
 40 computer Published by the IEEE Computer Society 0018-9162/14/$31.00 © 2014 IEEE

Cover Fe ature

Anuj Kumar and Florian Metze, Carnegie Mellon University

Matthew Kam, American Institutes for Research

Speech-user interfaces offer truly hands-
free, eyes-free interaction, have unmatched
throughput rates, and are the only plau-
sible interaction modality for illiterate
users across the world, but they are not
yet developed in abundance to support
every type of user, language, or acoustic
scenario. Two approaches present exciting
opportunities for future research.

S peech-based user interfaces have become
increasingly popular, especially since the intro-
duction of Apple’s Siri in 2010. Google and
Samsung quickly followed suit with their own

speech-driven services called Google Now and S Voice,
respectively. The boom in speech-recognition appli-
cations is not surprising, given that they offer several
potential advantages. First, speech-based interaction
offers truly hands-free, eyes-free interaction, a dream
that has evaded us for many years. Second, speech is
faster than typing on a keyboard, and without the need
for an onscreen keyboard, there is much greater flexibil-
ity in terms of screen real estate. Finally, speech-driven
applications present important opportunities for the 800
million or so illiterate users in developing regions, giving
them a feasible way to access computing.

However, beyond a few success stories, we have not yet
seen large numbers of functional and sufficiently accurate
speech-recognition services. There are several reasons for
this, although two key challenges in particular stand out.

First, to deploy a usable speech recognizer, developers
must build something that can be optimized for every new
user group, language, or acoustic situation; and from the de-
veloper’s perspective, because he or she is not typically an
expert in speech recognition or acoustical engineering, this
task is daunting.1 Consequently, many application develop-
ers conduct Wizard of Oz studies, in which they simulate
automatic speech recognition (ASR) instead of deploying
a functional ASR system for the purpose of early experi-
mentation or data collection. Unfortunately, simulated ASR
cannot uncover real recognition errors,2 which are the lead-
ing source of usability issues once the product is released.

Second, reaping real benefits of speech-recognition
applications requires their successful deployment on
mobile phones, or similar devices that users can interact
with while on the go; however, most current mobile-based
speech services require access to a reliable network con-
nection and a data plan. For instance, Siri only works if you
have high-speed network connectivity, which is usually un-
available in many rural regions of developing nations or in
certain areas of developed ones, such as an underground
subway station or inside a moving bus. One exception
is Google, which has recently started to ship its general-
purpose recognition models for local use on devices. How-
ever, these models aren’t fine-tuned, even over time, to
specific user or usage requirements for improved accuracy.

Enabling
the Rapid
Development
and Adoption
of Speech-User
Interfaces

r1kumar.indd 40 12/17/13 5:36 PM

 JANuArY 2014 41

Nevertheless, ASR research has made great strides in
recent years, reaching a point where, given enough speech
expertise and in-domain data, a sufficiently accurate
speech recognizer can be developed for any scenario; this
includes cases where non-native accents, background
noises, children’s voices, or other similar challenges
may be present. However, if a speech recognition system
does not work as intended, it is generally impossible for a
non-expert to pinpoint the exact reasons for failure. For ex-
ample, recognition failure can result from a user speaking
too slowly (speaking rate is a frequent cause of mismatch)
or too clearly (if the person hyper-articulates), or if back-
ground noises are unexpected, or for some other reason,
and these are error patterns that experts can usually ana-
lyze quickly. Adaptation, or several optimizations of an
existing recognizer, can generally mitigate these errors,
and will often result in a functional system,3 but such adap-
tation requires that developers have substantial expertise
and experience in speech recognition development. Appli-
cation developers typically do not have such expertise or
experience and find it difficult to identify people who do,
which makes their task even more challenging.

Looking forward to where this technology is headed,
we describe the design and development of both a speech
toolkit that embeds expert knowledge into speech appli-
cations, as well as a new model for mobile device ASR
systems that eliminates the requirement of a reliable net-
work connection. Put together, these two innovations
have the potential to solve the ASR’s fundamental prob-
lems, thereby enabling rapid development and adoption
of speech services in newer domains and languages, and
for users whom it was not previously possible to assist.

A TOOLKIT FOR NON-EXPERTS
Several resources are currently available for non-expert

speech-application developers. SUEDE, for example, lets
any designer rapidly mock up a prompt-and-response
speech interface for testing in a Wizard of Oz study.4 It
does not, however, support the development of a work-
ing recognizer. SPICE, on the other hand, supports rapid
development of a baseline recognizer for new languages
by allowing any researcher to input a set of audio files,
corresponding phoneme set, and dictionary to gener-
ate the baseline acoustic model.5 However, SPICE does
not automatically perform acoustic- or language-specific
optimizations, which are key to achieving reasonable
accuracy.

Open source and commercial speech toolkits such as
Sphinx (http://sourceforge.net/p/cmusphinx/discussion),
Janus,6 or Kaldi (http://kaldi.sourceforge.net) support both
the development of a baseline recognizer and an adapted
version. However, they do not provide any automatic
guidance on what adaptations to perform, leaving it to
the developer’s expertise to understand the application’s

context and apply the appropriate improvement tech-
niques. Consequently, non-expert researchers find these
toolkits extremely difficult to use. In 2012 alone, a discus-
sion forum for Sphinx had more than 6,000 posts with over
1,000 unique topics from non-experts asking for help on
various issues related to speech recognition.

Industry leaders such as Google and Microsoft also
offer various free APIs to facilitate integration of speech
recognition into their applications. For instance, appli-
cations can send an audio file to a preconfigured server
and receive a decoded transcript in real time. Although
this solution works well for typical speech applications—
those developed for native speakers for use in clean, quiet
environments—it is less robust in contexts where the
acoustics or language patterns slightly differ from those

they were developed for. Moreover, developers cannot
access the background acoustic and language models in-
stalled on the server to perform any adaptations that might
be needed for the recognizer to work in their own applica-
tion’s scenario.

We turned to speech experts to learn how they build
accurate and usable speech interfaces. These experts are
well trained with years of experiential knowledge that
guides them intuitively in building recognizers for new
languages, acoustic situations, or users. This knowledge
is undoubtedly hard to transfer to non-experts directly,
but by observing these experts in action, we can study
and formalize their tacit knowledge, and build a toolkit for
non-experts. This formalized knowledge can then be used
to help novices in automatic analysis and to recommend
appropriate optimization techniques.

To do this, we interviewed five experts at Carnegie
Mellon University. First, we asked them to describe a
general adaptation process, the common challenges they
face, the people they consult, and the tools they use. In a
second phase, we observed them in action on an actual
speech recognition optimization task. We gave each expert
a dataset that contained utterances from Indian children,
recorded in a noisy background on a mobile phone. We
then asked the expert to explain the steps (similar to a
retrospective) that he or she would take to build the best
recognizer for this dataset. The transcripts of these inter-
views became the basis for a line-by-line open-coding
process to identify relevant concepts and themes that
enhanced our understanding of the optimization process
and the associated intuition.

If a speech recognition system does
not work as intended, it is generally
impossible for a non-expert to pinpoint
the exact reasons for failure.

r1kumar.indd 41 12/17/13 5:36 PM

 42 computer

Cover Fe ature

Based on these interviews, we simplified our goals as
follows:

 • goal 1—come to a fine-grained understanding of why
the speech recognizer is not working;

 • goal 2—provide guidance to non-experts on steps they
can take to make it work (including optimizations of
the underlying recognizer and the user interaction
style); and

 • goal 3—enable performance visualization of compet-
ing setups to better understand the tradeoffs involved
in each setup.

Accordingly, our speech toolkit for non-experts (or,
as we call it, SToNE) has four modules: a feature ex-
tractor, an error visualizer, a knowledge base, and an
optimization advisor. Figure 1 details how they are all
tied together.

Feature extractor
The feature extractor’s aim is to support goal 1—that is,

help with analysis on why current recognizers might be
failing or are unusable. To do so, this module extracts sev-
eral lexical and prosodic features that correlate well with
popular reasons for error such as pronunciation score,
speaking rate, noise, and so on, and, by using regression
analysis, it identifies the most significant features that
impact recognition accuracy.

Error visualizer
The error visualizer supports goals 1 and 3 by helping

the developer perform semiautomatic error analysis to un-
derstand recognition-error patterns. For a more detailed
understanding of why the recognition might be failing, the
error visualizer assists the user in doing three tasks: un-
derstanding the data distribution across variables, creating
meaningful subsets and only analyzing that part of the data

Optimization
advisor

 decompressor

Error visualizer

Performance
comparer

Data
selector

Host PC
Virtual machine
• Installed recognizer
• Example scripts
• Tutorials
• Sample log-�les
• …

SToNE website

Feature
extractor Knowledge

base

Speech
toolkit
(SToNE)

Obtain
guidance

Compare
con�gurations

1

2
3

45

6

Data
Virtual

machine

Upload
new
results

Upload
audio �les
and initial
results

Perform
optimizations

SToNE server

Semiautomatic
error analysis

Figure 1. Process-flow diagram of the developer’s interaction with the SToNE toolkit’s modules. The numbers indicate the
developer’s sequence of steps, and the arrows indicate the direction of information flow. The developer uses a preconfigured
virtual machine to conduct all experiments and interact with the website to avoid any hassles of recognizer installation.

r1kumar.indd 42 12/17/13 5:36 PM

 JANuArY 2014 43

(for example, all females
under age 10, because
of poor recognition ac-
curacy), and comparing
two or more subsets to
understand differences
between them. The latter
would be particularly
useful when compar-
ing a subset giving high
accuracy and a subset
giving low accuracy to
understand where ex-
actly the two differ.

Knowledge base
The knowledge base (KB) supports goal 2 and

consists of a set of rules extracted from an analysis
of the interviews about the specific instructions or
intuitions the experts had while analyzing a particular
development situation. Upon formalization as “if,
then, else” rules, the same experts vetted the KB for
consistency and accuracy of formulation.

Optimization advisor
The optimization advisor also supports goal 2,

acting as a front end to the KB for the developer. Given
a specific acoustic situation, a new user group, or a
new language, it queries the KB for the appropriate
steps needed to build an accurate recognizer and commu-
nicates the answer to the developer. Once a step-by-step
strategy has been recommended, the developer can then
refer to tutorials in the virtual machine to obtain guidance
on actually performing the optimizations and building
the required speech recognizer or, in some cases, the in-
terface itself.

Initial results
The crux of our work is in understanding whether

expert knowledge can be properly formalized, and if so,
the extent to which it can be used for the benefit of non-
experts. Our work so far has focused on answering this
question and evaluating the KB’s quality in terms of its abil-
ity to predict correct techniques for both seen and unseen
circumstances.7

First, to see which rules get triggered and how well
they actually model expert intuition, we evaluated a KB
with the same dataset used in the expert interviews.
Table 1 lists the results in terms of word-error rate
improvements. On the whole, the KB’s recommendations
either mirrored or performed better than those of all five
experts. The major point of difference arose in a step in
which the experts themselves had conflicting opinions
(step 1). To deal with such cases, we incorporated the

conflicting alternatives from all experts with a priority
ranking for each option. Initially, this priority ranking
was the number of experts who had recommended a
particular option, but, over time, other experts could
provide additional feedback based on new test runs to
either update these rankings or add more recent tech-
niques to the KB.

Second, to see how well our KB performed for pre-
viously unseen datasets or users, we tested it on a
second new dataset that contained speech from poor
readers of English recorded in noisy environments.
This dataset differed from the first by focusing on rec-
ognizing full sentences, not isolated words. For this
evaluation, we hired two additional experts for their
recommendation on techniques, as we also wanted to see
how the techniques recommended by our KB compared
with those of other experts who did not contribute to the
KB’s development. Table 2 shows the results.

On the second task, our KB outperformed one expert
(E6) and underperformed another (E7); E7 recommended
a technique that was not initially covered by the KB but
was significantly better than the KB’s alternatives. As the
boundaries of speech recognition expand, such situations
are likely to arise in the future as new techniques become
available or old ones become obsolete. Fortunately, with

Table 1. Word-error percentage rates for the first test dataset.

Optimization technique

Experts

KBE1 E2 E3 E4 E5

Baseline: use existing acoustic models (AMs) 94.7 94.7 94.7 94.7

Baseline: train new AMs 25.4 25.4 25.4

Maximum likelihood linear regression (MLLR) adaptation 77.3 77.3 77.3

Maximum a posteriori (MAP) adaptation 78.3 78.3

Vocal tract length normalization (VTLN) 76.9 76.9 24.9

Adding pronunciation variants to dictionary 71.7 22.2 22.2

Frame rate adaptation 20.8

Final 78.3 76.9 71.7 22.2 24.9 20.8

 The techniques in the first column were recommended by the experts (E) or the knowledge base (KB).

Table 2. Word-error rate percentages for second test dataset.

Optimization technique E6 E7 KB

Add half-words to dictionary 3 3 3

Correct spelling errors 3 3

Baseline: train new AM 56.1 56.1

Baseline: train new AM + model bootstrapping 42.2

Cepstral variance normalization (CVN) 40.9 54.3

Frame-rate adaptation 54.8 52.2

Final 40.9 54.8 52.2

r1kumar.indd 43 12/17/13 5:36 PM

 44 computer

Cover Fe ature

its rule-based design, the KB is easy to update with newer
techniques.

Although the KB performed at least as well as any expert
in the first task—and it can be expanded to incorporate the
techniques from E7 for the second task—our work is limited
to defining “if, then, else” rules based on datasets as pre-
sented to the seven experts. The KB would benefit from a
more comprehensive approach than the current approach.
Therefore, for future work, we plan to go beyond manual
analysis and development, to an automated meta-analysis
of a large number of comparable, published experiments.
This will help increase the knowledge representation’s scal-
ability, robustness, and portability.

ASR FOR MOBILE DEVICES
When designers and developers build a speech inter-

face, the job is only half done: it must then be deployed
and monitored. To continuously improve the interface,

developers need access to real data, which can only be
collected by deploying an initial system. As mobile devices
proliferate, many speech-recognition interfaces are now
developed for such platforms. However, when compared
with desktop ASR systems or those on central servers,
implementation of accurate speech recognizers on mobile
devices faces several challenges, including limited avail-
able storage space (language and acoustic models must
be smaller, which leads to low performance), cheap and
variable microphones that are often far from the speaker’s
mouth, low processing power without support of paral-
lel processing (algorithms trade off speed and accuracy),
and highly variable acoustic environments. Moreover,
mobile devices consume a lot of energy during algorithm
execution;8 this is an important consideration for speech
applications in the developing world, where electricity-
supply issues could hamper the use of mobile applications
in everyday settings.9

Before describing our proposed approach for these de-
vices, we review two existing mobile ASR architectures
that offer distinct advantages and disadvantages in light of
these challenges. As alluded to earlier, the speech recogni-
tion process consists of two major steps: feature extraction,
where the audio file is converted into features that accu-
rately represent the acoustic information but take up much
less memory than the raw audio; and ASR search, in which
these features are used to identify the most likely text they

might represent. Although feature extraction is a compu-
tationally intensive operation, it only consumes 2 percent
of the processing time in the entire speech recognition
process—98 percent is invested in search.8

Architecture 1: embedded mobile
speech recognition

In the first architecture we describe, both processes in-
volved in speech recognition—feature extraction and ASR
search—happen locally on the mobile device.

Advantages. The main advantage of this mode is that
it does not rely on any communication with a central
server, and hence the applications that use such ASR can
work in areas without any network connectivity, such as
rural areas in developing regions or subway stations in
developed ones. In other words, the ASR system is always
“ready for use.” Moreover, there is no cost and latency
associated with transmitting and receiving information
to and from the server, as in other modes. While monthly
data plans can mitigate cost issues, network latency is a
major issue in developing regions—especially the most
rural—where cellular data connections are slow and unre-
liable, with frequent call drops. This mode also protects
user privacy—no speech is transmitted to a central site.

Disadvantages. The disadvantage of this approach
is that many mobile devices are not comparable to the
high-end servers that can perform complex computa-
tions such as personalization algorithms for user or
acoustic contexts. They fall somewhat short in terms of
speed, runtime, and persistent memory, which restricts
the type of applications that can be supported with this
architecture. Also, no user speech is readily available for
application developers to measure performance and itera-
tively improve the system.

Architecture 2: network speech recognition
In networked or cloud-based recognition, ASR search is

shifted to a central server, with the mobile device sending
the encoded audio to the server and getting back the rec-
ognition result. A slight variation of this approach is when
the feature extraction is done locally to reduce the amount
of information sent over the network, but the vast amount
of computation goes to the server.

Advantages. This mode moves the burden of
audio postprocessing as well as ASR search to a high-
configuration server capable of executing real-time
speech recognition systems. It can also utilize a much
larger (and potentially more accurate) acoustic and lan-
guage model, thereby offering significant advantages in
terms of accuracy. Additionally, realistic user data is avail-
able to the application developer, making it much easier
to improve the overall system. Most importantly, in the
context of developing countries and regions, it can sup-
port speech applications on low-end mobile devices, such

When compared with desktop ASR
systems or those on central servers,
implementation of accurate speech
recognizers on mobile devices faces
several challenges.

r1kumar.indd 44 12/17/13 5:36 PM

 JANuArY 2014 45

as cell phones that are not capable of
running a local ASR system.

Disadvantages. Despite increased
resources in the form of a powerful
central server, this mode has a number
of drawbacks: it requires a continuous,
reliable network connection to use the
speech application; it loses acoustic
information when the audio is encoded
using low bit-rate codecs and packeted
transmission; and the server needs to
account for all variations in device,
channel, speaker, or condition within
a global set of parameters. Needless to
say, this makes user-based adaptation
difficult. Existing network-based ASRs
from Apple and Google implement
speaker-independent models, thereby compromising on
accuracy for nontraditional cases, such as dialectal varia-
tions of a particular user group.

Hybrid approach: decode locally,
supervise remotely, then adapt

Our approach combines the other two modes—the
major ASR subsystems (including feature extraction and
ASR search) are on the mobile device, so it can perform
recognition locally; and, as in Figure 2, applications do not
break down under conditions of zero network connectiv-
ity. Whenever there is an intermittent cellular connection
available, the mobile device sends the (stored) extracted
feature vectors with metadata information about the user
and device, such as noise levels, channel information, de-
coded outputs, and so on, to the server. This enables the
server to evaluate the recognition performance for each
user independently with a much larger vocabulary and
acoustic database, to recommend user- and context-based
adaptations, and to send updated models. For instance, a
user accessing the application in a noisy background is
likely to need noise-filtering adaptations in the acoustic
models stored locally on the device. Similarly, a non-native
speaker of a language is more likely to need adaptations
to the local ASR’s pronunciation dictionary. Hence, even
though the server is not responsible for decoding the
speech signal while the application is in use, the server’s
processing power is used for compute-intensive functions
such as user- and context-specific error analysis, and ad-
aptations using larger, shared resources.

We propose an architecture that combines the most
important advantages of the two server-based approaches
(high recognition accuracy, updatability, maintainability,
and moderate mobile hardware requirements), with the
advantage of local ASR, which is the ability to function
without network connectivity. Centralized server power is
used, not to perform online recognition but to ensure that

over time recognition on local devices achieves high accu-
racy. The assumption, however, is that each mobile phone
is being used by a few users in a few acoustic conditions,
thereby enabling a reasonable user- and context-based
adaptation. As an additional benefit, provisioning server
capacity for average and not peak use is acceptable be-
cause adaptation does not need to be in real time.

However, we do not expect that industry leaders such
as Google or Apple will implement this architecture, as
their experience permits efforts in directly collecting
datasets for minority languages without deploying an ex-
isting system.10 We therefore expect to see highly accurate
recognizers in languages of interest to these companies.
However, many academic researchers and freelance ap-
plication developers do not have the resources to collect
data on the scale of Google and Apple. Our proposed archi-
tecture is of immense utility for them to easily and rapidly
bootstrap an existing, high-quality recognizer for a new
domain or user group.

Initial results
For the proposed architecture to be successful, it is im-

portant to understand the limitations of different speech
recognizers when they run locally on a mobile device.
This information would be useful during the development
phase to pick the recognizer that best meets the applica-
tion requirements.

To this end, we examined two mobile recognizers,
pocketSphinx and SphinxTiny,11 which are mobile versions
of the popular, open source speech recognizer Sphinx.
To our knowledge, these are the only two open source
mobile recognizers scaled down for efficient performance
on a wide number of mobile platforms. A few hacks can
make other popular recognizers, such as Kaldi, work on
select mobile devices as well. We used a Nokia N800 Inter-
net tablet running Maemo Linux OS2008 with a TI OMAP
2420 ARM processor clocked at 330 MHz with 128 Mbytes
of RAM, which is reflective of the kinds of devices that

Error analyzer

ASR
search

User
context

Feature
reconstruction

Lightweight ASR

Acoustic
models

Language
model

Feature extraction

Updated
models

In
te

rm
itt

en
t

da
ta

 tr
an

sfe
r

Figure 2. Hybrid approach. Automatic speech recognition (ASR) is done on the
local mobile device, which benefits from user- and context-based personalization
guided by intermittent server connection, whenever available.

r1kumar.indd 45 12/17/13 5:36 PM

 46 computer

Cover Fe ature

most households in developing regions might own, say,
five years from now.

Our results suggest that while it is possible to achieve
real-time recognition using either of these recognizers,11
a design choice must be made based on functionality re-
quirements. We find pocketSphinx is superior if real-time
recognition—minimizing delay—is key. It also works best
for recognition tasks that have a fixed, predefined gram-
mar or for small vocabulary tasks with fewer than 1,000
words. For open-ended, large vocabulary tasks such as
dictation of emails or text messages, or tasks that might
permit larger delays in exchange for better accuracy,
SphinxTiny is a better choice. To take this further, we
anticipate that with the support of a server—even under
intermittent cellular connection—recognition accuracy
can be drastically improved over time using online adapta-
tion methods, or even the KB we described earlier.

The success of our proposed “decode locally, supervise
remotely, then adapt” approach depends on the degree to
which the local speech recognizer can be reconfigured and
optimized, depending on the server’s analysis. Given the
numerous types of optimizations possible, the exact and
most relevant choice depends on the use case—noisy back-
grounds versus non-native speech, for example. Research
is therefore needed to identify the type of optimizations
that will be most beneficial to a user or device if only a cer-
tain amount of data can be transmitted over the network.
Our architecture can adapt as the user’s context changes
over time. For instance, if a non-native speaker achieves
native-speaker-like pronunciation, the server analysis can
identify another metric such as noise, accounting for over-
all user history as well.

Therefore, some of the primary research questions we
will explore in the future are as follows:

 • How do we perform context- and user-specific error
analysis on speech data received from a mobile
device?

 • How do we identify which adaptation techniques are
best suited for a user’s context?

 • Without compromising accuracy, what type of trade-
offs do we perform to minimize the amount of data
to be transmitted back to a mobile device?

 • How do we determine the maximum size of updated
models that can be transmitted from the server to
the client?

 • What steps do we take when more than one user ac-
cesses the device?

To address these questions, in addition to metadata
such as caller ID and acoustic features, we plan to also
send the recognition results (that is, hypothesis) from the
mobile recognizer to the server. The server then inde-
pendently analyzes the acoustic features using a much

larger acoustic database as reference to compute a more
accurate recognition hypothesis. Having both types of
hypothesis has two advantages: first, it helps identify fac-
tors that affect recognition performance most in the user’s
context, and second, the more accurate hypothesis at the
server can be used as a speech label to build and adapt
future versions of the model before shipping back to the
device.

A s computing devices continue to shrink in size and
proliferate to millions of users, speech input/output
interfaces will also continue to grow in popularity.

However, designing, developing, and deploying speech
recognition application is still rife with major challenges.
While it is possible to treat ASR as a commodity for main-
stream American-accented English speakers, speech
recognition research is likely to add the most value for
non-English-language users, foreign-accented speakers of
English, and nontraditional use-case scenarios. Unfortu-
nately, there is no easy way to provide ASR functionality
without a dedicated development effort, which is needed
each and every time. This is unlikely to happen in practice.

Two developments will define state-of-the-art speech
recognition over the next couple of years: the first is the
dramatic improvement that can be achieved with deep
learning techniques such as deep neural networks. Aca-
demia and industry have adopted them with breathtaking
speed and they help improve ASR in particular for big data
scenarios. The second is a push toward low-data or “zero
resource” scenarios that enable speech recognition to be
quickly developed for new languages using very little tran-
scribed data, as is the goal in the Intelligence Advanced
Research Project Activity (IARPA)-sponsored Babel re-
search program (www.iarpa.gov/Programs/ia/Babel/babel.
html). Both these developments bode well for the proposed
approach: they facilitate providing better initial models,
and they provide more techniques to adapt recognizers to
specific use cases or scenarios.

We believe that speech input and output technologies
can be fundamentally disruptive, enabling new research
that will benefit low literacy users, children, the disabled,
and so on. But even as it becomes easier for non-experts in
core speech technologies to bootstrap a new speech rec-
ognizer for a specific scenario, constant monitoring is the
key to deploying ASR broadly and successfully in a larger
research context. We invite anyone to join us in our efforts
to lower the barriers to entry or to simply use our systems,
once fully developed, to create the next-generation speech-
recognition interfaces.

References
 1. G.P. Laput et al., “PixelTone: A Multimodal Interface for

Image Editing,” Proc. SIGCHI Conf. Human Factors in Com-
puting Systems (CHI 13), ACM, 2013, pp. 2185–2194.

r1kumar.indd 46 12/17/13 5:36 PM

 JANuArY 2014 47

 2. J. Thomason and D. Litman, “Differences in User Re-
sponses to a Wizard-of-Oz versus Automated System,”
Proc. North American Chapter Assoc. Computational Lin-
guistics: Human Language Technologies (NAACL-HLT 13),
2013, pp. 796–801.

 3. C. Abras et al., “User-Centered Design,” Encyclopedia of
Human-Computer Interaction, W. Bainbridge, ed., Sage
Publications, 2004.

 4. S.R. Klemmer et al., “SUEDE: A Wizard of Oz Prototyp-
ing Tool for Speech User Interfaces,” Proc. 13th Ann. ACM
Symp. User Interface Software and Technology (UIST 01),
ACM, 2001, pp. 1–10.

 5. T. Schultz et al., “SPICE: Web-Based Tools for Rapid
Language Adaptation in Speech Processing Systems,”
Proc. Interspeech, Int’l Speech Communication
Assoc., 2007; http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.123.3902.

 6. H. Soltau et al., “A One-Pass Decoder Based on Poly-
morphic Linguistic Context Assignment,” Proc. Auto-
matic Speech Recognition and Understanding Workshop
(ASRU 01), IEEE, 2001, pp. 214–217.

 7. A. Kumar et al., “Formalizing Expert Knowledge for De-
veloping Accurate Speech Recognizers,” to appear in Proc.
Interspeech, Int’l Speech Communication Assoc., 2013.

 8. A. Schmitt, D. Zaykovskiy, and W. Minker, “Speech Rec-
ognition for Mobile Devices,” Int’l J. Speech Technology,
vol. 11, no. 2, 2008, pp. 63–72.

 9. A. Kumar et al., “An Exploratory Study of Unsuper-
vised Mobile Learning in Rural India,” Proc. SIGCHI Conf.
Human Factors in Computing Systems (CHI 10), ACM, 2010,
pp. 743–752.

 10. T. Hughes et al., “Building Transcribed Speech Cor-
pora Quickly and Cheaply for Many Languages,” Proc.
Interspeech, Int’l Speech Communication Assoc., 2010,
pp. 1914–1917.

 11. A. Kumar et al., “Rethinking Speech Recognition on Mobile
Devices,” Proc. Int’l User Interfaces for Developing Regions
(IUI4DR 11), ACM, 2011, pp. 10–15.

Anuj Kumar is a PhD candidate in the Human-Computer
Interaction Institute at Carnegie Mellon University. His
research interests are in developing voice-user interfaces,
applications of machine learning, and mobile computing.
Kumar is a Siebel Fellow and a member of ACM and the
International Society for Computers and Their Applications
(ISCA). Contact him at anujkumar@cmu.edu.

Florian Metze is an assistant research professor at Carn-
egie Mellon University’s Language Technologies Institute.
His current research interests include low-resource speech
recognition, multimedia analysis and summarization, and
increasing the uptake of speech recognition in other dis-
ciplines. Metze received a PhD in computer science from
Universität Karlsruhe (now Karlsruhe Institute of Technol-
ogy), Germany. He is a member of ACM, IEEE, ISCA, and GI.
Contact him at fmetze@cs.cmu.edu.

Matthew Kam is a senior researcher at the American Insti-
tutes for Research. He works on technology for broadening
access to economic opportunities. Kam received a PhD in
computer science from the University of California, Berke-
ley. Contact him at mkam@air.org.

Applied Materials, Inc. is accepting resumes for the following position in Santa Clara/Sunnyvale, CA:

PRODUCT MARKETING ENGINEER
(SCPBL)

Develops diverse scope business & marketing plans, assesses market penetration and product positioning to drive competitive
advantage, revenue and market share. Position may require travel to various unanticipated locations.

Please mail resumes with reference number to Applied Materials, Inc., 3225 Oakmead Village Drive, M/S 1217, Santa Clara, CA
95054. No phone calls please. Must be legally authorized to work in the U.S. without sponsorship. EOE.

www.appliedmaterials.com

r1kumar.indd 47 12/17/13 5:36 PM

