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\Veighted finite-state transducers ami thp associated algorithms have be-
COUll"a popular IIwans of constructing speech reeognition decoding networks.
It has been shown that building and optimizing the network offline COll-

tributes to a speech d{'C()der's accuracy and spe<>d[1]. Another advantage
weighted finite-state transducers provide is a straightforward represnetation
of all information sources involved in compiling the S{'arch space.

Hov.•.ever, constructing the final recognition transducer can prove to be
very lIu'lIlory demanding and time consuming. The explicit expansion of
the transducer mapping from context-d£'pcndent subword units to phones
contributes a lot to the inefficiency of the offline recognition network con-
struction. In this paper we describe an algorithm for directly constructing
a finite-state transducer mapping directly from sequence$ of gaussian mix-
ture models to context-independent phoJl{'s. Ba.~('(] on the 5-step procedure
descirbed in [2], the method involves parsing a decision tree to derive an
efficient reprcsentation of its leaves. It then enumerates and stan's all pO&-
sible k-Iong duster combinations that could forlll a valid Hidden ~larkov
~Iodd accordin.l!, to the decision tree. An algorithm is then proposed, which
interconnects these sequences to form the final transducer.

An important advantage of the cOlllJection algorithm is that it is lo-
cal, allowinp; for a more efficicnt on-the-fly implementation and combination
with other local weighted finite-state algorithms. ""f' Ilst>dan Oil-demand
expansion and iflllllt'diate determinizatioll to construct a transducer using
a decision tree with 16,000 leaves, which would be impossible otherwise-
either using the standard techniques explained in [31 or the static expansion
in [4],

Finally a proof of the correctness of the conncction algorithm is proposed,
which compan's the edges set of the cOllstructed transducer with the explicit
composition of a hidden ~Iarkov model transducer and a context-dependency
transdll('eL \\'e show that both trallsdu<:ers df'scribe the saIIle string.to-
string mapping.
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Using phone context in sp('('Ch recognition has provcn to be very beneficial
in the past [51. This rdlccts the fact that each subword unit produced by our
articulatory mechanism has bffn affI:'Ctf'dby a combinat ion of t he previously
pronounced and the anticipatf'd upcoming snhwurd units. Therefore we can
hardly exp(~d to ~'€ a pure realization of a phone in real speech.

A more accurate speech recognizer can be built, if an acoustic lIludel for
every separate pholle variant in each differ{'nt context is trained. However,
the number of possible comext-dependent phones is very large, even after
restraining oneself to the phones oeeuring in the dictionary and not crossing
word boundaries. Therefore. training each sllbword unit becomes a problem,
hecause the limited amount of t raining data is unable to cover the whole set
of context-dependent models with sufficient number of examples.

In order to compensate for the great variance introduced by context-
dependent subword units, some form of clustering must be uscd. Young
and Woodland [6] suggest a data-drh't'n iteratiw state clustering pro<:edure.
where all available states arc put into equivalence classes according to a
form of distance measure between the different classes. A furthest neighbour
hif'Tarchical clustf'Ting algorithm is propohCd. whereby initially each state is
lIssiglled lin individual cluster of its own, and then durin~ the subsequent
iterations these clusters are merged together, making up for insignificant
differences between them as dictated by the employ{'d distance function.

A more useful approach is to grow a phonetic decision tree [7]' which
chooses the suitable clusters for each subword unit model. Using f'Xpt:'Tt
linguistic knowledge, this solution has ttIP benefit of providing clusters for
unseen in the training data context-dependent subword units. Decision-
trff state clustering also facilitates the introduction of higher span context
depcndcllcy. by simply exh'nding the stretch of the questions attached to
the nodes in the tr~'C. These and other advantages make the use of decision
trft'S very popular in contemporary spl'eeh reeognition systems.

The use of ,V-gram language models, large dictiunaries and tied-state
acoustic models can lead to a lot of redundancy in the recognition network,
expanded by the deeoder during recognition. This illcrea.<;csthe memory
requiremf'nts and the runtime of a r!'Cognizer. \\'eighted finite-state trans+
ducf'TS and the associated composition, dcterminization and minimization
algorithms provide an cfficicnt and elegant framework to compile the recog-
nition network omine and to eliminate the redulJdancy.

1.1 'Vcighl.ed Finit.e-St.ate Transducers

\\'pighted finite-state transducers (\VFSTs) are an extension to finit('..state
automata, in that, on addition to the input symbol. each arc can have a
weight and an output symbol. Each transition in a \\'FST consumes an input
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symbol and outputs a symbol and a weight. A succ{'ssful path in a WFST
acc£'pts a word from its input. alphabet, outputs a word from its output
alphabet, and assigns a weight to the Dccming transduction. The weights
on the arcs an' mt'mbers of a semi ring (X, ED,3, 0, I) and ar£' combined using
the $ semiring operation. The 0 and $ operations are used in conjunction
with other WFST algorithms [8], [3], [9;.

Having an output alphabet enabl{'s \\TSTs to combine, forming the
composition of the modeled transductions. The composition of the traIlS-
ducers A and B is denoted by A 0 B and is formed owr the int.erS('ction
of all pOl'lsibleoutput strings of A ami all possible input strings of B, thus
emulating the immediate application of B after A. Through composition
many information sonrc<'s can be integrat£'d into a single weighted finite-
state Iwtwork, whieh can be seardlt'd to produc<' the 'best' mapping from
t.he input. alphabet. of the last source, to the output alphabet of the first.
However, this network can bf'Come enormous, having millions of states and
transitions and exhibiting a lot of redundancy.

1.2 Speech Recognition with \VFSTs

As described in [3;,[81, weighted finitc-st.atc transduc<'rs can provide a very
natural environment for spN'ch recognition.

\Ve start with a language modd WFST G, which assigns probabilities to
sequences of words. The language model is an acceptor, which is converted
to a transducer by duplicating the input alphabet on t he output sidf'. As
outlined in [8]' a way to build a WFST from a ~t of X-gram counts is to
proceed as in a de llruijn graph construction. where the nodes are labclt'd
by n-long word sequences. For each word sequence ww' there is a transition
labeled Wi leadinj!; to a state 11/1.1.''', where w'u/' is a sequence with a nonzero
X-gram count.. The weight on this arc is computed from the corresponding
probability of oceurre-llce and is repre~'nted in a negative log form.

The construction of the dictionary transducer L is very straiKhtforward.
since a word has a finit£' number of pronunciations, each of which can b£'
modeled by a simple strillK of arcs labeled with the phones ill the transcrip-
tiOIlS. Thf' word is a..<;..<;ignro to one of th£'S('arcs as an output label, typically
the starting or the ending arc of a st.rinj!;. All theS(' arcs share a begin node,
and each final node of a s£'qu£'nceCOlllwcts back to it.

The language model transducer is composed with the dictionary trans-
dll("t~rto produce a transduc£'r LoG .. each path in which maps frorn a
sequence of phones to a sequence of words with the right probability givell
by the language model. The composition LoG is determinized to facilitat.e
subsequent eomposit.ions.

As described in th£' introduction, ¥"e want to profit from having cross-
word context.-dependency phones. Therefore we lIeed a tramducer which
maps from Sf'qn£'neesof context-dependent phones to sequences of context-
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independent pholles. A context-dependency transducer C can be construetf'd
in the same way as the language model. and the needed probabilities esti+
mated from a training corpus.
Finally, each context-dependent phone has an associated tip<l-state aeou&-

tic model. consisting of a sequence of duster symbols. A hidden Markov
model transducer If is needed to map from sequences of duster symbols
to sequences of context-dependent phones. Similarly to a wonL a context-
dependent phone has a finite number of duster sequence expansions, so we
can construct H the same way we construct L.
As mf'ntioned, tht' final composed tranWucN Hoe 0 det(L 0G) is ineffi-

cient in terms of size, since for example many context-dependent phon('s can
share common cluster subsequences, but the composition algorithm create'S
multiple identical arc strings for them. ).tohri show('d [9J that a subsequent
dt'tcrminization, followed by a minimization eliminates the ambiguity and
product's the minimal transducer.
The constructed recognition network describes a mapping frolll Gaussian

mixture lIlodels to words, and can be synchronously searched [3], [IOJ to find
the best possible S('quence of observation symbols corresponding to an input
utterance. The transducer maps this sequellce to a sequence of words, which
is in turn the best match output by the recognizer.
While very elegant and straightforward, this techniqut' has certain limi-

tations. The intermf'diate transducers can become very large, even after the
aforementioned optimizations. For example, a fourgram language model
with 2,260,500 fourgrams, 3,559,905 trigrams, 4,714.631 bigrams and 48,282
words has 9,057,717 states and 18,917,:l31 arcs.
The context-dependency transducer alone can be tremendous in size for

large contexts, having O(nk-1) stat~ and O(nk) arcs for a cont.ext length
n and a phone set of size k. Evell when many of the context-dependent
phones arc impossible, or would be filtered by the following composit.ion
with a hidden :\tarkov model transducer, the fact that t.he expansion must
be kept in mt'mory. limits the size of the recognition Ilehvorks, which can be
built by composing WFSTs.

1.3 Related "'ork

There are approaches to directly construct the composition II 0 C and so
avoid the complete expansion of C. Chen [II]' proposed a technique, where
f'ach question in a dedsion tr('(' is encoded as a finite-st.ate transducer (FST).
A simple one-state transducer (.'Olltaining self loops for all phones in the
phOllf' set is iteratiycly compo;;;ed with these FSTs to produce a final three-
state cluster expansion of a phone. The one st.ate t.ransducer is first extendp<1
with pl&:eholders for the decision trce leaves. These placeholders arc iter-
at.ively expanded by the compositions, as each following FST rewrites the
output of t.he previous one until a final leaf FST is reached. A degree of
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nOlldetefminism in the resulting graphs can be ('xp('cted, since the final ex-
pansion of a phone depends on the ldt and right phone contexts. This
is overcome by first applying the questions for the left-hand-side contf'xts,
determinizing and minimizing, then reversing thf' graph and applying the
right-hand-side questions.

The work of Chen has its roots in a paper by Sproat and Rile)' [121. In it
they use the fact that the questions in a phonetic decision trre can be repre-
sented as r('gular ('xpn'ssions and a leaf is an intersection of all the regular
expressions traversed 011 the way to the leaf. Each leaf's regular exprt'SSion
can be compiled to a WFST and the intersf'Ction of all sudl ,,'FSTs imple-
ments the mapping from the input alphabet of context-dependent phones.
to the output alphabet of allophonic classes (c1ust('rs), which the decision
tree represents.

Similarly to [11] and [121, Schuster and Hod [21 pr('sented a simple 5-
step procedure for constructing a \\'FST dirf'Ctly from dpcision trt'{'s to
circumvent thf' static expansion of C. The pro<:edure avoids expanding all
polyphones explicitly, by first parsing the decision tree, and forming all
Gaussian mixture combinations admitted by it. Thereafter it interconnects
these Gaussian mixture sequences appropriately to form a transducer which
maps from Gaussian mixture modds to context-independent phon('s.

2 Direct Construction of the Composition

\\'(" describe an algorithm, which mrn'ct.s a mistakf' in [2J. Onr solution
is based on the 5-step-procedurc, but we show that a modified version of
the fourth stf'P gem'rates the right ill-between phone connections and the
constructed transducer provides the right mapping from duster sequences
to phone sequences, as allowed by the decision trees. \\'e also prove the
correctness of the algorithm and the fact that it indt'{'d emulates the explicit
composition of 1/ and C.

2.1 Parsing the Decision Tree

It is important to clarify how the dust.er symbols in thf' H:-'I~Itransducer 1/
are df'fivM. Since the number of polyphones for a general large-vocabulary
speech recognition system is tn'lIlelldons, it. is the case that there is not
enough alllount of training data to train cach separate paramet("r of a given
II:-'IM. Therefore, typically the states of all H:-.n.r are clustered, thereafter
computing only the Gaussian componcnts of each cluster, having k dust.ers
per HM~1. This follows t.he assulIlption that a specific output distribution
of an H~I~I will be comlIlon among different realizations of a phonc as a
polyphone [5].

The state clustering procedure is lealized by k decision trees. each of
which is a binary tr('(' with a question attached to each nodc and two subtre("s
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corresponding to the 'yps' and 'no' answer of this question. \\'hell a cluster
is nf'f'ded for the i-th statf' of an H~[~l, the i-th decision trC<'is parsed from
the root, thereby answering the questions for the H1IM's cOlitext-dependf'llt
phone. Each qlJt'Stion refers to the phone at position one of the n left or
right contexts being in a predefined phone class. Thus, a leaf in the decision
trC<'is a set of phones for each context position, determined by the answers
to the questions along the path from the root to this If'af. Tht' answers for
a spt'dfic context position i must not contradict each other in the different
clusters assigned to a polyphone ID.I~I.

Since each leaf in the decision tree is a set of k permutatiolls of a finite
set of pholles, it can be efficiently modeled by a matrix of bits, Each column
of the matrix reprpsents a context po!'ition and each row is assigned to a
phone, \\'hen a specific pholle is allowed at a particular context position of
a leaf in the decision tree, the corresponding bit in the matrix is set to 1,
otherwise it is set to O. For example, in Figure 1 the pholle 'B' is allowed
at context position +1 and the phone '{Z:WB}' at context position-2. The
phone 'z' is not allowed any,"vhere.

polyphone position
phone 0 I 2 3 4
AH 0 0 1 1 0

{AH,\\'B} 0 0 1 0 0
B 0 0 0 1 0

{EWE} 0 1 0 0 I

Z 0 0 0 0 0
{HI'B} 1 0 0 0 0

Figure 1: A bit matrix corresponding to the duster modelling the context
depf'lldent phone' All'

Depending on the decision tree, a bit matrix call bl' lar!!,l'lysparcl', COIl-
taining llIany zeroes and fe.•••.ones. Therefore it might be beneficial to com-
press this r('pr('s('ntation in the interest of saving memory. However, another
repr('sl..'ntatioll could compromise the runtime ('fficiellcy we gain from the use
of the very fast bitwise operations. Furthermore, an impl('nH'ntation packing
the bits into long integers consumes a relatively small amount of memory.
The results of an experiment replaciu!,!;the bit llIatril'es with hash values
(Section 4..1) illdi{~at('sthat memory saving efforts should be targeted else-
wlll're.

\Vithout loss of gf'nf'rality, let us a!'sume that the left branch of a node
in the decision tree corresponds to a 'no' answer and the right branch to a
':res' answer of this lIode's question. The walk up the decision tree starts
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at the root with a bit matrix, all of whose bits arc sd to 1. A modified
copy of the matrix is pa"sed to the right branch of the root, marking with
zeros phOllCSthat do not belong to the question's phone M't and arc in its
context scopel. Similarly, the bits that do belong to the question and arc in
its scope are zeroed out and the modified copy is passed to til(' left brandl.
The prol:-'esscontinues until a leaf is reached.

A modification of this procedure must be made to accommodate a de-
cision tfl'e with compound questions. Le. questions, which refer to many
phone contexts at Ollce. A 'yes' answer to such question would only require
resetting the corresponding bits in the different columns of tht~ bit matrix.
However, handling a 'no' answer is lIot entirely as straightfonvard.

Consider a compound qu('stion (A 1\ B), consisting of the simple ques-
tions 'A' and '0', each of whidl is of the type "Is the phone at position
-1 diphthong'?". A 'no' ans,",,'Crto this qllf'stion can be given by a negative
answer of either one of the questions, i.e. -'(A /\ B) =...,A V ...,B. Therefore,
when parsing the decision trC'(' we have to propagate two versions of the
modified bit matrix - one for each negative answer. The leaf collects all the
bit matriCf's from all the paths to it in a set we call a bit matrix list.

2.2 I\Ictastate Enumeration

Our goal is to build a transducer. \vhich maps from sequences of Gaussian
mixture models to sffJuf'nces of corresponding phones. This involves enu-
merating and storin,!!;all possible k-long cluster combinations that could form
a valid H:\IM according to the dccbion tre('. Each cluster is a descript.ion of
all context-dependent phones, in ,"",hoseexpansion it can participate. There-
fore, a Gaussian mixture cluster sequellce is valid, if every context position
of the intersection of the included clusiers is non-empty.

A bitwise & operation of two equally sized bit matriCf's is defined a"
the bit matrix obtained by a bitwise & of the individual bits at the same
positions in the initial bit matrices.

Let 1.1 = {o; Ii = I ... I} and I." = {U;' Ii = l ... p} denote two bit
matrix lists. \Ve redefine the bitwise & operation for bit matrix lists:

1.'&1." = {B;&BJii = 1. .. 1,j = t ... p}.

k dusters CI, C2....• C/, can form a valid Gaussian mixture sC'<luenceif the
bitwise &; product of their bit matrix lists

L = LCl&Lc2& ... &Lc•

cOlltaills at least one bit matrix, each of whose columns contain at lea'lt olle
set bit. This prerequisite reflects the before mentioned requirement on the

IAs~;urningthat the question refers to a single context po-,ilion. the affected bits will
occupy a single column.
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cluster intersection. A bit matrix, which fulfills this requirelllelit is ca\l{'(l
valid.

Since the number of Gaussian mix1ure pcrlllUlatiolls is Vf"fYlarge even
for only three-state S('quellces, we can calculate them in multiple passes. first
forming the possible two-long cluster seqUf'IlC(,S,then the possible three-long
cluster ,wquencf'S, and so on until all possible k-long cluster S{'(lllCIlC('Sare
enumeratro.

\Ve store the cluster permutations in a metastate structure

r•..1= (P,Cl, ... ,q,L), where

• p signifies a context indepf'ndent subword unit (phone),

• Ci are the cluster symbols 2 , and

• L is a valid bit matrix list, obtained from the bitwise & product of the
clusters' bit matrix lists.

The phone symbol p is stored for convenience, but is not nff'ded since it
can be inferred from the center column of all bit matrkes in L. During
th{' construction of the dccbion tree, a s{'parate decision trff' is grown for
each phone; hence the phone identity is known implicitly for {'ach leaf in
thC'decision tn~. Checking the center columns of the bit matrices is a good
sallity check during the bit matrix and cluster ellumeration pha'K's.

By forming all possible leaf permutations and examining th{' correspond-
ing bit matrix lists we make sure that C'ach context-dependent phone will
be covered by one Gaussian mixture Illode! in the final combincd HC trans-
ducer. \Vhat net"<lsto be done next is to set the c(llHlt><~tionsbetween the
enumerated cluster sequences.

2.3 Connecting the l\letastatcs

After computing all metastates, we need to interconnect them so that the
combined lIG transducer maps successive cluster sC<luences to successive
context-indppelldent phones. We determine the metastates able to COIllWct
to each other, by doing the bitwise & operation on their bit matrix lists,
but shifting the bit matrices in the starting m••tastate's bit matrix list by
Oil('column to tbe' left beforehand. This is necessary, because any phones at
context position i in the starting met.~tate will be Sf'en at contcxt position
i-I from tbe target meta<;tate, as each following metastate moves us by
one phone aiwarl on the output side of the transducer.

During the metastatc connection step, we maintain a list Q, which COil-
tains all metastates, which have to be further expanded. A queue T holds all

2Durillg thi~ ~tep. we creal •• an individual node for each eh,st ••r symbol c, In the
p~udocode below, we refer to the states by the name., of their corresponding clusters.
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pre\'iou~ly visited meta.<;tates and is searched whenever new rnetastates arc
created, so to prevent adriing retillndallcy to the transducN and to ensure
that the algorithm will evcntually finish.

Assuming that all rnetastates from the previous enumeration step arc
stored in a set 5, the algorithm in Listing 1 intercoIillt'cts the metastates in
the He transducer. Since our speech l"ecoj;!;nitiollsystem only allows uttN-

Listing 1 :\fetastate connectioll.
00 de! connectMetastates(SIL, 5):
01 push SIL on Q
02 add SIL to T
03 connect INITIAL to SIL
04 while IIQII > 0:
05 pop q from Q
06 if q.p == SIL:
07 connect q to FINAL
08 foreach s E S:
09 L +- (q,L ») & s.L
10 if IILII > 0:
11 t +- (s.p. S.SI. 8.S2, S.S3, L)
12 if t rf- T:
13 add t to T
14 push t on Q
15 e +- (q.S3, LSI, t.SI, t.p)
16 add e to E
17 return (T, E)

ann's starting and ending with silence, we begin by pushing the metastate
for 'SIL' (silence) on Q. Latcr we only allow 'SIL' IIlt'tastates to connect to
the elld node of the transducer (Lines 06-07). This can of course be modifif'ri
to allow any or all phones to start or end an utterance. The loop at line 04
pops Illetastates from thc list Q and tries to conncct them with metastatt's
from thc enumeration step in list S (Line 09). If a new metastate t can be
created (Line 10), we check if a rnetastate with the same duster symbols,
output phone and bit matrix list ha.<;bf'f'n creatPd before(Line 12). and if
not, we create new transduCf:'r states for its cluster sequellce and add it to the
Q Ii:-;tfor further expansion. \\'c also pu:-;h it on T. so that if later another
tnetastate with the sanl£' cluster sequence and bit matrix list is created. its
cluster symbols will correspond to t's nodf's. If t is found in T, it is not
pushed on Q and instead the existing tnctastatc is u:-;cd a.<;L Finally, an
edge is addf'd in Lim>s 15-16 from the end node of q to the begin node of t,
using the cluster symbol t.SI as all input symbol and the Ilwta.<;tate's phone
t.p a:-;an output symbol.
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We base our development on the work of Schuster and Hod [21. However,
the metastate connection algorithm described here addresses a mistake ill
the fourth step "Generate between-phone connections" of their procedure.
Aft{'f a thorough examination, it may become apparent that this step leaves
connections bf'twren thrpt>..state sequences, which should not in fact exist..
It's important to mention that Schuster and Hori's implementation is correct
for context lengths of three. The discrepancy appears when using larger span
contexts.

A one-pass multiplication of the binary shifted bitmaps with all non-
shifted phone bitmaps might allow invalid connections in the resulting He
transducer. The reason for this lies ill the faet that the eontext history
reduces the number of future conn('ctions a mctastate can hav(', but is not
considered when using a ont:'-pass multiplication. Instead of the newly cre-
ated bit matrix list L (line 9), the old bit matrix list s.L is assigned to
the new metastate, thus discarding the information that the q metastatc
has been connected to the s metastate. Therefore the effect, which this
connection has on the future connections of tis nf'glect('(1.

This property does not present itself in the ease of triphones, wh('re a
onc..pass multiplication is enough. Triphonic bitmap lists restrict only the
immediate connections of their Illet~tates. On t.he contrary, pcntaphone
and larger span context metastates can restrict the prospective connections
of the metastates they connect with. i.e. the nth context of Oil(' rnetastate
affects the n - pl context of next one. which in turn rcstricts its n ~ 2nd

context and so all. The same is valid for the lll'gative (left) context positions.
As an example of this. consider the llIeta<;tates corresponding to the

phones A.Rand C and their bit matriccs in Figure 2. After a one-pass

A B C
0 1 2 3 , 0 1 2 3 4 0 1 2 3 ,

A 1 1 1 1 1 A 0 1 0 1 1 A 1 0 0 1 1
n 1 1 0 1 0 n I 0 1 0 0 n 1 1 0 0 I
C 0 1 0 0 0 C 0 0 0 1 1 C 0 0 1 0 1

Figure 2: Pl'ntaphone metastate bit matrices

multiplication the COllll('ction pairs A -> D and D ---> C can be formed, ~
the bit matri('('s in Fig. 3 show. This means that the transition A ---> n ---> C
will appea.r ill the eombined /lC transducer and will be incorrect. since
the influence the met~tat.e A has Oil the connection D -> C has been
disregarded 3. Figure ,1 shows the invalid bit matrix produced with the

3Namciy,A doe~n't allowC to ~tayat +2 po:;ition
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correct Illetastate COIIIl('ctiollalgorithm.

12

(A »)&13
0 1 2 3 4

A 0 1 0 1 1
13 1 0 1 0 0
C 0 0 0 0 1

(13»)&C
0 1 2 3 4

A 1 0 0 1 1
13 0 1 0 0 1
C 0 0 1 0 1

Fi?,ure 3: The connection pairs can be formed.

(((A »)&13) »)&C
0 1 2 3 4

A 1 0 0 1 1
13 0 1 0 0 1
C 0 0 0 0 1

Figure 4: The invalid bit matrix for the transition A -> B -> C.

On the other hand, if we consider the same mctastatcs, but for triphoncs,
we sec that the one-pass multiplication and the correct algorithm produce
equal valid bit matrices, i.e. {B »)&C = {«(A »)&B) »)&C (Figure 6).

A 13 C
0 1 2 0 1 2 0 1 2

A 1 1 1 A 1 0 1 A 0 0 1
13 1 0 I 13 0 1 0 13 1 0 0
C 1 0 0 C 0 0 1 C 0 1 0

Figure 5: 1'riphonc metastates for the phones A, B. and C.

(13»)&C
0 1 2

A 0 0 1
B I 0 0
C 0 1 0

((IA »)&13) »)&C
0 I 2

A 0 0 1
13 1 0 0
C 0 1 0

Figure 6: Valid bit matrices produced with the onp-pass multiplication and
the corred algorithm.
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4 Efficient Construction of the COIubinedHe Trans-
ducer

The al.ll;orithm in Listing 1 for connecting the Illetastates is correct, but
slow and memory demanding for any distribution tree of a realistic size.
The reason for this is the high lIumbl'r of IIletastates and the t.ransducer
size itself during construction. We address t.hese problcms in the following
sections.

4.1 I'vletastate Connection Speed Up

A major acceleration of the IlLctastate connection algorithm can be aehieved
if the search in line 08 is restricted to only a subset C(M) c S, which
contains all metastates that can be linked to the gi\-en metastate Iv1. We
can determine C(l\I) by looking at the right column next to the cellter
column of each bit matrix in thc metastate's bit matrix list. This column
represents the possible phones that t he decision tr('(' places at the +1 context
position, Le. the immediate neighbouring phoIles, and so thl" search can be
restricted to only these phones' lIletastatcs.

During this pr('calculation step. we can also simultaneously compute
a bit mask B for each metastatt' 1\1. The purpose of the bit mask is to
accumulate the context information of all mctastates. which can be paired
with the current one:

I~LI
DM ~ V V D,.D, U.L'

~EC(M)i=J

A bitwise & operation of a right shifted versiOHof bit mask and l\1.L
represents an intersection of the context information of !vI with the cumu-
latin' contextual information of all llletastates in C(l\.I). This intersection
happens any\vay during regular mcta.<;tatc connection, Lc. for any t hrre bit
matrices A, B. C

A&(D VC) ~ (A&D) V (A&C).

The dfect of applying this operatioll in advallC€ is a fMuction of the metas-
tate's bit matrix list size by disregarding invalid bit matriccs. It also prevent.s
the forming of lIew IIleta.<;tatcs in the list T, which differ only in insignifi-
cant set bits in thf'ir hit matrix lists. Such meta.<;tates will be unified in the
subsequcnt determinization and minimizat.ion applif'd 10 the combined HC
transducer.

4V is to be underst.ood w; a bitwise .or. op,)ration of the bit mat rice;;
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4.2 On-demand Expansion of He
Once the met.ast.ates are enumerated, the connection algorit.hm ean be ap-
pliPd locally for a giwn node. The information to connect a given metastate
in the transducer is contained in its bit. matrix list, and t.herefore we cau
dispense ,•...ith storing the contents of the entire transducer in main mem-
ory, ••••.hile only keeping the identity of the already expanded mdastates and
the S list. An additional advantage this method gilT>Sis that another local
finite-state transducer algorithm, such as weighted composit.ion or ••••.eighted
determinization, can be applied to t.ll{'transducer simultaneously on-the-fly.

During an expansion of the transducer, an acc('Ss frequency count is
assigned to ea<:h node and a cleanup IllcllIory function is regularly called to
free memory occupied by less frequently used nodes's adjacency lists. Should
a node's edges list be needed again, it can be calculatPd using the bit matrix
list of t.he metastate, t.o which this node belongs.

The adjacrncy list expansion algorithm in Listing 2 implements an incre-
ment.al transducer construction. The function edges{q) is calkd whene\"t~r
the adgaeeney list of the end node of a metast.ate q is needed by a graph
traversal techniquc, such as breadth first or depth first search.

Listing 2 AdjacenC)' list expansion.
00 def edges(q):
01 if q.E i- 0:
02 returnq.E
03 if q.p == SIL:
04 connect q to FINAL
05 f oreach s E C(s):
06 L <- (q.L ») & s.L & Ds
07 if I,LII > 0:
08 t <- (s.p. s...•.•.8..••.2. s...•.3, L)
09 if t If- T:
10 add t to T
11 e <- (q,S3. t.Sl. t.sl.g, t.p)
12 add e to q.E
13 returnq.E

The adjac<:'IlCYlist of a node does not havc to ue regenerated, if it already
exists (Line 01). otherwise a modified wrsion of th(> metastate connection
algorithm is used to regellerate it (Line 05 - 15). There is 110 need to keep
the Q list allymore, bl:'cause it is indirectly replaced by thl:' internal structure
of the graph expansion algorithm keeping the yet to be expanded Ilodes.
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4.3 Directly Determinizcd Construction

An application of the local propert)' will become apparent after examining
Table 3. The size of the determinized combined He transducer iHsignifi-
cantly smaller than tilt' initial statically expandf'd transduITr. This is due
to the fact that many metastates share cluster subsequences, but unique
states and arcs are created for each one. Therefore we may want to try to
construct the dcterminized transducer directly, instead of first expanding
the lar.e,eredundant version of it, storinK it to disk, and then determinizing
it.

lndct"d, as the detcrmillization algorithm is a local one [91, we can im-
mediately detcrminizc the transducer while incrementally building it. This
gives a significant superiority over the static expansion in terms of memory
usall:e, as seen from Table 6. The memory foot.print decreases dra.<;tically, as
oppOM'd to a mild construction runtime incrt:'a.-;c.

4.4 Eliminating the Bit 1\.1atrixLists

The meta.<;tate connection algorithm does not lle{'d the explicit contents of
the bit matrices of the mctastates in the T list, since it only compares if two
differ('nt lists arc tht:' same. This justifies a replacement of the bit matrix list
with a unique hash code a.<;follows. esppcially 3.<;the T list gets extremely
large during construction (see Table 5 ).

\\'e calculate a sequence of run lengths {rn}, each represeting the nUIll-
ber of zeroes between two cOllS<'qutiveOIl{'S in a bit matrix. The following
chpcksum can be used to replace a bit matrix list;

where k is a prime number. Replacing thf' bit matrices this way introduces a
possibility of collisions, i.e. a single checksum corresponding to two different
bit mat.rix lists. However, we call make the probability of this event very
small if we store and compare different hash keys, each one corresponding
to a. difTereut prime Ilumber.

A modified version of ListinR 2 can be defined when ll.'linll:checksums to
replace the bit matrix lists:
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Listing 3 Adjacency list expansion with removal of the bit matrix lists.
00 def edges(q);
01 if q.E -=I- 0;
02 returnq.E
03 if q.p == SIL;
04 connectq to FINAL
05 foreachs E S;
06 L.-- (q.L ») & s.L & Us
07 if IILII > 0,
08 t <- (s.p. S.SI, 5.52, 5.53, L)
09 iftrtT;
10 add t to T
11 elif t.L == 0 and q.E == 0;
12 t.L = L
13 e .-- (q...•.3, t..••.I, LSI.g, t.p)
14 add e to q.E
15 q.h <- hash(q.L)
17 q.L <- 0
18 return q.E
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As we arc now deleting the bit matrix lists, we must be careful whell
expanding a node that it either ('ulllains an expanded adjacency list, or the
bit matrix list of its parcnt metastate is not deleted. Lines 11 and 12 make
sure that whenever a metastate is found in the T list, a bit matrix list for it
is prcserwd for later expansion of this metastate's nodes. At lines 15 and 16
we replace the bit matrix list '>\'ith the calculated ha.<;hcode and delete the
bit matrix list. This does lIot gf'opardize the further expansion of g's nodes,
because q can lat.er be only accessed throu~h the T list and thus undergof."S
the described bit matrix restoration mechanism.

5 Experimental Ilesnlts

In this sff'tion we prest'nt results concerning the application ofthc combined
lIG transducer in spC<'chrcco~nition tasks, HG construction statistics and
f'lllpirical verification of tlU"metastatf' connf'ctioll algorithm.

The He constructions and recognition network compilations were done
with tlU" Enigma finite-state transducer library, maintaillf'd by the the first
advisor and the author at the University of Karlsruhe, Karlsruhe, Germany.
Tllf' spf'eCh recognition experiments were conducted with the Afillenillnl
spCC'chreCORnitioll system. work of the first advisor and his scieutific a<;-
sistants.
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5.1 Comparison with Hoe

17

\\'{' performed experiments regarding the correctllc!;S of the HC construc-
tion on our ••••.hole training set consisting of 791 speakf'rs and totaling 176,355
utterances. A word string corresponding to a single utterance transcription
is converted to a transducer HT then composed with the dictionary trans-
duc£'r. Th£' r('Sult is detcrminized and then composed with a eambined He
transducer, which is in turn df'terminized and minimized to obtain a final
transducer min(det(HCo det(L 0 IF))). Independently, det(L 0 W) is ex~
pandPd by composition with a context-dependency and a hidden ~tarko\'
model transducer, and then detcrminized and minimized. We found no
differences comparing the input sides of min(det(HCodet(L 0 W))) and
min(det(H 0 Codet(L 0 1\'))), which means that both the conv£'lltional earn.
position and our algorithm provided the same Gaussian mixture model ex~
pansion for each utterance in the training set.

5.2 Recognition Experiments

We used a fully-continuous acoustic model with 3.500 clusters for the r('Cog-
nition experiments to test both Schuster and Hori's and the correct HC
transducer.5 The signal processiul'!; front~elld of the spN'ch recognizer ex-
tracts 13 ecpstral features and then concatenates 15 consecutive frames to-
gether. It then reduces the dimellsionality of the final observations to .12
by lHeans of Linear Discriminative Analysis [14]. The observations were
furthered processed by a global STC transform [15] and global mean sub-
stnl.(:tion.

The training data totall(,d 100 hours, comprising of ICSI, KIST and
C!\,IU meeting corpora, as well as the Tmnseng/ish Database corpus. The
training used hoth t'QCdltract length normalization (VTL~) [16J and con-
strained maximum likelihood linear reg11'ssion (C~ILLR) [17]. ~Iaximum
Likelihood sppakpr-adapted. training (~I~II-SAT) was conducted using the
approximations described in [18J to conserve disk space.

For t.he purpose of ~nH-SATraining, we decoded each utterance ill the
training set. A 'Wont-trucedecoder [191 was used and its output projected 011

the output side to discard any informatioll other than the word sequences
as suggested by [20]. The correct transcription was then inserted into thp
lattice and til(' result was ('psilon-removed, detenninized and minimized.
Through a following composition with a lexicon. determinization and COIll-
position with the minimized correct He transducer, we obtained a lattice
mapping sequences of cluster symbols to the words in the recognized ut-
terance as in [21]. This transducer was deterrniniz(.d. its weights pushed
t.owards the initial state as discllsl.;ed in [22] and minimized. The gelleration

5All acou~tic models u"eQ in the experiments, de!>Cribcd in thi~ work. "'ere trained by
the first adviwr.
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was relatively efficient, with all steps completed in approximately 5x r{'al
time on a 3GHz Intel workstation.

lb create the denominator lattices explained in [23;. we conv('rt('d each
utterance to a simple word-string FST, composed it with a unigrnm lan-
guage model. then with a l{'xicon and finally with the correct He. This
network was eventually optimized throu!i!;hdctcrminization. weight-pushing
and minimization. A state-trare decoder was now used to produce the ex-
act time aligments b{'tw€'f'n the feature vectors and the individual a~nl
states. Based 011 these Viterbi alignlllents, a new lattice was generated.
with the time boundaries and log-likelihood scor{'s for each H~IM state.
This information was thell UM-dto derive the posterior probabilities needed
for discriminative training. As each lattice transducer was optimized by
determinization, weight pushing and minimization, the final constrained de-
coding and ~1~1I statist.ics accumulation for each iteration ran in approx-
imately real time. In addition to estimating new means, eovariances and
mixture weights, we also performed maximum mutual information semi-tied
covariance(~I~H-STC) estimation [24].

The test set used for the experiments in Table 1 was the lecture meeting
portion of the :,\IST RT-OSs evaluation M't. It consists of 22,258 words, a
total of 3,5 hours of data. Thc lecture speakers spoke English, but often
with German or other accents. The vocabulary contains largely tedmical
terms, mostly about topics related to automatic speech recognition. This
data was collected as part of the European Union integrated project CHIL.
Computers in the Human !nteruction Loop at the Uniycrsity of Karlsruhe.
Karlsruhe, Germany.

Table 1 shows the word error rates from a set of speech recognition
experiments. 'Ve built two n~:ognitioll networks with buth Schustcr and
Hori's and the correct He. using a pentaphonc decision tree with 3,SOO
clusters. The transducer sizes can be seen Table 3 in the next spetion.

\\'e composed a bigram language lIIudel containing 113,705 bigrams with
a dictionary of 50.886 words and variants. Wc then determinized and min-
imizf'd th{' composition and then compo.."'Rdthe resulting transducer with
both llC transducers to produce two recognition networks, which we then
detl'Tminized, weight-pushed and minimized as It(lvised hy [3]. The decod-
ing pas~s in Table 1 were run with the same beam-widths. which were so
chosen. that the recognition would be pl'Tformed ill approximately real tilile.

The recognition passes ,••..ith Schuster and Hori's llC transducer para-
doxically yields consistently lowN word error rates than the ulle built with
the corn'ct He transducer. An explanation for this behaviour was found
when ('xamilling the recognition statistics. '''hen d{'roriing with Schustf'r
and Hori's network. significantly more active hypotheses were retained for
each time step as cornparf'd to dpcoding with the corrf'ct recognition 11PI-

work. To further investigate, we conducted recognition experiments with
the adapted lIlodel from the final )'1~lI-SAT-STC pass and plotted word
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% Word Error Rate
S&II Correct

Unadapted Pass 46.6 48.4
VTLK, ~[LLR, FSA 39.9 39.7

~IL-SAT 36.9 36.7
M~n-SAT 35.1 35.3

~[~n-SAT-STC ;14.2 34.7
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Table 1: 'VER from a set of experiments with HC transducers, genC'ratoo
with both Schuster and Hori's algorithm and thc corfect one

efror rates obtained with both ndworb.
Bettef recognition rates call be obtained, whcll using a semi-continuous

acoustic model (SCAM) [251. III contrast to a fully-continuous acoustic
model (FCA~r), we call train a set of Gaussians, or codebooks, which can
be shared between several models. Thus, only the mixture weights for a
single out.put distribution need to be estimated, making a beller usage of
the available observations per state.

\\'c undC'ftook a final set of experiments to compare the performance of
a SCA1I to that of a FCA~I under identical training condition and testing
conditions. For thest' experiments. we began with a pcntaphone FCA)'[ with
4,000 codebooks. 'Ve first performed conventional Vitcrbi training, then
~lL-SAT. and finally ~nn.SAT as descrilwd above. Tbe SCAM systems
were obtained by performin~ additional divisive clusterin,l:!;[51 beginniul'!;from
the decision tree used for the FCA:\I systems to produce a final decision tree
with 16.000 Gaussian mixture models sharing the salll(' 4,000 codebooks
contained in the FCA~I system.

% Word Error Rate
l-'CA~I SCA~!

Unadapted Convcntional 45.2
Adapted Conventional 37.0
Adapted ~IL-SAT :1.1.1 ,12.9

Adapt('d !\IL-SAT, 4-gram Dr 31.9

Table 2: WER obtaillC'd with FCA),! and SCAM systems

Table 2 shows the word error rates obtained on the sallie KIST-RTO.')
test as used for the comparison between the two r('cognition networks above.
For each decoding pass, speaker adaptation parameters were estimated using
word lattices from the previous pass. As we ,",'ere unable to compile a full
rf'Cognition nctwork with the 16,000 codebook He transducer. we jlf'rformed
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rescoring experiments over the adapted FCA~l :\lL~SATsysteIll.
III each pass, we constructed constrained recognition spaces by projecting

the lattices output by the word-trace decoder 011 the output side, compos-
ing with the appropriate language model (bigram for the initial experiments,
fourgram for t.he final pass), then with the lexicon and finally wilh either
the 4,000 codebook or 16,000 codebook HG transdulYr. We applied t.he
optimization techniques inbet ••••'f'('n the compositions and performed a final
dcterminization, weight-pushing and minimization. The constructed con.
strained recognition net'''orks were used for both sp('(~h recognition and
:\ILLR parameter estimations [26]. Table 2 shows a significant reduction
of WER, which t.he SCA:\l system brings over the FCA:\f s)'stem. R("SCor~
ing the word lattices with the SCA~f syst.em brought down the \\'ER from
34.1% to 32.9%, which was further decrea..'Wdto 31.9% by the application of
the fourgram language model.

The construction statistics for the lIG transdcers are given in the fol-
lowing section.

5.3 He Construction Statistics

\Ve constructed a combiuM lIG transducer with Schuster and Hori's and
with the correct connection algorithm. Table 3 shows the sizes of the ex-
panded lIG transducer and it's size after determinization and minimization.
\\'e used a pentaphonc dedsion tree with 3,500 !eav('s.

Correct Schuster & Hori
Xodes Edges ~odes Edges

He 975,838 63,178,405 188,961 10,459,979
det(lIC) 406,173 8,199,840 91.842 1,621,785
mill(det(HC)) 81,499 968,078 43.263 4.')1,2.')4

Tablc 3: Pelltaphone combin('d HC transducer sizes

As is evident from the table, the correct lIC is twice a.."large as Schm;.
ler and flori's after determinization ami minimization. This rf'itf'rates the
conclusion that many metast.ates and the connections hetween them are left
out by the one-pa:>s multiplication algorithm.

For the r('(~ognition experiments wc constructed two llC transducers,
olle with a pelltaphollt' decision tree containing 4,000 leaves, and the other
containing 16,000 leaves as described in the pn>,-iolls section. Table -l sum~
marizes the sizes of the intermediate det(HC) and min{det(HG)) transduc-
NS. \Vc used the incremcntal expansion and illllilt'diate determillizatioll to
build both transduc('fs, ,••..hereby the incremental expansion was essential for
the larger one.
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4,000 leaves 16,000 leaves
~od{'s Edges );odes Edg.,;

dct(HC) 609,433 12,362,584 3,535,569 20,745,716
min(det(HC)) 154,66fi 2,069,737 1,662,704 11,184,683
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Table 4: Pentaphone comhine<l HC lrall:-;<iucer sizes for two decision trees

The construction times, memory usage. number of llletastates during
construction. ami thc total numb£'r of £'num£'ratM c1ust('f sequcnces are
given ill Tabl£' 5. \\'e sec that a 4 times increa..<;eof the numb£'r of leav£'s

4.000 leaves 16.000 leaves
:Memory usage KfA 11.7 Gll
Cluster sequences 60,683 379,156
:\lctastates 3.,}6,702 1,746,894
Construction time 1hr. 15 mins. 82hrs. 26 mins.

Table 5: Construction st.atist.ics

do('s not correspond linearly to a 4 times increase in memory usage. lIor
in construction timp. This gives risc to the question of how the runtime
and memory footprint of the lIletastate connection algorithm depend on
t.he number leaves in the decision tree. Th£' number of metastat.es during
construction. as well as the amount of duster Sl.'qIJellces, is influenced by
the type of questions in till" decision trff' and by the phone cla..'iSl:'s.The
typ(' of questions also conditions the tendency of the metastates to conned
to other metastates and thus form new ones, whieh in turn determines the
construction time.

Finally, we give a comparison of the static expansion and thc incremental
Oil-demand expansion.

:\[emory Usage Runtime
Static 7.70 GB 50 min.
Hashing 7.69 GB 103 min.
Dynamic lA2 CD 56 min.

Table 6: Algorithm comparison between static expansion, static expansion
,vith bit-matrix hashing and dynamic expansion

It is clear from Table 6 that a dynamic expansion is to be preferred whcn
compiling large distribution trce~, because the memory usage is df'crea..'iCd
by a factor of 7. This decrpas{' can be expe<.'ted, because the memory oc-
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cupicd by infrequently used portions of the network is now being recovered.
How{'ver, no significant increase in runtime is observed, which can again be
explained by the decision tree structure - a r{'iativt'1y small numbC'r of metas-
tates, which tend to COIll\{'ctto other nwtastates, will be kept in memory
and further expanded. The larger number of metastates are inactive and
their nodes' adjacency lists will be deleted from memory.

6 Al~orithm Proof

In this section we provide a proof of the correctness of the He construction
proce<lure. \Ve derive an explicit definition of the edges list of the transdul"t"r
HoC and compare it to that of HC, thereafter showing the equivalence of
both.

In the following discussion, we use these notations:

• P is t he set of phon{'s:

• n is the context-dep('Jl(iPncy (kpth:

• k is the number of states in an H~[\I lIlodel:

• r = p2n+l U {(} is the alphabet of context-dependent phones:

• E = {d''1I1' E r,i E 1 ... k} il; the alphabet of clustcr symbols (leaves),
obtained from a decision tree clustering procedure, where d', is the i-th
cluster for the context-dependent phone T

As the metastates arc the building blocks of He, the following lemma
serves to mak{' sure that each context.dppemlent polyphonc is covered by
exactly one mctastatc in S as dictated by the decision trees.

Lemma 1. Assume that the k decision trees expand each polyphone to a
unique cluster sequenc.e. 6 There is a .mrjeditre mapping f: r ---S.
Proof. Let") = PI" .]J'l,,+1 E r. As cxp!ail\{'d in Section 2.1, a cluster in
the i-th decision tree is a set of phonl'~ for each context position:

cf-r = (A;IAj E 2P,) = 1. .. 2n + l},i = l ... k.

Observe that the decision tree growing procedure pa.rtit.ions the initial
pool of context-dcpcndent phones in a set of nonintersecting clusters. This
justifies thc 1I0t ation d;, because there \\'ill be ollly one cluster corresponding
to a polyphone"'Y. Therefore it holds that

k

Pj E n A;, j = 1 ... 2n + l.
i=1

A~Ed;

6Thc lcmma a,,;,;umptionis valid anyway, a.s that is OnC of the main advantages of a
decision trre, >;('c (5).
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Since the mct~tat(' enumeration step in Section 2.2 pf2'rformsall possible
int.erscdions of the above form, it follows that') corresponds to at least one
s E S. Furthermore. s is unique, since ('ach ~ in the above intersection is
unique.

The surjcctivity of f call be easily seen, as there arc no metastates. which
do not correspond to any polyphones. During the enumeration, we require
the validity of each bit matrix, thus imposing the condition

,
VoErn A) "0. j ~1 ... 2n + 1.

;=0 I
A;Edl

However, because of the clustering, f is not an injection.

6.1 The H Transducer

o

The role of the hidden :Markov :\Iodel transducer H in the composition
chain descirbed in Section 1.2 is to assign to t'tl.{:hhidden r-.larkov model
(H~D.I) the symbol of the context-dependent phone it models. As Hidden
Markov models are represented naturally with directl'd state graphs, the
H:\t~I transducer can be easilly constructed by placing all such state graphs
in a loop, collllt'<.,tingthem with a common initial and final state.

For each H~D.l in the }{, there is a transition from the commoll illi.
tial/f'nd state of the HM:-'I transducer to the begin node of each of the
H:\nIs, which is labeled with til(' duster symbol corresponding to the begin
node of the H1IM. Thc output of this trallSitioIl is the contcxt-dependent
phone symbol, \vhieh this H:-'D.t models. There is also a transition from the
end node(s) of the IIM:\I back to lis common initial/end state.

A hidden :\iarkov model transducer II with a left-ta-right k-statc H1D.1
topology is a 6-tuple (E U f, r,QIf, '11f,F", Elf), where

• E U {f} is the input alphabet of cluster symbols;

• r U {f) is the output alphabet of context-dependent phones

• Q" = E U '11/ is the set of states,

• TIll E QIl is the single initial state,

• FIf = {TJI/} is the single final state,

• EI/ = QH X E x r x Qu is the set of edges.
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The edges set of H can be explicitly defined as follm••..s:

Qu {('/If,d~,li.rf;)}U

{(~,tf1'+l ,f,tf1'+l)li = 1 ... k - 2} U
{(d'~'d'-' )}l' '1' ,f,1]ff ,
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where d'1" i = l..k is the cluster expansion of the context.dependent phones
1'i'

The so constructed hidden :\Iarkoy model transducer is simple but non.
sequential, because each polyphone l'i is a.<;.<;ignPdit~ own cluster expansion.
Another important property is that it doesn't admit null transitions, othN
than the implicit epsilon self-loops at each state.

6.2 The C Transducer Structure

The purpose of the context-df'pendellcy transd\l(:er is to model the map-
ping of sequences of contf'xt-depcndent phones to the correct sequences
of context.independent phones. It can be formally described as a 6-tuple
(f, P,Qc, 'le, Fe, Ec). where

• r is the input alphabet of context dependent phones,

• P is the output alphabet of context-independent phones •

• Qc = p2n U {t:} is the Sf't of states .

• TIe E Q is the initial state,

• Fe C Qc is the sct of final states,

• Ee = Qe x r x P x Qe is the edges scI.

Let l' = Pl' .. />In+1 = UWl' be a context-dependent polyphone, where
u.v E p.w E p'ln-I. For a state q =uw

Tbe start state of an are, labelled by a context-dependent phone is the
state named after its first. 2n phones, and the end state is namf'd after its
la.<;t2n phones. \Ve should note that, similarly to the H transducer, the
context depcndcncy transducer is epsiloll-frft'.
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Let A = (E,o.,QA,11AJ:4,EA) and B = (o.,r.QB,TjB,FH,EB) b{' two
weighted finite-state transducers. As described in [131, their composition
realizes the mapping from the input alphabet of A to the output alphabet of
B. This mapping simulates the application of transducer B 011 the output of
transducer A, thus requiring that the intersection of the set of input strings
of B and the set of output strings of A is nOll-empty.

The composition of A and B is the finite-state transducer, defined as

whose edges set is

EAoH ~ {((qA,qB), a", (q~,q.»1
(qA.(7,6.q~.d E EA,
(qll,O,'),q~) E EB,J EO.}

We arc interested in an f'xplicit definition of the set of edges of Hoe.
Using the composition formula frum above, such definition can be given as
follows.

lkt EHoC be the cdg('s Sf't of the composition of II and C, and d~, i =
1 ... ~.be the cluster expansion of ')' = PI .•• P2••+1 = Utl.'V as in Lemma 1.

Elloc ~ {«qll,qc), a,p, (ql"qc»1 (1)
(qH,O",i,qH) E Ell. (2)
(qC,), p, qc) E Ec.O" E E.) E r pEP} (3)

= {(11I1,uw).d~.p ••. (tl~,U'v»}U (4)

{«d~, UW),d''}+I, f. (If'}+l, uw»li = 1. .. k - 2} U (5)

{«d~-I.UW),d~-I,f,(1]}/,uw)} (6)

The inverse of HoC, (1/ 0C) -I is defined simply by interchanging the
input. and output labels 011 the arcs of HoC:

{(Tj}/, uw), P••,d~, (d~,wv»} u
{«~, uw), f.~+I, (~+I, uw»li = 1... k - 2}U

{«d~-I,uw), (, d~-I.(rIff, uw)}

(7)

(8)

(9)

For simplicity, the proof of the following lemma and Theorem 1 con-
siders the inYenws of Hoe and He. The lemma provides a necccssary
and sufficient condition for the acceptance of a pholle string by the inw'rse
transducer (H 0 C)-l.
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Lemma 2. Let s = PI ...PI be a phone string of length 1 ~ 2n + 1. Also. let
11,12" .1"m7 be the consecutive polyphones contained in s. s is urf.epted by
{lloC)-1 ifJforj= ! ... 2n+1

2n+1 k

Pm+)-I E n( n A~). r = m - q + j
q"") ;",,1

A~Ed~,

(10)

Proof. We prove the lemma by induction on the string length t. For I =
2n + 1, m = 1 and

2n+1 k

p) E n( n A;). c ~ I - q + j
q""j ;=1

A~Ed'~r

(11)

Since r is the poylphone index. r > O. But 1 - q + j > 0 <=} q < j + 1.
The starting value of q is equal to j, hence, for each context position j this
inequality is true for only aile value of q, namf'!y q = j. Thu~, (ll) reduces
to

k

PjE n A~. forj=1 ... 2n+1,
;=1

A~Ed;1

(12)

which is implicitly true, since d~1 are the symbols in {he cluster expansion
of 11 (sec the proof of Lemma 1).

Let (Il 0C) -I accept a polyphone of lcngt h I ~ 2n + 1 and

2,,+1 k

Pm+j-l E n ( n A~). r = HI - q + j. fur j = I...2n + 1 (13)
q=) ;=1

A~Ed;r

Trivially, this implies

2n+1 k

Pm+j-I E n( n A~). r = m -q+j. for j = 2 ... 2" + 1,
q=) .=1

A~Ed;c

2n+1 k

Pm+) E n ( n A~), r = m - q + j + L for j = 1 ... 2n (14)
q=j+ I ;=1

A~Ed;,

7m=/_2n
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:"OW consider the phone !;tring s = PI ... P/Pl + 1 of length 1+1. Equations
(7), (8) and (9) show that (ll 0 C)-I assigns a cluster symbol sequence to
thi!; pholle !;tring iff

Pm+j E

,
n
i=1

Aj€d;mll

Aj, j=I ... 2n+l, (15)

where 1m+1 = Pm ... Pl+I' From (14) and (If,) follows that

2n+1 k k

Prn+jE n ( n A~)n(n A;),"~m+l-q+j, fmj~L,,2n
q=j+1 1=1 ;:1

A~Ed;, A~Ed'1""+1

(16)
which is equivalent to

2n+1 k

Pm+jE n{ n A~),r=m+l-q+j. forj=1. .. 2n+1. (17)
q=j i:l 0

A~Ed;r

Theorem 1. The string-ta-string tmnsduc-er He implements the composi-
tion of Hand C.

Proof. \\'e use induction on the phone !;tring I and follow c1o!;dy the proof
of Lemma 2.

Let I = 1. Since each utterance IIIl1ststart and end with sill,nce, a phone
!;tring of length 1 consists of the silence phone only. The HC construction
pu!;hes the silence lIIetastate on the expansion queue Q and COllnects it to
the start node of the transducer (Lim's 02 - OJ). Only silence phones are
allowM to be connected to the final node as assured by the condition at Line
06.

Let (Jl 0 C)-I and JlC-1 both provide the same unique cluster symbol
expansioll for a phone string PI ... PI of length 1. \Ve can assullle without
loss of generality that l 2::2n. Ind{'('d, if { < 2n, we can pad it with enough
(symbols at till' beginning and the end. By Lemma 2. (H 0 C)-I assiglls a
cluster symbol sequence to this phone string. iff property (10) holds.

The set intersection (10) dl?scribes exactly a metastate q E Q. The
l'quiva!ellct' is obvious when we consider that j dt'notes the context-position
and A~is modeled by a column at context position q in a bit lIIatrix. The
successive interS<'ctions arc performed at Line 09 in each loop iteration.

Xow consider a string PI ... PIPI+I' Property (1O) holds for {H 0 C)-I.
We l1{'{,dto make sure that a lie••••.me\.a.<;tate t is formed as in (16) and (17).
Lemma 1 providt's that a metastate 5 E 5, satisfying property (15), will
always exist for the ne'" polypholle 1•••+1' Therefore, the condition at Line
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10 is fulfilled and indef'tl a new llIeta"tate t is created (Line 11) and q and t
arc connected (Line 15). Pushing t on Q for further expansion ensures that
t.he metfl.<;tatf'(:ollIlPdioll algorithm emulates the induct.ive proof of Lemma
2. 0

7 Conclusions

\\'e presented an algorithm for directly const.ructing a transducer mapping
from gaussian mixture model sequences to phone sequences. \\'e corrected
and extended the work of Schuster and Hori [2]' by introducing a correct con-
ncction algorithm and providing it. with an on-the fly implementation. The
direct construction avoids explicitly expanding all possible context-depedent
phones by deciding which decision tre<' dusters can be connected in t.he final
HoC composition, allowing for fast compilation of large decision tn"t'S into
transducers.

Another property of the metastate connection algorithm is that it is
local, which allows for an Oil-demand implement.ation. In addition. t.his
property enables the on-the-fly application of another weighted finite-state
transducer algorithm. \\'e used wcightpd determinization to construct and
immediately dcterminize an HC transducer, containing fI.~many fl." 16.000
codebooks. A set of recognition experiments performed with it showed the
clear advantage of a semi-continuous acoust.ic model oyer a fully continuous
acoustic model.

\\'e also proved the corn'Ctnf'SS of the algorithm, by comparing it with
the explicit composition of Hand C. \\'e showf'd that the two transducers
implement the same string-to-string transduction.

8 Future Work

As S<'('nin Table 3. it is neccessary t.o store lIlallY llIetastates during the ex-
pallsion. Future work lIIay concentrate on compressing the memory demand
of a single rnetastatc. or reducing the size of the T list during expansion.

Another unexplorPd property is the on-demand composition of the com-
bined IIC transduccf with the compositioll of the language model and the
dictionary transducer. Using anliC transducer for a lar?,cr decision tree, we
Wf're unable to expand a full Il('twork with even a bigram language model,
which 011 thf' other hand might be possible if usinl!; a combination of oll-the-
fly composition and dcteflninizatiOll.
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