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Zusammenfassung

Diese Arbeit beschreibt, wie tiefe neuronale Netzarchitekturen zur Sprachmodel-
lierung eingesetzt werden können. Während N-gram Sprachmodelle, die auf wenig
Daten trainiert sind, eine deutlich schlechtere Leistung aufweisen, versuchen Sprach-
modelle aus neuronalen Netzen dies zu verhindern, indem sie die Wahrscheinlich-
keitsschätzung in einem kontinuierlichen Raum durchführen. Diese Sprachmodelle
sind in der Lage, zwischen Wahrscheinlichkeiten von diskreten Wortsequenzen zu in-
terpolieren, indem sie Wörter in eine geeignete kontinuierliche Repräsentation ver-
wandeln, und können somit eine bessere Generalisierungsfähigkeit für ungesehene
Ereignisse erzielen.

Die tiefen neuronalen Netze, die in dieser Arbeit benutzt werden, sind als mehrlagige
Perzeptrons mit einer Projektionsschicht, einer oder mehreren versteckten Schichten
und einer Ausgabeschicht implementiert. Optimierungen am standardmäßigen Lern-
algorithmus werden vorgenommen um lange Trainingszeiten zu verkürzen, wobei
eine enorme Beschleuningung mithilfe von verschiedenen Methoden ermöglicht wer-
den kann. Neuronale Netze unterschiedlicher Größen werden für Sprachen trainiert,
für die wenige Resourcen vorhanden sind, wie zum Beispiel Vietnamesisch, Tamil
und Laotisch. Dabei werden unterschiedliche Trainingsparameter untersucht, um
Sprachmodelle mit bestmöglicher Leistungsfähigkeit zu erhalten.

Die Sprachmodelle aus neuronalen Netzen werden ausführlich an den Testkorpora
des IARPA Babel Programs ausgewertet und mit N-gram Backoff Sprachmodellen
verglichen, die auf dem neuesten Stand der Technik sind und mit Kneser-Ney Smooth-
ing trainiert werden. Außerdem werden neue Sprachmodelle, die beide Ansätze
durch Interpolation kombinieren, erzeugt und an Aufgaben für Spracherkennung
getestet. Die interpolierten Modelle sind in der Lage, konsistente Reduktion der
Wortfehlerrate bis zu 0,6% absolut für Vietnamesisch und 0,8% für Laotisch zu
erreichen.





Abstract

This work describes how deep neural network architectures can be used for language
modeling. While n-gram language models experience a significantly worse perfor-
mance when trained on sparse data, neural network language models try to prevent
this by performing probability estimation in a continuous space. They are capa-
ble of interpolating between probabilities of discrete word sequences by converting
those words into a continuous representation and can thus achieve a better gener-
alization ability for unseen events. The deep neural networks used in this work are
implemented as multilayer perceptrons with a projection layer, one or more hidden
layers and an output layer. Optimizations to the standard learning algorithm are
carried out to reduce long training time where an enormous speed-up can be ob-
tained by using different methods. Neural networks of various sizes are trained for
low resource languages, such as Vietnamese, Tamil and Lao, while experimenting
with different training parameters to receive best possible performance. The neural
network language models are thoroughly evaluated on test corpora from the IARPA
Babel program and compared to state-of-the-art n-gram backoff language models
trained with Kneser–Ney smoothing. Additionally, language models that combine
both approaches by interpolating between two models are created and tested in
speech recognition tasks. Those interpolated models are able to obtain consistent
word error rate reductions up to 0.6% absolute for Vietnamese and 0.8% for Lao.
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1. Introduction

1.1 Motivation

Language modeling has been employed in many natural language processing appli-
cations including speech recognition, machine translation, part-of-speech tagging,
information retrieval and text generation. Those models can be used for tasks in-
volving prediction of the next word in a speech or text sequence. In automatic
speech recognition (ASR) systems, they form one of the three components of the
decoder and are crucial to the performance of the whole system. The block diagram
of a typical ASR system is shown in Figure 1.1. The other two parts of the decoder,
acoustic model and dictionary, are used to find word sequences that match the fea-
tures extracted from the signal. Since they only utilize acoustic information, they
have the flaw of being unable to differentiate between homophonic word sequences.
Hence, language models are required to choose between homophones and addition-
ally, they can significantly reduce the search space for possible word combinations.

Figure 1.1: Block diagram of a standard ASR system.

Language models try to capture the properties of a natural language and provide
syntactical and semantical knowledge on those languages. They are capable to dis-
tinguish grammatically well-formed word sequences from incorrect ones and mean-
ingful phrases from nonsensical ones. There are many ways to model languages. Es-
pecially statistical methods have been highly researched and successfully employed
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in various kinds of applications. N-gram language modeling is a commonly applied
technique which uses a large text corpus to estimate the distribution of a language.
With sufficient training data, n-gram models that show satisfactory performance
can be easily created. But in case of data sparseness, particularly for low resource
languages, n-gram models usually do not provide such good performance. Hence,
other approaches are necessary for languages that are rarely spoken.

Another method of statistical language modeling utilizes neural networks to per-
form probability estimation in a continuous space. Neural networks are one of the
most popular and promising fields of artificial intelligence research. They process
information by simulating the human brain and are capable to solve a wide variety
of tasks that can not be solved using ordinary algorithmic approaches. Their abil-
ity to learn by example makes them very flexible and powerful. Neural networks
are used for various tasks such as pattern recognition, machine learning, clustering,
feature detection and data compression. Recent competitions show the superiority
of deep neural networks compared to alternative techniques especially in pattern
recognition and machine learning 1. Neural networks have also been researched and
successfully applied in many other subject areas, for example in the medicine to
recognize diseases from scans and for business purposes.

Deep neural network architectures have been efficiently used for language modeling
as proven in works such as [BDVJ03], [ScGa02] and [Schw07]. In all those works,
neural network language models that are able to provide a better generalization
ability than n-gram language models in case of less data have been created. But
most of the existing works deal with languages like English, German or French,
where data sparseness is not such a big issue and with the huge amount of available
data, n-gram models that show equally good performance have already been built.
There has not been many works that deal with low resource languages, where n-gram
modeling is less effective and new techniques like neural network models are needed.
Hence in this work, we employ deep neural networks to perform continuous language
modeling for low resource languages such as Vietnamese, Tamil and Lao. Networks
of various sizes are thoroughly trained and evaluated to receive best performance. A
comparison of neural network language models with state-of-the-art n-gram language
models is carried out and those two approaches are combined to achieve even better
performance. At last, the combined models are integrated into a speech recognition
system to test their ability in practical tasks.

1.2 Overview

The first part of this work consists of an introduction to basics needed to understand
different techniques of statistical language modeling. Chapter 2 provides background
knowledge for n-gram language models by deriving the necessary theory using prob-
abilistic methods. Then it describes three metrics for evaluating language models
that are used in this work which are word error rate, cross-entropy and perplexity.
To improve standard n-gram language models, techniques called smoothing have
been developed. An illustration of three relevant smoothing techniques, interpola-
tion, backoff and Kneser-Ney smoothing, can also be found in chapter 2. The next
chapter gives an overview to neural networks and learning methods. A brief sum-
mary of related works where different types of neural networks are used for language

1http://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions

http://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions
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modeling and other tasks forms the second half of this chapter. Chapter 4 describes
the architecture of the neural network used in this work. It provides a detailed
description of each of the three layer types of the architecture, which are the pro-
jection, hidden and output layer, and the backpropagation algorithm for training
the network. Chapter 5 explains how the architecture and additional functionalities
can be efficiently implemented and introduces the tools Theano and SRI Language
Modeling Toolkit that are used to accomplish these tasks. An overview to the Janus
Recognition Toolkit used in our speech recognition system is also given here. Results
of experiments on the neural network language models can be found in chapter 6.
The networks are evaluated with respect to the time necessary for model training,
performance on the test data and error reduction in speech recognition tasks. This
work concludes by summarizing the most important results and giving possible goals
for future works.
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2. Background

Language modeling is used to improve applications for natural language processing
by capturing the properties of a language. In automatic speech recognition systems
it provides another independent information source next to the acoustic model to
predict the next word in a speech sequence. Especially problems like homophones
or large search space can be solved. Using a deterministic model, for example based
on formal grammar, a given word sequence can only be accepted or rejected, which
is inappropriate for spoken language. Therefore a statistical approach is commonly
used where probabilities are assigned to word sequences to estimate the distribution
of a natural language. A widely used method to make these probability estimations
is called n-gram language modeling.

2.1 N-Gram Language Models

Given a word sequence w1, ..., wk, the probability P (w1, ..., wk) can be decomposed
according to rules of conditional probability as

P (w1, ..., wk) = P (w1)P (w2|w1)P (w3|w1, w2)...P (wk|w1, ..., wk−1) .

Hence we need the conditional probability P (wk|h) where h = w1, ..., wk−1 is called
the history or context of word wk. To make estimations for the whole language, it
is necessary to calculate P (wk|h) for all combinations of words from the vocabulary.
The complexity grows exponentially with the vocabulary size and length of the
history, so the precalculation of those probabilities for every history is in most cases
an impossible task.

A practicable solution is to replace the entire history by a feasible equivalence class of
the history such that P (wk|h) ≈ P (wk|[h]). Under the Markov assumption, which
says that the future behavior of a dynamical system only depends on its recent
history, the full context can be shortened to the n−1 previous words. With the
following definition of equivalence classes

[w1, ..., wk−1] = wk−1
k−n+1
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where wk−1
k−n+1 denotes the word sequence wk−n+1, ..., wk−1, the conditional probabil-

ity can be approximated by

P (wk|w1, ..., wk−1) ≈ P (wk|wk−1
k−n+1) .

For the joint probability of the word sequence yields

P (w1, ..., wk) =
k∏

i=1

P (wi|wi−1
i−n+1) .

Generally, a language model based on n−1 preceding words is called an n-gram
model. The words unigram, bigram and trigram denote n-gram models with n = 1,
n = 2 and n = 3, respectively. In case of unigram, the number of previous words
is zero and the conditional probability is approximated by P (wk) which means that
the probability of each word is independent of its context. To calculate probabitilies
for words at the beginning and end of a sentence, two distinguished tokens, <s>
and </s>, symbolizing the start and end of a sentence, are padded to all sentences
and treated as additional words in the vocabulary. Also the token <unk> is often
appended to the vocabulary to replace out of vocabulary (OOV) words.

2.1.1 Estimation of N-Grams

The standard approach for n-gram models to estimate P (wk|wk−1
k−n+1) is the maximum

likelihood estimation. It uses a large amount of training corpus and determines the
frequency of word sequences by counting their occurences in the text. For example
the likelihood of unigrams can be computed by

PML(wk) =
c(wk)

N

where c(wk) denotes the count of the word in the text and N the total number
of words in the training corpus. The conditional probability for a word given its
history can be calculated with the count of the whole word sequence normalized by
the number of times the history occurs as follows

PML(wk|wk−1
k−n+1) =

c(wk
k−n+1)

c(wk−1
k−n+1)

.

However, there is a severe problem in n-gram modeling directly derived from fre-
quency counts. When confronted with word successions that have not been seen in
the training corpus, the probability becomes zero. This happens due to data sparse-
ness since the training corpus is always limited. But for an n-gram to receive a zero
probability does not necessarily mean that it is an impossible occurence in reality.
Those can merely be rare events with no representative in the training data. In
speech recognition systems, a zero probability can lead to errors, as it disallows the
word sequence regardless of how informative the acoustic signal is. Hence some sort
of algorithm is necessary to assign nonzero probabilities to unseen words or n-grams.
Smoothing is one of the methods used to address this problem. But before intro-
ducing smoothing techniques relevant to this work, some useful evaluation metrics
for language modeling are presented in the following section.



2.2. Evaluating Language Models 7

2.2 Evaluating Language Models

When comparing different language models, an appropriate evaluation metric is
needed. Of course, the easiest way is to run the systems using those language
models and check which one produces fewer errors. But usually the performance
of an entire system depends on other factors or the combination of its components
as well. Evaluating language models by system test runs can also be expensive and
time consuming. So it would be better to have a system independent measurement.
In the following the three common measures word error rate, cross-entropy and
perplexity are introduced which are also used for evaluation in this work.

2.2.1 Word Error Rate

A standard metric for the performance of speech recognition or machine translation
systems is the word error rate (WER). The WER is derived from the Levenshtein
distance and is calculated by contrasting the recognized word sequence with the
reference word sequence. The general difficulty of measuring performance lies in the
fact that the two word sequences can have different lengths which makes a word by
word comparison unsuitable. This problem is solved by first performing alignment
search between output hypothesis and reference sequence. Therefor missing words
are inserted to and needless words are deleted from the hypothesis to have two word
sequences of the same length for comparison. Then the word error rate can be
computed as

WER =
S +D + I

N

where S is the number of substitutions, D the number of deletions, I the number of
insertions and N the number of words in the reference word sequence.

2.2.2 Cross-entropy and Perplexity

In information theory, entropy is a measure of the average uncertainty in a random
variable and describes how predictable the information is. Natural language can also
be seen as an information source emitting words from the vocabulary. A probabilistic
language model which is an estimation for the true distribution of the language
can be evaluated using the cross-entropy H for two distributions over the same
probability space according to the following formula

H(p, q) = −
∑
x

p(x) logb q(x)

where p is a true distribution and q an estimation for p. Since the true distribution
for a language is unknown, an estimation has to be made. For a given text composed
of sentences s1, ..., sn the cross-entropy of a language model can be computed by

H(P ) = −
n∑

i=1

1

N
logb P (si)

where P is the given language model and N the total number of words in the sample
text. Calculation of the cross-entropy can be interpreted as evaluating how difficult
it is for the language model to predict the next word in a word sequence. It is
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generally assumed that a lower cross-entropy and thus an easier prediction task for
the model corresponds with a language model that performs better in applications.

From the cross-entropy the more frequently used evaluation metric called perplex-
ity is derived. Perplexity evaluates the branching factor of a language model and
like cross-entropy, models with less perplexity are better than models with higher
perplexity. The perplexity ppl of a language model P is defined as

ppl(P ) = bH(P ) = b−
∑n

i=1
1
N

logb P (si) .

The use of log probabilities has computational advantage over using real probabilities
since the product of probabilities can be replaced with the more efficient summation
of the values. It also improves numerical stability since the logarithm of a number
in the [0, 1] interval can be represented more accurately than the number itself. The
base b of the log probability is usually chosen to b = 2 or b = 10.

2.3 Smoothing Techniques

Smoothing describes methods for adjusting maximum likelihood estimation models
to hopefully produce more accurate probabilities, particularly for unseen data. The
main task is to assign nonzero probabilities to all word sequences and thus avoid
zero counts for sequences that were not seen during training. This can be achieved
by for example collecting some of the existing probability mass from well observed
events, which is called discounting, and distributing it to unseen events. A simple
smoothing technique illustrated in [Lids20] is called add-one smoothing and extends
the maximum likelihood estimate by pretending that each n-gram occurs one time
more than it actually did. However, this scheme has the flaw of assigning the same
probability to every unseen n-gram although those may differ in their likelihoods,
and shows poor performance as for example stated in [GaCh90] and [GaCh94]. Many
advanced smoothing techniques have been developed over the years. Some of the
smoothing methods do not only prevent zero probabilities, but they also attempt to
improve the accuracy of the model as a whole. In the following sections we introduce
some basic smoothing techniques and methods relevant to this work.

2.3.1 Linear Interpolation

Linear interpolation is a class of smoothing techniques that involve combining higher-
order probabilities with information from lower-order models. When there is little
data for directly estimating an n-gram probability, useful information can be pro-
vided by the corresponding (n−1)-gram probability estimation. A simple method
for model interpolation is described by Jelinek and Mercer in [JeMe80]. For example
a trigram maximum likelihood model can be interpolated with a bigram maximum
likelihood model like in the following

Pinterp(wk|wk−2, wk−1) = λPML(wk|wk−2, wk−1) + (1− λ)PML(wk|wk−1)

where λ is a weighting factor to be set experimentally. Since the occurence of a
bigram is more likely than that of a trigram, the lower-order model, and with it
the interpolation result, may have a nonzero probability. Brown et al. presented in
their work [BPSL+92] an elegant way of model interpolation where the nth-order
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smoothed model is defined recursively as a linear interpolation between the nth-order
maximum likelihood model and the (n−1)th-order smoothed model. The formula is
as follows

Pinterp(wk|wk−1
k−n+1) = λ(wk−1

k−n+1)PML(wk|wk−1
k−n+1)+(1−λ(wk−1

k−n+1))Pinterp(wk|wk−1
k−n+2)

where λ now depends on the word context and can be set to a fixed value. However,
to obtain better performance, the interpolation weight is often trained in variations
of interpolation smoothing such as held-out interpolation and deleted interpolation.

2.3.2 Backoff Smoothing

Although the interpolation approach may provide feasible probabilities to unseen n-
grams, in case of nonzero counts, interpolated models still use information from the
less accurate lower-order models. Backoff smoothing has been developed to address
this problem. Like interpolation, it combines higher-order and lower-order models,
but uses only the higher order models when it is possible, for example when there
were enough counts in the training corpus. If the higher order models are not that
informative, it backs off to lower-order models, so the model with the most reliable
information is always used. The backoff algorithm can be defined recursively as

Pbackoff (wk|wk−1
k−n+1) =

{
P ∗(wk|wk−1

k−n+1)

α(wk−1
k−n+1)Pbackoff (wk|wk−1

k−n+2)

if c(wk
k−n+1) > 0

otherwise

where P ∗ is a discounted probability model and α is the backoff weight of the history
which is necessary for Pbackoff to be normalized.

Backoff smoothing is central to several advanced smoothing techniques. Katz ex-
tends in [Katz87] the intuitions of backing off higher-order models with lower-order
models by using Good-Turing discounting described in [Good53]. Katz smoothing
has become a widely used smoothing technique in speech recognition. A similar
approach by Church and Gale can be found in [ChGa91].

2.3.3 Kneser-Ney Smoothing

Kneser and Ney introduced in [KnNe95] a way to improve interpolation and backoff
smoothing methods. The lower-order model for both smoothing methods is generally
taken to be a smoothed maximum likelihood model which is sometimes unsuitable for
estimating higher-order probabilities. Instead of a probability model that describes
how likely the lower-order n-gram is, Kneser and Ney suggested to use the probability
of how likely is the lower-order n-gram to appear as a continuation for different words.
The following probability model is used by Kneser-Ney smoothing

PKN(wk|wk−1
k−n+2) =

|
{
wk−n+1 : c(wk−n+1, w

k−1
k−n+2, wk) > 0

}
|∑

w
′
k
|
{
wk−n+1 : c(wk−n+1, w

k−1
k−n+2, w

′
k) > 0

}
|

which sets the lower-order probability proportional to the number of different words
the (n−1)-gram completes. The backoff Kneser-Ney for example is then given by

P
′

KN(wk|wk−1
k−n+1) =

{
Pabs(wk|wk−1

k−n+1)

α(wk−1
k−n+1)PKN(wk|wk−1

k−n+2)

if c(wk
k−n+1) > 0

otherwise
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where Pabs denotes a discounted probability model using the absolute discouting
method described in [NeEs91]. It is defined by subtracting a fixed discount d from
each nonzero frequency count of the maximum likelihood estimate as follows

Pabs(wk|wk−1
k−n+1) =

max
{
c(wk

k−n+1)− d, 0
}∑

w
′
k
c(wk−1

k−n+1, w
′
k)

.

Kneser-Ney smoothing is another smoothing technique that is commonly used for
speech recognition and machine translation. A variation of Kneser-Ney smooth-
ing, which is refered to as modified Kneser–Ney smoothing, generally shows good
performance.

2.3.4 Comparison of Smoothing Techniques

Chen and Goodman presented in their work [ChGo96] a comparison of several widely
used algorithms for smoothing n-gram language models like the ones mentioned
in previous sections, but except for Kneser-Ney smoothing. Additionally to the
existing smoothing techniques they developed two novel methods that they called the
average-count and one-count method. Chen and Goodman carried out experiments
over many training set sizes on different training corpora using bigram and trigram
language models. They investigated how these factors affect the relative performance
of smoothing methods. Their smoothed language models were measured through the
cross-entropy on the test data.

The experiments demonstrated that performance could vary widely with respect
to training data size, training corpora and n-gram order with the most significant
factor being the data size. Their training data size ranged from 100 up to 10 M
sentences and experiments displayed a high correlation between corpus size and
cross-entropy on the test data. The performance of their baseline implementation
using Jelinek-Mercer smoothing is shown in Figure 2.1. While additive smoothing
had always poor performance, Katz smoothing and held-out interpolation generally
performed well with cross-entropies significantly less than the baseline method in
almost all situations, except for cases with very little training data. The held-

Figure 2.1: Cross-entropy of baseline bigram and trigram models trained on different
corpora using up to 10 M sentences. Source: [ChGo96].
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out interpolation algorithm sometimes performed better than Katz smoothing in
sparse data situations, but was outperformed by Katz smoothing on trigram models
produced from large training sets and on bigram models in general. Their novel
methods average-count and one-count were superior to existing methods for trigram
models and performed well on bigram models. For example, the relative performance
of their smoothed trigram models is shown in Figure 2.2.

Figure 2.2: Relative performance of various trigram models on Wall Street Journal
corpus with respect to baseline. Source: [ChGo96].

While smoothing is one technique to address sparse data issues, performance of
smoothed language models still depends highly on the size of training data used. A
different approach to fight the data sparseness problem is to perform the language
model probability estimation in a continuous space by using neural network architec-
tures. Neural networks are capable of learning from data samples through a training
process, for example to learn a distributed representation for semantically related
word sequences from word sequences in the training corpus. The following chap-
ter firstly gives an overview to the backgrounds required for understanding neural
networks before introducing this new approach of statistical language modeling.
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3. Neural Networks

Neural networks are mathematical models for information processing that are in-
spired by biological nervous systems, in particular the brain. They are composed
of simple processing elements, the neurons, and sets of adaptive weights which de-
scribe the link strength between neurons. Neurons are connected together to form
a network and work in parallel to propagate information through the network to
solve specific problems. Just like people, neural networks learn by example through
a training process where adjustments to the connection weights between the neurons
are carried out. In this way, identically constructed neural networks can be used to
perform different tasks depending on the received training.

Neural networks are capable of approximating non-linear functions of their inputs
and have been used to solve a wide variety of tasks, especially tasks where no problem
solving algorithm exists. A well trained neural network has the ability to recognize
trends in the given data and similarities among different input patterns, especially
those that have been corrupted by noise. Due to their massive parallel nature,
neural networks can be efficiently used for real time operations. They are also very
fault tolerant such that when an element of the network fails they can still continue
processing without a significant loss of performance. Neural networks have been
successfully employed in applications for pattern recognition and machine learning.
They also offer improved performance over conventional technologies in areas which
include machine vision, signal filtering, virtual reality, data compression, data mining
and many more.

3.1 Neural Network Basics

A neural network is represented as a group of nodes which are connected with each
other. Usually, the nodes are arranged into a hierarchical structure consisting of
disjoint layers but neural networks that cannot be easily grouped into layers do
exist as well. A simple three layered neural network is shown in Figure 3.1. Each
node represents an artificial neuron and the edges represent connections from the
output of one neuron to the input of another with the arrows denoting the direction
of information flow.
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Figure 3.1: A simple neural network.

Typically, a neural network consists of an input layer for interactions with the envi-
ronment to receive input, an output layer to present the processed data and hidden
layers lying in between that do not have any interactions with the environment.
Increasing the complexity of a neural network, and thus its computational capacity,
requires the addition of more hidden layers, and more neurons per layer.

A neuron is a simple processing unit with many inputs and one output. The inputs
are usually weighted with a value from the interval [−1, 1], i. e. the effect that each
input has on the output calculation depends on the weight of the particular input.
Figure 3.2 displays exemplarily how input signals are processed inside a neuron.

Figure 3.2: Processing pattern within a neuron.

Signals which are delegated through the network to the neuron are firstly passed to
the transfer function Σ. It is usually defined as a summation of the weighted inputs
as proposed by McCulloch and Pitts in [McPi43]. The computation of the weighted
sum can also be interpreted as the inner product of the input vector and the weight
vector as in the following

Σ(x,w) =
n∑

i=1

xiωi = x ·w

where x = (x1, ..., xn) and w = (ω1, ..., ωn). Such a McCulloch-Pitts neuron is
also called a perceptron. The result of the transfer function is then passed to the
activation function which sets the inner activation state of the neuron. There are
a number of commonly used activation functions such as the step function and
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the sigmoid function shown in Figure 3.3. Sometimes the output of the activation
function is further processed by an output function, but commonly the result of the
activation function is emitted as the final output of the neuron.

Figure 3.3: Graph of a sigmoid function. Source: 1

3.1.1 Learning

Neural networks are not programmed. They typically learn during a training phase
using a specific learning algorithm to update the weights or other parameters during
each training iteration. Once the network has been trained, it enters a production
phase where it produces results independently. There are numerous algorithms avail-
able for training neural network models. They commonly use a set of observations
to find an optimal solution for a given task. Therefor a cost function is defined such
that no other solution has a cost less than the optimal solution. Learning algorithms
search through the solution space to find a set of parameters that has the smallest
possible cost. The cost function is chosen depending on the desired task and the
used learning paradigm.

A differentiation is mainly made between two learning paradigms, the supervised
and unsupervised learning method, which reflect how the training data is presented
to the neural network. In supervised learning, a set of example pairs consisting of
input data and desired output is given and the aim is to find network parameters
to match the examples. The cost function is then defined to evaluate the mismatch
between the output of the network and the data. A widely used cost function is
the mean-squared error function. From the combination of supervised learning and
gradient descent optimization derives the well-known backpropagation algorithm
which is also used in this work and will be described in section 4.5. In unsupervised
learning, only the input data is given and there is no example output to correct the
network. The cost function can then be chosen according to prior knowledge about
the problem domain.

To train a neural network efficiently, one first needs to have a good training corpus
which is representative and without redundancy. The examples must be selected
carefully otherwise useful time is wasted for training or, in the worst case, the
network might be functioning incorrectly. Neural networks can also be unpredictable
since they need to find out how to solve problems by themselves. Training by
minimizing the cost function does not always guarantee to find the global optimum as
the cost function may have many local minima. It can sometimes lead to divergence

1http://en.wikipedia.org/wiki/Sigmoid function

http://en.wikipedia.org/wiki/Sigmoid_function
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of the network if the computation gets too far away from a local minimum. There is
also the possibility of overfitting the network on the training data that arises from
overtraining the network. The model begins to memorize the training data and thus
becomes incapable to generalize unseen events. To avoid this problem, the training
corpus is usually divided into different datasets for cross-validation. Some form of
regularization is also commonly used to adress the problem of overfitting.

3.2 Deep Neural Networks

A deep neural network is defined as a neural network with at least one hidden layer of
units between the input and output layer. It has more modeling capability compared
to shallow networks due to the extra layers and nonlinearity. There is a wide variety
of deep architectures with different computational abilities. Simple deep networks
are typically designed as feedforward networks where input signals only propagate
forwards from the input layer to the output layer. The multilayer perceptron is a well
known feedforward network that derives from the perceptron algorithm in [Rose57].
It is used in this work for language modeling and a detailed description can be found
in chapter 4. Further examples of feedforward networks are the radial basis function
networks introduced in [BrLo88] and the self-organizing maps from [Koho82]. Recent
research has also successfully applied the deep learning architecture to recurrent
neural networks which are, in contrast to feedforward networks, models with data
flow in both directions. Those networks are very powerful and can get extremely
complicated. Examples of recurrent networks can be found in [Hopf82] and [HiAS85]
which describes the Hopfield networks and Boltzmann machines, respectively.

3.2.1 Continuous Space Language Models

The idea of using deep neural networks for language modeling is to address the
data sparseness problem by performing language model probability estimation in a
continuous space. A description of neural network language models for continuous
speech recognition can be found in [Schw07]. Schwenk utilized multilayer percep-
trons consisting of three layers which were a projection layer with 50 to 250 neurons,
a hidden layer with 200 to 1500 neurons and an output layer with a size equal to
the length of the word list. The architecture can be found in Figure 3.4. The
neural network language models were evaluated on several large vocabulary speech
recognition tasks for English, French and Spanish. Short-lists were used to limit
probability calculation to frequent words instead of all words from the vocabulary
and the models were interpolated with backoff language models for probabilities of
words that were not in the short-list. In all the described experiments, the neural
network language models were compared to 4-gram backoff models where modified
Kneser–Ney smoothing was used.

For English conversational speech Schwenk employed neural networks with a short-
list of 2 k words and text corpora from 7.2 M to 27.3 M words. A perplexity re-
duction of about 9% relative to the baseline model could be obtained independently
of the training data size, for example from 62.4 to 57.0 using 7.2 M data. Con-
sistent WER reductions of 0.4% to over 0.8% absolute could be achieved with the
maximum improvement being from 23.04% to 22.19%. The speech recognizer for
French broadcast news with a word list of 200 k and a short-list of 12 k words could
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Figure 3.4: Neural network language model for continuous language modeling.
Source: [ScGa04].

decrease the perplexity from 74.2 to 71.4 and the WER from 10.74% to 10.51%.
Schwenk further carried out tests on English and Spanish parliament speeches with
about 35 M words of training data per language. For the English system with a
short-list of 4 k words, a relative perplexity reduction of 15% from 106.4 to 90.2
was obtained and the WER improved from 10.84% to 9.95%. The short-list of the
Spanish system used 2 k words and the neural network language model achieved a
relative improvement in perplexity of 10% and a WER reduction of 0.64% absolute.

3.2.2 Language Models with Structured Output Layers

Neural network language models with structured output layers (SOULs) were intro-
duced in the paper [LOAG+11]. The SOUL neural networks extended the standard
approach of Schwenk by a hierarchical structure of the output layer which was de-
scribed in [MnHi08]. To structure the output vocabulary, words were clustered and
represented by a binary tree, and probabilities of the paths in this binary tree given
the history were estimated, rather than directly the word itself. With this novel tech-
nique, vocabularies of arbitrary size could be handled without the use of short-lists.
Like the multilayer perceptron, training was performed using the backpropagation
algorithm.

The SOUL language models were experimented on Mandarin Chinese speech-to-text
tasks with a vocabulary size of 56 k words. For the baseline system, 4-gram language
models were trained on 48 different corpora of overall 3.2 billion words, smoothed
using Kneser-Ney discounting and linearly interpolated to receive a well tuned word-
based language model. The neural network language models using short-lists and
SOULs were both trained on various corpora of about 25 M words and for each test
configuration 4 models of the same type were interpolated. Experimental results
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have shown that the baseline perplexity of 211 could be reduced to 187 and 185 by
an interpolation of the baseline 4-gram model with a 4-gram neural network model
with a short-list of 8 k and 12 k words, respectively. Instead of WER, character
error rate (CER) was used to evaluate recognition performance for Mandarin. A
decrease of the CER from 9.8% to 9.5% and 9.4% could be achieved by the two
models. Replacing the standard short-list with a full-vocabulary SOUL language
model, the perplexity could be further improved to 180 and the CER to 9.3%.
Increasing the order of the neural networks from 4 to 6 could achieve additional
performance gain with the 6-gram SOUL language model scoring a perplexity of
162 which outperformed the 12 k short-list model by 10, and a CER of 9,1%.

3.2.3 Recurrent Neural Network Language Models

Beside feedforward neural networks, recurrent architectures have also been success-
fully applied for natural language modeling as described in [MKBC+10]. While
feedforward approaches usually utilize a fixed length context that has to be speci-
fied before training, the recurrent models employed an unlimited size of context and
were capable of learning long-term dependencies. The network architecture was a
simple recurrent neural network which was also called Elman network in [Elma90].
As shown in Figure 3.5, the network consisted of an input layer, an output layer
and two context layers with 30 to 500 hidden units each. To train the networks, the
standard backpropagation algorithm and a variation called backpropagation through
time were used.

Figure 3.5: Simple reccurent neural network for language modeling. Source:
[MKBC+10].

The recurrent network based language models were interpolated with 5-gram backoff
language models smoothed with modified Kneser-Ney where the interpolation weight
for the neural network model was set to 0.75. Evaluation was performed on several
standard speech recognition tasks for English by comparing the combined models
with the 5-gram backoff models. On Wall Street Journal corpora the perplexity could
be reduced from 221 to 156 and the WER decreased by 1.8% absolute from 13.5%
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to 11.7% using a training data size of 6.4 M words. With a smaller training corpus
of 200 k words, the perplexity improved from 336 to 271 and the WER from 16.4%
to 15.4%. These enormous improvements were due to the not well tuned baseline
systems which were probably easy to outperform. Further experiments were carried
out on state-of-the-art systems where the the baseline 4-gram backoff models were
trained on 1.3 G words while the recurrent network model only used 5.4 M words. A
significant performance gain on the WER could be achieved by the combined model
which reduced the baseline WER of 24.1% to 23.3% by 0.8% absolute.

3.2.4 Boltzmann Machines for Machine Translation

A novel approach of using language models based on Restricted Boltzmann Ma-
chines (RBMs) for statistical machine translation was presented in [NiWa12]. As it
is common for RBM architectures, the neural networks consisted of two intercon-
nected layers which were a visible input layer representing words of n-grams and a
hidden layer with binary units. Instead of using error backpropagation for learn-
ing, the networks were trained with contrastive divergence which was introduced
in [Hint02]. The RBM-based language models were trained on different kinds of
corpora such as parliament and news speeches, and evaluated on German to English
and English to French translation tasks with the Bilingual Evaluation Understudy
(BLEU) algorithm.

Experiments were carried out to analyse the influence of the hidden layer size on
translation quality where results have shown that best performance could be achieved
with a hidden layer of 32 units. For German to English lecture translation tasks, a
4-gram RBM-based language model was trained and compare to an n-gram-based
language model of the same order. The translation quality on the test data could
be improved by 1.45 BLEU points from 23.02 to 24.47. A combination of an ngram-
based in-domain language model and the RBM-based language model could further
achieve a performance gain of 0.4 BLEU points. RBM-based language models were
also tested on English to French lecture translation tasks. In this case, the baseline
system already utilized several good n-gram based language models and the RBM
language model could still achieve an improvement of 0.1 BLEU points from 31.90
to 32.03.

3.2.5 Deep Architechtures for Other Tasks

Deep neural networks have not only been successfully employed to model natural
languages but also for other automatic speech recogniction (ASR) tasks such as
acoustic modeling and signal preprocessing. An overview of the progress of deep
neural networks on acoustic modeling can be found in [HDYM+12]. Deep neural
networks have been shown to outperform Gaussian mixture models on a variety of
speech recognition benchmarks, sometimes by a large margin. For example the deep
belief networks introduced in [Hint09] have achieved better phone recognition as
shown in [MoDH12]. In [WHHS+89], a Time-Delay Neural Network was presented
for phoneme recognition which was able to discover temporal relationships between
acoustic-phonetic features and outperformed systems based on Hidden Markov mod-
els (HMMs) at various recognition tasks. Deep neural networks were also applied
for isolated word recognition as described in [WuCh93] and they achieved better
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recognition rate than HMMs as well. Papers like [Liao13] explain, how deep neu-
ral networks can be used for speaker adaption to further improve speech recognition
accuracy. As described in [HuZa10], neural networks can perform nonlinear transfor-
mations of acoustic signal features to reduce feature dimensionality which achieved
considerably higher recognition accuracies compared to linear dimension reduction
methods. In [MLOV+12], a deep recurrent neural network was used to denoise input
features and the model was competitive with existing feature denoising approaches.

Beside ASR, deep architectures have been applied to many other fields such as clas-
sification, computer vision, optimization and robotics, where they were shown to
produce state-of-the-art results on various tasks. In [LLPN09], deep belief networks
were applied to learn feature representations from unlabled audio data for classifica-
tion where they presented very good performance. Deep networks can also be used to
classify high-dimensional patterns with minimal preprocessing such as handwritten
characters and high-resolution images where they were able to outperform various
other techniques as stated in [LBBH98] and [KrSH12]. While traditional methods of
computer vision cannot match human performance, neural networks have been able
to achieve near-human performance on handwriting tasks. It was shown in [CiMS12]
that they even outperformed humans by a factor of two on a traffic sign recognition
benchmark. In [LRMD+12], a multilayer network was trained to build a high-level
feature detector which was able to detect faces on unlabeled images and achieved a
70% relative improvement over previous state-of-the-art methods.



4. Architecture

The architecture used in this work extends the neural network language model from
[Schw07] by adding more complexity and computational power to the neural net-
work. As proposed by Schwenk, the neural network is implemented as a feedforward
network arranged into different layers. Each layer is fully connected to the next
one which means that each node in one layer connects with a certain weight to ev-
ery node in the following layer. The neural network employs nonlinear activation
functions and uses the backpropagation algorithm for model training which makes
it a standard multilayer perceptron. It consists of three or more layers which are
an input layer, an output layer and one or more hidden layers. The input layer
does not only provide interactions with the environment to receive input signals
but is also responsible of projecting all the words in the history onto a continuous
space. Hence it is commonly called the projection layer. Words are not directly
passed to the network as inputs. Instead, indices that describe their position in
the vocabulary are used. The role of the output layer is to emit the result of the
network computation. The outputs of the network are the posterior probabilities of
all words in the vocabulary or short-list indicated by their indices given the history.
Layers between the projection and output layer are hidden layers that are necessary
to achieve non-linear probability estimation. The architecture of the neural network
language model is shown in Figure 4.1.

4.1 Projection Layer

The projection layer converts the inputs of the network, discrete word indices of the
n−1 previous words wk−1

k−n+1 = wk−n+1, ..., wk−1 in the vocabulary of size N , into a
reduced continuous space of dimension M with M � N . Instead of directly feeding
in the indices, a 1-of-n coding scheme is used. Therefore each word in the history
is represented by an N dimensional row vector of binary valued elements where the
ith word of the vocabulary is coded by setting the ith element of the vector to 1 and
all the other elements to 0.

Projection onto the continuous space is carried out by multiplying the coded index
vector with the N ×M dimensional projection weight matrix P. This matrix mul-
tiplication derives from the transfer function of the neurons which is defined as the
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Figure 4.1: Architecture of the neural network language model.

standard weighted sum. Each neuron in this layer is connected with every entry of
one input vector x and the connections are described by weights pjk where j and k
denote the link between the jth element of the input vector and the kth neuron. So
the columns of the projection matrix correspond to the weights of a single neuron.
For the weighted sum yields

Σ(x,P) =
N∑
j=1

xjpjk = x ·P .

Due to the 1-of-n coding the multiplication calculation can be substantially sim-
plified. Given that the input vector only has one nonzero entry at position i, one
only needs to copy the ith row of the projection matrix to receive the multiplication
result. Since a projection is needed for each word of the context, the projection layer
for an n-gram language model is built up of (n− 1) ·M neurons and the projection
weight matrix is shared by all words from the context. Neurons in the projection
layer differ from those of other layers by not using a nonlinear activation function.
The output of such a neuron is simply the result vector of the projection, thus the
final output of the projection layer is formed by concatenating the continuous pro-
jections of all the words in the context. This yields to an output vector of length
(n− 1) ·M which is used as the input for the next layer in the network.

4.2 Hidden Layer

Hidden layers have a blackbox character since they do not have any interactions with
the environment. They are used to achieve the ability to approximate non-linear
functions that is necessary for probability estimation. The output of the projection
layer is processed by the first hidden layer which propagates its own output to the
next hidden layer and so on. The complexity of the neural network depends on the
number of hidden layers and the size of each hidden layer. Optimal size for a hidden
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layer depends on the size of the training corpus and is therefore a system parameter
that has to be tuned during experiments.

Like the projection layer, hidden layers employ transfer functions in form of a
weighted sum. The number of weights associated with each hidden layer neuron
is defined by the dimensionality of the input vector from the previous layer. As
activation function all hidden layer neurons employ the hyperbolic tangent function
which has similar characteristics as the logistic sigmoid curve shown in Figure 3.3.
The tanh function generates continuous values in [−1, 1] and is defined as

tanh(t) =
et − e−t

et + e−t
.

For a vector-valued t, the operations are computed element wise. The output of a
hidden layer is calculated by passing the weighted sum and an additive bias to the
activation function. With weights ωi

jk of the ith hidden layer where j and k again
denote the jth element of the input vector and kth neuron of the hidden layer, the
output hi of this layer is given by

hi = tanh(
∑
j

hi−1j ωi
jk + bik) = tanh(hi−1 ·Wi + bi)

where Wi and bi is the weight matrix and bias vector of the ith hidden layer,
respectively, and h0 denotes the output vector of the projection layer.

4.3 Output Layer

The output layer processes the output from the last hidden layer to compute the
desired probabilities. It is created with a number of neurons equal to the size of the
vocabulary or short-list and, like the other layers, a number of weights propotional
to the dimensionality of the input vector. In contrast to standard language modeling
where estimation of the posterior probability P (wk = i|wk−1

k−n+1) of a single word with
index i is made, the neural network simultaneously predicts the language model
probability of all words in the vocabulary list for the given n-gram context wk−1

k−n+1

that was fed forward through the network.

Similar to neurons of hidden layers, a bias is added to the weighted sum computation
as follows

v =
∑
j

h∗jω
o
jk + bok = h∗ ·Wo + bo

where h∗ denotes the output of the last hidden layer and Wo and bo the weight
matrix and bias vector of the output layer. As activation function, the output layer
utilizes a softmax normalization defined as

o =
ev∑N
l=1 e

vl

where the exponential function of vector v and the division are computed element
wise. The result vector o consists of one output of each output layer neuron and
thus has a dimension of the vocabulary or short-list size. The softmax normalization
function has an output space in the continuous interval [0, 1] and can be seen as
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a smoothed version of the winner-takes-all activation model described in [Brid90]
where the unit with the largest input has output 1 while all other units have output
0. Using the softmax as an activation function allows a probabilistic interpretation
of the neural network outputs since it is able to convert a raw value into a probability
measure. Hence the output vector o contains the posterior probabilities computed
by the network where value oi of the ith output neuron corresponds directly to the
conditional probability P (wk = i|wk−1

k−n+1) of the ith word in the vocabulary.

4.4 Cost Function

The cost function that has to be minimized during training consists of two compo-
nents. For the first part we use the cross-entropy between the output and the target
probability distribution defined as

H = −
N∑
i=1

ti log oi

where ti refers to the target probability which is simply set to 1.0 for the desired
output of the neural network, e.g. the next word in the training sentence, and 0.0 for
all the other ones. The second part is a regularization term that aims at preventing
the neural network from overfitting the training data which is also called weight
decay. It is calculated by summing up the squared weights of each layer of the
network. The regularization term of layer l with weights ωjk is computed by

Rl =
∑
jk

ω2
jk .

Let R1, ..., RL denote regularization terms of the projection layer, the hidden layers
and the output layer, the cost function in form of an error function is defined by the
expression

E = H + β
L∑
l=1

Rl

where β is a normalization factor that is tuned experimentally to achieve optimal
results during training.

4.5 Backpropagation

Training is performed with the standard backpropagation algorithm minimizing the
error function described in the previous section. The backpropagation algorithm
was firstly formulated by Werbos in [Werb74] and a detailed description can be
found in [RuHW86]. Backpropagation is a supervised learning technique common
for training multilayer neural networks. It employs gradient descent which is an
optimization algorithm and requires the activation function used by the neurons
to be differentiable. The backpropagation algorithm can be divided into two main
steps which are propagation and weight update.

Before training, the weights and biases of each layer are initialized randomly. The
algorithm starts with a forward propagation of the sample input through the neural
network in order to generate a network output. The output is then compared to
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the desired output given by the training sample and an error is computed using
the cost function. Subsequently, the error is propagated from the output layer back
to the projection layer. Therefore the contribution of each weight and bias to the
overall error is computed using the gradient of the error function with respect to the
parameter. For ω, a weight or bias of any layer of the neural network, the gradient
is given by the partial derivative of the error function as follows

∆ω =
∂E

∂ω
.

The last step is to update the weights and biases depending on their contribution
to the error. The updated value for ω is computed by

ωnew = ωold − γ∆ω

where γ is a system parameter called the learning rate. It influences the speed and
quality of learning where a higher learning rate corresponds with a faster training
and a lower learning rate with a more accurate training. Learning rate is one of the
parameters that have to be chosen experimentally to receive best training results.
The used optimization procedure is called gradient descent since it finds a local
minimum by taking steps proportional to the negative gradient of the function.

During training, the backpropagation algorithm is repeated for several epochs until
the network converges to a local minimum. It has been shown, for example in
[Bish95], that the outputs of a neural network trained in this manner converge to
the desired posterior probabilities. Since the gradient is backpropagated through
the projection layer, the neural network not only learns the posterior probabilities
from the training examples but also the projection of the words onto the continuous
space that is best for the probability estimation task.
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5. Implementation

The multilayer perceptron is implemented using the architecture and learning algo-
rithm described in the previous section with some optimizations being carried out
in order to reduce long training time. Additionally, there is need to preprocess the
training data since they are usually given as sentences of arbitrary length where the
neural network only accepts word sequences of a fixed length as input. For exam-
ple, to train a trigram neural network language model, the training data has to be
provided as tuples consisting of a two words input and a one word output. Another
important task is to adapt the neural network model into a simple form after the
training phase. Given its nature of only storing weights instead of probabilities, re-
quests have to be propagated through the network to compute the desired posterior
probability. This can be very time consuming and difficult for system integration.
Hence an access by simple table look-up like n-gram language models would be much
more favorable. This chapter introduces some helpful tools and how they are used
to implement the multilayer perceptron and other required functionalities. Further-
more, a brief overview to the Janus Recognition Toolkit is provided which is used to
evaluate the adapted neural network language model on speech recognition tasks.

5.1 Training Optimization

With increasing complexity of the network architecture and a large training corpus,
the time necessary for training the neural network grows as well. To reduce training
time, several improvements to the standard implementation of the backpropagation
algorithm have been presented in works such as [BDVJ03], [BeSé03] and [MoBe05].
A technique used in this work is to improve training speed by propagating several
examples in form of a mini batch at once through the network. This was proposed in
[BACD97]. The input and output vectors of each layer become matrices and hence
the equations of each layer have to be changed from a vector-matrix multiplication
to a matrix-matrix multiplication, for example for the projection layer described in
section 4.1 yields

Σ(X,P) = X ·P
where matrix X consists of one input word vector per row. For a history of length
two or more, the word vectors are ordered consecutively in the input matrix and
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the multiplication result can be easily reshaped to perform the concatenation of
projected vectors. Bias matrices used for the hidden layers and output layer are
obtained by duplicating the bias vectors for each row of the matrix. Also a slight
modification to the cost function of section 4.4 has to be made. The cross-entropy
term for several examples is defined as the sum of the cross-entropy of each single
example x, but to prevent the cost function from being depending on the batch size,
the mean

Hbatch =
1

B

∑
x

H

is used instead of the sum where B is the size of a mini batch. An evaluation of how
different batch sizes affect the training time can be found in section 6.2.2.

5.2 Theano

Theano is a Python library that was developed to simplify the implementation of
machine learning algorithms and to optimize their execution for performance speed-
up. It is an open source project primarily developed by a machine learning group
at the University of Montreal since 2008 1. In Python, array data types like vectors
and matrices are commonly defined using the extension module NumPy which also
provides many functions that are capable of operating on entire arrays at once. How-
ever, as stated in [Alte10] the composition of many such NumPy functions can be
unnecessarily slow when each call is dominated by the cost of transferring memory
rather than the cost of performing calculations. To reduce this overhead, optimiza-
tions are carried out by Theano before performing the calculations. Theano works
on symbolically defined mathematical expressions while using similar convenient
syntax as NumPy. It builds an internal graph using symbolic variables and opera-
tors to create a flexible represention of mathematical relations. The computational
graph allows Theano to perform local graph transformations that can correct many
unnecessary, slow or numerically unstable expression patterns.

Once an optimized graph is created by Theano, the same graph can be used to gen-
erate CPU as well as GPU implementations without requiring any changes to the
actual program code. This is another huge advantage of using Theano. While com-
mon machine learning algorithms implemented with Theano are already superior to
alternative implementations in terms of speed, an enormous speed-up can be further
achieved by running Theano code on GPUs. The highly parallel structure of GPUs
makes them more effective than general-purpose CPUs for algorithms where large
blocks of data are processed. To run Theano code on GPUs, the only requirement
is to have a CUDA enabled GPU where CUDA is a parallel computing platform
created by NVIDIA. An experimental comparison of training speed on CPU and
GPU can be found in section 6.2.1.

Like NumPy, Theano provides many functions for indexing and reshaping array
data structures and all necessary mathematical operations such as the sum function
and the logarithm. Furthermore, it predefines operations which are particular to
neural networks and deep learning, for example the activation functions used for
the multilayer perceptron, tanh and softmax. The calculation of the gradient which
is crucial to our backpropagation algorithm is handled elegantly by Theano using

1https://github.com/Theano/Theano/

https://github.com/Theano/Theano/
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a symbolic differentiation function. Having the graph structure, computing the
gradient is simply done by traversing the graph through all nodes from the outputs
back to the inputs. For each node the gradient of its outputs with respect to its
inputs can be calculated according to the operator used. Applying the chain rule of
differentiation these gradients are composed in order to obtain the gradient of the
output of the whole graph with respect to the inputs. Figure 5.1 displays a simple
example of how differentiation can be easily computed with Theano.

1 import theano.tensor as T

2 from theano import function

3 x = T.dscalar ()

4 y = x ** 2

5 dy = T.grad(y, x)

6 f = function ([x], dy)

Figure 5.1: A Theano code example.

In Theano, variables are defined symbolically by assigning a type as shown in line 3
where dscalar denotes a 0-dimensional array of doubles. Line 4 defines y, another
variable which represents the expression x2 and also the next line defines a new
variable dy for the expression ∂y/∂x. In the last line, we create a function that takes
x as input and gives dy as output. The function f can then be called to calculate
the derivation result, for example calling f(5) will directly yield 10. The subpackage
theano.tensor contains all the important mathematical expressions required for
machine learning algorithms and with the help of these provided functions, even
complex mathematical algorithms like the multilayer perceptron algorithm can be
developed into code that is easy to read and understand.

5.3 SRI Language Modeling Toolkit

SRI Language Modeling Toolkit (SRILM) is a toolkit for building and applying n-
gram-based or related language models, and is used in a great variety of statistical
modeling applications such as speech recognition, machine translation, statistical
tagging and segmentation. It has been under development in the SRI Speech Tech-
nology and Research Laboratory since 1995 and is freely available for noncommercial
purposes 2. SRILM consists of a set of C++ class libraries implementing language
models, executable programs built on top of these libraries to perform standard
tasks such as training language models and testing them on data, and a collection
of miscellaneous scripts for minor related tasks.

One of the main purposes of SRILM is to estimate language models from the given
training data. This task is accomplished by the tool ngram-count which is capable
of generating and manipulating n-gram counts of an arbitrary n-gram length. The
resulting counts with the corresponding n-grams can be saved in a file or used for
building an n-gram backoff language model. For the construction of more accu-
rate backoff language models, one can choose from various implemented smoothing
techniques like Good-Turing discounting and Kneser-Ney smoothing. In this work,
ngram-count is used to create files constisting of n-grams of a fixed length out of the

2http://www.speech.sri.com/projects/srilm/

http://www.speech.sri.com/projects/srilm/


30 5. Implementation

training data. The generated n-grams can then be easily splitted to fit the require-
ments of the neural network on the input samples. Before counting n-grams, the
tokens <s> and </s>, necessary for indicating the beginning and end of a sentence,
are automatically included to each sentence in the text corpus which is very conve-
nient. There is also the option to assign a vocabulary file where out of vocabulary
words are replaced with the unknown word token <unk>.

Since it is difficult to integrate our neural network language models into the speech
recognition system for evaluation, the models are converted into the more practical
ARPA format common to most language models trained with SRILM. The ARPA
format is a look-up table consisting of log probability and n-gram pairs grouped into
sections by n-gram length. Hence we need to generate n-grams, calculate their log
probabilities using the neural network and write the pairs into a file like an ARPA
backoff model. N-grams can be generated using the lattice-tool and lattice files
created by the speech recognition system. Those lattice files contain all hypotheses
made during a recognition task which results in a huge amount of n-gram combina-
tions. With the lattice-tool, the n-grams can be extracted from the lattice files
and written into a new file that can be directly processed by the neural network.

The ngram tool is another important SRILM tool that deals with tasks involving
the evaluation of language models. It performs various operations including sen-
tence scoring, perplexity computation and sentences generation. Here, perplexity is
computed using a slightly different equation as introduced in section 2.2.2 and takes
the number of OOVs and </s> tokens into account. The perplexity for sentences
s1, ..., sn is calculated by

ppl(P ) = 10 ∧ (− 1

N −O + n

n∑
i=1

log10 P (si))

where N is the total number of words and O the number of OOVs. Aside from
using the ngram tool to compute perplexities, it provides various types of model
interpolation which is central to building the hybrid language models used for the
speech recognition tasks. Hybrid language models result from a linear interpolation
between the neural network language model in ARPA format and a backoff language
model created using the ngram-count tool. The ngram tool performs interpolation
of two or more language models with corresponding interpolation weights and auto-
matically calculates the backoff weights of the new combined model. The new model
is in ARPA format as well and can be directly used for speech recognition tasks with
the Janus Recognition Toolkit.

5.4 Janus Recognition Toolkit

Janus Recognition Toolkit, also referred to as Janus, is a general-purpose speech
recognition toolkit developed at the Interactive Systems Labs at Carnegie Mellon
University and Karlsruhe Institute of Technology 3. It is useful for both research
and application development and is part of the JANUS speech-to-speech translation
system. Researchers are able to build state-of-the-art speech recognizers using Janus
and the toolkit allows them to develop, implement, and evaluate new methods.

3http://isl.anthropomatik.kit.edu/english/1406.php

http://isl.anthropomatik.kit.edu/english/1406.php
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Janus provides a flexible Tcl/Tk script based environment where Tcl is an open
source scripting language and Tk a library for building graphical user interfaces.
The Tcl/Tk programming environment is extended by object orientated addons
which allow all components to be configured in a very flexible way without the need
to modify source code.

Janus utilizes the concept of Hidden Markov Models for continuous speech recogni-
tion and offers many state-of-the-art techniques for acoustic preprocessing, acous-
tic model training, and speech decoding. Janus supports various frequent audio
formats and performs the necessary tasks for acoustic preprocessing such as short-
term fourier analysis and calculation of Mel-frequency scaled cepstral coefficients.
Features for training acoustic models include Viterbi training, MMIE training and
speaker adaptive training. For decoding tasks, it provides a flexible language model
interface for n-gram language models and grammars, and functions for lattice gen-
eration, manipulation and rescoring.
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6. Evaluation

This chapter presents a thorough evaluation of the neural network language models
built using the multilayer perceptron. The network is trained on text corpora of
three low resource languages which are Vietnamese, Tamil and Lao. Evaluation is
carried out for different aspects such as training speed, performance on test corpus
and achievements in speech recognition tasks. In terms of training speed, the influ-
ence of various system parameters on the time necessary for training the network
are investigated and optimal values are searched for to ensure an acceptable train-
ing speed while producing a satisfactory training result. The performance of neural
network language models of different sizes is evaluated on the test dataset and com-
pared to a baseline language model of the same n-gram order. To further test the
neural network models on practical tasks, they are integrated into a speech recogni-
tion system using Janus for each language. The following sections give a summary
of the most important results that were achieved during the various experiments.

6.1 Training Data
The neural network language models for the languages Vietnamese, Tamil and Lao
are trained using data released within the Babel program of the Intelligence Ad-
vanced Research Projects Activity (IARPA) 1. It provides for each language a train-
ing corpus to build language models and a development corpus to test the general-
ization ability of the language models. To prevent overfitting issues during learning,
a validation set has to be created out of the available corpora for the three languages.
This can be done by splitting either the training data or the development data into
two parts where only one of those is used to train or test the network while the other
is held back for cross-validation purposes. During training, each time every example
from the training set has been seen, the network tests its generalization ability on
the validation set. Depending on the result, it decides whether to continue training
or to stop before the network begins to memorize the examples.

For an extensive analysis of different network parameters, especially large layer sizes,
a suitable amount of training data is required. Since Vietnamese is the only lan-
guage with enough data out of the three, development tests on various parameters

1http://www.iarpa.gov/Programs/ia/Babel/solicitation babel.html

http://www.iarpa.gov/Programs/ia/Babel/solicitation_babel.html
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are mostly carried out on the Vietnamese data. The IARPA training corpus for
Vietnamese contains 944 k words and the development set has a length of 112 k
words. With the training corpus consisting of 88 k lines of text, 10 k lines are ran-
domly selected to form the validation set which results roughly in a training set of
830 k words and a validation set of 114 k words. The vocabulary has a length of 7 k
words and no short-list is used for the network output layer.

While the Vietnamese corpus is already small, for Tamil which is a language spo-
ken in South India and North-east Sri Lanka, even less data is available. With a
vocabulary of over 16 k words and only 77 k words of training text, short-lists have
to be used to achieve meaningful training results. Limiting the word list to words
that at least occur twice in the training corpus, the size of the word list reduces to
5.5 k. But also larger word lists are considered which are constructed by appending
the 5.5 k list randomly with words that only occur once in the training corpus. The
development corpus consists of roughly 59 k words and is splitted in two halves to
create the valiation set.

Neural network language models are also trained for Lao which is spoken in the
Southeast Asian country Laos. Since Lao is a rare language like Tamil, training has
to be performed on extremely sparse data as well. The available training corpus
consists of 92 k words and the development corpus is about the same size. Also in
this case, the development corpus is divided for cross-validation instead of using the
training data for this purpose. With a small vocabulary of 3.2 k words, models are
trained with the full vocabulary.

6.2 Training Time

Training a neural network for language modeling can be very time consuming. For
an effective and fast system development, training speed is thus a factor that has to
be taken into consideration while building such models. This is especially important
for training very large neural networks which would be impractical using standard
implementations and badly chosen parameters. Hence experiments on different sys-
tem parameters were carried out to find optimal values that can reduce training
time without a significant loss of performance. The investigated system parameters
included a comparison between CPU and GPU, the size of the mini batches and
the learning rate of the backpropagation algorithm. The experiments in this section
were all carried out with a trigram neural network model on the Vietnamese training
dataset. The network contained one hidden layer with 200 neurons and the input
vectors were projected onto a 100-dimensional continuous space which resulted in a
projection layer of size 200 as well.

6.2.1 CPU and GPU

Implementing the multilayer perceptron in Theano allows it to run on both CPUs
and GPUs. It is to expect that the GPU has a less processing time compared to
the CPU due to its highly parallel structure and efficiency. The experiments were
carried out on an Intel Pentium Xeon X5670 CPU at 2.93GHz and an NVIDIA
Tesla M2075 GPU. A comparison of the processing time for various mathematical
expressions can be found in Table 6.1 where functions such as exp, log and tanh were
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Operation CPU GPU

exp(M) 4.263 s 0.247 s
log(M) 1.721 s 0.235 s
tanh(M) 2.881 s 0.242 s
sigmoid(M) 2.610 s 0.235 s
softmax(M) 4.779 s 0.243 s
M ·N 538.637 s 3.336 s

Table 6.1: Processing time of mathematical expressions on CPU and GPU.

calculated element wise. The matrices M and N both had a dimension of D ×D
with D = 10000 and were randomly generated from the interval [0, 1].

As shown in the table above, a speed-up of at least factor 10 could be achieved in
almost every case using the GPU. Some operations even performed 20 times faster
on the GPU than on the CPU. Furthermore, the CPU seemed to be very inefficient
regarding the dot product of two huge matrices where the GPU could beat it by a
factor of 160. To evaluate the impact of these improvements on the training speed,
experiments on the time required for training a multilayer perceptron were evaluated
on both devices as well. Table 6.2 shows the results for different training lengths
which are one single example, a batch of examples, a training epoch and a complete
training period. In all cases, the learning rate was set to 0.1 and the size of the mini
batches to 100.

Training length CPU GPU

example 0.012 s 0.014 s
batch 0.281 s 0.021 s
epoch 43 min 50 s 3 min 22 s
complete 20 h 42 min 1 h 32 min

Table 6.2: Processing time of different training lengths on CPU and GPU.

While the CPU was faster than the GPU when only one example was processed, it
was much slower when batches of examples were propagated through the network.
With the GPU, a speed-up factor of 13.5 for a complete training period could be
achieved and due to this remarkable increase in speed, all following experiments
were performed on the GPU. Also note that a batch of 100 examples required only
a little bit more time than a single example on the GPU. This is further evaluated
in the next section.

6.2.2 Batch Size

Training on mini batches instead of single examples has shown in previous experi-
ments that additional speed-up can be obtained. To investigate the relation between
the size of mini batches and the required training time, experiments on various batch
sizes were carried out. The results can be found in Figure 6.1 where the learning
rate was set to 0.1 like in the previous section.
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Figure 6.1: Training time using various batch sizes.

As expected, the long training time of over 20 hours using mini batches consisting
of only one example could be significantly reduced by increasing the batch size.
But it seemed that the batch size could not be arbitrarily augmented to decrease
training time since a size of 1000 or more showed a slowdown instead of a speed-up
compared to smaller batches. This is probably due to the highly complex matrix
multiplications resulting from large batches which end up reducing the efficiency of
this optimization approach. A mimimal training time of 1 hour and 32 minutes was
obtained using a batch size of 100 which made an overall training time reduction by
about a factor of 14. Hence for further experiments, 100 was used by default for the
size of mini batches.

6.2.3 Learning Rate

Learning rate is a parameter that does not only affect the training speed but also
the performance of the trained neural network. A higher learning rate corresponds
with a shorter training since the algorithm descends faster towards the mimimum
of the cost function. But it is possible that those wide steps made during gradient
descent miss the minimum instead of finding it. A lower learning rate enables a
more careful descent to find the minimum. However, this more accurate training
can be extremely slow. In the experiments involing the learning rate, it was tried
to find an optimal value for this parameter that leads to good performance while
having an acceptable training time. Figure 6.2 shows the results on different values
for the learning rate with respect to training time.

It can be seen that the training time decreased almost steadily by increasing the
learning rate with training durations ranging from 5 hours and 20 minutes at a
learning rate of 0.005 to a little bit more than 10 minutes using a learning rate of 5.
The corresponding perplexities on the test corpus can be found in Figure 6.3.

Instead of a curve that goes up with increasing learning rates, it turned out to have
a more parabolic form. While the ascent of the curve for large learning rates is
unsurprising, training with smaller learning rates should have shown a much better
performance. The experiments demonstrated that tiny values for the learning rate
are also inappropriate. This is probably because that when the descending speed is
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Figure 6.2: Training time with respect to different learning rates.
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Figure 6.3: Perplexity on test data with respect to different learning rates.

too slow, the gradient of the cost function does not change very much between each
backpropagation steps. It can happen that the network believes to have found the
minimum and finishes training while the actual minimum is still far away.

Since the experimental results on the performance of various learning rates suggested
that a minimum could be possibly found, it simplified the choice of an optimal
parameter value. A close up view for learning rates between 0.01 and 1 is shown in
Figure 6.4. Good performance could be achieved by choosing a value between 0.05
and 0.2 where a learning rate of 0.1 performed best in most of the cases.

6.3 Performance on Test Data

This section presents the performance of the neural network language models which
was evaluated through the perplexity on the development dataset with respect to the
necessary training time. The influence of the projection dimension was thoroughly
investigated and optimal values were found for both bigram and trigram models.
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Figure 6.4: Perplexity on test data for learning rates between 0.01 and 1.

Since Vietnamese was the only language with enough data to train large networks,
experiments on networks with different hidden layer sizes and numbers of hidden
layers, especially large ones, were mainly carried out on the Vietnamese corpora.
For Tamil and Lao where too little data was available, only smaller networks with
one hidden layer were able to be effectively trained.

6.3.1 Dimension of Continuous Space

The task of the projection layer is to convert input word vectors into a continuous
space representation. The impact of the dimension of this continuous space is in-
vestigated by training networks with different projection matrix sizes. Experiments
were carried out on bigram and trigram networks with one hidden layer of size 200.
The results using the Vietnamese training corpus can be found in Figure 6.5.
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Figure 6.5: Perplexity of bigram and trigram neural network models with various
projection sizes for Vietnamese.
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To achieve good performance, the dimension of the continuous space should not
be chosen to be very small. A significant improvement of about 10% relative in
the perplexity could be achieved by increasing the dimension from 10 to 100 for
both model orders. But the experiments displayed that a further increase would not
provide such a big performance gain and even a dimension of 500 could not make
any substantial perplexity reduction.

The required time for training each model is shown in Figure 6.6. Surprisingly,
an increase in dimension did not necessarily lead to a longer training period. The
training time for bigram networks even decreased until a projection layer size of 200
was reached. Trigram networks were shown to require significantly more training
time with a 300 or more dimensional projection space which corresponds with a
projection layer of 600 or more neurons. In consideration of both the performance
and training time, a continuous space dimension of 500 for bigram models and 300
for trigram models was chosen for most of the networks for Vietnamese.
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Figure 6.6: Training time of bigram and trigram neural network models with various
projection sizes for Vietnamese.

6.3.2 Hidden Layer Size

The complexity of a neural network is given by its inner structure consisting of
hidden neurons. To increase the computational capacity of a neural network, it
requires more neurons in a hidden layer or additional hidden layers. Figure 6.7
displays how the performance of neural networks with one hidden layer could be
improved by adding extra hidden neurons. As before, the neural networks were
trained using the Vietnamese training set where the bigram and trigram model
utilized a continuous dimension of 500 and 300, respectively.

By increasing the hidden layer size gradually from 100 to 3000 neurons, the perplex-
ity of both models could almost be consistently reduced. While the perplexity of the
bigram model decreased from 176.37 to 166.27 by about 6% relative, the trigram
model received a performance gain of about 6.5% relative from 163.63 to 153.04.
Since both curves show signs of convergence, further addition of neurons to the hid-
den layer probably would not be able to provide perplexity improvements that are
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Figure 6.7: Perplexity of bigram and trigram neural networks with various hidden
layer sizes for Vietnamese.

worth the costly training time. The required time to train three layered bigram and
trigram models for hidden layer sizes up to 3000 is given in Figure 6.8. For sizes up
to 1500, the required training time stayed roughly in the same magnitude for both
models, but increased rapidly afterwards. Hence this makes training of very large
hidden layers less efficient considering their gain in performance.
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Figure 6.8: Training time of bigram and trigram neural networks with various hidden
layer sizes for Vietnamese.

Adding a second hidden layer of the same size could significantly improve the perfor-
mance of models with only one hidden layer. As shown in Figure 6.9, the perplexity
decreased by about 10 for all bigram and trigram models with hidden layer sizes
up to 2000. But also in this case, the perplexity converges with increasing number
of hidden neurons so that a further substantial improvement by using two hidden
layers with more than 2000 neurons is unlikely.
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Figure 6.9: Perplexity of bigram and trigram neural networks with two hidden layers
of the same size for Vietnamese.

The best performance using a second hidden layer was achieved by the models
with two hidden layers of 2000 neurons which obtained perplexities of 159.12 for
the bigram model and 142.52 for the trigram model. With additional complexity,
the required training time increased as well. While a bigram or trigram model
with one hidden layer could be trained in 2 h 30 min, it took the best bigram and
trigram networks with two hidden layers 3 h 12 min and 3 h 30 min for training.
An overview of training times for models with two hidden layer of various sizes can
be taken from Figure 6.10.
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Figure 6.10: Training time of bigram and trigram neural networks with two hidden
layers of the same size for Vietnamese.

Unfortunately, the significant improvements by adding a second hidden layer could
not be continued with more extra hidden layers. Performance results of experiments
with different numbers of hidden layers are displayed in Figure 6.11 where all hidden
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layers consisted of 500 neurons. The according training times can be found in Fig-
ure 6.12. While adding a third hidden layer could only slightly improve perplexity,
networks with four or more hidden layers even experienced a loss in performance
compared to smaller networks. This happened probably because the lack of data
caused the network to overfit when it tried to learn too many parameters from in-
sufficient amount of examples. Hence, the network complexity including the number
and size of hidden layers should not be arbitrarily increased but always adapted to
the available training data for an optimal training result. Since three hidden layers
with more than 500 neurons brought a decrease of performance as well, the overall
best experimental performances on Vietnamese were 158.54 for bigram models and
140.95 for trigram models which were achieved by networks with three hidden layers
of 500 neurons each.
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Figure 6.11: Perplexity of bigram and trigram neural networks with different num-
bers of hidden layers for Vietnamese.
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Figure 6.12: Training time of bigram and trigram neural networks with different
numbers of hidden layers for Vietnamese.
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Neural network language models for Lao were trained with extremely sparse data and
experiments proved that the complexity of the network should be adapted to the size
of the training corpora. During the experiments, satisfactory performances could not
be obtained by networks with many or large hidden layers but smaller networks with
one hidden layer were capable to outperform the bigger ones. Projection dimensions
of 100 to 200 and hidden layer sizes of 100 to 300 were able to provide good results
in most cases. Like Vietnamese, language models for Lao were trained on the full
vocabulary. The best performances of bigram and trigram models along with the
corresponding network parameters and training times can be found in Table 6.3.

Model Projection size Hidden size Training time Perplexity

2-gram 200 200 15 min 153.18
3-gram 100 200 14 min 148.09

Table 6.3: Performance of bigram and trigram models for Lao.

Since the lack of training data also applies to Tamil, similar network parameters
were found to score less perplexities. For Tamil with a huge vocabulary of over 16 k
words with respect to the available amount of data, no satisfying neural networks
could be trained using the full vocabulary. Hence, short-lists were applied where list
sizes of 5.5 k and 11 k words were experimented. The results of the best models for
both short-list sizes can be found in Table 6.4.

Model Projection size Hidden size Training time Perplexity

2-gram 5.5k 200 200 12 min 458.04
3-gram 5.5k 100 200 13 min 453.11

2-gram 11k 500 200 25 min 578.85
3-gram 11k 200 200 20 min 554.62

Table 6.4: Performance of bigram and trigram models for Tamil.

6.4 Speech Recognition Tasks

The neural network language models for all three languages were further evaluated on
speech recognition tasks and compared to 3-gram backoff language models smoothed
with Kneser-Ney. For better system integration, the new models were converted to
look-up probability tables by rescoring lattices generated by the speech recognition
system. The converted models were then brought to ARPA format by backing off
a trigram probability table with a bigram and unigram table where the unigram
table was taken from the baseline model. Furthermore, hybrid models built by
interpolating neural network models with baseline models were also evaluated.

The comparison results between baseline, neural network and hybrid models for
Vietnamese are shown in Table 6.5 where the second column denotes that the best
bigram and trigram neural networks with the according number of hidden layers
were used for the neural network model in ARPA backoff format.
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Model # Hidden layers Perplexity WER

Baseline - 160.43 50.1

Neural network 1 164.79 50.8
Hybrid 1 147.95 49.6

Neural network 2 159.83 50.2
Hybrid 2 144.04 49.5

Neural network 3 158.48 50.1
Hybrid 3 143.10 49.5

Table 6.5: Comparison of baseline, neural network and hybrid models on Vietnamese
speech recognition tasks.

Although the perplexity and WER could not be significantly decreased using the
neural network language models alone, the interpolated models were able to achieve
great improvements compared to the backoff baseline model. The best model with
one hidden layer was interpolated with a weight of 0.4 and reduced the perplexity
by nearly 8% relative and the WER by 0.5% absolute. The networks with two and
three hidden layers were both interpolated with a weight of 0.6 and improved the
perplexity by about 10% relative and the WER by 0.6% absolute.

As shown in Table 6.6, substantial improvements could also be achieved for Lao
despite the litte training data that was available and the much smaller networks
with a single hidden layer that could be trained for this reason. While the baseline
perplexity could be reduced by 9% relative with the neural network model alone,
the WER of the new model was the same as the baseline WER. But using the inter-
polated model with a interpolation weight of 0.6 for the neural network model, the
perplexity could be further decreased by 5% relative and an overall WER reduction
of 0.8% absolute was obtained.

Model Perplexity WER

Baseline 139.75 63.7

Neural network 127.38 63.7
Hybrid 121.14 62.9

Table 6.6: Comparison of baseline, neural network and hybrid models on Lao speech
recognition tasks.

Finally, comparison results for Tamil with respect to the perplexity on the develop-
ment data can be found in Table 6.7 where 5.5 k and 11 k denote the size of the
short-lists used by the output layers. It can be seen that the baseline perplexity
could be significantly reduced in all cases by improvements of about 23% to 25%
relative. Due to the late point of time that the speech recognition system for Tamil
was available for evaluation, only an initial test with one hybrid model could be
conducted within the time frame of this work. Since the system was still in develop-
ment and the acoustic components were not yet the best ones, the baseline n-gram
model resulted in a WER of 91.1%. Using the same system, the baseline WER
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could be outperformed by 0.3% absolute with the hybrid language model using a
5.5 k wordlist and an interpolation weight of 0.5. It can be expected from further
experiments, that different interpolation weights might lead to another gain in per-
formance and that the models using a 11 k wordlist might probably outperform the
5.5 k models. Also higher improvements can be possibly achieved when integrated
to a better developed system with more accurate acoustic models where the neural
network language models can be utilized more effectively.

Model Perplexity

Baseline 575.58

Neural network 5.5k 441.13
Hybrid 5.5k 436.28

Neural network 11k 437.77
Hybrid 11k 432.84

Table 6.7: Comparison of baseline, neural network and hybrid models on Tamil with
respect to the perplexity on test data.
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7. Conclusion and Further Work

This work described how language modeling can be performed in a continuous space.
Neural networks in form of multilayer perceptrons were implemented and trained
on the languages Vietnamese, Tamil and Lao where data sparseness is a severe
problem for alternative methods like n-gram language modeling. The training of the
networks was optimized using Theano implementations for GPU where a significant
reduction of training time could be achieved. Experiments on different network
parameters such as the batch size and the learning rate were carried out to investigate
their influence on the training time and optimal values could be found to obtain
most possible time reduction. These optimizations were important since all further
experiments with neural networks of different sizes, especially large ones, could only
be carried out with an acceptable training time.

The performance of various neural networks was thoroughly evaluated where dif-
ferent projection size, hidden layer size and number of hidden layers were used.
Experiments have shown that the network complexity should be adapted to the size
of the available training corpus. For Vietnamese, networks with three medium-sized
hidden layers proved to perform best and for Tamil and Lao which had extremely
little data, optimal results were obtained by smaller networks with a single hidden
layer. In a comparison with state-of-the-art n-gram-based language models, consis-
tent perplexity and WER reductions could be reported for all three languages with
significant WER reductions up to 0.6% absolute for Vietnamese and 0.8% for Lao.

In this work, we proved how a multilayer perceptron can be effectively employed
for language modeling, even for languages with extremely sparse data. To improve
our multilayer perceptron for large vocabulary languages, the structured output
layer described in section 3.2.2 could be used instead of short-lists which provides a
possibility for future works on this area. Although the training time was significantly
reduced by running the network on the GPU and utilizing mini batches, there are still
many other potential optimization techniques such as the grouping and resampling
of training data that need to be investigated in case of huge text corpora. The
neural network language models in this work were evaluated on speech recognition
tasks and it would be interesting to see the performance of those neural network
language models integrated into other applications like machine translation as well.
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Furthermore, there is the possibility that the speech recognition systems can be
improved even more by not only applying neural networks to language modeling,
but also to acoustic modeling.

Beside the multilayer perceptron, there are many other neural network architectures
such as the recurrent networks described in the sections 3.2.3 and 3.2.4 which sound
promising and can be tested on low resource languages as well. Finally, since the
languages Vietnamese, Tamil and Lao are not the only low resource languages pro-
vided by the IARPA Babel program, experiments on various other languages with
sparse copora such as Cantonese and Haitian Creole can be carried out in future
works.
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