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Abstract

Language models play an important role in many natural language applications, with
n-gram language models representing the most commonly used type for automatic
speech recognition and machine translation tasks. Performance of n-gram language
models usually increases if a larger text corpus is considered for estimation of the
language model or the language model order is raised, which both results in a larger
language model. However, the language model size is traditionally limited by the
amount of available main memory since the language model must be kept in memory
for performance reasons.

In this report, we introduce an architecture that allows to distribute n-gram
language models across an arbitrary number of hosts, thus overcoming the memory
limitations for such language models. In the presented architecture, n-gram language
models are stored distributed across an almost arbitrary number of servers that are
queried over the network by clients running a speech recognition system.

We discuss different design aspects of such an architecture like strategies for n-
gram distribution or database formats for n-gram storage with their respective pros
and cons and provide details on the implementation of important elements of our
architecture.

The experimental section of this report contains an empirical evaluation of the
discussed n-gram distribution strategies based on a large real-world language model.
Timing experiments of the distributed language model show that it is fast enough
for application to speech decoding tasks. Finally, we demonstrate that there is an
advantage in terms of word error rate (WER) from using larger n-gram language
models.
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Chapter 1

Introduction

Language models are widely used in many fields of natural language processing.
The basic task of a language model is to assign a probability to an utterance, e.g.
a sentence, estimating how likely it is to observe this utterance in the language.
As such, the performance of the language model often has a critical impact on the
performance of the application as a whole.

The most commonly used approach to language modelling for automatic speech
recognition (ASR) and machine translation (MT) tasks is the n-gram approach
which is a purely statistical approach of estimating probabilities for new utterances
by collecting statistics from a text corpus. For the same language model parameters
(smoothing method, pruning, etc.), using a larger text corpus or increasing the
model order typically improves language model performance, but also increases the
size of the language model. Because most applications require the language model
to be kept in main memory, limitations on memory also constrain the size of the
text corpus or require other measures to reduce the model size like pruning.

In this report, we present of method of storing and querying n-gram language
models for automatic speech recognition distributed across several hosts, imple-
mented as an extension to the Janus Recognition Toolkit. This abolishs the size
limits on loading language models and allows for arbitrary large n-gram language
models to be used for speech recognition.

In Chapter 2 we will give an introduction to (n-gram) language modelling that
explains commonly employed techniques like smoothing, pruning and interpolation
and which measurements are used to evaluate language model performance. Then,
we will have a look at the used toolkits, namely the SRILM Toolkit that is used to
estimate language models and the Janus Recognition Toolkit (JRTk) that provides
the speech recognition system that will be extended with the distributed language
model. Finally, existing work in the field of distributed language models is discussed.

Chapter 3 explains the basic design behind the distributed system and considers
possible strategies that could be used to assign n-grams across several hosts. It
will be explained how those language model “parts” are stored in the hosts of our
distributed system and what protocol has been implemented for network communi-
cation between the client and the distributed servers.

Finally, in Section 4.1, the distribution strategies from the previous chapter will
be evaluated in practice. Section 4.2 shows timing experiments that explore the
slowdown incurred by the distributed approach. Finally, Section 4.3 elaborates on
the central point of quantizing the improvement in speech recognition performance
by using larger languages models, as made possible by the distributed system.
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Chapter 2

Statistical Language Models in
Automatic Speech Recognition

This introductory chapter describes the most fundamental basics of statistical lan-
guage modeling that we will built upon in the following chapters. After a formal
definition of a statistical language model, we will have a brief look at the variety
of fields where language models play a crucial role. The different measurements
that are widely used to estimate the performance of language models will be ex-
plained. Hence focussing on n-gram language models, we will discuss different ways
of language model estimation, i.e. the process of building a language model based
on a text corpus, and introduce the SRILM Toolkit [Stolcke, 2002] and the JANUS
Recognition Toolkit (JRTk) [Soltau et al., 2001], both of which are used during this
report. Finally, we will discuss the existing efforts on distributed language modeling.

2.1 Statistical Language Models

2.1.1 Definition

The task of a statistical language model is to judge the probability of a given word
sequences, or, more precisely, estimating the conditional probability of observing a
specific word in a given linguistic context. From a stochastical point of view, the
language model provides a probability distribution over all imaginable sentences.

Let wi be word i of a word sequence of length n and W j
i the subsequence from

word i to word j. The probability of observing the complete word sequence W n
1 can

then be estimated from the conditional probabilities of observing the single words
in their respective contexts:

P (W n
1 ) =

n∏
i=1

P (wi | W i−1
1 )

Typically, additional tokens are inserted as pseudowords into the vocabulary,
such as sentence start and end tokens (commonly dubbed “<s>” and “</s>” or
“<S>” and “</S>”) and an unknown word token that is used to indicate out-of-
vocabulary words1 (commonly dubbed “<unk>” or “<UNK>”).

1The vocabulary itself can be built dynamically by including all words appearing more often
than a given threshold. See [Brants et al., 2007] for an example.
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2.1.2 Fields of Application

Statistical language models are employed in many different fields of natural lan-
guage technologies including automatic speech recognition (ASR), statistical ma-
chine translation (SMT) or optical character recognition (OCR). In this work, we
only used the application to automatic speech recognition to evaluate the perfor-
mance of the distributed language model. Nevertheless, all other applications of
language models (as long as used in the same domain) should benefit accordingly
from improved language models that represent natural language more closely.

The system that generates textual hypotheses from acoustic speech input is often
called a decoder, a term coined when viewing the speech recognition problem as an
information theoretical problem where the information is transmitted over a noisy
channel. Besides the language model that determines the probability P (W ) for the
word sequence W , the other important component of such a decoder is the acoustic
model that answers the question “how probable is it to observe the input signal,
given a specific word sequence?”, i.e. P (X | W ).

To the basic maximization problem of finding the best word sequence Ŵ in
speech recognition as shown in equation 2.1, we can apply Bayes’ law to produce
equation 2.2.

Ŵ = argmax
W

P (W | X) (2.1)

Ŵ = argmax
W

P (X | W ) · P (W )

P (X)
(2.2)

Because the denominator in 2.2 is the same for all possible interpretations of a
given set of input (feature vectors), it can be left out without any effects on Ŵ .
This leads us to the fundamental formula of speech recognition:

Ŵ = argmax
W

P (X | W ) · P (W ) (2.3)

2.1.3 N-gram Language Models

The most prevalent type of a statistical language model is the n-gram language
model which makes a markov assumption, assuming that the probability of observing
a specific word wi only depends on the last n − 1 observed words, i.e. W i−1

i−n+1. In
earlier times, mostly bigram models (n = 2) have been used used, whereas nowadays
language model orders of n = 3 (trigrams), n = 4 or even n = 5 are common.

Although the simplicity of an n-gram language model obviously cannot possibly
convey the complexity of real natural language and research into complexer types of
language models has been conducted for decades [Jelinek, 1991], n-gram language
models persist as a very popular type of language model used.

2.1.4 Smoothing / Backoff

It is worth noting that the size of an n-gram language model grows with larger
n-gram orders. Additionally, the problem of data sparsity also exacerbates with
increasing orders of the language model, meaning that there will be more n-grams
that are perfectly valid parts of natural language albeit they do not appear in the
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text corpus. Because the number of possible n-grams grows exponentially with the
order, higher n-gram orders require a much larger text corpus for reliable estimation
of the language model.

When using a simple maximum likelihood estimation, n-grams that cannot be
observed in the corpus would be assigned a zero probability by the language model.
Especially in the context of automatic speech recognition, having n-grams assigned
a zero probability would be problematic because, should these n-grams, howsoever
unlikely, occur in the speech input, they could not be recognized2. Additionally, n-
grams appearing exactly once (so called singletons) would be assigned an infinitely
higher probability than those with no appearance in the text corpus, although em-
pirical experience shows that even removing all singletons entirely from the language
model only has a marginal impact on performace [Katz, 1987].

Thus, smoothing techniques are employed to compensate for the sparseness of
data and to smooth the distribution obtained by counting n-gram occurences in a
limited corpus. As a simple example that performs rather poorly, additive smoothing
is accomplished by adding a certain offset δ to all n-gram counts and use those
new pseudocounts for language model estimation. This completely removes the
possibility of unseen n-grams and thus reduces the quotient in likelihood estimation
between singletons and unseen n-grams, for example from ∞ to two for δ = 1.

Better smoothing techniques involve discounting (i.e. reducing) the existing
probability values for all seen n-grams. Since the sum of the probabilities for all
words in a specific linguistic context needs to sum up to one, the freed probability
mass can then be redistributed to account for the occurence probability of unseen
words in this linguistic context3. This is accomplished by the so called backing-off
to (n-1)-gram probabilities for unseen n-grams. Backing-off is done recursively until
an n-gram is found in the language model, thus in any case for a known unigram
distribution or by assuming uniform distribution at unigram level.

For lack of space, we only want to describe Katz smoothing here as an example
of a more sophisticated smoothing technique. For Katz smoothing, n-gram counts
c(W i

i−n+1) are discounted by an n-gram count specific discount factor dc(W i
i−n+1)

which is high for lower n-gram counts and one for n-gram counts above a given
threshold, as these n-grams are considered “reliable”. Then, P (wn | W n−1

1 ) can
be computed as shown in equation 2.4 by using the pseudocounts and applying
α(W i−1

i−n+1) as a normalization factor, chosen such that the sum of all counts given
W n−1

1 is unchanged and thus conditional probabilites add up to 1 again.

P (wi | W i−1
i−n+1) =

 dc(W i
i−n+1)

· c(W i
i−n+1∑

wi

c(W i−1
i−n+1)

) if c(W i
i−n+1) > 0

α(W i−1
i−n+1) · P (wi | W i−1

i−n+2) if c(W i
i−n+1) = 0

(2.4)

[Chen, 1998] considers Modified Kneser-Ney smoothing [James, 2000] to be the
most appropriate smoothing technique available for common applications. Modified
Kneser-Ney smoothing is based on the interpolated Kneser-Ney smoothing devel-
oped in [Kneser and Ney, 1995], but differs in that multiple discounting constants
are used instead of one: D1 for n-grams appearing once (singletons), D2 for n-grams

2As equation 2.3 shows, the score of a hypothesis is calculated as the product of its acoustic and
language model scores, meaning that a language model probability of zero will render the whole
hypothesis impossible.

3This includes n-grams that have been pruned from the language model to reduce its size.
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appearing twice and D3+ for n-grams appearing more often. The values for D1, D2

and D3+ are calculated from the text corpus from what is known as the count-of-
counts, i.e. the total number of n-grams appearing i times in the corpus (ni). As
an example, equation 2.5 shows how the discounting for singletons D1 is computed.

D1 = 1− 2 · n2

n1 + 2n2

(2.5)

2.1.5 Performance Measurement

A measure for the quality of language models involves computing the cross entropy
H(T ) that indicates how likely a set of test sentences T = {t1, ..., tn} is, given the
language model to be measured. The set of test sentences should be from the same
domain as the later application of the language model and must of course not be
part of the text corpus used for estimation of the language model.

H(T ) = −
n∑

i=1

P (ti) · logPM(ti)

In general, not the H(T ) itself is looked at but the perplexity PP (T ) which
equates to the power of two of the H(T ):

PP (T ) = 2H(T )

An natural interpretation of the perplexity is the average branching factor of
the language according to the language model [Rosenfeld, 2000]. Therefore, a lower
perplexity indicates a “more unambiguous” language model which is generally con-
sidered good.4

However, using perplexity as a measure for language model performance suffers
some severe drawbacks. For example, though increasing the vocabulary size can
make a language model better, adding new words not present in the test set will
ceteris paribus lower the probability for the sentences in the test set, thus increasing
cross entropy and perplexity. Additionally, the difficulty of the branching decision
provided by the language model not only depends on the number of possible succes-
sor words. For instance, choosing from two similar sounding words can be harder
than choosing from a much larger number of words that are clearly distinguishable
by the acoustic model.

Fortunately, most of the time it is not a problem to directly measure the influence
of the language model on its application. For automatic speech recognition and other
applications like optical character recognition, the word error rate (WER) can be
determined.

Computing the WER involves generating the most likely hypotheses for sentences
from a given test set either by decoding speech or by rescoring sets of given hypothe-
ses in the form of n-best lists or word lattices. Then, the errors made are determined
by computing the minimum total error count, whereas errors are categorized as in-
sertions, substitutions and deletions, comparing the hypotheses to manually-crafted
reference strings that are deemed “correct”. By dividing the total error count by
the number of words in the reference transcripts, the WER results.

4This can be seen directly by looking at the cross entropy as well: A lower cross entropy indicates
that there are smaller deviances between the probability distribution represented by the language
model and the “real” distribution implied by the test set.
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WER(hypo, ref) =
Ins(hypo, ref) + Del(hypo, ref) + Sub(hypo, ref)

Count(ref)

This problem is equivalent to computing the Levenshtein distance at word level
and as such efficiently solvable using the principles of dynamic programming.

It is important to remember that the WER does not solely depend on the lan-
guage model. When hypothesis are calculated as the result of a decoding, they
are also influenced by the acoustic model. Otherwise, when they are calculated by
rescoring n-best lists or lattices, the word accuracy will be impaired if those are of
bad quality. For example, if a word lattice does not contain the correct transcrip-
tion, even the best language model will never be able to reach a WER of zero. That
is why it is better not to examine absolute WERs, but instead differences between
WERs computed within the same test environment with all parameters except the
language model kept the same.

2.2 Language Model Estimation

2.2.1 Estimation procedure

Estimation describes the process of training the parameters of a language model on
the basis of a text corpus. For estimating back-off n-gram language models, it is
therefore necessary to assess probabilities for all {1,..,n}-grams and back-off weights
for the {1,..,n-1}-grams contained in the language model.

The first preparatory step aims to improve the quality of the corpus by removing
undesirable parts of it, called “cleaning the corpus”. For example, parts like special
characters, meta data, elements of formatting (e.g. HTML for a corpus collected
from the WWW) or sometimes even whole sentences that are considered to be “low
quality” are removed5. Additionally, transformations like converting numbers to
their textual representation might be performed in the cleaning step. Good cleaning
is a science in itself that we do not want to focus upon in this report.

In addition to the text corpus, the vocabulary is needed for estimating a language
model. It can either be given or it can be dynamicaly determined from the corpus
by selecting all words that appear more often than a specified threshold. For the
language models that we estimated for the experimental section of this report, a
static English vocabulary consisting of 129,135 words is used.

With the corpus and vocabulary given, the actual estimation of the language
model parameters is a simple task in principle: First, the {1,..,n}-grams in the text
corpus are counted. For this step, the corpus can be split into multiple parts which
are counted separately. In doing so, memory requirements can be reduced to fit
with (almost) arbitrary low memory constraints and additionally, a speedup can
be achieved if the counting tasks are run in parallel. The second step of merging
the individual counts files into a single global counts file can be performed without
reading all n-gram counts into memory first if the n-grams in the counts files have
been sorted, thus reducing main memory requirements by far.

5A commonly used criterion is to remove those sentences whose portion of unknown words
exceeds a certain threshold.
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After the counting step, the language model probabilities are devised from the n-
gram counts which is usually done by computing the maximum likelihood probability
after applying discounting to the counts to compensate for unseen but possible n-
grams (see Subsection 2.1.4). Based on the language model probabilities, the back-
off weights are chosen such that the conditional probabilities for every linguistic
context sum up to one. As said, [Chen, 1998] gives a good overview about the
various existing smoothing approaches and includes an analysis of the impact of
smoothing on language model performance.

Although there have been efforts to dynamically grow n-gram language mod-
els with some success [Siivola and Pellom, 2005], often this last step of estimating
probabilities from n-gram counts is the bottleneck step whose memory requirements
limit the total size of the language model that can be estimated.

2.2.2 Saving n-gram language models

The common file format for saving n-gram language models is the text-based6 ARPA
back-off language model (ARPABO) format. It is the preferred format for storing
n-gram language models in a human readable way and also the format used for in-
teroperability between different involved tools or toolkits. When the same language
model needs to be processed multiple times with the same toolkit, however, often
using a toolkit-specific dump-style binary format can yield a speedup when load-
ing language models or even reduces temporary memory space needed during the
loading process which in turn allows larger language models to be loaded at all.7

The ARPABO format starts with a file header that declares how many {1,..,n}-
grams are comprised in the language model:

\data\

ngram 1=100

ngram 2=10000

ngram 3=200000

After the header, one section for each order m contains all the m-grams. It is
important to note that the ARPABO format makes no guarantees on the order of
the m-grams inside such a section (e.g. sorted alphabetically). Most tools however
at least group together those m-grams that share the same linguistic context. This
was also assumed as a requirement for the input of the tools written for this report.8

In a real-world language model an excerpt from the bigram section could look
like this:

\2-grams:

...

-2.549887 President Kennedy -0.1631612

-2.501147 President Reagan -0.1346047

...

6Usually language models are stored in gzip-compressed format reducing both filesize and load
time on I/O-bound systems.

7The Janus Recognition Toolkit (JRTk) mentioned later supports memory-mapped dumps
which can be used by multiple running processes without wasting memory for duplication and
abolish any loading time by loading needed pages from disk on their first access.

8If this assumption is not been met, the state is detected and a warning is printed.
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Language model calculations are done using log probabilities (to the base of 10)
because addition of the log probabilities equals multiplication of the probabilities
but is faster to perform. Saving log probabilities in the first place then removes
the need to convert when loading the language model. Therefore, the language
model shown above estimates the probability of observing the word “Kennedy” in
the context “President” to 10−2.549887 ≈ 0.28%.

The value at the end of the line specifies the logarithmized back-off weight
and is thus missing for n-grams of the highest order.9 In our example, probabil-
ities for the trigram “President Reagan <w>” would be computed as 10−0,1346047 ·
P(Reagan <w>) if this trigram is not contained in the language model. Of course,
this also means that the probabilities of all existing trigrams with the linguistic
context “President Reagan” should sum up to 1− 10−0,1346047 ≈ 26.65%.

The ARPABO format allows multiple language models to be stored in a single
file, which is why after the last n-gram section, a new language model may be
specified by starting with a new header. The more common case however is to limit
oneself to one language model per file. After the last language model, the end of
the ARPABO file is indicated by the end token “\end\”.

2.2.3 The SRILM Toolkit

The SRI Language Modeling (SRILM) Toolkit [Stolcke, 2002] is a comprehensive and
widely used toolkit for estimation and evaluation of numerous types of statistical
language models and related tasks. It is being developed since 1995 and free for
noncommercial use.

All language models used in this report have been created by SRILM due to
SRILM’s ability for building large language models by counting n-grams in a con-
current manner (see above) and by saving memory by selectively retaining only those
smoothing parameters needed when using a provided helper script called make-big-
lm. Still, even with SRILM it is not possible to create language models of arbitrary
size, which is why interpolation needs to be used for utmost large language models.

2.2.4 Interpolation

Given enough disk space, in theory n-gram language models of arbitrary size can be
estimated with little memory due to the fact that every modern operating system
supports memory paging. Even so, the estimation process slows down by a factor of
several magnitudes if not most of the required data can be hold in memory, making
it unbearable slow for practical usage. As a rule of thumb, using the SRILM Toolkit
with Modified Kneser-Ney smoothing to estimate a language model that reached
6.7GB in size (gzip’ed) peaked at a memory usage of approximately 100GB during
the final estimation step.

Hence, interpolation needs to be used to build language models that are even
larger from several smaller language models.10 A popular approach that performs
reasonably well is linear interpolation. It works by interpolation of the n-gram

9It is valid to leave it out for lower-order n-grams as well which implies a back-off weight of zero,
meaning that no probabilities mass has been redistributed to unseen n-grams for this linguistic
context.

10Sometimes, this approach is termed static interpolation, in contrast to dynamic interpolation
which loads multiple language models at evaluation time and performs interpolation on-the-fly.
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probabilities between an arbitrary number of language models using interpolations
weights that are calculated by minimizing the test set perplexity11 of the interpolated
language model. Determing those optimal interpolation weights is done iteratively
from the perplexities of the initial language models. In a second step, the back-off
weights are recomputed based on the new interpolated probabilities.

When using the SRILM Toolkit, there is a helper script called compute-best-
mix that automates the described process of finding the best interpolation weights
iteratively and (static) interpolation is configured by using the -lm, -lambda, -mix-
lm2, -mix-lambda2, -mix-lm3, -mix-lambda3, etc. switches to the ngram tool.

Beside offering a convenient way of building large language models, interpolation
is also suitable for generating language models optimized for a specific domain. An
imaginary scenario might involve a huge generic language model and several smaller
domain-specific language models. A test set from the target domain is then used to
estimate the optimal interpolation weights.

2.2.5 Pruning

Pruning denotes the process of removing n-grams from an n-gram language model
to reduce its size while degrading language model performance as little as possi-
ble. The basic idea behind this is to include all available text data in the esti-
mation process as long as enough memory is available, and then keep removing
the most insignificant n-grams until the desired language model size is reached12.
[Seymore and Rosenfeld, 1996] shows that this approach is superior to the alterna-
tive of starting off with a narrowed text corpus in the first place.

However, a decision criterion is needed for choosing which n-gram should be
pruned first, or more specifically, determining how big the influence of a certain n-
gram is on the performance of the language model. The cutoff method uses a simple
heuristic for this purpose that removes n-grams based on their occurrence count
in the text corpus, pruning infrequently appearing n-grams first13 The weighted
difference method takes into consideration that removing an n-gram from a lan-
guage model causes the probability of this n-gram to be computed by backing-off.
Therefore, the difference between the existing language model probability and the
probability by backing-off is considered and n-grams with a small difference are
pruned first.

[Stolcke, 2000] resumes work on the problem of selecting n-grams for pruning
and presents a method to explicitly determine the effect of a single n-gram on the
perplexity of a language model. Afterwards, all n-grams are removed that influence
the perplexity less than a threshold value which has to be specified according to the
intended size of the pruned language model.

Apart from pruning, there are other approaches like clustering that also aim to
reduce the complexity of an n-gram language model. Clustering works by replacing

11As usual, this test set should share the same domain as the desired later application of the
language model and must not be part of the text corpus used for estimation.

12Of course, after n-grams have been removed from a back-off n-gram language model, the
back-off weights need to be recomputed.

13[Seymore and Rosenfeld, 1996] demonstrates that even with this simple pruning technique, the
language model size can be reduced significantly without a relevant effect on the word error rate.
This corresponds to the already mentioned observation that singleton n-grams can be pruned with
very little performance implications.

10



“related words” like surnames, color names, month names etc. with a token des-
ignating the respective word class, which may even increasing model performance
since every language model is estimated on a finite text corpus. An introduction to
clustering and other common language model techniques like skip n-gram language
models or cache language models can be found in [Goodman, 2001].

2.3 Janus Recognition Toolkit

The Janus Recognition Toolkit (JRTk) is a toolkit written in C that has been de-
veloped by the Interactive Systems Laboratories (ISL) at the Karlsruhe Institute
of Technology (KIT) and the Carnegie Mellon University (CMU). It provides Tcl
interfaces for the rapid development of automatic speech recognition applications.
For example, it has been used in the JANUS-III speech-to-speech translation system
[Soltau et al., 2001]. In the following, “Janus” always refers to the Janus Recogni-
tion Toolkit.

Janus employs a state-of-the-art one-pass decoder that utilizes all available in-
formation sources, including the full language model, in a single pass. Such a single
pass approach eliminates the risk that proper hypotheses are pruned in an early pass
and thus cannot be found later on. In addition, it also makes for great speedups
compared to a multi-pass approach. [Soltau et al., 2001]

Different types of linguistic knowledge sources are supported by Janus. Besides
traditional n-gram language models, phrase language models built on top of an n-
gram language model and context-free grammar language models can be used, and
multiple language models can be loaded and interpolated on-the-fly.

Janus can perform two different processing steps when loading the logarithmized
parameters (probabilities and back-off weights) from an n-gram language model.
First, the loaded values can be “compressed” by saving them in a 16-bit integer
format (signed short int) instead of the 32-bit single precision floating-point format
(float). The compressed value is calculated as

compressed = buncompressed · 1000− 0.5c14

By default, compression is enabled and therefore no further floating-point arith-
metic needs to be performed after loading the language model.

“Quantization” is a second processing step taking place after the compression.
Quantization further reduces the memory demand to one byte per value by saving
not the value itself but its index in a generated lookup table. Such a separate
lookup table is generated for every set of values V (i.e. “3-grams back-off weights”)
by determining the minimum and maximum value present in the set of values to
establish the overall range of values that must be covered by the lookup table. Hence,
the scaling factor s is calculated as

s =
256

max(V )−min(V ) + 1

Lookup table indices can then be easily computed, as well as the lookup table
itself as the inverse function:

14As a result, only zero and the negative range of the signed short int are used (log10 scores are
always zero or negative).
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index(v) = s · (v −min(V ))

value(i) = min(V ) + b0.5
s
c+ i · max(V )−min(V ) + 1

256

By default, quantization is only performed for n-grams of the highest order due
to the larger range of values for lower-order n-grams and the fact that for typical
language models, the biggest share of memory is allotted to the highest-order n-gram
section anyway.

Both compression and quantization are implemented to minimize the memory
footprint and compression additionally helps to avoid slow floating-point arithmetic.
Their influence on language model performance is very slight.15 Still, in the context
of this report it is crucial to pay attention to those processing steps in Janus in order
to reproduce them in the distributed language model in exactly the same way. Then,
we can validate the distributed language model simply by matching distributed with
local scores (or by matching hypotheses).

2.4 Existing Approaches to Distributed Language

Models

We want to refer to two different approaches to distributed language models for
application of large n-gram language models here.

The first approach has been chosen in the papers of [Zhang et al., 2006] and
[Emami et al., 2007] in a nearly identical fashion. For this approach, no language
model is built at all. Instead the text corpus itself is distributed across a number of
servers with each hosting a fraction of the corpus. All servers are then queried by
the client running the language model application, e.g. a speech decoder, to gather
all needed n-gram counts to estimate the desired language model probabilities on-
the-fly. Efficient calculation of the n-gram counts on the servers is made possible by
indexing the respective part of the corpus in a suffix array to allow for lookups of
occurrences of a word sequence of length n in a corpus of size c in O(n · log c).

An advantage of this approach is that the size of the text corpus used is only
limited by the number of servers available and their memory capacity. Hence, text
corpora of almost arbitrary size can be applied. Furthermore, corpora can be added
or removed at runtime and several different corpora can be distributed with their
weights dynamically altered by the client.

However, a drawback of this architecture is its slowness. Not only is the suffix
array lookup significantly slower than merely reading precomputed probabilities
from memory, but also, for each n-gram count that needs to be determined, every
single server needs to be queried, making the process increasingly slow for larger
corpora. With linear interpolation, up to n counts must be retrieved from every
server to compute an n-gram probability and for those smoothing methods that
empirically exhibit the best performance for local language models (e.g. Modified
Kneser-Ney smoothing), even more computation would be required at runtime.

15Interestingly, there is anecdotal evidence that quantization actually improves the word error
rate in some cases, despite probabilities being mapped to pretty coarse steps.
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Another approach has been introduced by [Brants et al., 2007] in which the esti-
mation of an n-gram language model from a large text corpus is facilitated by using
Google’s MapReduce framework on a large cluster. Afterwards, the distributed
language model is again hosted on a number of servers and applied to a machine
translation task for performance evaluation. To decrease the overhead by network
latency, the decoder has been modified to batch together multiple scoring requests
from tentatively extending the search graph on several nodes, rather than retrieving
only one score at a given time.

The authors experimented with Kneser-Ney smoothing but found it too intricate
to build very large language models in a distributed way. Instead, they present a
novel way of backing-off referred to as “stupid back-off” which is extremely simple
due to the fact that it does not perform any discounting and uses a single static back-
off factor for n-grams of all lengths.16 Still, it is observed that stupid back-off works
reasonably well for very large text corpora and even outperforms the largest sensibly
producible language models with Kneser-Ney smoothing when used on outermost
vast corpora.

This approach is in many ways comparable to our work presented here. Nev-
ertheless, there are important differences. [Brants et al., 2007] utilize a distributed
architecture for building the language model whereas we convert existing language
models into a format well-suited for distributed retrieval. Thus, with the approach
presented here, all smoothing techniques and existing language model operations
like interpolation, pruning etc. that are already implemented by SRILM and other
tools can be readily applied to the language model. As a drawback, however, the
estimation process becomes the bottleneck that limits the maximum language model
size in our approach. Other differences concern the task that is used to evaluate lan-
guage model performance in that this report uses an automatic speech recognition
instead of a statistical machine translation task.

16Because without discounting no probability mass is freed but back-off factors are still non-zero,
this causes the conditional probabilities to sum up to values larger than one. However, this does not
pose a problem in the context of automatic speech recognition or statistical machine translation,
since essentially the only question that the language model must answer for these tasks is “which
hypothesis is most probable?” but not “how probable is hypothesis X?”.
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Chapter 3

Distributing N-Gram Language
Models

In this chapter, we will present the distributed n-gram language model architecture
that we devised within the framework of this report. First, we will provide a basic
overview of the design that explains which components exist and how they work to-
gether. Then different strategies to distribute n-grams across several server instances
will be discussed and we will present our simulation framework that allows to assess
the various strategies for the distribution of existing language models. In the third
section, we will outline the database format that is used by the server part of the
distributed system to store the language model parameters and we will describe the
process of building these databases from a language model in the ARPABO format.
Finally, we will elaborate on the implementation details of both the client and the
server part.

3.1 Architectural Design

3.1.1 Outline

Our approach for the distributed language model uses a conventional client-server
architecture in which a server instance is started by providing it with a database
file and possibly other options. Henceforward, the server instance is running and
waiting for clients to connect to serve their requests from the loaded database. In
general, “client” in this relation describes any application that needs to retrieve
n-gram probabilities from the server(s).

In the context of this report, the client is implemented as an extension to the
regular Janus NGramLM type that represents an n-gram language model. Its Tcl
interface has been enhanced with commands to establish (and close) connections to
a set of remote servers. As long as the NGramLM instance is connected to remote
servers, all subsequently needed n-gram scores are determined by asking one of those
servers if the desired n-gram is outside of the scope of the local language model1.
Because the interface has not been changed otherwise, existing application using
Janus can easily be upgraded to use a distributed language model by replacing the
command to load the full language model locally with commands to load only a

1The local language model may just contain the unigram table, or higher-order n-grams like
bigrams as well to increase performace.
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lower-order fraction of the language model (in the example, only unigrams) and
to connect to a set of remote servers (in the example, two) hosting the remaining
n-grams:

lmObj load languageModel.arpabo -maxLoadOrder 1

lmObj.NGramLM connectDistribServer "{host1 port1} {host2 port2}"

Besides the client, the server has been implemented in C and within Janus, too.
Nevertheless, it has very few dependencies to the other Janus modules aside from
using the Tcl interface and could be implemented as a stand-alone program as well.
For example, it does not share the language model data structures or loading code
existing in NGramLM, but utilizes its own functions optimized for memory-efficient
conversion of language model files to its database format instead.

A server is created by instantiating an object of the NGramLMDS (“n-gram
language model distributed server”) type in Janus’ Tcl interface. Different methods
allow to configure the server, load a database and start or stop the actual server
daemon. For matters of namespace tidiness, the code to build server databases
from n-gram language models in the ARPABO format is also part of NGramLMDS,
despite not really being assigned to a concrete server instance.

Communication between a client and a server is accomplished via a TCP connec-
tion. After connecting, the client can send n-grams which are sequentially answered
by the server on the same channel. No words in textual form are transferred, but
instead, only word IDs are used.2 Each answer from the server is either the informa-
tion that the sent n-gram is not contained in the language model, or its probability
and possibly its back-off weight. Corresponding to the description in Section 2.3,
values sent by server are always dequantized but never decompressed.

Two different protocols have been implemented which both support two query
types. While the first query type is the usual request for probability and possibly
back-off weight of a single n-gram, the second query type allows for the case of
array scoring when the probabilities and possibly back-off weights are needed for
all vocabulary words in a given linguistic context. As it will be shown later in the
description of the client implementation, this query type is of particular interest in
speech recognition when building the search graph, i.e. during decoding.

3.1.2 Protocol v1 (ASCII-based)

The first protocol (v1) is an ASCII-based protocol that terminates the separate
requests and responses by new line characters3.

A request for a single n-gram is simply made by sending a white-space separated
line containing the word IDs. The response of the server then consists of “notfound”
if the n-gram does not exist in the language model or the probability and, if existing,
the back-off weight separated by whitespace. A request for an array lookup is made
by prefixing the word ID list with the character “a” and setting the last word ID of
the n-gram (i.e. the current word) to the maximum word ID which equals to the
vocabulary size minus one. Then, for every word known, a response line is returned

2Actually, the server has no way to find out which word a word ID corresponds to after its
database has been built.

3Arbitrary combinations of the carriage return and line feed characters are supported.
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analogous to the response to a single-word request which obviously greatly strains
bandwidth.4

Server-side errors are reported by returning “error/reason” as the response with
“reason” specifying the cause of the error. For example, “error/db” indicates a
database error, “error/request” a malformed request by the client and “error/order”
a request for an n-gram order that is not available in the database.

We have chosen an ASCII-based protocol for the first implementation of the dis-
tributed language model architecture to increase comprehensibility and facilitate the
debugging process during development.5 Especially testing the server is simplified
since a client can be emulated manually by using a telnet client. Unfortunately, us-
ing an ASCII-based protocol has the drawback that all numbers must be converted
to text before sending and converted back after receipt which brings a significant
overhead to the communication, and additionally, that network traffic is higher.

3.1.3 Protocol v2 (binary)

To avoid the overhead from the protocol v1, a second protocol (v2) has been imple-
mented that is binary-based. Requests and responses are not separated by a special
marker here which would be intricate for binary data anyway but prefixed by a
header that indicates how many bytes of data are following.

A request in protocol v2 starts with a byte, treated as a signed integer, that
specifies the number of 32-bit word IDs to follow. If that word ID count is zero or
negative, the request demands an array lookup with the word IDs as the linguistic
context, so that this lookup concerns n-grams of the order of the word ID count plus
one.6

The server then responds with a one-byte status code, again treated as a signed
integer, that is zero on success or negative on error. For single n-gram requests,
the status can also take the value of one to indicate that the desired n-gram could
not be found in the database. With this information, the client already knows the
response length for a single n-gram request since back-off weights are provided for
every n-gram order except the highest order available and the client is aware of the
language model order. For array lookups, the number of n-grams found is appended
to the status code as an unsigned 32-bit integer. Then, for each found n-gram, the
32-bit word ID is sent, followed by the probability and possibly the back-off weight.
Again, the client knows whether it has to expect back-off weights in the response
and can thus compute the length of a single n-gram entry for the array lookup.

Comprehensive timing results for both protocols can be found in the experi-
mental section of this report. Though, because both protocols not only differ in
being ASCII-based or binary protocols but also in the algorithms used for database

4As a small optimization, “notmore” is returned if all following words are “notfound”. Still, this
bandwidth-wasting behaviour is the presumable reason for the disastrous performance of protocol
v1 for array lookups.

5One reason why an ASCII-based protocol is easy to debug is that debugging output can be
inserted into the client and/or server to dump the whole network traffic in human-readable form
without the necessity of further error-prone conversion. But still without such debug output, it
turned out that not even a packet sniffer is needed but using strace is sufficient in most cases to
grasp what is going on between the client and the server.

6Thus, if the word ID count of a request is zero, the server will handle the request as an array
lookup with an zero-length linguistic context and reply with the unigram probability and back-off
weights table.
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lookups in the backend, timing deviations can only serve as an rough indicator for
the performance benefit of protocol v2.

3.2 Distribution Strategies

3.2.1 Introduction

When developing distributed storage systems, it is a crucical question which piece
of information is located on which component of the system. In the context of this
work, a rule must be established to determine on which server a certain n-gram
should be stored. Furthermore, this rule should depend only on information that
is available at both the time the n-grams are distributed to the databases of the
individual servers and at runtime of the client to ensure that a single server access is
sufficient for the client by all means. Because of this, the n-gram words respectively
the corresponding word IDs are the main parameters for distribution.7

Aside from the distribution of n-grams, the question of redundancy arises. Can
information access in the distributed storage system be made more efficient by
spreading out certain pieces of information to more than one component? For back-
off n-gram language models, backing-off could be done server-side without further
network communication if the server had all the n-grams available that are needed
to back-off from all imaginable n-grams that would be distributed to this server if
they existed. Unfortunately, to date no distribution is known to readily accomplish
this [Brants et al., 2007]8. Therefore and to keep memory requirements as tight as
possible, redundancy in n-gram distribution is not further evaluated in this report.

3.2.2 Evaluated Strategies

In the following, k refers to the number of servers that constitute the distributed
system and w1, ..., wn to the numeric word IDs of the n-gram to distribute, with
w1, ..., wn−1 representing the linguistic context and wn the current word.

A valid strategy σ assigns every n-gram to a nonempty subset of the available
servers. Because redundancy is not further considered in this report, every n-gram
is assigned to exactly one server for the strategies discussed here.

∀(w1, ..., wn) : σ(w1, ..., wn) ∈ {0, ..., k − 1}

A good strategy distributes the available n-grams as uniformly as possible, that
is to say that every server should be assigned roughly the same amount of data.
Additionally, requests from a client should also be distributed equally across the
servers. Most of the time, this follows readily if the n-grams are distributed well.
Exceptions occur if a strategy considers the n-gram order and treats n-grams of
different orders differently.9

7For example, the position of an n-gram in the language model file in the form of “lineNumber
mod serverCount” is not suitable because this file is not available to the client at runtime.

8Apart from the unfeasible solution of distributing all n-grams below the highest order to every
server.

9For instance, when a trigram language model would have all its unigrams and bigrams allotted
to one server and its trigrams distributed among five other servers, the load on the unigram/bigram
host will be several times larger than those on one of the trigram hosts although the database size
for each host might be roughly the same.
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The inclusion of wn in distribution strategies deserves another thought. As men-
tioned before, a common request to the distributed language model is the retrieval
of the probabilities for all vocabulary words in a given linguistic context. Because
of this, array scoring has been implemented that allows to get all those probabili-
ties from a server in a single request. While it would nevertheless still be possible
to include wn in the strategy10, it would require the client to ask multiple servers
even before backing-off. Hence, no strategies that consider wn are taken into further
consideration here.

A elementary strategy uses just a single word index i ∈ {1, ..., n − 1} and dis-
tributes n-grams uniformly across the servers based on wi:

σsingleword(w1, ..., wn) = wi mod k

However, the drawback of this single word strategy is that the likelihood of the
different words is not even close to equality. In fact, some words, including the
sentence start and end tokens and the unknown word token, appear far more often
than most other words. With the single word strategy, this leads to a very unbalanced
distribution of n-grams, a problem that grows with larger values of k.

Since the largest amount of data assigned to a single server must be smaller than
the available memory on a server, having some exceptionally large n-gram fractions
requires k to be raised even further, even if all other n-gram fractions would fit
into the server memory. In an extreme example, it is imaginable that a suitable
distribution cannot be established at all because the n-gram fraction containing all
n-grams with a very common word (e.g. “<unk>”) as wi is even for k = vocabsize
still too large to be loaded on a server host.

In a more advanced approach, a hash algorithm is used with a subset of the
words S ⊆ {w1, ..., wn−1} and the resulting hash value is assigned to a server as
before:

σhash−S(w1, ..., wn) = hash(S) mod k

This strategy reliably provides a good distribution if |S| > 1. When hashing with
|S| = 1, it is obvious that the same problems like with the single word strategy can
be observed. Hashing the whole n-gram should generally present the best possible
distribution strategy if a reasonably good hash function is being used. However,
hashing is a computationally intensive operation and it is necessary to ensure that
the hashing function of the client is consistent with the one used when building
the databases for the servers11. Could a more efficient strategy offer a distribution
quality close to those of hashing but without the complexity of hashing?

Such a simple strategy is an extension of the single word strategy concerning that
instead of a single word, the sum of the word IDs in a subset S ⊆ {w1, ..., wn−1} is
considered:

σsum−S(w1, ..., wn) =
∑
s∈S

s mod k

10The client can ask multiple servers and then merge the responses together by overwriting “not
found” responses with the score from another server that has this particular n-gram.

11This may seem to be a negligible issue, however it can become a problem if multiple program-
ming languages (C, Tcl, Python, etc.) are involved that use different data representations and
libraries for hashing.
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This sum strategy is still almost as simple as the single word strategy while
avoiding its major drawback if S is chosen large enough. In fact, there are no
reasons against using the whole linguistic context for computing the sum.

A theoretic disadvantage of the sum strategy is that the server that an n-gram is
assigned to is independent of word order. For example, “<unk><unk><s><unk>”
will be assigned to the same server as “<unk><s><unk><unk>” when using S =
{w1, w2, w3}. We do not think that this poses a problem for usual language models
but nevertheless evaluated another approach. The weighted sum strategy resembles
the sum strategy but differs in that the words are given different weights within the
sum. This is achieved by multiplying the partial sum with a constant factor c before
each addition and thus produces:

σweightedSum−S(w1, ..., wn) =

|S|−1∑
i=0,s∈S

(s · ci) mod k

3.2.3 Evaluation of Strategies with a Simulator

We wrote a simulation tool in C++ to evaluate the discussed distribution strategies.
A good strategy should yield a smooth and uniform distribution for the n-grams of
a language model, since the minimum amount of memory needed for a single server
in a homogenous server environment corresponds to the maximum of the sizes of
all built server databases. To evaluate the distribution of a language model, our
simulator can read language models in the ARPABO format and simulate different
distribution strategies with multiple parameter configurations in parallel.

As a simplifying assumption, n-grams of all orders are counted together, which
assumes that e.g. a bigram requires as much space as a trigram, and no strategies
have been evaluated that consider the n-gram order for the distribution. Such an
asymmetric distribution strategy is not suitable for a homogenous server environ-
ment in any case, since the probability that a specific lower-order n-gram is required
is generally higher than the retrieval probability for a specific higher-order n-gram,
and hence unequal load would be put upon the servers.

Typically, n-grams of all orders up to the language model order are processed
by the simulator. Therefore, another thing to pay attention to is the handling of
S in the simulator. The word indices in S can be specified from the start of the
n-gram (w1, w2, etc.) or from the end (wk, wk−1, etc.). For example, S1 = {w2, w3}
and S2 = {wk−2, wk−1} lead to the same strategy when applied to a 4-gram, but
when applied to a trigram, S1 considers the words w2 and w3 whereas S2 uses the
words w1 and w2. In addition, elements of S that are “out of range” are ignored in
the computation: For bigrams, S1 and S2 consider only w2 respectively w1, and all
unigrams are assigned to the same server for both S1 and S2.

The output of the simulator are the numbers of n-grams assigned to each of
the servers for all evaluated strategies. To make the results easier to interpret, we
compute Gini coefficients for each pair of strategy and number of servers k.

The Gini coefficient is a measure developed by Corrado Gini to summarize the
degree of inequality of a statistical distribution in a single number. It is defined as
the difference between the area under the cumulative distribution function of the
distribution to be evaluated and the cumulative distribution function of the standard
uniform distribution (i.e. the identity function f(x) = x for x ∈ [0; 1]), normalized
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Figure 3.1: Exemplary cumulative numbers of n-grams for every quantile

by the area under the cumulative distribution function of the standard uniform
distribution. Figure 3.1 shows an example for the discrete cumulative function of
an n-gram distribution that is compared to the cumulative distribution function of
the standard uniform distribution, shown in black.

From the definition, we can see that a Gini coefficient of zero characterizes a
perfectly uniform distribution, whereas a distribution strategy that assigns all n-
grams to one of infinitely many servers would have the maximum possible Gini
coefficient of one. Because n-gram counts cannot be negative, Gini coefficients are
always less or equal to one, and because the cumulative distribution function is
always convex, Gini coefficients are positive or zero.

For the discrete distribution provided by the simulation with a finite number
of servers, the integral required for calculation of the area under the cumulative
distribution function is replaced by a sum. Therefore, the Gini coefficient G for k
servers with their respective n-gram counts count(x), x ∈ [1, k] is computed by:

G = 1− 1

k
·


2 ·

k−1∑
i=1

cumul(i)

cumul(k)
+ 1

 with cumul(x) =
x∑

i=1

count(x)

It should be noted that Gini coefficients are comparable only between simulations
using the same number of servers, as the calculation depends on the number of
quantiles used for specification of the distribution.

The sum strategy with S = {w1, ..., wn−1} has proven to work reasonably well in
our experiments and is hence used as the distribution strategy for our distributed
language model. The discussion of all simulator results and other interesting findings
from the simulator runs can be found in Section 4.1 and the n-gram counts for some
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lower values of k and all computed Gini coefficients are available in Appendix A.

3.3 Storage Structure

3.3.1 Introduction

The Berkeley DB library [Olson et al., 1999] is used in the distributed language
model to store all data used by a single server instance. The database for a server
must be generated only once from the language model which offers a significant
performance advantage over reading the full language model every time a server is
started. By default, when a server is started, enough cache space is allocated to
comprise the whole database. Then, all database pages are preread from disk so
that no more disk accesses are necessary during runtime.12 For testing purposes,
prereading can be disabled or smaller cache sizes be used.

3.3.2 Storing n-grams

We have implemented two different ways of storing n-grams. For the first method,
every n-gram is stored as its own database record and indexed by using all n-gram
word IDs as the key, producing a key size of 4 ·n bytes. We call this a context+word-
indexed database. The value saved in one of those database records only consists of
the probability score of the n-gram (1-4 bytes13) and, if existing, its back-off weight
(1-4 bytes). Obviously, this approach is most suitable for the lookup of single n-
grams. It shows very poor performance if used for array lookups, because every
imaginable n-gram must be searched independently.

The second possibility is to store all n-grams sharing the same linguistic context
together in one database record. The database key for this record then consists
only of the word IDs of the linguistic context and therefore, we call the database
a context-indexed database. The value of a record in such a database contains a
list of all words that exist as an n-gram with this linguistic context in the language
model, with each entry consisting of the word ID (4 bytes), the probability score
(1-4 bytes) and possibly the back-off weight (1-4 bytes). The advantage of this
approach is that array lookups can be easily implemented using a single database
access. However, performing a lookup for a specific n-gram is more time-consuming
than with a context+word-indexed database since a possibly very large data portion
must be fetched from the database and scanned for occurence of the desired word.

The differences in the space requirements of the two approaches are hard to
predict. In general, context+word-indexed databases favor language models that
contain many different linguistic contexts with few n-grams each, while context-
indexed databases favor language models that have many n-grams assigned to the
same linguistic context.
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# Name Description
1. DB format Version of the database structure used in the database,

allows detection of incompatible older formats
2. Key format Indexing scheme used in database, i.e. either context-

based or context+word-based indexing
3. Vocabulary size Equals the maximum word ID plus one, only neces-

sary for request validation and for array lookups in
context+word-indexed databases

Table 3.1: Structure of the metadata header

# Name Description
1. N-gram order Order of the n-gram section
2. Back-offs? Whether the section contains back-off weights,

typically true for all but the highest-order sec-
tion

3. Quantized? Whether scores in this section are quantized and
the lookup tables should be used, typically only
true for the highest-order section

4. N-gram count Number of n-grams in this section, only neces-
sary for informational output

5. Lookup table for proba-
bility quantization

Either 512 or 1024 bytes, depending on whether
compression is enabled

5. Lookup table for back-off
weight quantization

Either 512 or 1024 bytes, depending on whether
compression is enabled

Table 3.2: Structure of a section metadata block
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3.3.3 Metadata

Besides the actual n-grams, additional metadata needs to be stored to provide infor-
mation about the database format and the language model. This metadata is saved
in the database under the one-byte key “m” to avoid possible clashes with the keys
from the data records which have a multiple of four bytes as length14. The structure
of the metadata header that starts the chunk of metadata is shown in Table 3.1. It
is followed by an (almost) arbitrary number of section metadata blocks, specified
in Table 3.2. Each of these section metadata blocks contains information about
all n-grams with a certain n-gram order that are present in the database. Because
Berkeley DB returns the size of the value portion when reading the metadata record,
there is no need to save the number of sections in the metadata header.

Compression of 32-bit float scores to 16-bit integer scores is not controlled by the
metadata but configured as a compile-time option in Janus (enabled by default) and
as such respected by the database code. In addition, the option for quantization as
described in Section 2.3 is provided and requires the lookup tables to be saved in
the respective section metadata block15.

3.3.4 Berkeley DB access methods

Different types of indexes are available in Berkeley DB as what is called the “access
method”. For the distributed language model, the B+tree access method and the
extended linear hashing access method can be chosen when building the database.
Because the usage of the database in Berkeley DB is (almost) independent of the
used access method, this could be implemented without considerable extra effort.
The performance of both access methods is measured and compared in Section 4.2.

3.3.5 Building databases

Databases are built from n-gram language models in the ARPABO format. Apart
from the filenames of language model and database, this requires a list of sections
to be converted (e.g. all n-grams, or only 4-grams), the total number of servers
involved and the number of the server to create the database for16. The default
values for the access method and the key format can be optionally overwritten.

Building the database starts by reading the unigram section of the language
model. This is needed to establish a mapping of words to word IDs that is used
for the rest of the procedure. Afterwards, each section that should be included is
processed separately. Sections that should be quantized require the minimum and
maximum value to be known for quantization, which is why a temporary database
is created for those sections to store the compressed but not yet quantized n-grams.

12The linear reading pattern exhibited by the prereading performs by far better than highly
random access pattern during database use.

13The actual size depends on the settings for compression and quantization.
14A zero-length key is possible with Berkeley DB and actually used for storing the unigram table

in context-indexed databases.
15Actually, it would be sufficient to save the minimum and maximum values and recompute the

lookup tables when loading the database. We still favor saving the lookup tables in the database
to preserve the chance to implement a possibly better non-linear quantization technique without
changing the database format.

16A batch mode allows to build the databases for all of the servers with a single invocation.
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Accordingly, a finalization step then quantizes those entries and writes the results
to the real database. After all desired sections have been processed, the database is
compacted to minimize space requirements for later usage.

The amount of cache memory used by Berkeley DB for the build process is
configurable and temporary databases are created as in-memory databases which
are paged out to the disk only if the cache memory is exhausted. Thus, if enough
memory is available, there is no I/O overhead apart from reading the language model
and saving the final database. However, databases can also be built with very little
memory, independent of the size of the language model.

3.4 Implementation

3.4.1 Client implementation

The client for the distributed n-gram language model has been implemented as an
extension of the standard n-gram language model in Janus. Since the reason for
choosing a distributed approach was to facilitate evaluation of n-gram language
models that are too large to fit in the working memory of a single machine, the
language model loading code has been modified to allow for skipping n-gram sections
above a configurable threshold order. For instance, for a huge 5-gram language
model, unigrams to trigrams might perhaps best kept locally, while 4-grams and
5-grams should be distributed because they account for the lion’s share of memory
consumption. In any case, the unigrams need to be available locally to establish the
client-side mapping from words to word IDs.

The implementation of array lookups differs between protocol v1 and v2. Proto-
col v2 uses an algorithm that resembles the recursive algorithm used for local array
scoring and realizes an array lookup for a linguistic context of the non-zero length k
by leaving out w1 and performing an array lookup for the context length k − 1. In
the resulting probability array, the entries of those (k+1)-grams that are contained
in the language model are then overwritten with their respective values. For all
other array entries, the backing-off is accomplished by adding17 the back-off weight
determined from the k-gram representing the linguistic context. The recursion ter-
minates with returning the probability scores and back-off weights for all vocabulary
words from the unigram table as soon as k = 0 is reached.

Because the client provides the option to skip higher-order n-gram sections when
reading the language model, it is capable of loading the same language model in the
ARPABO format that has been used to build the databases for the servers. Hence
for every scoring request after connecting to the remote servers, the distributed
language model is consulted first of all, but the implementation switches to using
the locally available data once a sufficiently low n-gram order is reached during
backing-off.

Additionally, a verification mode can be used for the purpose of validation. It
requires the full language model to be loaded locally but the client is still connected
to the remote servers. Afterwards, every scoring request is executed both by means
of the local language model and the distributed system. If any discrepancies between
the two computed probabilities are detected, the causative n-gram is printed to allow
for further investigation. This facilitates debugging of the distributed language

17Since all calculations are performed with log probabilities, this equals a multiplication.
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model because errors can be detected as early as possible and not only on the
application level by comparing word lattices or hypotheses.

3.4.2 Server Implementation

The implementation of the server uses a multithreaded architecture to guarantee
fair scheduling between multiple connected clients and separate the running server
instance from the main Janus thread providing the Tcl interpreter. We favored the
usage of Native POSIX Linux Threads (NPTL) over the traditional fork() system
call because they have a lighter memory footprint and thus continue to replace fork()
in modern applications. After a server instance is started, a thread is launched to
listen for inbound connections on the network socket. For each connecting client, a
separate thread is then created that handles only requests on this specific connection
and makes all necessary database queries on its own. All threads watch and respect
a server-wide control variable that allows the Janus main thread to stop the server
and disconnect all clients.

Since the database is opened read-only by the client and thus does not need any
locking, there is no performance impact on the database by using a multithreaded
architecture. However, Tcl is not threadsafe and it must be ensured that under no
circumstances Tcl functions are called by two threads at the same time. Therefore
and for performance reasons, no Tcl functions are called in the server implementation
at all but the Berkeley Socket API is used directly for network communication.18

The two protocol versions, two database key formats and two request types
result in a total number of eight independently implemented request handlers. Six
of these request handlers utilize exactly one database query to produce an answer
to a request. The exceptions are the two request handlers that process array lookup
requests for context+word-indexed databases. In this case, a database query must
be made for every vocabulary word in order to find all n-grams having the desired
linguistic context. In contrast, answering a single n-gram request with a context-
indexed database requires only a single database query to be made but the n-gram
must be searched in the buffer of all n-grams sharing the same linguistic context. A
binary search algorithm is used to facilitate this quickly also for large buffers.

We initially started to profile the server code and implement some optimizations
to buffer handling, however running a system monitor tool revealed that the CPU
load on the client by far exceeds the load on the server, even if the client is running
in benchmark mode which uses no Janus components except the language model.
Hence, no further optimization of the server part has been performed.

18As an exception, debugging output is made via the Janus logging framework which uses Tcl
functions internally. This debugging output is disabled by default and must not be enabled in
productive use.
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Chapter 4

Experimental Tests

4.1 Distribution Strategies

In this section, we want to evaluate the distribution strategies discussed in Subsec-
tion 3.2.2 on real data to discover which strategies are best suited for the application
in distributed n-gram language models in matters of distribution uniformity.

4.1.1 Setup

We used the simulation tool presented in Subsection 3.2.3 to evaluate distribution
strategies by simulating the distribution of a 61GB large 4-gram language model
that contains a total of 1,840,613,688 n-grams. It has been built by interpolating
several other language models using the SRILM Toolkit and uses Modified Kneser-
Ney smoothing.1

The evaluated distribution strategies are the sum strategy, the weighted sum
strategy and the hash strategy, as described in Section 3.2.2. For the hash strategy,
boost::hash from the Boost C++ Library has been used. The single word strategy
has not been implemented separately but is implicitly evaluated as a special case
of the sum strategy and weighted sum strategy with |S| = 1. For the weighted sum
strategy, two different values have been tested for the weighting factor c, namely
130,625 as the size of the vocabulary and 2,011, an arbitrarily chosen prime num-
ber, which makes for two different distribution strategies. Thus, four different base
strategies have been used.

Each of these four strategies has been evaluated for 2, 3, 4, 5, 10, 25, 50, 100,
250, 500 and 1,000 servers and the most feasible word subsets S for 4-grams, which
are (w1), (w1, w2), (w1, w2, w3), (w1, w2, w3, w4), (wk), (wk−1, wk), (wk−2, wk−1, wk),
(wk−1), (wk−2, wk−1) and (wk−3, wk−2, wk−1). The application of these word selectors
to shorter n-grams works as described in Subsection 3.2.3.

Since the output emitted by the simulator merely consists of the n-gram counts
assigned to each server, Gini coefficients have been computed from these n-gram
counts to allow for an easy comparison between distribution strategies using the
same number of servers2.

1Actually, the language model is the same that has been used in Subsection 4.3. More details
on how the language model has been estimated can be found there.

2As explained previously, Gini coefficients cannot be used to compare between strategies with
different server counts.
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Figure 4.1: Gini coefficients for storage of n-gram language model on 100 servers

4.1.2 Overview

Figure 4.1 provides an overview of the computed Gini coefficients for all simulated
distribution strategies. Gini coefficients in numeric form and the raw n-gram counts
for the distribution strategies using two, three and five servers can be found in
Appendix A.

4.1.3 Considered Word Positions

All four base strategies produce an identically bad distribution for |S| = 1 because
in this case, all those strategies degrade to the same single word strategy. As dis-
cussed in Section 3.2.2, the single word strategy shows the problem that starting
with a certain server number, n-grams with a single frequent vocabulary word (like
“<unk>”) at the observed word position will always be assigned to the same server,
regardless of how many servers there are, and then dominate this server instance.
This problem even increases as the number of servers grows because the number of
n-grams that contain the frequent word at the observed word position constitutes a
minimum space requirement for this server that cannot be further reduced as more
servers are added. Thus, we will not further consider the single word strategy in the
rest of this section.

Another interesting point is the comparison between strategies that consider the
whole n-gram for distribution, i.e. S = {w1, w2, w3, w4}, and strategies that consider
only the linguistic context, i.e. S = {wk−3, wk−2, wk−1}. For the implementation
of array scoring, it is favorable to exclude the current word from the distribution
strategy in order to ensure that all n-grams with the same linguistic context are
assigned to the same server and thus, only one server needs to be queried for such
a request. Fortunately, our simulation shows that although distribution uniformity
slightly decreases if the current word is excluded, it is still perfectly good enough
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to not make any significant practical differences. For example, the Gini coefficient
for the distribution of the 4-gram language model with the sum strategy using S =
{wk−3, wk−2, wk−1} is only 0.00464.

4.1.4 Hash strategy

It is easily observable that the distribution generated by the hash strategy is usually
at least as good as the distributions from the all other strategies. This is not
astonishing, because the hash function used in the simulator (boost::hash from the
Boost C++ Library) provides a well-established hash function that should fulfill all
criteria of a good hash function, one of which is an uniform distribution of the hash
values. This allows us to use the hash strategy as a baseline for the evaluation of
the other distribution strategies like the sum strategy that are simpler and faster to
compute.

4.1.5 Weighted Sum Strategy

When looking at the weighted sum strategy, it turns out that the choice of c is crucial
for the performance of the strategy. In our case, using the vocabulary size of the
language model (130,625) for c yields an extraordinarily bad distribution uniformity,
which at least partially stems from 130,625 not being a prime number.

For example, for a total number of five servers, using a weighting factor that
is a multiple of five is disastrous because when a partial sum is multiplied by five,
its modulo value will always be zero afterwards. Thus, the information about the
first words that are added to the weighted sum is shifted out of the range of what
is considered for the distribution. To prevent this from happening, a prime number
should be used for c. This assumption is experimentally backed by the fact that
weighted sum strategy with c = 2, 011 results in a much smoother distribution that
is comparable to the distribution generated by the hash strategy.

4.1.6 Conclusion

Our experiment has shown that there are few practical differences between the sum
strategy, the weighted sum strategy with c = 2, 011 and the hash strategy using
boost::hash, for distributions considering the whole n-gram or only the linguistic
context. Therefore, we opted for the sum strategy for use in our distributed language
model. Because the possibility of fast array scoring is essential for a speech decoder,
we chose to consider only the linguistic context but not the current word for the
strategy, i.e. S = {wk−3, wk−2, wk−1}.

4.2 Timing Experiments

To estimate the influence of the various parameters of the distributed n-gram lan-
guage model on overall performance of the two request types, we performed a bench-
mark by running timing experiments with recorded n-gram access sequences.
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4.2.1 Setup

The benchmark routine itself, i.e. the code to rerun recorded n-gram accesses from
a file, has been integrated into Janus and is controlled by a Python script to al-
low for easy reproduction and validation. The Python script sets the parameters,
automatically performs multiple runs for every configuration while measuring the
time taken and coordinates starting and stopping of client and server instances. For
this experiment, network latency has been excluded by running a single server with
a moderate sized language model on localhost, with the client still computing the
distribution strategy. The impact of network latency will be further discussed in
Subsection 4.2.4.

Rerunning an n-gram access sequence is a synthetic benchmark that selectively
tests only the distributed language model and thus has the advantage of avoiding
influence from other components that would make the result less clear. Additionally,
the runtime of some of the other components of an ASR system is hard to predict
and would increase variability in runtime3.

All possible parameter combinations for the distributed language model have
been tested in this experiment. We evaluated the two different approaches for in-
dexing the database, as discussed in Subsection 3.3.2, the two possible access meth-
ods of Berkeley DB that are supported by our system (B+tree and extended linear
hashing), and the two implemented protocol versions. In practice, the main rea-
son to use a distributed language model are memory constrictions that prevent the
language model from being loaded into the memory of a single machine. With this
in mind, most of the times it makes little sense to store the lower-order n-gram
portions of a language model in the distributed system, because they typically only
account for a small fraction of the language model size. Since lower-order n-grams
are constantly needed for backing-off, having them available locally provides a sig-
nificant speedup. Therefore, we also performed benchmarks runs with bigrams and
even trigrams available client-side4.

The n-gram accesses used for the timing experiments have been collected while
decoding parts of the web test set of the Quaero 2009 evaluation with a Janus in-
stance that has been modified to write out all n-grams as they are accessed. Single
n-gram lookups are tested with a sequence of 100,000 n-gram accesses5. For array
lookups, two request sequences have been created: A larger sequence containing
5,000 accesses and a smaller one with 200 accesses, created by using the first 200
entries of the larger sequence. Creating a smaller access sequence has been neces-
sary to allow the configurations with context+word-indexed databases that are very
slow for array lookups to finish in an admissible time frame. All values shown for
those configurations have already been scaled to compensate for the reduced access
sequence size. Finally, it should be noted that the size of an access sequence is
usually not the number of server requests, since backing-off requires two additional
requests for each step.

The language model used for the timing experiments is a 4.3GB large 4-gram
language model that has been built with the SRILM Toolkit and uses Modified
Kneser-Ney smoothing. The text corpus used for its estimation contains 409,985,320

3This is largely due to unsteady I/O performance in our environment with network filesystems.
4As a minimum, the unigrams must be kept to establish the mapping from words to word IDs.
5The decoding itself does not make use of single n-gram accesses. However, the used Quaero

evaluation includes a rescoring pass after decoding which generates the single n-gram requests.
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Figure 4.2: Timing results as factors of local baseline for single n-gram lookups

sentences that have been collected from the WWW by the Institute for Anthropo-
matics and its vocabulary consists of 129,135 words.

4.2.2 Overview

Figures 4.2 and 4.3 present an overview of all results from the timing experiments
with the values shown as factors of the baseline. For example, a value of 1.7 means
that the distributed language model was 70% slower than the baseline. The baseline
is established by a benchmark run for the same n-gram access sequence with the
full language model loaded locally and has been performed directly preceeding the
distributed benchmark runs. All timing passes have been run five times and the
values of the best run are used6. Numeric values can be found in Appendix B.

4.2.3 Discussion

From the results, it is clearly noticable that the overhead from the distributed lan-
guage model declines as more n-gram orders are available locally, as we would have
expected. For every n-gram order that is available to the client, two network requests
are saved in case the backing-off process reaches this n-gram order.

When comparing context-indexed and context+word-indexed databases, we can
see that context+word-indexed databases appear to be completely inappropriate
for usage in a scenario where array lookups occur. Their bad performance for array
lookups stems from the fact that with such a database, an array lookup can only be
implemented by searching every possible n-gram with the desired linguistic context

6Using the minimum is better than using the mean (or the median) because although the cluster
nodes have been allocated exclusively, there are some factors that can cause outliers, like dynamic
frequency scaling. In general, the minimum is a better estimator for the actually required time for
deterministic tasks than the mean.
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Figure 4.3: Timing results as factors of local baseline for array lookups

in the database, which makes for a number of database queries equivalent to the
vocabulary size.

For single n-gram requests, context+word-indexed databases seem more suitable
than context-indexed databases. The difference is not so drastic though if bigrams
or even trigrams are available locally. This can be explained by the fact that very
many n-grams exist for a specific linguistic context for low n-gram orders. Thus, if
those n-grams orders are kept locally, a server using a context-indexed database does
not incur the work to scan the large database record for such a linguistic context
for the occurrence of the desired n-gram.

Comparing the two protocols, we can see that protocol v2 performs slightly
better than protocol v1 for single n-gram lookups. It can be presumed that this is
largely due to the missing overhead from converting numbers to text and vice versa
for a binary protocol. For array lookups, protocol v2 is much more efficient than
protocol v1 in terms the size of transferred data because with protocol v1, servers
send a response for every vocabulary word, whether it exists as an n-gram or not.
This explains the disastrous performance of protocol v1 for array lookups.

Finally, we can compare the two different access methods of Berkeley DB that
can be used for the distributed language model. Although there are differences in
performance, they are small and not significant for most configurations. This shows
that the index accesses are not a major time factor for our databases that are kept
completely in memory7 However, in our tests, we found databases using the B+tree
access method to be consistently 10%-30% smaller than databases using the hash
access method. Therefore, the B+tree access method should be preferred.

7If the databases were read from disk, we would maybe see more drastic differences between
the two access methods here, depending on the number of disk accesses that are necessary to find
a database entry.
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Local 1-grams Local 2-grams Local 3-grams

73.75 13.27 1.38

Table 4.1: Timing results for array lookups as factors of local baseline for a
context/B+tree-indexed database when using protocol v2

4.2.4 Conclusion

Table 4.1 shows the results for array lookups with a practical configuration that
uses a context-indexed database with the B+tree access method and protocol v2.
Shown are the different values for what n-gram orders are available client-side in
which the assumption that bigrams are available locally can be made even for very
large language models. Storing trigrams locally as well is possible in our cluster
environment for all language models used in this report, but nevertheless requires a
much larger amount of memory.

What can be seen is that especially with trigrams available client-side, there is
little overhead for array lookups with the distributed language model. Since the
ASR decoder in Janus solely uses array lookups, performance should not decrease
much when such a distributed language model is applied to speech decoding. The
slowdown for single n-gram lookups is larger, but still, it should not be forgotten that
the language model only accounts for a part of the computation time. Therefore,
even with a slowdown of the language model by the factor 20, the application as a
whole will probably be slowed down by much less than 20.

As mentioned above, network delay is not considered in this benchmark because
client and server are run on the same machine to allow for automatic, scripted
benchmarking which would be much harder to implement across multiple machines.
For single n-gram lookups, network latency could cause an additional, maybe drastic,
slowdown. But for arrow lookups as the relevant request type for decoding, this can
be doubted: A local array lookup uses approximately 3.6·10−4s = 0.36ms8. Network
latency in our cluster has been measured by ICMP echo requests sent from one to
another cluster node and round-trip time for the link was found to be 0.079ms with
a standard deviation of 0.048ms9. Because of this, network latency should make
distributed array lookups in our cluster setting slower by only around 20%.

4.3 Effects of Larger LMs on WER

In this section, we want to explore the effects of using very large language models
on speech recognition performance, measured by the word error rate (WER) as
described in Subsection 2.1.5. The task that we have used to assess the language
model performance is a part of the Quaero 2009 evaluation [Stüker et al., 2010]
which we have reran with a larger language model and unaltered other parameters
(like preprocessing, acoustic model, etc.).

8The full sequence of 5,000 array lookups takes around 1.8s in the local baseline run.
9The measurement has been performed by running “ping -i 0.2 -c 100 i13hpc2”.
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Figure 4.4: Sources used in the web test set of the Quaero 2009 evaluation

4.3.1 The Quaero 2009 Evaluation

Quaero is an European research and development program on multimedia classifi-
cation and indexing under participation of the Karlsruhe Institute of Technology.
It also includes research on the underlying technologies like multilingual automatic
speech recognition in which the achieved progress of the developed systems is mea-
sured by yearly evaluations. In this experiment, we have used the evaluation of 2009
and replaced the original 3GB large language model with a 61GB large language
model that will be explained later.

The Quaero 2009 evaluation is composed of two different test sets. The first
test set consists of audio files gathered at different places in the World Wide Web.
Figure 4.4 shows the (abbreviated) names of the sources that are contained in this
test set with the sentence counts of the respective transcripts as an indicator for
the influence of a source on the total word error rate. The other test set consists
of speech data recorded at European Parliament Plenary Sessions (EPPS). Because
such speeches typically exhibit few of the problems associated with spontaneous
speech, the EPPS test set is considered to be the easier one and typically yields
better word error rates.

For our experiment, only the web test set has been used. Every of its sources
consists of one or more speakers which can be run independently on the computing
cluster to achieve a speedup by parallelization. In contrast, utterances by the same
speaker cannot be decoded independently without changing the result since speaker
adaption is used.

4.3.2 Building a Large Language Model

The large language model for this experiment has been built by interpolating several
smaller language models as described in Subsection 2.2.4. Due to limitations in the
SRILM Toolkit that allows for a maximum of ten source language models, a two-
step approach has been chosen, that is, first some language models are interpolated
and in a second step, the result from the first interpolation is then used again for
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Language model name Size Weight

train2010.shuf.train.txt.bo4.txt 5.6MB 0.278557

web.3-2gwl.UNK.pruned.bo4.txt 4.4GB 0.337259

final.02.eval06.bo4p.gz.bo4.txt 921MB 0.137882

web2-full.respell.bo4i.gz.bo4.txt 1.1GB 0.246301

Table 4.2: Language models used for first interpolation run

Language model name Size Weight

g.4gram.bin.bo4.txt 25GB 0.128318

q2010en.qcrap.UNK.bo4.txt.bo4.txt 17GB 0.0799012

q2010en.odp-p1.UNK.bo4.txt.bo4.txt 14GB 0.00519823

q2010en.odp-p0.UNK.bo4.txt.bo4.txt 5.6GB 0.0514753

q2010en.giga.UNK.bo4.txt.bo4.txt 9.7GB 0.0018805

web2.4-w2.4.bo4.bin.bo4.txt 3.0GB 0.063251

smalllms.UNK.bo4.txt.bo4.txt (from first interpolation step) 5.3GB 0.473824

kn-clean p1 1.delchar file.filt line10.filt vtab.lm.gz.bo4.txt 17GB 0.0959051

kn-gigaword4-full-all.lm.gz.bo4.txt 11GB 0.0354432

kn-crap-all.lm.gz.bo4.txt 17GB 0.0648038

Table 4.3: Language models used for second interpolation run

interpolation of the final language model.
In our case, four smaller language models have been interpolated in the first step

and in the second step, the resulting language model has been interpolated with
nine other language models. Thus, 13 language models have been used in total.
Table 4.2 shows the language models used in the first step together with the weight
assigned to each of them as part of the interpolation process to minimize the test set
perplexity. In Table 4.3, the same type of information is presented for the second
interpolation run.

Table 4.4 compares some attributes of the resulting language model with the
original language model used in the baseline. It should be noted that both language
models share the same vocabulary and thus have the same number of unigrams10.

Baseline language model Built language model
Language model order 4 4
Number of 1-grams 130,625 130,625
Number of 2-grams 47,480,649 115,361,179
Number of 3-grams 59,817,610 523,080,964
Number of 4-grams 74,449,181 1,202,040,920
Size in ARPABO format 3.0GB 61GB
Test set perplexity 227.072 152.489

Table 4.4: Comparison of the built language model to the baseline language model
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Figure 4.5: Word error rates for decoding and rescoring compared to baseline

4.3.3 Results

Figure 4.5 shows the results from running the evaluation by comparing the word
error rate from the baseline language model to the two word error rates achieved by
lattice rescoring and decoding with the larger language model. For all experiments,
a rescoring pass tested different values for the language model weight (lz) and the
word transition penalty (lp). The results shown here were then selected from the
lz/lp matrix for the lz/lp combination with the lowest total word error rate, which
was found at values of lz = 40 and lp = −8 in all three cases.

The word error rates in the figure are shown separated by test set sources and as
a total value. It can be seen that usage of the larger language model systematically
reduced the word error rate for almost all sources. The word error rate of the baseline
of 32.5 drops by more than two points to 30.3 for the rescoring task and 30.2 for
the decoding task which indicates a significant improvement in recognition accuracy.
The difference between rescoring and decoding is much smaller and suggests that the
lattices produced from the decoding run with the original language model already
contained the hypotheses that are found during the decoding run with the larger
language model in the majority of cases. Hence, the word error rate of the smaller
language model is worse because other hypotheses in the lattice have been judged
as more probable.

10If the language models used different vocabularies, it would not be permissible to compare
perplexities directly.
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Chapter 5

Conclusion

For this report, we have developed an architecture for distributed n-gram language
models that allows to overcome the traditional limitations on language model size
imposed by the amount of main memory available for evaluation. Because our im-
plementation has been realized as an extension to the Janus Recognition Toolkit,
applications based on this toolkit are now able to support the usage of huge dis-
tributed n-gram language models that are too big to be loaded otherwise.

In Chapter 4, we evaluated different strategies for n-gram distribution across a
number of servers and found the strategy that considers the sum of the word IDs in
the linguistic context of the n-gram to constitute a sufficiently smooth distribution
for usage in our distributed architecture. Timing experiments of the distributed
n-gram language model showed that even though our approach does bring a perfor-
mance overhead with it, it is nevertheless applicable for practical usage in a speech
decoder. Finally, we explored the actual benefit from using larger language mod-
els in the context of automatic speech recognition. For this purpose, we reran the
Quaero 2009 evaluation using a larger, specially built language model and found a
significant improvement in the word error rate for both speech decoding and lattice
rescoring tasks.

5.1 Further Work

The work on our approach to distributed n-gram language models is not finished.
Further optimizations could be made in regard to the amount of memory needed
for the server databases, thus reducing the number of servers that are necessary to
store a given language model. For example, it would be feasible to replace the word
IDs having a fixed size of four bytes with variable-sized word IDs that are derived
from the word IDs in the language model by the use of entropy encoding techniques
like Huffman coding. As a result, it should be possible to lower the memory space
needed to encode common words like “<s>” or “the” to one byte and spend three
bytes for storing the rarely used words.

Other possible optimizations could aim at reducing the overhead of the dis-
tributed language model on speed. Many applications that use a language model
can be modified to allow for some foresight of which n-gram probabilities might be
needed soon. For example, a decoder for speech recognition could tentatively ex-
pand a number of promising nodes in the search graph to generate n-gram requests,
and apply pruning as soon as the inquired probabilities are available. Because n-
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gram requests are sent in parallel then instead of always waiting for the response
to a single request, requests can be processed in parallel by the queried servers and
the overhead from network latency is incurred only once. Accordingly, the speedup
yielded by request batching is particularly large for applications that use a lot of
single n-gram lookups but few array lookups (see Subsection 4.2.4).

Finally, with the ability to evaluate large language models, the problem of build-
ing such language models efficiently arises. For popular smoothing techniques like
Modified Kneser-Ney smoothing, optimizations exist to reduce the memory demand
during estimation of the language model. Nevertheless, the amount of memory
needed still increases with larger corpora and language models. Therefore, the size
of the text corpus that can be used is still limited with traditional tools like the
SRILM Toolkit1. Possible solutions to this problem can either find a way to fur-
ther reduce the memory consumption of the estimation process for the established
smoothing techniques, or implement novel smoothing techniques that can be esti-
mated more efficiently, while at least preserving some of the performance advantages
gained by using a larger text corpus, or perform even the estimation process by itself
in a distributed manner, as shown by [Brants et al., 2007].

1Of course, virtual memory theoretically allows to build language models of arbitrary size by
swapping out memory pages to disk. In practice, however, this makes the estimation process much
too slow to be advisable.
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Appendix A

Simulation Results for
Distribution Strategies

Strategies in tables of this appendix chapter are abbreviated as shown in Table A.1.

Abbrev. Strategy
WSM Sum Strategy (word sum modulo)
WWSM1 Weighted Sum Strategy (word weighted sum modulo), c = 130625
WWSM2 Weighted Sum Strategy (word weighted sum modulo), c = 2011
HASH Hash Strategy using boost::hash from the Boost C++ Library

Table A.1: Strategy abbreviations

The simulator described in Subsection 3.2.3 has been used to evaluate distribu-
tions of all {1,2,3,4}-grams from a 61GB large 4-gram language model to different
numbers of servers using all discussed distribution strategies. The language model
contains a total of 1,840,613,688 n-grams and has been interpolated from several
source language models that use modified Kneser-Ney smoothing. The simulation
has been run for 2, 3, 4, 5, 10, 25, 50, 100, 250, 500 and 1000 hosts.

A.1 N-gram counts

The numbers of n-grams assigned to each server can be found in Table A.2 for 2
hosts, in Table A.3 for 3 hosts and in Table A.4 for 5 hosts.

A.2 Gini coefficients

The Tables A.5, A.6 and A.7 show the Gini coefficients of all evaluated distribu-
tion strategies for the described 4-gram language model, multiplied by 1000. For a
description of the Gini coefficient, see Subsection 3.2.3.

42



Strategy Server 1 Server 2
WSM (w1) 935429892 905183796
WWSM1 (w1) 935429892 905183796
WWSM2 (w2) 935429892 905183796
HASH (w1) 905183796 935429892
WSM (w1, w2) 913774354 926839334
WWSM1 (w1, w2) 913774354 926839334
WWSM2 (w1, w2) 913774354 926839334
HASH (w1, w2) 917323016 923290672
WSM (w1, w2, w3) 920204476 920409212
WWSM1 (w1, w2, w3) 920204476 920409212
WWSM2 (w1, w2, w3) 920204476 920409212
HASH (w1, w2, w3) 920573363 920040325
WSM (w1, w2, w3, w4) 920448926 920164762
WWSM1 (w1, w2, w3, w4) 920448926 920164762
WWSM2 (w1, w2, w3, w4) 920448926 920164762
HASH (w1, w2, w3, w4) 920303398 920310290
WSM (wk) 866770213 973843475
WWSM1 (wk) 866770213 973843475
WWSM2 (wk) 866770213 973843475
HASH (wk) 973843475 866770213
WSM (wk−1, wk) 914255481 926358207
WWSM1 (wk−1, wk) 914255481 926358207
WWSM2 (wk−1, wk) 914255481 926358207
HASH (wk−1, wk) 917023616 923590072
WSM (wk−2, wk−1, wk) 920437323 920176365
WWSM1 (wk−2, wk−1, wk) 920437323 920176365
WWSM2 (wk−2, wk−1, wk) 920437323 920176365
HASH (wk−2, wk−1, wk) 920193611 920420077
WSM (wk−1) 880419966 960193722
WWSM1 (wk−1) 880419966 960193722
WWSM2 (wk−1) 880419966 960193722
HASH (wk−1) 960324347 880289341
WSM (wk−2, wk−1) 908919860 931693828
WWSM1 (wk−2, wk−1) 908919860 931693828
WWSM2 (wk−2, wk−1) 908919860 931693828
HASH (wk−2, wk−1) 916781608 923832080
WSM (wk−3, wk−2, wk−1) 920335905 920277783
WWSM1 (wk−3, wk−2, wk−1) 920335905 920277783
WWSM2 (wk−3, wk−2, wk−1) 920335905 920277783
HASH (wk−3, wk−2, wk−1) 920734273 919879415

Table A.2: N-grams counts assigned to 2 hosts from 61GB large 4-gram language
model
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Strategy Server 1 Server 2 Server 3
WSM (w1) 704267443 644960644 491385601
WWSM1 (w1) 704267443 644960644 491385601
WWSM2 (w1) 704267443 644960644 491385601
HASH (w1) 704267443 644960644 491385601
WSM (w1, w2) 607913567 622102832 610597289
WWSM1 (w1, w2) 619213776 613015252 608384660
WWSM2 (w1, w2) 607913567 622102832 610597289
HASH (w1, w2) 604781084 623381993 612450611
WSM (w1, w2, w3) 613640751 613400727 613572210
WWSM1 (w1, w2, w3) 613803793 613486184 613323711
WWSM2 (w1, w2, w3) 613640751 613400727 613572210
HASH (w1, w2, w3) 613973262 613374449 613265977
WSM (w1, w2, w3, w4) 613556113 613549656 613507919
WWSM1 (w1, w2, w3, w4) 613550281 613522183 613541224
WWSM2 (w1, w2, w3, w4) 613556113 613549656 613507919
HASH (w1, w2, w3, w4) 613535759 613544007 613533922
WSM (wk) 628333131 646266784 566013773
WWSM1 (wk) 628333131 646266784 566013773
WWSM2 (wk) 628333131 646266784 566013773
HASH (wk) 628333131 646266784 566013773
WSM (wk−1, wk) 612406362 614654170 613553156
WWSM1 (wk−1, wk) 618615746 610528590 611469352
WWSM2 (wk−1, wk) 612406362 614654170 613553156
HASH (wk−1, wk) 608733766 618810149 613069773
WSM (wk−2, wk−1, wk) 613916105 613298210 613399373
WWSM1 (wk−2, wk−1, wk) 613547712 613674522 613391454
WWSM2 (wk−2, wk−1, wk) 613916105 613298210 613399373
HASH (wk−2, wk−1, wk) 614112184 613178346 613323158
WSM (wk−1) 647873740 683568268 509171680
WWSM1 (wk−1) 647873740 683568268 509171680
WWSM2 (wk−1) 647873740 683568268 509171680
HASH (wk−1) 647873740 683568268 509171680
WSM (wk−2, wk−1) 609887685 618459242 612266761
WWSM1 (wk−2, wk−1) 621253382 607932909 611427397
WWSM2 (wk−2, wk−1) 609887685 618459242 612266761
HASH (wk−2, wk−1) 604619088 623714471 612280129
WSM (wk−3, wk−2, wk−1) 613365074 614453910 612794704
WWSM1 (wk−3, wk−2, wk−1) 614792297 614042804 611778587
WWSM2 (wk−3, wk−2, wk−1) 613365074 614453910 612794704
HASH (wk−3, wk−2, wk−1) 613766275 614230260 612617153

Table A.3: N-grams counts assigned to 3 hosts from 61GB large 4-gram language
model
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Strategy Server 1 Server 2 Server 3 Server 4 Server 5
WSM (w1) 315748900 307390738 306393854 397503138 513577058
WWSM1 (w1) 315748900 307390738 306393854 397503138 513577058
WWSM2 (w1) 315748900 307390738 306393854 397503138 513577058
HASH (w1) 307390738 306393854 397503138 513577058 315748900
WSM (w1, w2) 366443926 360250180 370250060 380228389 363441133
WWSM1 (w1, w2) 332462309 316671696 313343920 321144556 556991207
WWSM2 (w1, w2) 366443926 360250180 370250060 380228389 363441133
HASH (w1, w2) 367646908 366537148 360498195 371942593 373988844
WSM (w1, w2, w3) 367544737 368456661 368853557 367863615 367895118
WWSM1 (w1, w2, w3) 331462980 325024245 303866637 323495302 556764524
WWSM2 (w1, w2, w3) 367544737 368456661 368853557 367863615 367895118
HASH (w1, w2, w3) 368062114 368319870 368283479 367957794 367990431
WSM (w1, w2, w3, w4) 368112739 368139313 368130654 368138632 368092350
WWSM1 (w1, w2, w3, w4) 359159024 367086145 350754673 348129407 415484439
WWSM2 (w1, w2, w3, w4) 368112739 368139313 368130654 368138632 368092350
HASH (w1, w2, w3, w4) 368116108 368128785 368080297 368146587 368141911
WSM (wk) 329306001 372894949 303245064 324129938 511037736
WWSM1 (wk) 329306001 372894949 303245064 324129938 511037736
WWSM2 (wk) 329306001 372894949 303245064 324129938 511037736
HASH (wk) 372894949 303245064 324129938 511037736 329306001
WSM (wk−1, wk) 368971899 359970148 367422134 378475882 365773625
WWSM1 (wk−1, wk) 329306001 372894949 303245064 324129938 511037736
WWSM2 (wk−1, wk) 368971899 359970148 367422134 378475882 365773625
HASH (wk−1, wk) 365712958 366695090 364662904 369406239 374136497
WSM (wk−2, wk−1, wk) 367673160 368166911 368653712 367798206 368321699
WWSM1 (wk−2, wk−1, wk) 329306001 372894949 303245064 324129938 511037736
WWSM2 (wk−2, wk−1, wk) 367673160 368166911 368653712 367798206 368321699
HASH (wk−2, wk−1, wk) 367984687 367954226 368380492 368209091 368085192
WSM (wk−1) 330702383 315957402 303454774 320824319 569674810
WWSM1 (wk−1) 330702383 315957402 303454774 320824319 569674810
WWSM2 (wk−1) 330702383 315957402 303454774 320824319 569674810
HASH (wk−1) 316088027 303454774 320824319 569674810 330571758
WSM (wk−2, wk−1) 363427582 360179998 367286688 383572385 366147035
WWSM1 (wk−2, wk−1) 330702383 315957402 303454774 320824319 569674810
WWSM2 (wk−2, wk−1) 363427582 360179998 367286688 383572385 366147035
HASH (wk−2, wk−1) 365043316 365468004 360202138 376829768 373070462
WSM (wk−3, wk−2, wk−1) 367324572 367744867 368636062 368848652 368059535
WWSM1 (wk−3, wk−2, wk−1) 330702383 315957402 303454774 320824319 569674810
WWSM2 (wk−3, wk−2, wk−1) 367324572 367744867 368636062 368848652 368059535
HASH (wk−3, wk−2, wk−1) 368402332 368417466 367330798 368264641 368198451

Table A.4: N-grams counts assigned to 5 hosts from 61GB large 4-gram language
model
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Strategy 2 hosts 3 hosts 4 hosts 5 hosts
WSM (w1) 8.22 77.11 48.35 109.63
WWSM1 (w1) 8.22 77.11 48.35 109.63
WWSM2 (w1) 8.22 77.11 48.35 109.63
HASH (w1) 8.22 77.11 48.35 109.63
WSM (w1, w2) 3.55 5.14 5.57 10.16
WWSM1 (w1, w2) 3.55 3.92 5.57 109.33
WWSM2 (w1, w2) 3.55 5.14 4.62 10.16
HASH (w1, w2) 1.62 6.74 3.64 7.04
WSM (w1, w2, w3) 0.06 0.09 0.16 0.7
WWSM1 (w1, w2, w3) 0.06 0.17 0.16 111.65
WWSM2 (w1, w2, w3) 0.06 0.09 0.07 0.7
HASH (w1, w2, w3) 0.14 0.26 0.19 0.22
WSM (w1, w2, w3, w4) 0.08 0.02 0.08 0.03
WWSM1 (w1, w2, w3, w4) 0.08 0.01 0.08 32.82
WWSM2 (w1, w2, w3, w4) 0.08 0.02 0.09 0.03
HASH (w1, w2, w3, w4) 0.0 0.0 0.01 0.03
WSM (wk) 29.09 29.07 42.11 100.91
WWSM1 (wk) 29.09 29.07 42.11 100.91
WWSM2 (wk) 29.09 29.07 42.11 100.91
HASH (wk) 29.09 29.07 42.11 100.91
WSM (wk−1, wk) 3.29 0.81 4.39 8.74
WWSM1 (wk−1, wk) 3.29 2.93 4.39 100.91
WWSM2 (wk−1, wk) 3.29 0.81 4.04 8.74
HASH (wk−1, wk) 1.78 3.65 3.77 4.92
WSM (wk−2, wk−1, wk) 0.07 0.22 0.16 0.54
WWSM1 (wk−2, wk−1, wk) 0.07 0.1 0.16 100.91
WWSM2 (wk−2, wk−1, wk) 0.07 0.22 0.13 0.54
HASH (wk−2, wk−1, wk) 0.06 0.34 0.23 0.23
WSM (wk−1) 21.67 63.17 29.24 118.91
WWSM1 (wk−1) 21.67 63.17 29.24 118.91
WWSM2 (wk−1) 21.67 63.17 29.24 118.91
HASH (wk−1) 21.74 63.17 29.34 118.86
WSM (wk−2, wk−1) 6.19 3.1 7.24 11.01
WWSM1 (wk−2, wk−1) 6.19 4.82 7.24 118.91
WWSM2 (wk−2, wk−1) 6.19 3.1 6.89 11.01
HASH (wk−2, wk−1) 1.92 6.92 4.32 8.97
WSM (wk−3, wk−2, wk−1) 0.02 0.6 0.04 0.86
WWSM1 (wk−3, wk−2, wk−1) 0.02 1.09 0.04 118.91
WWSM2 (wk−3, wk−2, wk−1) 0.02 0.6 0.1 0.86
HASH (wk−3, wk−2, wk−1) 0.23 0.58 0.57 0.52

Table A.5: Gini coefficients (x1000) for distributions with 2, 3, 4 and 5 hosts from
61GB large 4-gram language model
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Strategy 10 hosts 25 hosts 50 hosts 100 hosts
WSM (w1) 147.49 190.59 228.35 277.12
WWSM1 (w1) 147.49 190.59 228.35 277.12
WWSM2 (w1) 147.49 190.59 228.35 277.12
HASH (w1) 147.49 190.59 228.35 277.12
WSM (w1, w2) 12.76 13.73 20.79 27.84
WWSM1 (w1, w2) 110.17 180.54 181.02 181.63
WWSM2 (w1, w2) 12.76 15.68 22.15 28.09
HASH (w1, w2) 9.7 13.3 16.35 24.52
WSM (w1, w2, w3) 0.85 0.95 1.32 1.86
WWSM1 (w1, w2, w3) 111.67 175.67 175.69 175.71
WWSM2 (w1, w2, w3) 0.85 0.91 1.3 1.76
HASH (w1, w2, w3) 0.5 0.64 1.05 1.64
WSM (w1, w2, w3, w4) 0.1 0.06 0.13 0.16
WWSM1 (w1, w2, w3, w4) 32.84 54.44 54.44 54.45
WWSM2 (w1, w2, w3, w4) 0.1 0.07 0.13 0.17
HASH (w1, w2, w3, w4) 0.04 0.06 0.08 0.13
WSM (wk) 119.45 167.52 208.9 256.25
WWSM1 (wk) 119.45 167.52 208.9 256.25
WWSM2 (wk) 119.45 167.52 208.9 256.25
HASH (wk) 119.45 167.52 208.9 256.25
WSM (wk−1, wk) 11.71 12.89 19.24 26.56
WWSM1 (wk−1, wk) 101.87 167.52 167.98 168.4
WWSM2 (wk−1, wk) 11.71 13.74 18.72 24.65
HASH (wk−1, wk) 7.12 11.05 14.41 22.04
WSM (wk−2, wk−1, wk) 0.62 1.04 1.29 1.88
WWSM1 (wk−2, wk−1, wk) 100.95 167.52 167.54 167.56
WWSM2 (wk−2, wk−1, wk) 0.62 0.82 1.06 1.57
HASH (wk−2, wk−1, wk) 0.43 0.76 1.14 1.64
WSM (wk−1) 142.62 184.61 225.01 275.18
WWSM1 (wk−1) 142.62 184.61 225.01 275.18
WWSM2 (wk−1) 142.62 184.61 225.01 275.18
HASH (wk−1) 142.59 184.59 225.0 275.14
WSM (wk−2, wk−1) 15.84 16.81 25.52 33.92
WWSM1 (wk−2, wk−1) 120.17 184.61 185.14 185.5
WWSM2 (wk−2, wk−1) 15.84 19.36 26.82 33.27
HASH (wk−2, wk−1) 11.06 16.55 20.02 29.85
WSM (wk−3, wk−2, wk−1) 1.46 1.95 3.05 4.64
WWSM1 (wk−3, wk−2, wk−1) 119.01 184.61 184.66 184.71
WWSM2 (wk−3, wk−2, wk−1) 1.46 1.84 3.23 4.17
HASH (wk−3, wk−2, wk−1) 1.0 1.45 2.37 3.87

Table A.6: Gini coefficients (x1000) for distributions with 10, 25, 50 and 100 hosts
from 61GB large 4-gram language model
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Strategy 250 hosts 500 hosts 1000 hosts
WSM (w1) 347.87 396.51 453.19
WWSM1 (w1) 347.87 396.51 453.19
WWSM2 (w1) 347.87 396.51 453.19
HASH (w1) 347.87 396.51 453.19
WSM (w1, w2) 40.89 51.87 68.01
WWSM1 (w1, w2) 288.98 290.05 292.61
WWSM2 (w1, w2) 38.27 48.64 63.23
HASH (w1, w2) 35.9 48.29 62.08
WSM (w1, w2, w3) 3.17 4.33 6.28
WWSM1 (w1, w2, w3) 284.12 284.13 284.16
WWSM2 (w1, w2, w3) 2.67 3.7 5.16
HASH (w1, w2, w3) 2.67 3.63 5.27
WSM (w1, w2, w3, w4) 0.26 0.36 0.49
WWSM1 (w1, w2, w3, w4) 115.62 115.63 115.63
WWSM2 (w1, w2, w3, w4) 0.24 0.32 0.44
HASH (w1, w2, w3, w4) 0.2 0.28 0.42
WSM (wk) 325.72 376.59 435.65
WWSM1 (wk) 325.72 376.59 435.65
WWSM2 (wk) 325.72 376.59 435.65
HASH (wk) 325.72 376.59 435.65
WSM (wk−1, wk) 38.19 50.28 65.53
WWSM1 (wk−1, wk) 274.43 275.14 277.44
WWSM2 (wk−1, wk) 35.52 45.63 61.02
HASH (wk−1, wk) 33.37 46.17 59.42
WSM (wk−2, wk−1, wk) 2.95 4.13 5.84
WWSM1 (wk−2, wk−1, wk) 274.01 274.02 274.05
WWSM2 (wk−2, wk−1, wk) 2.54 3.57 4.96
HASH (wk−2, wk−1, wk) 2.44 3.4 4.93
WSM (wk−1) 346.45 395.11 451.1
WWSM1 (wk−1) 346.45 395.11 451.1
WWSM2 (wk−1) 346.45 395.11 451.1
HASH (wk−1) 346.41 395.01 451.04
WSM (wk−2, wk−1) 49.06 61.6 76.87
WWSM1 (wk−2, wk−1) 294.23 294.91 297.09
WWSM2 (wk−2, wk−1) 45.56 56.34 71.93
HASH (wk−2, wk−1) 42.67 57.05 70.82
WSM (wk−3, wk−2, wk−1) 7.33 10.09 13.74
WWSM1 (wk−3, wk−2, wk−1) 293.87 293.91 294.17
WWSM2 (wk−3, wk−2, wk−1) 6.43 8.85 12.39
HASH (wk−3, wk−2, wk−1) 6.38 9.07 12.6

Table A.7: Gini coefficients (x1000) for distributions with 250, 500 and 1000 hosts
from 61GB large 4-gram language model
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Appendix B

Timing Measurements for the
Distributed System

Tables B.1 and B.2 show the results from the timing experiments of the distributed
language model for single n-gram and array lookups as described in Section 4.2.
Each configuration is represented by a row in both tables. Five runs for every
database type have been performed on the same machine, preceeded by five runs
with the same request sequence and the language model loaded locally to establish
a baseline. The table then shows the best performance of the five distributed runs
relative to the best performance of the baseline runs. For example, a value of 1.7
means that the distributed language model was 70% slower than the local baseline.

The language model employed for the timing experiments is a 4.3GB large 4-gram
language model that uses Modified Kneser-Ney smoothing and has been estimated
on a text corpus gathered from the WWW by the Institute for Anthropomatics. The
n-gram access sequence used for benchmarking has been recorded while decoding
parts of the Quaero 2009 evaluation and consists of 100,000 accesses for single n-
gram lookups and 5,000 respectively 200 accesses for array lookups1. The sequence of
array lookups that consists of only 200 accesses has been used for the context+word-
indexed databases that are very slow for array lookups, i.e. for the last two columns
of Table B.2. The values in the table have already been scaled accordingly to make
the results comparable.

1The sequence of 200 requests has been extracted from the start of the sequence containing
5,000 requests.

49



context-indexed context+word-indexed

B+tree index hash index B+tree index hash index

Protocol v1, local 1-grams 142.55 140.41 51.63 49.45

Protocol v1, local 2-grams 54.45 52.71 37.05 35.74

Protocol v1, local 3-grams 21.12 20.07 19.91 18.85

Protocol v2, local 1-grams 136.89 131.30 46.10 42.96

Protocol v2, local 2-grams 49.84 48.75 33.07 31.18

Protocol v2, local 3-grams 18.32 17.29 17.51 16.77

Table B.1: Timing results as factors of local baseline for single n-gram lookups

context-indexed context+word-indexed

B+tree index hash index B+tree index hash index

Protocol v1, local 1-grams 355.72 355.84 3668.54 4938.64

Protocol v1, local 2-grams 175.82 175.48 2275.81 3644.82

Protocol v1, local 3-grams 68.43 68.33 1095.80 1391.80

Protocol v2, local 1-grams 73.75 74.40 3453.57 3836.08

Protocol v2, local 2-grams 13.27 13.27 2140.06 1811.86

Protocol v2, local 3-grams 1.38 1.36 1036.45 1314.69

Table B.2: Timing results as factors of local baseline for array lookups
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