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Speech-user interfaces offer truly hands-
free, eyes-free interaction, have unmatched 
throughput rates, and are the only plau-
sible interaction modality for illiterate 
users across the world, but they are not 
yet developed in abundance to support 
every type of user, language, or acoustic 
scenario. Two approaches present exciting 
opportunities for future research.

S peech-based user interfaces have become 
increasingly popular, especially since the intro-
duction of Apple’s Siri in 2010. Google and 
Samsung quickly followed suit with their own 

speech-driven services called Google Now and S Voice, 
respectively. The boom in speech-recognition appli-
cations is not surprising, given that they offer several 
potential advantages. First, speech-based interaction 
offers truly hands-free, eyes-free interaction, a dream 
that has evaded us for many years. Second, speech is 
faster than typing on a keyboard, and without the need 
for an onscreen keyboard, there is much greater flexibil-
ity in terms of screen real estate. Finally, speech-driven 
applications present important opportunities for the 800 
million or so illiterate users in developing regions, giving 
them a feasible way to access computing.

However, beyond a few success stories, we have not yet 
seen large numbers of functional and sufficiently accurate 
speech-recognition services. There are several reasons for 
this, although two key challenges in particular stand out.

First, to deploy a usable speech recognizer, developers 
must build something that can be optimized for every new 
user group, language, or acoustic situation; and from the de-
veloper’s perspective, because he or she is not typically an 
expert in speech recognition or acoustical engineering, this 
task is daunting.1 Consequently, many application develop-
ers conduct Wizard of Oz studies, in which they simulate 
automatic speech recognition (ASR) instead of deploying 
a functional ASR system for the purpose of early experi-
mentation or data collection. Unfortunately, simulated ASR 
cannot uncover real recognition errors,2 which are the lead-
ing source of usability issues once the product is released. 

Second, reaping real benefits of speech-recognition  
applications requires their successful deployment on 
mobile phones, or similar devices that users can interact 
with while on the go; however, most current mobile-based 
speech services require access to a reliable network con-
nection and a data plan. For instance, Siri only works if you 
have high-speed network connectivity, which is usually un-
available in many rural regions of developing nations or in 
certain areas of developed ones, such as an underground 
subway station or inside a moving bus. One exception 
is Google, which has recently started to ship its general- 
purpose recognition models for local use on devices. How-
ever, these models aren’t fine-tuned, even over time, to 
specific user or usage requirements for improved accuracy.
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Nevertheless, ASR research has made great strides in 
recent years, reaching a point where, given enough speech 
expertise and in-domain data, a sufficiently accurate  
speech recognizer can be developed for any scenario; this 
includes cases where non-native accents, background 
noises, children’s voices, or other similar challenges 
may be present. However, if a speech recognition system 
does not work as intended, it is generally impossible for a 
non-expert to pinpoint the exact reasons for failure. For ex-
ample, recognition failure can result from a user speaking 
too slowly (speaking rate is a frequent cause of mismatch) 
or too clearly (if the person hyper-articulates), or if back-
ground noises are unexpected, or for some other reason, 
and these are error patterns that experts can usually ana-
lyze quickly. Adaptation, or several optimizations of an 
existing recognizer, can generally mitigate these errors, 
and will often result in a functional system,3 but such adap-
tation requires that developers have substantial expertise 
and experience in speech recognition development. Appli-
cation developers typically do not have such expertise or 
experience and find it difficult to identify people who do, 
which makes their task even more challenging.

Looking forward to where this technology is headed, 
we describe the design and development of both a speech 
toolkit that embeds expert knowledge into speech appli-
cations, as well as a new model for mobile device ASR 
systems that eliminates the requirement of a reliable net-
work connection. Put together, these two innovations 
have the potential to solve the ASR’s fundamental prob-
lems, thereby enabling rapid development and adoption 
of speech services in newer domains and languages, and 
for users whom it was not previously possible to assist.

A TOOLKIT FOR NON-EXPERTS
Several resources are currently available for non-expert 

speech-application developers. SUEDE, for example, lets 
any designer rapidly mock up a prompt-and-response 
speech interface for testing in a Wizard of Oz study.4 It 
does not, however, support the development of a work-
ing recognizer. SPICE, on the other hand, supports rapid 
development of a baseline recognizer for new languages 
by allowing any researcher to input a set of audio files, 
corresponding phoneme set, and dictionary to gener-
ate the baseline acoustic model.5 However, SPICE does 
not automatically perform acoustic- or language-specific 
optimizations, which are key to achieving reasonable 
accuracy. 

Open source and commercial speech toolkits such as 
Sphinx (http://sourceforge.net/p/cmusphinx/discussion), 
Janus,6 or Kaldi (http://kaldi.sourceforge.net) support both 
the development of a baseline recognizer and an adapted 
version. However, they do not provide any automatic 
guidance on what adaptations to perform, leaving it to 
the developer’s expertise to understand the application’s 

context and apply the appropriate improvement tech-
niques. Consequently, non-expert researchers find these 
toolkits extremely difficult to use. In 2012 alone, a discus-
sion forum for Sphinx had more than 6,000 posts with over 
1,000 unique topics from non-experts asking for help on 
various issues related to speech recognition.

Industry leaders such as Google and Microsoft also 
offer various free APIs to facilitate integration of speech 
recognition into their applications. For instance, appli-
cations can send an audio file to a preconfigured server 
and receive a decoded transcript in real time. Although 
this solution works well for typical speech applications—
those developed for native speakers for use in clean, quiet  
environments—it is less robust in contexts where the 
acoustics or language patterns slightly differ from those 

they were developed for. Moreover, developers cannot 
access the background acoustic and language models in-
stalled on the server to perform any adaptations that might 
be needed for the recognizer to work in their own applica-
tion’s scenario.

We turned to speech experts to learn how they build 
accurate and usable speech interfaces. These experts are 
well trained with years of experiential knowledge that 
guides them intuitively in building recognizers for new 
languages, acoustic situations, or users. This knowledge 
is undoubtedly hard to transfer to non-experts directly, 
but by observing these experts in action, we can study 
and formalize their tacit knowledge, and build a toolkit for 
non-experts. This formalized knowledge can then be used 
to help novices in automatic analysis and to recommend 
appropriate optimization techniques.

To do this, we interviewed five experts at Carnegie 
Mellon University. First, we asked them to describe a  
general adaptation process, the common challenges they 
face, the people they consult, and the tools they use. In a 
second phase, we observed them in action on an actual 
speech recognition optimization task. We gave each expert 
a dataset that contained utterances from Indian children, 
recorded in a noisy background on a mobile phone. We 
then asked the expert to explain the steps (similar to a 
retrospective) that he or she would take to build the best 
recognizer for this dataset. The transcripts of these inter- 
views became the basis for a line-by-line open-coding  
process to identify relevant concepts and themes that  
enhanced our understanding of the optimization process 
and the associated intuition.

If a speech recognition system does 
not work as intended, it is generally 
impossible for a non-expert to pinpoint 
the exact reasons for failure.
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Based on these interviews, we simplified our goals as 
follows:

 • goal 1—come to a fine-grained understanding of why 
the speech recognizer is not working;

 • goal 2—provide guidance to non-experts on steps they 
can take to make it work (including optimizations of 
the underlying recognizer and the user interaction 
style); and

 • goal 3—enable performance visualization of compet-
ing setups to better understand the tradeoffs involved 
in each setup.

Accordingly, our speech toolkit for non-experts (or, 
as we call it, SToNE) has four modules: a feature ex-
tractor, an error visualizer, a knowledge base, and an 
optimization advisor. Figure 1 details how they are all 
tied together.

Feature extractor
The feature extractor’s aim is to support goal 1—that is, 

help with analysis on why current recognizers might be 
failing or are unusable. To do so, this module extracts sev-
eral lexical and prosodic features that correlate well with 
popular reasons for error such as pronunciation score, 
speaking rate, noise, and so on, and, by using regression 
analysis, it identifies the most significant features that 
impact recognition accuracy.

Error visualizer
The error visualizer supports goals 1 and 3 by helping 

the developer perform semiautomatic error analysis to un-
derstand recognition-error patterns. For a more detailed 
understanding of why the recognition might be failing, the 
error visualizer assists the user in doing three tasks: un-
derstanding the data distribution across variables, creating 
meaningful subsets and only analyzing that part of the data 
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Figure 1. Process-flow diagram of the developer’s interaction with the SToNE toolkit’s modules. The numbers indicate the 
developer’s sequence of steps, and the arrows indicate the direction of information flow. The developer uses a preconfigured 
virtual machine to conduct all experiments and interact with the website to avoid any hassles of recognizer installation.
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(for example, all females 
under age 10, because 
of poor recognition ac-
curacy), and comparing 
two or more subsets to 
understand differences 
between them. The latter 
would be particularly 
useful when compar-
ing a subset giving high 
accuracy and a subset 
giving low accuracy to 
understand where ex-
actly the two differ.

Knowledge base
The knowledge base (KB) supports goal 2 and 

consists of a set of rules extracted from an analysis 
of the interviews about the specific instructions or 
intuitions the experts had while analyzing a particular 
development situation. Upon formalization as “if, 
then, else” rules, the same experts vetted the KB for 
consistency and accuracy of formulation.

Optimization advisor
The optimization advisor also supports goal 2, 

acting as a front end to the KB for the developer. Given 
a specific acoustic situation, a new user group, or a 
new language, it queries the KB for the appropriate 
steps needed to build an accurate recognizer and commu-
nicates the answer to the developer. Once a step-by-step 
strategy has been recommended, the developer can then 
refer to tutorials in the virtual machine to obtain guidance 
on actually performing the optimizations and building 
the required speech recognizer or, in some cases, the in-
terface itself.

Initial results
The crux of our work is in understanding whether 

expert knowledge can be properly formalized, and if so, 
the extent to which it can be used for the benefit of non-
experts. Our work so far has focused on answering this 
question and evaluating the KB’s quality in terms of its abil-
ity to predict correct techniques for both seen and unseen 
circumstances.7

First, to see which rules get triggered and how well 
they actually model expert intuition, we evaluated a KB 
with the same dataset used in the expert interviews. 
Table 1 lists the results in terms of word-error rate  
improvements. On the whole, the KB’s recommendations 
either mirrored or performed better than those of all five 
experts. The major point of difference arose in a step in 
which the experts themselves had conflicting opinions 
(step 1). To deal with such cases, we incorporated the 

conflicting alternatives from all experts with a priority 
ranking for each option. Initially, this priority ranking 
was the number of experts who had recommended a 
particular option, but, over time, other experts could 
provide additional feedback based on new test runs to 
either update these rankings or add more recent tech-
niques to the KB. 

Second, to see how well our KB performed for pre-
viously unseen datasets or users, we tested it on a 
second new dataset that contained speech from poor 
readers of English recorded in noisy environments. 
This dataset differed from the first by focusing on rec-
ognizing full sentences, not isolated words. For this 
evaluation, we hired two additional experts for their  
recommendation on techniques, as we also wanted to see 
how the techniques recommended by our KB compared 
with those of other experts who did not contribute to the 
KB’s development. Table 2 shows the results.

On the second task, our KB outperformed one expert 
(E6) and underperformed another (E7); E7 recommended 
a technique that was not initially covered by the KB but 
was significantly better than the KB’s alternatives. As the 
boundaries of speech recognition expand, such situations 
are likely to arise in the future as new techniques become 
available or old ones become obsolete. Fortunately, with 

Table 1. Word-error percentage rates for the first test dataset.

Optimization technique

Experts

KBE1 E2 E3 E4 E5

Baseline: use existing acoustic models (AMs) 94.7 94.7 94.7 94.7

Baseline: train new AMs 25.4 25.4 25.4

Maximum likelihood linear regression (MLLR) adaptation 77.3 77.3 77.3

Maximum a posteriori (MAP) adaptation 78.3 78.3

Vocal tract length normalization (VTLN) 76.9 76.9 24.9

Adding pronunciation variants to dictionary 71.7 22.2 22.2

Frame rate adaptation 20.8

Final 78.3 76.9 71.7 22.2 24.9 20.8

 The techniques in the first column were recommended by the experts (E) or the knowledge base (KB).

Table 2. Word-error rate percentages for second test dataset. 

Optimization technique E6 E7 KB

Add half-words to dictionary 3 3 3

Correct spelling errors 3 3

Baseline: train new AM 56.1 56.1

Baseline: train new AM + model bootstrapping 42.2

Cepstral variance normalization (CVN) 40.9 54.3

Frame-rate adaptation 54.8 52.2

Final 40.9 54.8 52.2
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its rule-based design, the KB is easy to update with newer 
techniques.

Although the KB performed at least as well as any expert 
in the first task—and it can be expanded to incorporate the 
techniques from E7 for the second task—our work is limited 
to defining “if, then, else” rules based on datasets as pre-
sented to the seven experts. The KB would benefit from a 
more comprehensive approach than the current approach. 
Therefore, for future work, we plan to go beyond manual 
analysis and development, to an automated meta-analysis 
of a large number of comparable, published experiments. 
This will help increase the knowledge representation’s scal-
ability, robustness, and portability.

ASR FOR MOBILE DEVICES
When designers and developers build a speech inter-

face, the job is only half done: it must then be deployed 
and monitored. To continuously improve the interface, 

developers need access to real data, which can only be 
collected by deploying an initial system. As mobile devices 
proliferate, many speech-recognition interfaces are now 
developed for such platforms. However, when compared 
with desktop ASR systems or those on central servers, 
implementation of accurate speech recognizers on mobile 
devices faces several challenges, including limited avail-
able storage space (language and acoustic models must 
be smaller, which leads to low performance), cheap and 
variable microphones that are often far from the speaker’s 
mouth, low processing power without support of paral-
lel processing (algorithms trade off speed and accuracy), 
and highly variable acoustic environments. Moreover, 
mobile devices consume a lot of energy during algorithm 
execution;8 this is an important consideration for speech 
applications in the developing world, where electricity-
supply issues could hamper the use of mobile applications 
in everyday settings.9

Before describing our proposed approach for these de-
vices, we review two existing mobile ASR architectures 
that offer distinct advantages and disadvantages in light of 
these challenges. As alluded to earlier, the speech recogni-
tion process consists of two major steps: feature extraction, 
where the audio file is converted into features that accu-
rately represent the acoustic information but take up much 
less memory than the raw audio; and ASR search, in which 
these features are used to identify the most likely text they 

might represent. Although feature extraction is a compu-
tationally intensive operation, it only consumes 2 percent 
of the processing time in the entire speech recognition 
process—98 percent is invested in search.8

Architecture 1: embedded mobile  
speech recognition

In the first architecture we describe, both processes in-
volved in speech recognition—feature extraction and ASR 
search—happen locally on the mobile device.

Advantages. The main advantage of this mode is that 
it does not rely on any communication with a central 
server, and hence the applications that use such ASR can 
work in areas without any network connectivity, such as 
rural areas in developing regions or subway stations in 
developed ones. In other words, the ASR system is always 
“ready for use.” Moreover, there is no cost and latency 
associated with transmitting and receiving information 
to and from the server, as in other modes. While monthly 
data plans can mitigate cost issues, network latency is a 
major issue in developing regions—especially the most 
rural—where cellular data connections are slow and unre-
liable, with frequent call drops. This mode also protects 
user privacy—no speech is transmitted to a central site.

Disadvantages. The disadvantage of this approach 
is that many mobile devices are not comparable to the 
high-end servers that can perform complex computa-
tions such as personalization algorithms for user or 
acoustic contexts. They fall somewhat short in terms of 
speed, runtime, and persistent memory, which restricts 
the type of applications that can be supported with this 
architecture. Also, no user speech is readily available for 
application developers to measure performance and itera-
tively improve the system.

Architecture 2: network speech recognition
In networked or cloud-based recognition, ASR search is 

shifted to a central server, with the mobile device sending 
the encoded audio to the server and getting back the rec-
ognition result. A slight variation of this approach is when 
the feature extraction is done locally to reduce the amount 
of information sent over the network, but the vast amount 
of computation goes to the server.

Advantages. This mode moves the burden of 
audio postprocessing as well as ASR search to a high- 
configuration server capable of executing real-time 
speech recognition systems. It can also utilize a much 
larger (and potentially more accurate) acoustic and lan-
guage model, thereby offering significant advantages in 
terms of accuracy. Additionally, realistic user data is avail-
able to the application developer, making it much easier 
to improve the overall system. Most importantly, in the 
context of developing countries and regions, it can sup-
port speech applications on low-end mobile devices, such 

When compared with desktop ASR 
systems or those on central servers, 
implementation of accurate speech 
recognizers on mobile devices faces 
several challenges.
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as cell phones that are not capable of 
running a local ASR system.

Disadvantages. Despite increased 
resources in the form of a powerful 
central server, this mode has a number 
of drawbacks: it requires a continuous, 
reliable network connection to use the 
speech application; it loses acoustic 
information when the audio is encoded 
using low bit-rate codecs and packeted 
transmission; and the server needs to 
account for all variations in device, 
channel, speaker, or condition within 
a global set of parameters. Needless to 
say, this makes user-based adaptation 
difficult. Existing network-based ASRs 
from Apple and Google implement 
speaker-independent models, thereby compromising on 
accuracy for nontraditional cases, such as dialectal varia-
tions of a particular user group.

Hybrid approach: decode locally,  
supervise remotely, then adapt

Our approach combines the other two modes—the 
major ASR subsystems (including feature extraction and 
ASR search) are on the mobile device, so it can perform 
recognition locally; and, as in Figure 2, applications do not 
break down under conditions of zero network connectiv-
ity. Whenever there is an intermittent cellular connection 
available, the mobile device sends the (stored) extracted 
feature vectors with metadata information about the user 
and device, such as noise levels, channel information, de-
coded outputs, and so on, to the server. This enables the 
server to evaluate the recognition performance for each 
user independently with a much larger vocabulary and 
acoustic database, to recommend user- and context-based 
adaptations, and to send updated models. For instance, a 
user accessing the application in a noisy background is 
likely to need noise-filtering adaptations in the acoustic 
models stored locally on the device. Similarly, a non-native 
speaker of a language is more likely to need adaptations 
to the local ASR’s pronunciation dictionary. Hence, even 
though the server is not responsible for decoding the 
speech signal while the application is in use, the server’s 
processing power is used for compute-intensive functions 
such as user- and context-specific error analysis, and ad-
aptations using larger, shared resources.

We propose an architecture that combines the most 
important advantages of the two server-based approaches 
(high recognition accuracy, updatability, maintainability, 
and moderate mobile hardware requirements), with the 
advantage of local ASR, which is the ability to function 
without network connectivity. Centralized server power is 
used, not to perform online recognition but to ensure that 

over time recognition on local devices achieves high accu-
racy. The assumption, however, is that each mobile phone 
is being used by a few users in a few acoustic conditions, 
thereby enabling a reasonable user- and context-based 
adaptation. As an additional benefit, provisioning server 
capacity for average and not peak use is acceptable be-
cause adaptation does not need to be in real time.

However, we do not expect that industry leaders such 
as Google or Apple will implement this architecture, as 
their experience permits efforts in directly collecting 
datasets for minority languages without deploying an ex-
isting system.10 We therefore expect to see highly accurate 
recognizers in languages of interest to these companies. 
However, many academic researchers and freelance ap-
plication developers do not have the resources to collect 
data on the scale of Google and Apple. Our proposed archi-
tecture is of immense utility for them to easily and rapidly 
bootstrap an existing, high-quality recognizer for a new 
domain or user group.

Initial results
For the proposed architecture to be successful, it is im-

portant to understand the limitations of different speech 
recognizers when they run locally on a mobile device. 
This information would be useful during the development 
phase to pick the recognizer that best meets the applica-
tion requirements. 

To this end, we examined two mobile recognizers,  
pocketSphinx and SphinxTiny,11 which are mobile versions 
of the popular, open source speech recognizer Sphinx. 
To our knowledge, these are the only two open source 
mobile recognizers scaled down for efficient performance 
on a wide number of mobile platforms. A few hacks can 
make other popular recognizers, such as Kaldi, work on 
select mobile devices as well. We used a Nokia N800 Inter-
net tablet running Maemo Linux OS2008 with a TI OMAP 
2420 ARM processor clocked at 330 MHz with 128 Mbytes 
of RAM, which is reflective of the kinds of devices that 
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Figure 2. Hybrid approach. Automatic speech recognition (ASR) is done on the 
local mobile device, which benefits from user- and context-based personalization 
guided by intermittent server connection, whenever available.
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most households in developing regions might own, say, 
five years from now. 

Our results suggest that while it is possible to achieve 
real-time recognition using either of these recognizers,11 
a design choice must be made based on functionality re-
quirements. We find pocketSphinx is superior if real-time 
recognition—minimizing delay—is key. It also works best 
for recognition tasks that have a fixed, predefined gram-
mar or for small vocabulary tasks with fewer than 1,000 
words. For open-ended, large vocabulary tasks such as 
dictation of emails or text messages, or tasks that might 
permit larger delays in exchange for better accuracy, 
SphinxTiny is a better choice. To take this further, we 
anticipate that with the support of a server—even under 
intermittent cellular connection—recognition accuracy 
can be drastically improved over time using online adapta-
tion methods, or even the KB we described earlier.

The success of our proposed “decode locally, supervise 
remotely, then adapt” approach depends on the degree to 
which the local speech recognizer can be reconfigured and 
optimized, depending on the server’s analysis. Given the 
numerous types of optimizations possible, the exact and 
most relevant choice depends on the use case—noisy back-
grounds versus non-native speech, for example. Research 
is therefore needed to identify the type of optimizations 
that will be most beneficial to a user or device if only a cer-
tain amount of data can be transmitted over the network. 
Our architecture can adapt as the user’s context changes 
over time. For instance, if a non-native speaker achieves 
native-speaker-like pronunciation, the server analysis can 
identify another metric such as noise, accounting for over-
all user history as well.

Therefore, some of the primary research questions we 
will explore in the future are as follows:

 • How do we perform context- and user-specific error 
analysis on speech data received from a mobile 
device?

 • How do we identify which adaptation techniques are 
best suited for a user’s context?

 • Without compromising accuracy, what type of trade-
offs do we perform to minimize the amount of data 
to be transmitted back to a mobile device?

 • How do we determine the maximum size of updated 
models that can be transmitted from the server to 
the client?

 • What steps do we take when more than one user ac-
cesses the device?

To address these questions, in addition to metadata 
such as caller ID and acoustic features, we plan to also 
send the recognition results (that is, hypothesis) from the 
mobile recognizer to the server. The server then inde-
pendently analyzes the acoustic features using a much 

larger acoustic database as reference to compute a more 
accurate recognition hypothesis. Having both types of 
hypothesis has two advantages: first, it helps identify fac-
tors that affect recognition performance most in the user’s 
context, and second, the more accurate hypothesis at the 
server can be used as a speech label to build and adapt 
future versions of the model before shipping back to the 
device.

A s computing devices continue to shrink in size and 
proliferate to millions of users, speech input/output 
interfaces will also continue to grow in popularity. 

However, designing, developing, and deploying speech 
recognition application is still rife with major challenges. 
While it is possible to treat ASR as a commodity for main-
stream American-accented English speakers, speech 
recognition research is likely to add the most value for 
non-English-language users, foreign-accented speakers of 
English, and nontraditional use-case scenarios. Unfortu-
nately, there is no easy way to provide ASR functionality 
without a dedicated development effort, which is needed 
each and every time. This is unlikely to happen in practice.

Two developments will define state-of-the-art speech 
recognition over the next couple of years: the first is the 
dramatic improvement that can be achieved with deep 
learning techniques such as deep neural networks. Aca-
demia and industry have adopted them with breathtaking 
speed and they help improve ASR in particular for big data 
scenarios. The second is a push toward low-data or “zero 
resource” scenarios that enable speech recognition to be 
quickly developed for new languages using very little tran-
scribed data, as is the goal in the Intelligence Advanced 
Research Project Activity (IARPA)-sponsored Babel re-
search program (www.iarpa.gov/Programs/ia/Babel/babel.
html). Both these developments bode well for the proposed 
approach: they facilitate providing better initial models, 
and they provide more techniques to adapt recognizers to 
specific use cases or scenarios.

We believe that speech input and output technologies 
can be fundamentally disruptive, enabling new research 
that will benefit low literacy users, children, the disabled, 
and so on. But even as it becomes easier for non-experts in 
core speech technologies to bootstrap a new speech rec-
ognizer for a specific scenario, constant monitoring is the 
key to deploying ASR broadly and successfully in a larger 
research context. We invite anyone to join us in our efforts 
to lower the barriers to entry or to simply use our systems, 
once fully developed, to create the next-generation speech-
recognition interfaces. 
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