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Abstract

In this paper we present ;\ template independent knowledge source

(KS). that uses coarse phonetic information to substantially consrraln

the candidate vocabulary for usc in word hyputhcsization with very

large vocabularies. It consists of three parts: the segmenter that breaks

a test utterance up In to a seq uence of C O(l1";)C phoneuc classes, the

knowledge compiler that generate s a reference d ictionary co ntaining

the appropriate coarse phonetic representations for each word

candidate and fmally. a matchingengine. Coarse phonetic classification

is performed using linear discrtminam analysis. more specifically

perceptron classification. The knowledge compiler first generates a

phonemic rcprescmauon and segmentaldurations by rule from a list or
word candidates (Le.. from text), and then derives coarse phonet ic class

segments. Matching is performed by (I nonlinear time alignment

'algorithm based on dissimilarity scores between detected and lexical

coarse class segments. The coarse phonetic KS was tested by compiling

a word list of approximately 1500 words. Using only the coarse classes

Silence, Plostvc, Fricative. Vocalic, Front Vowel. Rack Vowel, Nasal

and R, a vocabulary reduction to 5% of the original vocabulary is

achieved at lower than 5%error rate for three different speakers.

i. In troduction

MOSI current speech recognition systems today cannot easily be

extended to large vocabularies of scvcral thccsand words. Some of the

most serious critical requirements lhat must be mel by large vocabulary

recognition systems are-computational efficiency. pracl icality, flexibility

and robust recognition accuracy. Searching a large vocabulary for word

candidates must be done efficiently. Maintat nlng and collecting a

database of reference word-templates becomes costly far large

vocabularies and Cannotbe expected from the user of such a system. In

addition, it is desirable to flexibly add or subtract new lexical items
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(dictionaryentries) as the language or the needs of the user change over

lime, Finally, highly robust recognition algorithms must be developed

to deal with the increasing acoustic similarity of words in a large

vocabulary.

Several studies have proposed various methods (0 overcome some of

the difficulries cited above, Recognition of smaller atomic units than

the word, c.g.. dcmtsyllablcs (I ] or phonemes [2] reduces or eliminates

the required amount of user training. H has else been demonstrated

mat preselection of smaller subvocabutarics could be achieved by

means of relatively simple acoustic measures 131 given a reference

dictionary of word templates. Shipman and ZUI: have shown that a

large vocabulary can be reduced into surprisingly small subvocabularies

if an errolfree. description of the uuerance In terms of coarse phonet ic

classes ls given {4 , 5J. Alternate acoustic evidence such as

suprascgmental cues in the signal were also shown to provide powerful

constraintsfor search space reduction [6J.

In the present work we extent these previous results and present and

evalu ate a knowledge source (KS) tha t achiev es vocabu lary reduction

based on the dctccron or coarse phonetic categories and docs nOl

require excessive user training , It can be used to either pre select a

smaller subvocabulary or to "raise activation levels" of various word

candidates. Template independence and flexibility of the KS isachieved

by a rule-based knowledge compiler \.hat compiles an orthographic

representation (text) of the candidate words into a coarse phenetic

rcprcsentetlon. The KS then compares the seque nce orcoersc phonetic

categories in the incoming. unknown utterance agai nst the. coarse class

representation of each lexical item for satisfaction of Its constraints.

In the following sections we first describe the classifier used to

recognize sequences of coarse phonetic categories in a test uucrencc.

We then discuss the knowledge compiler used to generate the reference

dictionary and the matching engine that performs the recognltlon.

F inally we present results of recognition expenmcr us using a 1500 word
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vocabulary.

2. Coarse Phonetic Classi fi er

Proper classlficarlcn of coarse phonetic categories is a critical step for

the present knowledge source. Out of the many methods th,a( could

accomplish lhis task we have chosen to use linear classifiers, specifically,

pcrceprrcns. for their simplicity in automatic learning as wetl as

recognition.

An incoming speech utterance is first sampled at a 16 kH7. sampling rate

and lowpass filtered by a 6.4-kHt antialiasfng filter. We then compute

a 256-point DFT every 3 ms over 20 ms framesof Hamming-windowed

speech. The features used for classification consist of 54 spectral

coefficients linearlyspanning the spectral rangeasw~1I as 8 coefficients

spanning the spectral range logarithmically. In order to obtain a

smoother contour of frame-by-frame coarse class decisions and

alternatively to obtain a classifier that captures the typical time varying

dynamic behavior of certain coarse classes (such as Plosives), three

frames characterizing 15 ms of speech arc combined into one feature

VC<:LOr. The resulting total of 186 features in such a feature vector

contains redundant inter and intra frame Information. In order to

eliminate such redundant infonnation principal component anal ysis is

performed. An incQming feature vector is 'thus rotated by the

eigenvectors of thc covariance matrix derived from a set of more than

20,000 tralnlng feature vectors. Only therotated features corresponding

to the 54ltJr~t eigenvalues areconsidered for further analysis.

Using the feature vectors obtained in this fashion. coarse phonetic

categories can be detected using linear discriminant analysis. more

specifically pcrceprmn classifiers (7. 8. 9]. To train these classifiers. the

ra,)ldly com-a ging relaxation method [9] was used. Fifty random

utterances from a database of 1500 words. spoken in isolation by three

different speakers were set aside as training data. Each of these 50

u tterances was hand labelled according to the coarse phonetic classes,

Silence, Fricative, Plosive and Vocalic, as well as additional labels for

the vocalic peru, Nasal, Front, Back. R.11lu5 M, N. NG were labelled

Nasal, front vowels (e.g., IY,IH . EH) we re labelled Front, back vowels

(such as AA. AO, UW) as well as. the semivowel W and me glide L were

labelled Back. The glide R, was labelled as its own category, R.This

taxonomy was chosen cmpirxally. SO that good recognition

performance could be achieved by the classifiers.

In a preliminary sonins step. all feature vectors corresponding to

frameswith the same coarse class labelart collected in appropriate files.

An error-correcting learning procedure (the relaxation method)

produces for each coarse class a weight vector thilt defines iii linear

decision hyperplane used ior classification. We obtain a total of 8

hyperplanes. each of which separates one of the classes mentioned

above from all the others, Using the projections of all labelled data

onto the axes normal to the decision hyperplanes. we compute for each

ela~s the probability of membership in the classas a function of distance

along the normal using kll"nearest neighbor estimation techniques (9].

Thus, the probability of membership in a given class is obtained by

computing the scalar product of the weight vector and an incoming

feature vector and Iookin&up the corresponding probability in a table.

In the next step. segmentation Into coarse phonetic segments and SOme

post-processing is performed. All adjacent frames of speech daLa for

which one of the pcrceptrons fires ....ith clearly maximal probability are

collapsed to one segment <Ind assigned to one and only coarse phonetic

class. Unclear regions arc left undefined until subsequent

postprocessing is performed. Context sensitive rules then attempt to

determine the most likely Identity or ambiguous segments. To

eliminate unlikely segment seque nces or to correct possible

misclassifcations. higher level rules arc applied. For example short final

nasalized segments arc eliminated, es well as short frlcatiyc segments

caused by aspiration at the end of the utterance. Of course, such rules

are applied conse rvatively to minimize the possiblUty of introducing

extra errors. Further postprocessing breaks up long segments into

smaller subscgments, yielding an average segment duration of

approximately 30 m$ . This is done to achieve optimal performance in

the matching stage described below. Fir-ally. the resulting segment

class is cneoded into one byte, specifying the identity orthe segment,

In order to gain greater computauona l efficiency we make ..turd "

segmental decisions and could potentially loose Important infonnation

pertaining to lesser ranked Candidates.

3. The Knowledge Comp i le r

The knowledge compiler lakes tJ list of orthographic word candidates

(written text) and automatically generates (a) a coarse phonetic

representation and (b) segmental durations: for each word. In the firm.

step, PMtS orthe MIT text-to-speech synthesis system[IO} are used to

hypothesize a phonemic representation and segmental durauons for the

word. The derived phonemic representation as well as thesegmental

duretlons are further processed in the second stl\Se, First, consecutive

segments belonging to the same coarse phonetic classesare collapsed.

Conversely,dtphthcngs describing a move from back to front vowel or

vlce versa are splh lnto corresponding coarse classes. Splitting into

different coarse class segments ls also done for phonemes such as EN,

EM. ER, etc. Next. alternate pronunciations are derived by rule. This
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Figure 1. Recognition Performance fur a 1500Word Vocabulary

S. Perform ance Eva luation

For the recognition experiments reported below, a vocabulary of 1478

words was compiled from two word liStS containing the 900 most

frequent ..... rittcn and 900most frequent spoken words in English (12, 6].

Th ree male American speakers (~1S H. MRN and MKD) littered the

entire word list once. For each speaker. 50 randomly selected

utterances .....ere SCt aside tu develop the rules for the knowledge

compiler and LO trai n the classifiers as described above. Thc knowledge

compiler was run over the entire word list of 1478 words and thus

includes 1428 "n ew" words. The coarse phonetic KS was then tested

for each speaker on 500 words randomly selected from this set of 1428

"new" words. The resul tsof this experiment are given in Figure 1. The

three curves show for each speaker the recognition score in percent as a

function of the number of top candidates included , up to 250. The

graph shows that using only the coarse classes Silence, Fricative,

Plcsive. Vocalic, Front Vowel Back Vowel, Nasal and R Glides me

righ t word candida te is included in the top 5% of the vocabulary (- 75

words) more than 95% of the time and in the top 17%of me vocabulary

(- 250 words) more than m of the Lime. 37.6% of all thc uuerances

were identified uniquely as first choice candidates out of the ]500word

vocabulary.
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What are the theoreticallimits on performance one might expect from

the present approach? We have pooled all lexical items that match

perfectly with each other into groups and obtained group sizes ranging

between I and 17. The expected group size[12J was 2.8. TI1isresult Is

comparable to statistics reponed by Shipman and Zue rill. This would

suggest thal given crrorfree coarse phonetic input an average. rank. of 1.4­

should be expected for the correct word hypothesis. The present

recognition results ind icate an average rank of 6.9. The differences

4. The Matc her

The purpose of the matcher in this KS is to evaluate the degree of

constraint sausfacuon of individual lexical items with respect to the.

incoming sequence of coarse phonetic events. Since this involves

searching a huge corpus of lexical items, this evaluation mu st be

performed cfflctcntly. Using coarse phonetic classes greatly reduces

computatioual COSt by requiring matching lO be done on Short

sequences of segment labels 01'11)'. To allow for missed or extra

segments. matching is performed using a nonli near time alignment

algorithm. Thc dynamic programming algorithm proposed by

Itakura(11) waschosen for this task . A critlcal design ccnstderation is

the choice of the distance metric. It must be simple to compu te and

provide the dlscriminetory Information we are seeking. Since in our

case, only 8 disdncr coarse phenetic classes are possible, all possible

class-to-class distances can be easily precompiled into a look-up table:

for efficient evaluation . These ctess-to-ctass distances .....ere derived

empirically from training data Incorporating some general heuristics,

For example, distances between Fricatives, Silences, and Vocalic

segments receive greater weight than distances between the vocalic

c1aSSC$ Front, Ilack. Nasal and R. Thus. substantial computational

savings can be: achieved as well as greater flclt' ibilhy \1'1 defining the

distances themselves. In addition. alternate pronunciations can be

taken Care of simply by appropriate dcfinitions in the distance table.

Variations in temporal behavior arc, of course. corrected by the warping

algorithm itself. The algorithm recovers gracefully from missed or extra

segments by means of the dynamic programming alignment. while

segment confusions become non-fatal through the: usc of alternate

pronunciations and approprfmc class-to-elessdistance values. Note that

an lneccuratc sequence of coarse phonetic classes will therefore still

lead to acceptable lexical retrieval. despite the fact that hard decisions

were made at the segmental level.

Is useful. for exa mple, for reduced vowels(th ou arc strongly influenced

by COI'\ lC:xt) and for phonemes t har arc d ose to coarse class category

boundaries (fur example. reduced sch.....a is ncar the decision bounda ry

between Iroruand back and tends 1.0 be heavily influenced by context).

Alternate pronunciations are also useful fur weak. voiced fricatives,

such as the phoneme V. Finally, dependi ng, 011 the durations of the splil

or collapsed segments. long segments are broken up into smaller

sobscgmcnu. resulting in an average segment duration of

approximately 30 ms. This is done to ensure that segments in the

unknown as well as the reference pattern will 1'1 0[ differ too much in

durauon. This is Important to achieve proper matching behavior.
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between this theoretical upper bound and the reccgnltion results Are

cue in pan: to compiler errors. i.c., inaccurate CO<!r5C phoncuc

descr iptions provided by the compiler. or alternate pronunciations I.hal

were not anticipated by the compiler. A second source of error leading

to reduced discriminability is given b)' classifier errors and/o r the

variabilities found In human speec h including spurious speaker­

generated noise (such as pops, clicks, lipsmacks) frequently resulting in

endpoint detection errors. aspiradon noise at the end of utterances.

nasalization uf vowels and the like. Further improvements towards

classlflcauon of acoustic events and further careful study of the possible

acousticmanifestations of English words for better compiler rules: might

improve these results,

6 . Summary

In summary. we have: presented a knowledge source for template

lndcpcndcm Large vocabulary word recognition. The KS uses only

coarse phonetic. c1J.5SC:s and docs nor require cxtcnslvc user training. All

lexical Information needed for recognition is automatically generated

from text. For a 1500word vocabulary it will include the correct word

candidate: among the 75 (-5% of vocabulary) best candidates with an

error rate of less than 5%. Such a KS is useful [0 either preselect a

smaller subvccabulary or as an independent KS aimed at "raising

activation levels" for individual word candidates. We believe that in a

disuibutcd cooperative arrangement together wlth prosodic, lexical,

fine phonetic and coarse phonetic KSS, a small set of word hypotheses

can be obtained cfflcicutly fer Large Vocabulary Speech

Understanding Systems.
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