Bernoulli distribution. The second technique is called DropOut and applies a vector
mask on each activation vector. It is suggested by Srivastava et al [30] and has been shown
to enforce good conversion and allowing for more parameters while restraining overfitting.
Conversion is achieved by gradient descend. The descend is accelerated or slowed down
by the learn rate. It has to be initialised by parameters and without any further options,
it will be constant during training. For fast conversion, however, the learn rate should
change to the local situation. If the direction of the gradient descend does not change
much for some train cycles, fasten it up will help to avoid unnecessarily small steps. If the
direction of the gradient descend changes frequently, learn rate should go down to make
the search for a minimum more sensitive. A simple approach is to employ a momentum
of the previously used descend d(t) for the coming descend d(t+ 1) with some coefficient
αmom and the currently gradient ∆w(t+ 1).

d(t+ 1) = ∆w(t+ 1) + αmom · d(t) (6.68)

The momentum will cause the the current descend to hold direction to some extend from
the previous direction. If the descending direction is about the same for several steps,
the steps will get longer. If the direction of gradient changes, the impact of the previous
direction will reduce the length of the step. An additional approach which can be used in
combination with learn momentum, is learn adaption. The idea is to shrink or extend the
learn rate based on how much the descend will change. One way to measure this change is
cosine similarity in which the cosine angle θ of two vectors a and b is determined by scalar
product and normalisation.

cos(θ) =
a · b

‖a‖ · ‖b‖ (6.69)

Cosine similarity gives a value in range from −1 to 1. If the direction is about the same,
cosine similarity will be approximately 1. If the direction is about the opposite to the pre-
vious one, cosine similarity will be approximately −1. If the direction is about orthogonal
to the previous one, cosine similarity will bee about 0. Exploiting this fact, the learning
rate r(t) can be adapted by adding an adaption constant κ scaled by the cosine similarity
cos(θ).

r(t+ 1) = r(t) + κ · cos(θ) (6.70)

The effect is that for reverse changes in direction, the learning rate will be reduced, that is
descend will slow down. For steering the same direction, the learning rate will be increased,
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that is descend will speed up. Orthogonal direction changes will not influence the learning
rate. In combination with learn momentum, useful techniques can be put in place to
overcome small non-convex regions.
Since neural networks are usually too complex to find a global minimum, gradient descend
will search for a local minimum. To obtain a measurement which is independent of the
training data, a held-out test set is applied whose average reconstruction error is taken as
metric. Whether the system has found a local minimum, can be decided only in hindsight.
The regular behaviour of test reconstruction is a slow descend at the beginning which then
goes faster down once the system has found a basic configuration. At some point, the
system will start to memorise the data rather than learning abstract features. It is marked
by an increase in the test reconstruction error. It is this point where the system has
the most knowledge with the best generalisation and it should be the final configuration.
This approach is called early stopping. To find this configuration, the configuration with
minimal test reconstruction error is stored and updated if a configuration with lower
test reconstruction error has been found. The training stops after a specified amount
of training cycles, when no configuration with lower test reconstruction error has been
found. Sometimes the random initialisation of parameters turn out to be not applicable
to the objective function which will cause an increase in test error at the beginning until
a suitable configuration is found. To prevent early-stopping from terminating the training
procedure, a specified amount of cycles are trained without considering termination. Both
parameters, the window size for finding a minimal test error and the minimal amount of
training cycles, have to be set manually.

6.2 Perplexity
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Figure 6.4: Perplexity of selections from Papers for TED in-domain without enrichment;
the target of the perplexity is TED close-in-domain; minimal perplexity is
reached for intersection at 165 791 (2%) with 93.5783 and for union at 331 582
(3%) with 151.467
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Figure 6.5: Perplexity of selections from Collcetions for TED in-domain without enrich-
ment; the target of the perplexity is TED close-in-domain; minimal perplexity
is reached for intersection at 41 714 (4%) with 95.4604 and for union at 782 141
(7.5%) with 221.132
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Figure 6.6: Perplexity of selections from Papers for TED in-domain with random replace-
ment (0.2) and n-gram pivot alignment; the target of the perplexity is TED
close-in-domain; minimal perplexity is reached for intersection at 165 791 (2%)
with 93.5783 and for union at 331 582 (3%) with 151.467
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Figure 6.7: Perplexity of selections from Collections for TED in-domain with random re-
placement (0.2) and n-gram pivot alignment; the target of the perplexity is
TED close-in-domain; minimal perplexity is reached for intersection at 165 791
(2%) with 93.5783 and for union at 331 582 (3%) with 151.467
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Figure 6.8: Perplexity of selections from Papers for TED in-domain with SMT decoding
and n-gram pivot alignment; the target of the perplexity is TED close-in-
domain

97



98 6. Appendix

 100

 200

 300

 400

 500

 600

 700

 800

 900

 200000  400000  600000  800000  1e+06

union
intersection

novoc

Figure 6.9: Perplexity of selections from Collections for TED in-domain with SMT decod-
ing and n-gram pivot alignment; the target of the perplexity is TED close-in-
domain
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Figure 6.10: Perplexity of selections from Papers for TED in-domain with random replace-
ment (0.2) and RAE; the target of the perplexity is TED close-in-domain
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Figure 6.11: Perplexity of selections from Collections for TED in-domain with random
replacement (0.2) and RAE; the target of the perplexity is TED close-in-
domain
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Figure 6.12: Perplexity of selections from Papers for TED in-domain with SMT decoding
and RAE; the target of the perplexity is TED close-in-domain
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Figure 6.13: Perplexity of selections from Collections for TED in-domain with SMT de-
coding and RAE; the target of the perplexity is TED close-in-domain
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7. Postscriptum

Additionally to the experiments with TED in-domain, a corpus composed of two tran-
scriptions of lectures is used as selection corpus. It is refered to as Lectures. According to
Mediani et al[20], decreasing the size of the selection corpus can help to achieve not only
to get a better BLEU score in general but also compared to the baseline of Moore and
Lewis.

Corpus sentences

Lectures 3417
Lectures tuning 1000
Lectures testing 1500
Lectures selection 700
Lectures selection target 717

Table 7.1: Lectures corpora and their amount of sentences

Equivalent to the experimental procedure with TED in-domain as selection corpus, se-
lection based on perplexity is performed on Papers and Collections according to Moore
and Lewis. Only perplexities on intersected vocabulary are considered giving their hardest
restriction on the vocabulary. Despite the observation of Mediani et al that reducing the

Configurations Collections Papers

Baseline 96.3 71.6332
SMT Alignment 119.25 97.8943
SMT RAE 119.905 101.188
RR 0.2 Alignment 115.449 93.1491
RR 0.5 Alignment 112.426 85.0884
RR 0.9 Alignment 104.878 81.2253
RR 0.2 RAE 114.622 88.654
RR 0.5 RAE 103.157 80.1691
RR 0.9 RAE 106.039 82.1438

Table 7.2: Perplexities of selections for Lectures with intersected vocabulary

size of selection corpus might help to outperform the perplexity achieved by Moore and
Lewis, none of it can be observed in this scenario. Corpora produced by SMT methods
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Configuration Collections Papers

Baseline without selection 16.68 16.68
Baseline with selection 17.26 17.56
Baseline wit entire corpus 17.51 16.82

SMT Alignment 17.10 17.20
SMT RAE 17.20 17.42
RR 0.2 Alignment 17.36 17.41
RR 0.5 Alignment 17.29 17.36
RR 0.9 Alignment 17.29 17.62
RR 0.2 RAE 17.59 17.56
RR 0.5 RAE 17.52 17.47
RR 0.9 RAE 17.55 17.60

Table 7.3: BLEU score on selections for Lectures with minimal perplexity on intersected
vocabulary

show higher perplexities compared to corpora produced by Random Replacement. The
parameter of distribution appears to have no correlation to the resulting perplexity in
Random Replacement.

For extrinsic evaluation, selections with minimal perplexity on intersected vocabulary are
taken. The extrinsic evaluation is a BLEU scoring in an SMT system equivalent to the
previously used SMT system. Two language models are used for each configuration. The
first model is the same used in the other experiments, that is a n-gram model of order four
with Knesser-Ney smoothing built from EPPS, NC and TED rest. The second language
model is built from the respective selection of the configuration. It is as well a n-gram
model of order four with Knesser-Ney smoothing. The translation model is taken as well
from the previous experiments. Different to the system of the previous experiments are
the corpora for testing and tuning. Due to a different selection corpus, these corpora have
to be replaced accordingly. Reducing the size of the selection corpus yields a performance
boost. Selecting according to Moore and Lewis on Collections does not bring an advantage
compared to using the entire corpus instead. For Papers, carrying out Moore and Lewis
gives an enhancement compared to using the entire corpus. Paraphrasing via SMT does not
deliver better results than using Moore and Lewis’ selection. However, applying random
replacement brings some improvement over the baselines for both corpora. For Collections,
random replacement works better with the lexicon based on the recursive autoencoder than
indirect alignment. For Papers, this difference cannot be seen between using RAE based
lexicon and using indirect Alignment based lexicon. It is nevertheless difficult to compare
these particular results due to differences in the lexica. On Collections, the improvement
over the baseline yields 0.08% and on Papers, the improvement over the baseline yields
0.08% as well.

As seen in previous experiments, the relationship between perplexity and BLEU scoring
is not as clear as on might be assuming. For a small selection corpus, it appears that
selection by Moore and Lewis does not bring improvement on low noisy corpora, contrary
to noisy corpora. Also, perplexities on selections with enriched selection corpora do not
correlate with the respective BLEU scores. What can be seen, is the performance increase
over the baseline which Mediani et al report. Comparing the paraphrasing methods and
the lexica separately, Random replacement seems to perform better than SMT. For the
lexica, the data suggests that recursive autoencoders deliver better synonym information
than indirect alignment according to Bannard and Callison-Burch. However, to compare
the lexica rightfully is not straight forward since thresholds in the postprocessing step for
building lexica are found manually.
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