
Vision-based 3-D Tracking of People in a Smart

Room Environment

Diplomarbeit
by

Dirk Focken

Interactive Systems Laboratories
Universität Karlsruhe (TH), Germany

Germany

Advisors: Dipl.-Inform. Rainer Stiefelhagen, Prof. Dr. A. Waibel

November 29, 2002

Hiermit erkläre ich, die vorliegende Arbeit selbständig erstellt und
keine anderen als die angegebenen Quellen verwendet habe.

Karlsruhe, den

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 Project overview . 7

1.3 Related work on tracking people 10

1.4 Smart room environment . 11

2 Fundamental Techniques 13

2.1 Calibrated Cameras and Triangulation 13

2.1.1 Triangulating objects in 3-D 14

2.1.2 Camera Calibration . 17

2.2 Color spaces . 20

2.3 Adaptive background subtraction 21

2.3.1 Single Gaussian model with example 23

2.3.2 Mixture Gaussian model 29

2.3.3 Parameters of the background modules 33

2.4 Kalman Filtering . 34

3 Implemented Tracking System 37

3.1 Tracking system overview . 37

3.2 Feature extraction . 39

3.3 Correspondences . 41

3.4 Best-hypothesis Kalman tracking 43

3.4.1 The Kalman Filter process model 45

3.4.2 Using existing tracks to reduce the size of the search space 46

3

3.4.3 An improved variant of the best hypothesis tracker 47

3.5 Multi-hypothesis probabilistic tracking 48

3.5.1 Assigning probabilities to track paths 48

3.5.2 Updating and creating tracks 49

4 Tests and Evaluation 51

4.1 Test set and environment . 52

4.2 Evaluation measures . 53

4.3 Test run on synthetic data . 55

4.4 Improving silhouette extraction 59

4.5 Best Hypothesis vs. Multi Hypothesis Tracking 62

4.6 Qualitative analysis of Best Hypothesis Tracking 65

4.7 Head Tracking . 67

5 Conclusion 71

5.1 Future Research . 73

A Learning rate α in background models 75

A.1 Calculating α for the single-Gaussian model 75

A.2 Calculation α for the multi-Gaussian model 77

4

Chapter 1

Introduction

1.1 Motivation

As computers get smaller and cheaper, they are integrated more and more into
our everyday life. When we use a cellular phone, organize our agenda with a
PDA or drive through an unknown city guided by a car navigation system, we
rely on embedded computers.

Making computers understand who we want to call or where we want to drive,
still involves clicking on a lot of buttons rather than just tell our computerized
aid where we want to go. To achieve this goal, an engineer should think of a
computer more as a human like assistant than a gadget.

A human assistant such as a copilot in a car, would listen to the driver’s de-
scription of the destination and would engage into a dialog to make sure he
has understood the driver’s intention properly. Furthermore, regardless if the
driver tells him the exact address or if he points out the destination on a map,
a human copilot would be able to seamlessly integrate information from verbal
explanations and pointing gestures to know where the driver wants to go.

For a computer system it is quite challenging to engage into human style in-
teraction. This is why human machine interaction is still a very active area of
research.

A key issue in building such human machine interface systems is to understand
the environment and the context in which humans interact with computer as-
sistants.

Consider a “conference room system” that controls lighting and air condition.
If the system is designed as a human like aid, people can give commands to the
system directly through speech or gestures. For instance, a user in the room
can point to a light and ask the system to turn it off. It is certain that people
will rarely give commands to the system. Most of the time they will talk and

5

interact with each other rather than with the room system. The system will
only work properly, if it understands when it is addressed. Otherwise it might
interpret casual remarks about the weather as a command to lower the room
temperature.

We need intelligent systems that detect the context in which they are addressed.
Establishing context or contextual knowledge means to observe and interpret the
environment as a whole. This calls for the use of different sensor modalities to
have as many clues as possible to infer context. A system should be multimodal
by itself or should be designed to be part of a larger multimodal system.

Furthermore most computer systems are found indoors: In offices, meeting
rooms, hallways, lobbies and at home. If we want to recreate these systems
as human aids, research efforts should focus on human machine interaction con-
cerned with indoor environments.

Following the above arguments our work focuses on obtaining spatial context
for indoor environments.

In indoor environments spatial awareness of people is an important component
of situational context. Obviously, robust localization of people is important
for surveillance tasks. But localization also helps to focus sensors on people.
These focused sensors often provide more accurate data that enables a system
to interpret people’s intention or their current situation more precisely.

Even the information where people stand or sit in a room can suffice to infer
important contextual information. For instance, we can infer from one person
walking to a white board while others are sitting down that a presentation is
about to start in a conference room. In such a context it is likely that the
presenter addresses the room system to control the lighting.

There are several approaches to obtain spatial context from an indoor scene. The
most obvious is to attach special badges to people that enable to track their
identity and position through infrared or ultrasonic sensory devices scattered
over the system’s tracking area. The problem with this approach is that users
do not desire to wear badges in their everyday lives.

Another possibility is sound based localization. Especially, localization by mi-
crophone arrays has proven to be quite successful. This approach will certainly
be important in future systems. The down side of a sound based technique is
the fact that people will not talk continuously and therefore a consistent track
cannot be kept. But in a lot of indoor applications this might suffice.

Vision based localization and tracking of people is the most general approach:
It provides continuous tracks and is non invasive. Additionally, cameras have
become cheaper and cheaper over the years which makes it affordable to use
several cameras for visual tracking in everyday applications.

Our main objective in this project was to build a spatial non invasive aware-
ness component which provides continuous tracks of people. Taking the above
arguments in account we chose to build a tracking system that relies on visual

6

information to extract spatial context from an indoor scene. Furthermore we
intended to create a real time system that uses multiple cameras to localize and
track people in three dimensions. As a component it is intended to be part of
future multimodal systems.

1.2 Project overview

This project aims at creating a multi-subject tracking system in an indoor en-
vironment running on standard desktop machines. The system relies on visual
information to track people in real time and in three dimensions.

A small simple meeting room serves as the indoor environment. Figure 1.4 shows
the setup schematically. A large table in the middle can be used for informal
meetings. Some video and presentation equipment provides a possibility to give
talks and demos. To track people based on visual information three to four
cameras are mounted at the room corners under the ceiling.

Generally, vision based tracking is computationally demanding. Even if only
one camera is used, vision algorithms for real time applications can easily use
up the computational resources of a standard PC. With three to four cameras
our tracking system calls for a distributed image processing architecture: For
each camera a dedicated computer processes images locally and creates high-
level representations (compare figure 1.2). Network components broadcast these
representations or features to remote tracking agents as data streams. The
tracking agents fuse this data to localize people and objects.

Distributing low level vision processing over several computers not only allows
real time performance on standard PCs, but also structures the system in a
modular way. In this respect the vision algorithms belong to the lower level
which communicates with the higher level of the system; i.e., the tracking agents,
through the network. Changes can be easily made within one level without
having to change other parts of the system. For instance, a more powerful
faster vision algorithm means changes at the low level machines. The high level
tracking agents notice the faster vision only by the higher rate at which features
arrive. Because the network interface remains unchanged, there are no changes
in the programs at the higher level. Furthermore, this modular architecture
might facilitate to extend and to properly maintain the system.

At the lower level several computers analyze the scene from different perspec-
tives and broadcast extracted visual features over the network. The feature
streams will certainly not arrive in the correct temporal order at the higher
level components due to network collisions and differences in the computational
power of the machines. We address this synchronization problem for low level
feature streams by using time stamps and establishing a common time frame
through a network time protocol.

Analyzing the scene from different perspectives creates two major problems.

7

Cam2

Cam1 Cam0

 Features

 Features

Tracking
agent

Feature
extractor

People

Figure 1.1: Distributed architecture of the tracking system

The first is the correspondence problem. Considering tracking humans it con-
sists in determining where a head or arm from some perspective is to be found
in an image showing another perspective.

The second problem is reconstruction. In our application this means recon-
structing the 3-D position of tracked subjects in a global coordinate frame.

We address the first problem by exploiting geometrical constraints to establish
correspondences among visual features from different perspectives. The con-
straints in our approach are derived from perspective camera models. Prior to
the operation of the system we have to extract the optical (intrinsic) parame-
ters of each camera and the spatial relationship among the cameras (extrinsic
parameters) in a calibration process.

As the cameras are not panned, tilted or zoomed during the operation of the
system, the obtained extrinsic and intrinsic parameters of the cameras are static.
The system has a calibration server that provides this data on request to tracking
agents. Section 2.1.2 gives an introduction on calibration methods and provides
implementation details of our calibration approach.

The camera models from calibration enable the tracking agent not only to estab-
lish correspondences among visual features, but also to solve the reconstruction
problem. With correct correspondences and the camera models triangulating
the 3-D position of people is a simple calculation (see section 2.1.1 for details).

8

So far we have only mentioned visual features without specifying what they
are and how we extract them from images. Feature extraction in our system
consists of an adaptive background subtraction algorithm. This method extracts
silhouettes of objects of interest, i.e. in our application silhouettes of humans.
The algorithm assumes that people move from time to time. The foreground
segmentation algorithm estimates the still background of the scene and subtracts
it from the current image. The parts differing from the still background are the
objects of interest.

A background subtraction algorithm has the advantage of extracting visual fea-
tures in real time. The caveat is that the cameras must be stationary to ensure
correct background image estimation. In a previous research project such back-
ground modules have been created that are based on either multi-Gaussian or
more simplistic single-Gaussian adaptive background models. Section 2.3 gives
an introduction on background subtraction modules and provides details of the
implemented background subtraction module. As a preliminary, section 2.2
describes different color spaces which were used in the background modelling
process.

Above we briefly described that the tracking agents establish correspondences
and calculate the 3-D position of subjects. A single 3-D position does not form a
track. The tracking agent has to chain a series of positions together to produce
tracks. In this task lies a difficult data association problem: Which 3-D position
estimates belong to the same person? Finding the correct associations is a major
problem in tracking algorithms. As the position estimates in this application
are based on noisy sensory data, tracking is a non trivial problem.

We implemented two different tracking approaches: A heuristic best hypothesis
tracker and a tracker based on a probabilistic model.

The heuristic best hypothesis tracker rates hypothesized subject locations by a
geometric measure and updates tracks with high ranked locations. The tracker
uses one Kalman Filter per track to smooth the positional outputs (see section
2.4 for an introduction on Kalman filtering).

The probabilistic tracker follows the same process but incorporates an explicit
probability model allowing to rate tracks by their posterior probability. Addi-
tionally, the probabilistic tracker pursues multiple hypotheses per track.

Section 3.4 and 3.5 discuss the implementation of the tracking algorithms.

To demonstrate the functionality of the tracking system in a test setup, chapter 4
starts with a description of the test environments and continues with a discussion
of the performance of the tracking algorithms on sequences recorded in the test
environments. Finally, chapter 5 summarizes the achievements of this work and
concludes with a road map for future research.

9

1.3 Related work on tracking people

Tracking for surveillance or analysis of human activity has been a major objec-
tive in computer vision in recent years. Surveillance projects such as VSAM at
CMU [6] and forest of sensors at MIT [10] focused on monitoring activities of
objects in an urban environment such as pedestrians and vehicles using multi-
ple perspectives. Because of the sheer size of the areas monitored these systems
had to deal with issues such as synchronization and the distributed nature of
sensors.

We can learn some lessons from these projects. Though our system is restricted
to indoor environments so far, it also has to deal with the distributed nature
and synchronization of sensors.

In the VSAM project at CMU a similar architecture was used to achieve coop-
eration among multiple sensors. Each sensor has a sensor processing unit (SPU)
attached to it that sends extracted features to a central operator control unit
(OCU) to monitor and track different objects. In the forest of sensors project,
autonomous vision modules (AVMs) are used to extract features in order to
track objects cooperatively in a distributed fashion.

Generally, real-time tracking projects for indoor environments, especially for
tracking humans, tend to avoid the issue of distributed sensors and use most of
the time a single camera for tracking: Haritaoglu’s W 4 system and the more re-
cent W 4S system tracked multiple humans in real time from a single perspective
[11], Darrell [7] used a stereo camera to track humans in crowded environments
and the classical pfinder system by Wren [22] tracked a single user and inter-
preted their behavior in real time using a single camera.

As mentioned above, there has been significantly less work on tracking humans
from multiple view points in indoor environments. This might be due to the
fact that the correspondence problem among features from different perspectives
introduces a lot of problems for tracking algorithms. On the other hand, multiple
perspectives help to solve ambiguities caused due to occlusions or segmentation
errors.

To tackle the correspondence problem in real time, ’point features’ are useful
since they can easily be brought to correspondence: Cai and Aggarwal [5] track
points on the medial axes of humans which can be easily brought in correspon-
dence by using epipolar line constraints between multiple viewpoints. Applying
similar constraints in the AVIARY project at UCSD, Mikic [16] used multiple
calibrated cameras with respect to a unique world coordinate frame to track
centroids of human silhouettes in 3D.

On the other hand, Sato et al. [18] used fully calibrated cameras in a unique
world coordinate frame and a CAD model of the environment observed to ad-
dress the correspondence problem by bringing tracked blobs from different cam-
eras to correspondence.

10

Our system is based on the method described in [16], but differs from it in
several ways: We use a more sophisticated foreground extraction module. We
distribute the computational demanding feature extraction module on several
machines. Our probabilistic multi hypothesis tracking approach provides a for-
mal framework for the problem of tracking people using noisy sensors.

Further ideas how to improve multi-subject trackers, excellent discussions on
open research issues in tracking humans and human body parts can be found
in the review papers ’Human Motion Analysis: A review’ [1] and ’The Visual
Analysis of Human Movement: A Survey’ [8].

Finally, in computer graphics the problem of shape-from-silhouettes which is
clearly relevant to multi-perspective tracking has been studied in the past years
with stunning successes. The accuracy of reconstruction allowing even photo
realistic shading of objects from silhouette images was substantially improved
and the run time was significantly reduced yielding system running at real time.

Although for tracking research reconstructing the shape of objects accurately is
less important than robust localization, ideas and techniques from the computer
graphics research community might be applicable in the field of tracking: The
concept of the visual hull introduced by Laurentini [13] is certainly valuable
for tracking objects from multiple perspectives. The visual hull is defined in
the context of shape-from-silhouettes as the maximum volume that reproduces
the observed silhouettes. Recent improvements in visual hull constructing al-
gorithms allow to build systems that generate visual hulls in real time ([14]).
Although these systems use static background to extract silhouettes and are
therefore light dependent, it is surely promising to use efficient visual hull algo-
rithms combined with an adaptive background model for tracking.

Moreover, the possibility to create accurate 3-D models of tracked objects bor-
rowing techniques from computer graphics might help to build appearance mod-
els to solve the correspondence problem more elegantly and would be certainly
relevant for a variety of recognition tasks.

1.4 Smart room environment

Our tracking system was adapted to the setup of the smart room environment
created by the Interactive Systems Laboratory at Universität Karlsruhe.

The smart room is an eight by five meter conference room. A table in the center
of the room, a smart board, and a video projector allow to conduct lectures or
meetings. The sensory equipment consists of three pan-tilt-zoom camera, a
stationary fire-wire camera, a stereo camera head, several microphones, and a
microphone array. Figure 1.4 shows a blueprint of this setup.

The four cameras are mounted two meters above the floor at the four corners
of the room. The three analog cameras can be panned in a range of 180 degrees

11

Figure 1.2: Schematic map of the Smart Room

and tilted in a range of 90 degrees. Fish eye lenses give the cameras a large field
of view. Each camera is connected to a dedicated image processing computer.
A 10 MBit Ethernet connects these and the other machines in the room. In
order to provide precise time stamps in the system, the networked computers
synchronize their clocks using the Network Time Protocol.

In a broader smart room project our research group plans to integrate the
different parts into a multimodal system with the following features: The smart
board will serve as an input device as well as a projection space. Due to the
networked environment, information from any of the computer in the room can
be displayed on the smart board. A user will be able to interact with all of the
room’s functions through the touch sensitive smart board. As well microphones
will allow users to give speech input to the system.

Furthermore, the stereo camera system will track a person’s head and hands.
This provides the possibility to interpret gestures of humans, another modality
of interaction for the system.

The microphone array will perform the tasks of focusing on a single speaker and
localizing his position. The possibility of localizing speakers can help to position
directional microphones efficiently. As well speaker localization provides valu-
able information to other parts of the room such as the visual tracking system
described in this thesis.

12

Chapter 2

Fundamental Techniques

In computer vision several techniques have proven to be important in the anal-
ysis of image sequences. Some of these techniques are used in the context of
tracking and localizing objects and humans in this project. To give the reader
an introduction to these techniques we describe them briefly in this chapter.

2.1 Calibrated Cameras and Triangulation

Multiple cameras provide several perspectives on an observed scene. If the
spatial relationship between the cameras and their internal optical conditions
are known, objects in the scene can be localized in 3-D coordinates.

First of all, an object appears as a set of points in an image. To calculate its
3-D position, a single point on the object has to be selected that represents
its position. A possible choice is the object’s centroid (for humans this point
roughly corresponds to the belly button). The major problem for a localization
algorithm is to find the corresponding point of the object in each of the different
camera images.

Figure 2.1 shows two people in a scene whose position is represented by their
centroid. To solve the correspondence problem, an algorithm has to select the
foreground regions that belong to either the person depicted by the red or the
blue centroids. This is one of the many variants of the correspondence problem
in computer vision.

The tracking algorithm described in section 3.3 provides an approximate solu-
tion to the problem. Since this section is more concerned with the geometrical
aspects in calculating the 3-D position of objects, we assume in the remainder
that the corresponding points (centroids) have been found by some tracking
algorithm or other method.

13

Cam2

Cam1

Cam0

Cam0 Cam1

Cam2

Figure 2.1: Correspondence problem for two people observed by three cameras

Having identified the corresponding points of an object in different perspectives,
we exploit geometrical relationships between the perspectives to calculate the
object’s position. These geometrical relationships are described by the perspec-
tive camera models of each visual sensor. As the cameras are not moved during
our tracking experiments, we obtain the camera models in a calibration step
prior to operation. In section 2.1.2 we describe this calibration process.

Above the necessary prior steps to the calculation of an object’s position were
addressed, the following section 2.1.1 describes the position calculation itself
also known as triangulation.

2.1.1 Triangulating objects in 3-D

Figure 2.1.1(a) shows a person in an indoor environment from three camera
perspectives. Calculating the location of the person in 3-D coordinates means
first of all to select a point on the body that represents its position. In Figure
2.1.1(a) the top of the head is marked as this point.

Assuming that the geometrical relationships between and in the cameras are
known, i.e. the camera models, we can draw the cameras’ locations on a map
of the room (Figure 2.1.1(b)). As well we can use the image coordinates of the

14

head in each camera to draw the light ray passing from the camera’s optical
center through the head’s projection. Since the light ray originates from the
top of the head, it also passes through the head’s location in the scene. For
instance for camera ’cam1’ the ray goes from the optical center Ocam1 through
the head’s projection on the image Pcam1 through the top of the head in the
scene Q.

Obviously, the intersection of these rays yields the position of the head Q.
To obtain the 3-D coordinates of Q, the rays are parameterized in the 3-D
coordinate frame established by the camera models:

xray = t ∗ u + P,where t ∈ R (2.1)

Following this notation the ray for camera ’cam1’ is represented by setting P
to the coordinate of Ocam1 and by calculating the direction vector u using the
camera model of ’cam1’ and the image coordinates of Pcam1.

The computation of the intersection of rays is achieved by transforming each
ray into a linear equation whose solution space are the points on the ray in 3-D
coordinates:

Ai ∗ xrayi = bi, where Ai ∈ R2x3,bi ∈ R2 (2.2)

The linear equation for one ray is under-determined, but intersecting two and
more rays yields an over-determined linear equation which can be easily solved
for instance using the pseudo-inverse technique:

A1

A2

A3

xintersect =

b1

b2

b3

 (2.3)

The solution of equation 2.3 is xintersect the 3-D point in which the three rays
in the equation intersect. In practice the three rays do not intersect perfectly
due to calibration and correspondence errors. As the solution space in a strict
mathematical sense is empty, we compute xintersect using the least squares so-
lution of the over-determined linear equation. To assess the inaccuracy of the
intersection, the norm of the equation’s residual provides a good measure for
the intersection error:

r =

∣∣∣∣∣∣

A1

A2

A3

xintersect −

b1

b2

b3

∣∣∣∣∣∣
(2.4)

The measure r is quite useful to rate correspondence guesses or to verify the
quality of a calibration process.

It was assumed in this subsection that camera models were available that rep-
resent the relationship between absolute image coordinates and real world coor-
dinates. The camera models permit to calculate the ray parameterization from
the camera’s optical center to the object.

15

Ocam1

Pcam1

Pcam2

Ocam3

Pcam3

Q

(b)

Ocam2

(a)

Figure 2.2: Triangulating the 3-D position of a person’s head with three cameras

16

In the following section 2.1.2 we describe how the camera models were obtained,
i.e. the process of camera calibration.

2.1.2 Camera Calibration

The following description of the calibration process in our system uses the terms
and definitions common to the field of camera calibration. If the reader is
unexperienced with the terminology, he should read an introductory text on
camera calibration such as [21] as a prerequisite.

The camera models used were developed by Bouguet in [4]. Generally, camera
models have two kinds of parameters intrinsic and extrinsic.

• The intrinsic parameters define the internal optical conditions. In the
used camera models the intrinsic parameters consist of the horizontal and
vertical focal length (fx,fy), four distortion parameters (k1,..4) and the
camera’s principal point (cx,cy).

The following equations project a point in 3-D camera coordinates (X, Y, Z)
to absolute image coordinates (x, y):

r2 =
1

Z2
(X2 + Y 2) (2.5)

xr = (1 + k1 ∗ r2 + k2 ∗ r4)
1
Z

(
X
Y

)
(2.6)

xt =
(

2k3 ∗ X
Z ∗ Y

Z + k4(r2 + 2X
Z

Y
Z)

2k4 ∗ X
Z ∗ Y

Z + k3(r2 + 2X
Z

Y
Z)

)
(2.7)

(
x
y

)
=

(
fx

fy

)
(xr + xt) +

(
cx

cy

)
(2.8)

Equation 2.6 incorporates a radial distortion model for the cameras param-
eterized by k1 and k2, while equation 2.7 corrects for tangential distortion
with k3 and k4. Equation 2.8 provides the relationship that is used for
the localization method described in the section 2.1.1, the link between
absolute image coordinates and 3-D camera coordinates.

• The extrinsic parameters are used to state the spatial relationship between
the camera and the world coordinate frame:

xworld = Rxcam + T (2.9)

R is a 3x3 rotation matrix and T the three dimensional translation vector
from the world coordinate origin to the origin of the camera coordinate
system, its center of projection.

17

The process of estimating the intrinsic and extrinsic parameters of the camera
models is called calibration. This process is carried out separately for the two
types of parameters in an intrinsic and an extrinsic step.

• In practice the intrinsic step consists of taking five to ten images of a
calibration object which is in our case a checker board for each camera. As
the calibration object is planar, each of these images is used to estimate a
homography between the plane of the checker board and the image plane of
the camera. The special properties of homographies permit to calculate an
estimate of its intrinsic parameters from several of these planar mappings.
The exact algorithm is far too complex to be described in detail in this
chapter. The interested reader should read the documentation in [4] and
the original paper by Zhang [25].

• In the extrinsic step a world coordinate frame is established by estimating
the location and orientation of the cameras.

First of all, the world coordinate system, i.e. its origin and orientation
of axes, must be defined. Generally, a point on the floor of a room is
an appropriate world coordinate origin, but any other point in the room
could be used as in Figure 2.3 where an edge on the checker board serves
as the world origin. Moreover, it is reasonable to align the x and y axis of
the world coordinate system with the floor plane.

A feasible way of finding the extrinsic parameters of the cameras with
respect to the world coordinate frame is to put the checkerboard at the
world coordinate origin and take images of the checkerboard at this lo-
cation from each camera. As the intrinsic parameters are already known
and as well the square size of the squares on the calibration object, the
orientation and location of the checkerboard (rotation matrix and trans-
lation vector) can be calculated (Figure 2.3). This directly provides the
extrinsic parameters (Rworld

cam1 ,Tworld
cam1) of the camera:

xworld = Rworld
cam1 xcam1 + Tworld

cam1 (2.10)

If, in all the cameras, the checkerboard has a certain degree of visibil-
ity to correctly extract the corners from the corresponding image of the
checkerboard, all the extrinsic parameters could be directly extracted in
the above fashion. But some cameras may not have good visibility of the
checkerboard.

In such a situation the checkerboard can be put in a position that pro-
vides good visibility for a camera (’cam1’) of which we already know the
extrinsic parameters and the camera (’cam2’) for which we want to find
them. We use the intrinsic parameters and the knowledge of the calibra-
tion object’s square size to compute the rotation matrices (Rcam1

board, R
cam2
board)

and translation vectors (Tcam1,Tcam2) can be extracted which give:

xcam1 = Rcam1
boardx

board + Tcam1
boardx

cam2 = Rcam1
boardx

board + Tcam2
board (2.11)

18

Figure 2.3: Measuring the extrinsic parameters of a camera directly

19

With these relationships and the extrinsic parameters Rworld
cam1 , Tworld

cam1 the
extrinsic parameters for cam2 are given as:

xworld = Rworld
cam2 xcam2 + Tworld

cam2 ,

where Rworld
cam2 = Rworld

cam1 ∗Rcam1
board ∗ (Rcam2

board)
T , (2.12)

Tworld
cam2 = Tworld

cam1 + FT (−Tcam2
board), and (2.13)

F = Rworld
cam1 (T cam1

board + Rcam1
boardR

cam2
board) (2.14)

Using the above method the extrinsic parameters of all the cameras can
be estimated step by step, even if individual cameras are far away from
each other or do not cover the same observation area.

2.2 Color spaces

Camera images consist of thousands of pixels. In the early days of computer
vision these pixels represented light intensity yielding gray scale images. In the
past decade color cameras have become standard. Color is represented in the
color cameras of today by three components, commonly Red, Green, and Blue.
These tupels are points in a color space whose axes can be linear or non-linear.
The way these axes are defined can influence the performance of computer vision
algorithms substantially. In this work we can see an example in the background
subtraction algorithm described in the following section 2.3. We use in the
experiments with the background subtraction algorithm three different color
spaces RGB, rg, and YUV. As a preliminary we give a brief general overview on
color spaces from a human perspective and end the section with a description
of the three color spaces.

Generally, from a human point of view color can be represented with three
components:

• Hue: The perception of the color type. It is the perception of what you
see in a rainbow.

• Saturation: The perception of saturation of a color. Changing this com-
ponent leads from a sky blue to a deep blue for instance.

• Luminance: Brightness. Images can be darkened or lightened by increas-
ing or decreasing its luminance.

As hue and saturation describe pure color information, they are subsumed under
the more general term chrominance. Chrominance and Luminance components
represent a color space completely.

Color spaces were defined often for technical reasons modelling the sensors or
output cells as in the RGB color space or were defined to exhibit special proper-
ties such as decoupling luminance from chrominance as in the YUV color space.

20

In this work we used RGB at first for testing purposes and then switched to the
rg and YUV color space that separate chrominance from luminance.

In the following we provide a list of three color spaces and give a brief description
of their properties:

• RGB is an additive color space who is generally used with monitors, scan-
ners and cameras. The luminance and chrominance components are not
decoupled. Each channel carries both brightness and chromatic informa-
tion.

• The chromatic color space rg is a normalized form of RGB. r = R/(R+G+
B) and g = G/(R + G + B) are the defining equations of the color space.
The red and green component of RGB are normalized by an estimate for
the luminance R+G+B. Thus, the chromatic color space rg only contains
chrominance information.

• YUV has luminance channel ’Y’ and retains chrominance in the U and
V channels. It is a simple mathematical transformation from RGB: Y is
approximately a sum of 30% R, 60% G, 10% B. U and V are computed
by removing the ’brightness’ component from the RGB color tupel. More
specifically, U = B − Y yields color from blue (U > 0) to yellow (U < 0).
Likewise, V = R − Y yields colors from magenta (V > 0) to cyan (blue
green) (V < 0).

The property of the chromatic color space rg and the YUV color space of decou-
pling chrominance from luminance is important to suppress shadow artifacts in
the background subtraction algorithm as we will see in section 4.4 of the test
and evaluation chapter.

2.3 Adaptive background subtraction

Background subtraction is an algorithm to extract regions of interest or fore-
ground regions from image sequences. The general idea is to subtract the still
background from a live image yielding regions of interest such as silhouettes of
people.

The key issue with background subtraction is the problem of keeping the back-
ground estimate as accurate as possible over time, i.e. adapting to moved fur-
niture and gradual lighting changes. To achieve this task, a background model
is necessary that provides an adequate representation of the background and an
appropriate update mechanism.

In recent years several background models were proposed. An excellent overview
is given in [20]. For our work we used models that represent the background

21

background
estimation

pixel−level
substraction

background module

higher level
tracker

adaptation feedback

region level
 processing

Bounding boxes
centroids

current image

Figure 2.4: Conceptual overview of a background module

by estimating the background color for each pixel in the image, i.e. they build
their background representation for each pixel independently.

The resulting background subtraction algorithms classify based on this represen-
tation newly observed color values at some pixel as either back- or foreground.
The series of color values at a pixel (i, j) can be seen as a signal for which the
background model estimates a background color by use of statistical methods.
The estimates have to be updated over time by inspecting newly observed color
values. How the classification of fore- and background pixels is carried out and
how the update mechanism for the background statistics work is explained in
detail in subsection 2.3.

The classification into fore- and background pixels yields a binary image of
the foreground regions (foreground= 1 and background= 0). On this image
morphological operators can close holes in foreground regions and a connected
component algorithm groups the foreground regions together discarding tiny
foreground regions as noise. The resulting foreground regions are published
as features that can be used by higher-level agents to track objects. Figure
2.3 summarizes the role of the background subtraction module and its steps
graphically.

Adaptive background models

This subsection gives an overview of the two background models that were used
to extract foreground regions from visual input in this project. For a detailed
description of the background models the reader is referred to the paper by
Yang [24] on the single-Gaussian model and to the paper by Stauffer [19] on the

22

multi-Gaussian model. The paper [20] gives an in-depth discussion about the
performance and problems of these and other background models proposed.

The adaptive background models used in this work build the background rep-
resentation pixel-wise:

The only information known up to some point t in time at some pixel is its color
value history, a series of color values (a scalar for gray-value images, a vector
for color images) which can be formalized as

[x1,x2, . . . ,xt] ,xi ∈ Rn, 1 ≤ i ≤ t (2.15)

Both background models used estimate some representation Mt (statistic) of the
background (usually the background color at that pixel) based upon the color
time series 2.15. From the nature of the estimated statistic for the background,
updating rules f of the form Mt+1 = f(Mt) can be derived that keep the
background representation current. Mt is the key information needed in order
to make the decision whether an observed color value xt is to be classified as a
fore- or background ’pixel’. Usually, a dissimilarity measure between xt and Mt

is computed and if the measure value exceeds some threshold, xt is classified as
foreground. Ideally, the representation Mt gives clues which threshold to use.

2.3.1 Single Gaussian model with example

This model fits to the above time series 2.15 a single Gaussian Mt(i, j) = (µ, Σ).
The mean µ is intended to represent the current background color at the re-
spective pixel. The covariance matrix Σ gives clues how to choose the threshold
needed in the classification process for that pixel.

This model of background is valid and gives satisfactory results only if several
assumptions are true for a scene:

• The background is observed most of the time (the background color is the
main component in the time series)

• The foreground objects occluding the background differ in color from the
background (the foreground object’s color has a significant distance from
the background color in the used color space).

• Since only one Gaussian is used, it is assumed that the background can
be represented in a decent way by a unique color.

The implemented model makes an additional assumption that the estimated
covariance matrix Σ is diagonal. This simplifies the estimation of Σ substan-
tially and thereby allows the classifier to run in real time on the whole image.
Additionally, this assumption simplifies the choice of the threshold for the clas-
sification per pixel.

23

In this background model the classification of an observed color value xt at (i, j)
is carried out by computing the Mahalanobis distance to the Gaussian Mt

r2 = (x− µ)tΣ−1(x− µ). (2.16)

A pixel is classified as foreground only if r exceeds a predefined threshold. For
instance, if the images were recorded in RGB, the covariance matrix for pixel
(i, j) becomes

Σ =

σ2
R 0 0
0 σ2

G 0
0 0 σ2

B

 . (2.17)

Due to the diagonal form of Σ, the mahalanobis distance can be computed for
each channel separately. A pixel can be considered as background, if for each
color channel the distance to the mean color value is less than 2.5 standard
deviation. This is reasonable since more than 95% of the probability mass of a
Gaussian lies in this interval. Formally, a pixel is considered background if

|xR − µR| < 2.5σR and |xG − µG| < 2.5σG and |xB − µB < 2.5σB . (2.18)

In vector notation
|x− µ| > 2.5σ. (2.19)

The single Gaussian background representation is kept current by applying up-
date rules for µ and Σ at each frame. The update rules are only stated here.
For more details the reader is referred to the paper by Yang [24]:

µt+1 = (1− α)µt + α(xt − µt) (2.20)

and
Σt+1 = (1− α)Σt + α(xt − µt)(xt − µt)T . (2.21)

The parameter α indicates the size of an imaginary window reaching from the
current time t to some point back in the past. The background estimation is
mainly based on the information found within this window. If α is close to 0, the
window is reaching far back into history and the background color estimation is
based on a longer time period. If α is closer to 1, the window is small and only
the most recent observations are used to estimate the background color.

The α parameter is used to specify the trade-off between non-moving foreground
objects (for instance a sleeping person) persisting as foreground (α close to 0)
against moved background objects (moved chair) being adapted fast into the
background (α closer to 1). An in-depth discussion about this trade-off and its
problems can be found in [20].

To give an example of the single Gaussian background model in operation con-
sider the following setup: The camera observes at first an empty scene with a
white and gray background. Then a blue bucket is put in the scene as shown in
Figure 2.5 and is removed from the camera’s view after about 30 seconds. The

24

Figure 2.5: The scene setup of the background model examples.
(see text for legend and interpretation).

cross indicates the position of the pixel whose time series graph is plotted in
Figure 2.6. The graph shows the time series’s red channel (the image sequence
was recorded in RGB) and area B mostly surrounding the time series. Area B
represents the region in which the pixel is classified as background by a single
Gaussian model having an α equal to 0.000001. The unit on the x axis is frames
and the unit on the y axis is the red component of RGB ranging from 0 to 256.

In the first 100 frames the scene is empty only showing the white background
yielding a generally constant R value. Area B surrounds the R values almost
completely, i.e. the pixel under the cross is accurately classified as background
by the single Gaussian background model. At frame 110 the blue bucket is put
in the scene, the R value decreases significantly. The width of area B does only
increase slightly, which causes the R values to lie outside of the area until frame
275, i.e. the background model classifies the pixel accurately as foreground. At
frame 275 the blue bucket is removed. The R value jumps back to its initial
value. Thus, the subsequent R values lie within area B: The background model
classifies the pixel as background again.

In Figure 2.7 and 2.8 the same time series is classified, but larger α values are
used for the single Gaussian background model. We can see that the width of
area B is heavily influenced by the adaptation parameter α:

The width of area B increases only slightly in Figure 2.6. In Figure 2.7 α is
0.0001 which still classifies the sequence into fore- and background appropriately,
but accepts a broader range of values as background. Finally, in Figure 2.8 with
α = 0.01 the background model increases the width of area B rapidly enough to
adapt the foreground object (the blue bucket) into the background erroneously
after some frames.

25

Figure 2.6: R channel with α = 0.000001

26

Figure 2.7: R channel with α = 0.0001

27

Figure 2.8: R channel with α = 0.01

28

2.3.2 Mixture Gaussian model

A more general approach of a background model was proposed by C. Stauffer in
[19]. The model M(i, j) fits several Gaussian on the time series of color values
at a pixel (i, j). With this approach it is no longer true that each Gaussian
represents only background objects. Depending on persistency and variance of
the color subspace the model decides which Gaussian represent either fore- or
background ’Gaussians’.

An observed color value xt at a pixel (i, j) is said to belong to the background,
if the color value is within 2.5 standard deviations vicinity of a background
gaussian; otherwise it is considered as belonging to the foreground.

To give more insight into this algorithm, notice that the 3 − 5 Gaussians used
are a mixture of Gaussians. As explained in more detail in [3], a mixture
of Gaussians is a probability distribution with a probability density function
p(x). This distribution p(x) consists of a linear combination of Gaussians p(x|i).
Formally, this is:

p(x) =
m∑

i=1

p(x|i)ωi. (2.22)

The total of the weights ωi sums to 1. These weights can be seen as an a priori
probability to observe a color value that belongs to the respective Gaussian.

In addition to the adaptation and estimation of the mean vector and covariance
matrix for each gaussian, the weights of the Gaussians must be adapted. This
is achieved in the following way: Each time a color value is said to belong to
a gaussian (i.e. it is within 2.5 standard deviations), the gaussian’s weight ωi

is increased by the aforementioned learning parameter α. To assure that the
weights add up to 1, the remaining weights are decreased by multiplying by
(1− α).

What happens if a color value x cannot be matched to any Gaussian? In this
case the distribution with the smallest weight and highest variance is replaced
by a new distribution having some small initial weight, a high variance and
the color value x as its mean vector. The weights are re-normalized to 1 after
replacing the ’weakest’ Gaussian.

If a certain object persists at a location for a longer time, it will be observed
at the corresponding pixel position as a series of approximately the same color
values. The weight of the gaussian that represents this object’s color values will
increase. Gaussians with high weights and small standard deviations are judged
as background distributions which correspond to non-moving objects that have
been in the scene for quite some time. Foreground objects have small weights
and a higher variance since they are expected to move and therefore exhibit a
higher variance in their representation.

This model of background is valid, if several assumptions are true for a scene:

• The background is observed most of the time (the background color(s)

29

Figure 2.9: The Gaussians of the R channel

is/are the main component(s) in the time series)

• The foreground objects occluding the background differ in color from the
background (the foreground object’s color has a significant distance from
the background color in the used color space).

It is important to mention that in this model the different Gaussians for one
pixel do not have a diagonal form for their covariance matrix Σ, but an even
simpler Σ = σ ∗ I. For each Gaussian only the mean vector µ and a scalar σ is
estimated.

The details of the adaptation rules for the gaussian are not given here, but can
be found in the paper by Stauffer [19]. These update rules basically perform
an expectation maximization algorithm with just one data point as the training
set.

The parameters that have to be chosen for the classification and update rules are
α and T . The learning rate α determines how far into the past the window on
which the background representation is based should reach. The threshold T sets
the accumulative a-priori weight implicitly, determining how many distributions
are considered as background distributions (see [19] for details).

Finally, the same example as in the preceding section is used to illustrate the

30

Figure 2.10: Weights of the Gaussians

31

Figure 2.11: Fore-/Background decision of the mixture Gaussian model

32

mixture Gaussian model using three Gaussians in the mixture: The scene (Fig-
ure 2.5) is at first empty showing white background, then a blue bucket is put in
the scene for 30 seconds as a foreground object. Finally, the bucket is removed
and the sequence ends with several frames showing an empty scene. The cross
marks the pixel whose time series graph is plotted in Figure 2.9 and area B
represents the background Gaussian. R values lying within area B were clas-
sified as background. The Gaussian model uses the two remaining Gaussians
to model foreground phenomena such as the blue bucket in our case. For the
sake of clarity in the plots, we only show one of the Gaussians represented by
area F in the plot. R values lying in the area were classified as foreground. The
representation of the Gaussian that is not shown would essentially fill the same
ranges as area F. The unit on the x axis is frames and the unit on the y axis is
the red component of RGB ranging from 0 to 256.

In the first 100 frames the scene is empty only showing the white background
yielding a generally constant R value. The background Gaussian represented
by area B surrounds the R values almost completely, i.e. the pixel under the
cross is accurately classified as background by the mixture Gaussian model. We
can additionally check the decision by looking at Figure 2.11. The graph shows
the fore-/background decision over time or to be more precise over frames. A
1 indicates that the pixel was classified as foreground and 0 that the pixel was
considered background.

Figure 2.10 shows the weights of the different Gaussians over time (i.e. frames).
The Gaussian corresponding to line B is the background Gaussian as its weight
is 1. At first the other Gaussian has not been initialized having a weight of
0 until about frame 110. At frame 110 the blue bucket is put in the scene,
the R value decreases significantly. In Figure 2.9 the width of area B does not
change. The Gaussian depicted by area F initializes to various R value ranges
modelling foreground phenomena, i.e. the blue bucket. We see that the weight
of the background Gaussian (line B) decreases in Figure 2.10, but that it is
larger than the weight of the Gaussian depicted by line F. Thus, the pixel is
accurately classified as foreground. The weight decreases, because the mixture
model is adapted to the current changes in the scene. If the bucket remained for
a longer time the weight of red Gaussian would eventually be smaller than the
weight of the other Gaussians, i.e. the object would have been adapted into the
background. But at frame 275 the blue bucket is removed. The R value jumps
back to its initial value. Thus, the weight of the background Gaussian (line
B) increases while the weight of the other decrease (line F). The subsequent R
values lie within area B in Figure 2.9: The background model classifies the pixel
as background again.

2.3.3 Parameters of the background modules

For both background models there is one important parameter to choose: the
adaptation rate α. The parameter specifies the rate at which foreground is

33

adapted into the background.

If the parameter α is too small, gradual lighting changes and moved furniture
will be classified as foreground for a long time. If the parameter α is too large,
foreground objects that do not move fast enough in the image will immedi-
ately be classified as background. There is an apparent trade-off between fast
adaptation to moved furniture and changes in lighting condition and accurate
foreground segmentation of slow moving objects.

In appendix A, an upper bound αmax for α is derived that guarantees under
certain assumptions that objects are not adapted into the background for at
least n frames for both the single-Gaussian and the multi-Gaussian background
model. In connection with a sampling rate this upper bound is useful in order
to guarantee that objects stay as foreground for a certain time period.

For instance, if the sampling rate at which images are processed is 10 frames
per second and objects should remain foreground for at least 20 seconds, n
corresponds to 200. The inequalities A.4 and A.9 of appendix A provide the
upper bound αmax, which is equal to 0.0144 for the single-Gaussian model and
0.0032 for the multi-Gaussian model.

2.4 Kalman Filtering

A Kalman Filter estimates the state of linear dynamic system by combining
measurements of the current system state and an updated state of the prior
state estimate.

To achieve this task, the Kalman Filter uses two models: the system model and
the measurement model.

The system model in its general form is given by

xk+1 = Akxk + Bkuk + wk (2.23)

This relationship describes how the state vector at time tk+1 depends on the
state vector and the control vector uk at time tk. Ak and Bk are matrices that
define the influence of the old state xk and the control vector uk on the next
system state. The term wk is a normally distributed random variable which
describes influences on xk+1 not modelled by the matrices Ak and Bk.

For instance, a system model of a Kalman Filter to estimate the position of
a person in an indoor scene could consist of two parts. The previous state
xk+1 (e.g. position and velocity) and an action uk of the person (e.g. turning,
stopping). The random variable wk should account for errors in the estimation
process of a person’s action.

The measurement model describes measurements in terms of the Kalman Filter

34

terminology. The general form of a measurement model is given by

zk = Hkxk + νk (2.24)

zk depicts a measurement at time tk, xk is the system state vector and Hk

describes the per definition linear relationship between the two. The normally
distributed random variable νk describes unmodelled influences on zk. These
unmodelled influences are due to the inaccuracies in the measurement process.

For instance, the system state of a person, consisting of position and velocity,
could be observed through a special badge on the person and a base station
locating the badge. Generally, this measurement process only provides the po-
sition but not the velocity of the person. This fact is accounted for in the matrix
Hk. The random variable νk models the inaccuracies of the locating process by
the base station.

A detailed account of the Kalman Filtering technique calls for a thorough ex-
planation of the dependencies between the system and the measurement model
which would go beyond the scope of this chapter. The interested reader should
consult the standard literature on this subject: The book [17] gives a complete
description of the Kalman Filter technique. It discusses the derivation of the
algorithm, examples, and information about generalizations (extended Kalman
Filter) and similar filter techniques in detail. An especially detailed treatment
of the subject with example programs can be found in [9].

Generally, a Kalman Filter produces at each step a prediction of the current
state of the system which is derived from the system model. The algorithm
corrects the a priori state estimation using the current measurement and the
dependencies defined by the measurement model. The result is also known as
the a posteriori estimate of the system state.

The Kalman Filter has the property to produce estimates which are bias free
(expected value of the estimation error equals 0) and have minimal error vari-
ances. This technique has the additional advantage to use only the last system
state and the current measurement to produce the estimate the current system
state. The previous system states and the prior measurements are not con-
sidered. This is one of the reasons for the Kalman Filter’s and related filter’s
popularity.

35

36

Chapter 3

Implemented Tracking
System

Our tracking system is based on and extends the work by Mikic as described in
[16]. As in Mikic’s paper we use multiple calibrated cameras to track people and
we apply the same algorithm to produce location hypotheses from silhouettes
(see section 3.3) and to create tracks from location hypotheses (see section 3.4).

But we extend Mikic’s approach in several ways: Our tracking system uses
a more sophisticated foreground extraction module (see section 3.2) and dis-
tributes the computational demanding feature extraction task on several ma-
chines (see section 3.1). Furthermore, we developed and implemented a proba-
bilistic multi hypothesis tracking algorithm (see section 3.5) with the intent to
achieve equal or even improve tracking performance over the tracking algorithm
described in section 3.4.

As our tracking system is intended to be part of larger multimodal systems, its
modules should be well documented to ensure reusability of the source code and
easy maintenance. This chapter provides details of the implementation of the
vision and tracking algorithms.

Furthermore, the implementation of the proposed algorithms should be correct
under the given circumstances. To provide evidence that the system operates
correctly, section 4.3 in the following chapter discusses successful test runs of
the tracking system on synthetic data sets.

3.1 Tracking system overview

The tracking system uses several cameras as visual sensors. Each camera is
connected to a dedicated image processing machine. These machines extract

37

foreground regions, i.e. human silhouettes, based on a background subtraction
algorithm in real time (see 3.2) and broadcast the regions over the network to
tracking agents.

A tracking agent identifies those foreground regions that represent different
views of the same object or person exploiting geometric constraints (see 3.3).
These foreground regions form a group of corresponding regions or a so-called
correspondence. As the cameras are calibrated, the tracking agent calculates
the object’s location or measurement from the centroids of the corresponding
regions and the camera models (see 2.1.1).

The agents build tracks of objects from these triangulated locations. The lo-
calization method relies on the assumption that centroids of foreground regions
are close to the projection of the real centroid of the object in the scene.

Since this assumption can be violated in some cases such as partial occlusion of
the object from some viewpoints, the tracking approach must deal with inaccu-
racies in the measurements. As well it is possible due to false positive foreground
regions (shadows, abrupt lighting changes, etc.) that erroneous measurements
are produced.

To deal with such noisy measurement data the implemented tracking algorithms
use techniques such as Kalman Filters and probabilistic models to improve per-
formance.

Furthermore, establishing correspondences based on geometric constraints does
not provide enough information to disambiguate objects that are close to each
other. Incorporating color information should provide some discriminative in-
formation, but tests with rg color histograms yielded unsatisfactory results. The
color of the tracked people’s cloths were too similar. This provided a reason to
focus on a multi hypothesis tracking algorithm that might track objects close
to each other more accurately.

Multiple hypothesis tracking allows to postpone a decision if a correspondence
belongs to such and such object, even if they are close to each other: A multiple
hypothesis tracker follows all possible interpretations of the data and ideally
waits until he has gathered enough information to output hypotheses with high
confidence levels.

We implemented such a multi hypothesis tracker based on a probabilistic ap-
proach and as well for comparison purposes a best hypothesis tracker using
Kalman Filters:

• The best hypothesis approach keeps a Kalman Filter per tracked object
and explicitly matches triangulated object locations to Kalman tracks. An
error function rates different match possibilities. The best match hypoth-
esis updates the corresponding Kalman Filters. Several heuristics give
special attention to established tracks to improve tracking performance.
Section 3.4 describes the method in detail.

38

• The probabilistic multi-hypothesis tracker keeps several track paths per
observed object. Posterior probabilities calculated for the track paths
are used to select the most probable (valid) track paths. The posterior
probabilities depend on the current measurement locations and the history
of the track paths. Section 3.5 describes the probability model and the
track path selection process thoroughly.

3.2 Feature extraction

In our system a background subtraction algorithm extracts foreground regions
from each camera image in real time. Foreground regions are those regions
that differ significantly from the still background estimate. The background
estimate is obtained by modelling the background color of each pixel as a mixture
of Gaussians. Section 2.3.2 described the underlying adaptive multi-Gaussian
background model.

Tests with this algorithm estimating background based on RGB or YUV color
space had the problem of detecting shadows as foreground in our indoor en-
vironment (see Figure 3.1(b)). Neon lights mounted under the ceiling provide
most of the light in this room. These lighting conditions tend to produce sharp
shadows on the ground and shadows of objects near to the walls.

The reason why shadows are detected as foreground by the algorithm is the
significant difference in the intensity component of the color spaces for shad-
ows. RGB has an intensity component in each channel, YUV provides all of
the intensity information in the Y channel. This suggests to estimate the still
background on a chromatic color space. For instance, the color space rg or the
U and V channel of the YUV color space could be used.

Such background algorithms do not detect shadows as foreground, but they
classify large regions of foreground objects as background (false negatives) or
dissolve a single foreground object into several regions (see Figure 3.1(c)).

The implemented segmentation algorithm uses both chromatic and intensity
information to ensure a low number of false positives and negatives. The process
of segmentation is illustrated in Figure 3.1:

From the camera image (Figure 3.1(a)) the adaptively estimated background
image on the intensity channel Y of the YUV color space is substracted. This
yields foreground regions as shown in Figure 3.1(b). In the same manner the
background image estimated on the color space rg is subtracted from the current
image (Figure 3.1(c)). Then each rg region is matched to a Y region, if it is inside
this Y region. For each Y foreground region the bounding box of its matched or
interior rg regions is computed (Figure 3.1(d)). The bounding boxes are filled
and pixelwise intersected with the Y foreground regions (Figure 3.1(e)).

This approach cuts off most of the shadows due to the use of chromatic infor-
mation while exploiting intensity information to obtain smoother silhouettes.

39

Figure 3.1: Extracting foreground (see text for details)

From these foreground regions the rg color histogram, the bounding box, the
centroid, and the size are computed and broadcasted appropriately packaged
and time stamped.

Real time performance of the feature extraction algorithm is a concern in our
system. This requirement puts a constraint on the resolution of the estimated
still background image, since the estimation process of the background color
for all the pixels is a computationally demanding task. In tests a background
image of 200x200 pixel showed real time performance while producing a sufficient
resolution for the localization task. Furthermore, as lighting changes do not
occur instantly, the algorithm adapts the background image only every third
frame.

Under these circumstances the feature extraction module produces foreground
regions at a rate of five frames per second on a 1GHz Pentium IV.

Background estimation is based on the assumption that the background consists
of non-moving objects. But foreground objects can violate this assumption. For
instance, a sitting person is gradually adapted into the background. Toyoma et
al. in [20] argued that a low level component such as a background subtraction
algorithm should leave the decision, if a non moving object belongs to the fore-
ground, to a higher level component. Following this suggestions our extraction
algorithm does not try to resolve this problem.

At least, we can give a guarantee how long a non-moving object of interest will
be classified as foreground: In section 2.3.3 we gave an upper bound for the
learning parameter α that guarantees a minimal amount of time until an object
of interest is adapted into the background.

40

3.3 Correspondences

At each camera the vision algorithms detect objects as foreground regions, i.e.
silhouettes. To localize an object (see Figure 3.3), we need to group those
foreground regions that correspond to the same object together. This grouping
task is one of the many variants of the correspondence problem in computer
vision.

If there is one object in the room that produces only one foreground region for
each camera image, no correspondences between the foreground regions have to
be found, because all of the silhouettes correspond to the same object.

But if errors in the extraction process cause the object to produce erroneous
regions in some cameras or if more objects are tracked in the room, correspon-
dences have to be established.

The implemented tracking algorithms exploit geometrical constraints to solve
the correspondence problem:

Considering the example described in Figure 3.2 there is no way to tell which
foreground regions correspond to the same object right away. Therefore, we
consider all the subsets of foreground regions originating from mutual exclusive
cameras as possible correspondences.

Assuming that a group of foreground regions corresponds to a real object, we
can triangulate the object’s centroid1 as described in section 2.1.1: Figure 3.3(a)
shows the lines drawn from the center of projection of each camera (Ocam1, etc.)
through the centroid of the foreground regions (Pcam1, etc.) whose intersection
is the location of the object’s centroid in the scene. They can be expressed
as linear equations using the cameras models (see section 2.1.1 and 2.1.2 for
details).

As the lines are defined in three dimensions, they do need to intersect in one
point and in real life they never will due to inaccuracies in the calibration or
the feature extraction process. Mathematically speaking, this means that the
system of linear equations formed by the lines is over determined. Even if the
linear equations do not have an exact solution, we can find a good approximate
intersection point x for the lines by calculating the least squares solution (see
Figure 3.3(a)).

Obviously, a group of foreground regions belonging to one object in the scene
produces lines that approximately intersect at one point in space (the location
of the object) as in Figure 3.3(a). If we consider a group of foreground regions
whose regions do not belong to the same object as in Figure 3.3, the lines do
not intersect at one point.

1Additionally, we assume here that the centroids of the foreground silhouettes are close
to the projections of the object’s physical centroid in the camera images. In practice the
assumption can be violated due to partial occlusions or foreshortening. We discuss the effects
on the tracking performance in such a case in section 4.3.

41

Figure 3.2: The correspondence problem for two persons and three cameras.

We can measure how accurately the lines intersect by computing the residual r
or triangulation error of their linear equations:

r =

∣∣∣∣∣∣

A1

A2

A3

xintersect −

b1

b2

b3

∣∣∣∣∣∣
(3.1)

In the case of Figure 3.3(a) a correct correspondence, a group of foreground re-
gions belonging to the same object, has a small triangulation error. On the other
hand, an incorrect correspondence as in Figure 3.3(b) has a large triangulation
error.

Exploiting this property of the residual, we discard foreground region subsets
with large triangulation errors as false correspondences and use r as a rating
scheme for the remaining correspondences:

More specifically, the implemented method discards all foreground region sub-
sets whose residual r exceeds a threshold τ (for instance 30 cm).

42

Ocam3

Pcam2

Ocam1

Ocam2

Pcam3

Pcam1

Ocam3

Pcam2

Ocam1

(b)

Ocam2

Pcam3

Pcam1

Least squares

solution
Least squares

solution

(a)

Figure 3.3: (a) A wrong correspondence (b) a correct correspondence

The remaining correspondences are sorted in descending order by the number
of sensors and secondarily by their residual r. As each correspondence defines
a hypothetical object position zi = (x, y, z), the ordered list of correspondences
is a list of object locations zi which we denote by:

M = (z1, z2, z3, . . .) (3.2)

3.4 Best-hypothesis Kalman tracking

In the previous step we have detected candidate object locations M. The step
involved solving a correspondence problem approximately by exploiting geomet-
ric constraints. Even if this approach can detect object’s locations to a certain
degree, analyzing several consecutive detections will produce a more reliable lo-
calization: Candidate locations representing real objects will persist over time
while erroneous candidate locations as ideally random noise will cancel out.
This idea is the essence of tracking algorithms.

To simplify the description of our tracking algorithm, we denote the candidate
location list produced at time t during the tracking process as the measurements
M t = (z1, z2, z3, . . .). We interpret the consecutive list of measurements M t over
time as a signal Z[t] = (M1,M2, . . . , M t, . . .).

Analyzing the signal Z[t] permits to establish trajectories of one or more ob-
jects. At each time t we estimate the number nt and the position of objects
in the scene N t = (xt

1,x
t
2, . . . ,x

t
nt). We model a trajectory as a signal of ob-

ject positions X[t] = (N1, N2, N3, . . . , N t, . . .). Since our focus is on tracking
humans, trajectories provide information about their activities respectively sit-
uational context. For instance, two subjects who just met will show trajectories
approaching each other that finally stop at one location.

Creating trajectories of objects poses the problem of data association: Which

43

candidate locations M t should be used to update existing trajectories N t? In
the best hypothesis tracker we perform a nearest fit:

Consider the matching process for an object i at time t. The candidate location
zt closest to object i’s previous position xt−1

i is matched to i’s trajectory or
so-called track. For the match the algorithm only considers candidate locations
within a threshold distance (such as 50 cm). If there is no measurement for
object i, the threshold ensures that a zt

k belonging to another object k in i’s
vicinity is not erroneously matched to object i.

The algorithm prohibits that a silhouettes is used twice in the matching process.
Assume that measurement zt

i is computed only using foreground regions that
are silhouettes of object i. To guarantee that silhouettes are not used twice,
i.e. a silhouette is used in triangulating of two different objects, the algorithm
removes all measurements zt

i that use zt
i ’s silhouettes.

After matching candidate locations to existing tracks and the removal of invalid
measurements zi, the remaining unmatched zj are regarded as observations of
objects that have just entered the scene. The algorithm initializes a new track
for each object with the corresponding zj as its initial position.

Special care is advised with new tracks, since they may be initialized by erro-
neous measurements rather than objects in the scene. Only if several measure-
ments support a track, it can be regarded as a valid trajectory of an object.

In order to tell valid from erroneous tracks, the algorithm uses a counter for each
track. It is increased, when a measurement is matched to the track; otherwise
decreased. The algorithm erases tracks, when the counter drops to 0.

New tracks initialize the counter with a certain value ν. ν permits new tracks a
slow start: Even if they are not supported by measurements instantly, they stay
alive. The tracker has to decrease the initial credit ν to 0. On the other hand,
if measurements support new tracks, the algorithm regards them as valid, when
the track’s counters exceed the threshold χ.

ν and χ depend on the frame rate at which the tracker receives information
from the vision modules. ν is chosen large enough to permit object’s tracks a
slow start and small enough to cancel out erroneous tracks. χ must be larger
than ν which provides the lower bound to discard false trajectories, but small
enough to produce valid tracks as fast as possible.

We generally track human subjects respectively objects that they manipulate
(a cup of tea or a book). To improve tracking performance and the trajectory’s
accuracy, we can exploit domain knowledge about their dynamic behavior:

Tracked objects have smooth trajectories that are solutions for slowly mov-
ing physical entities. The tracking algorithm uses Kalman Filters to describe
this dynamic behavior. For each tracked object, a Kalman filter estimates the
object’s position and velocity. Candidate locations matched to tracks update
the respective filter using the standard Kalman formulas as described in [15].
If no measurement are matched, the position prediction of the Kalman Filter

44

zt = Htx
−
t is used to update the track’s position. Section 3.4.1 describes the

design of the Kalman Filters in detail.

3.4.1 The Kalman Filter process model

To model the dynamic behavior of an object in the scene, we estimate its cur-
rent position and velocity x = (x, y, z, ẋ, ẏ, ż). Its acceleration (ẍ, ÿ, z̈) is not
estimated, but modelled as a zero mean Gaussian random variable with uni-
form covariance N(0, I). According to the laws of mechanics, an approximate
solution for the object’s trajectory is:

xt+1

yt+1

zt+1

 =

xt

yt

zt

 +

ẋt

ẏt

żt

 ∗ t (3.3)

ẋt+1

ẏt+1

żt+1

 =

ẋt

ẏt

żt

 +

ẍt

ÿt

z̈t

 ∗ t (3.4)

To express this dynamic behavior using a Kalman filter, we define the filter’s
state vector as x = (x, y, z, ẋ, ẏ, ż) and set the system model according to the
solution for the trajectory:

xt+1 =

1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

xt + vt (3.5)

where T is the sampling period and

vt = N(0,

(T 2

2)2 0 0 0 0 0
0 (T 2

2)2 0 0 0 0
0 0 (T 2

2)2 0 0 0
0 0 0 T 0 0
0 0 0 0 T 0
0 0 0 0 0 T

). (3.6)

Furthermore, we need to link the position and velocity estimates to the location
measurements. In the framework of Kalman Filters this means to specify the
measurement model equation:

zt+1 = Hxt + wt, (3.7)

45

where zt is the location at t, H the so-called measurement matrix and wt models
the noise in the measurement process.

In our system we assume that the measurement locations zt represents the
object location which simply sets H to identity2:

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

. (3.8)

The measurement noise is modelled as uniform zero mean Gaussian noise: wt =
N(O, I).

So far we specified the equations to update the Kalman Filter’s state, but how
is the state initialized, when an object enters the observed area. In that case
the state vector of the filter is set to the initial position estimate x0 and a
zero velocity. Additionally, an a priori error covariance matrix P0 describing
uncertainties in velocity and position is specified to complete the initialization
of the Filter:

P0 =

(100cm)2 0 0 0 0 0
0 (100cm)2 0 0 0 0
0 0 (50cm)2 0 0 0
0 0 0 (30 cm

sec)2 0 0
0 0 0 0 (30 cm

sec)2 0
0 0 0 0 0 (15 cm

sec)2

(3.9)

In matrix P0 we assume that the x and y axes are parallel to the floor of
the indoor environment. P0 reflects the belief that location estimates show
a substantially higher uncertainty level in the x and y direction than in the z
direction. This choice for P0 was motivated by the observation that the location
of an object does not vary much in the z direction, as long as walking humans
are concerned.

3.4.2 Using existing tracks to reduce the size of the search
space

If there are a lot of foreground regions extracted from the camera images, an
exhaustive search through all of the subsets of extracted regions is computa-
tionally expensive. To reduce the number of evaluated subsets, the algorithm
performs a preprocessing step exploiting information about existing tracks.

2The last three rows of H are zero, because velocity is not measured directly.

46

For each tracked object i we identify its silhouettes S and update its Kalman
Filter prior to the usual tracking loop by computing the location measurement
from S. The reduction in the size of the search space is achieved by removing
the silhouettes S from the set of available foreground regions:

If a foreground region is a silhouette of i, we can localize i approximately from
its old location xt−1 assuming that i has only gradually moved. We use i’s
previous distance from the camera and the centroid of the foreground region to
calculate a hypothetical position qt. If qt is within a threshold distance (such
as 50 cm) from xt−1, we have evidence that the foreground region is a silhouette
of i. We create the set L of such regions.

In the same manner as described in section 3.3 for all foreground regions corre-
spondences are created from the regions in L and transformed into a list N of
candidate locations for object i:

N = (z1, z2, z3, . . .) (3.10)

The location measurement z1 is assumed to be formed by the silhouettes S of
object i. We use the measurement z1 to update the state vector of i’s Kalman
Filter.

As we have identified the silhouettes S of i and have already used them to
update i’s position, we can remove the silhouettes S from the set of available
foreground regions. In the tracking loop this results in the evaluation of fewer
foreground region subsets and therefore a shorter runtime of the loop.

3.4.3 An improved variant of the best hypothesis tracker

In early test runs of the best hypothesis tracker, the algorithm often lost tracks
of subjects that were turning sharply. For instance, a person walking around a
table was sometimes lost by the tracker when he turned at the table’s corners.
The tracker erroneously estimated that the person was still walking on a straight
line. This is due to the fact that valid measurements of an object’s position are
sometimes not available for several frames, because of irregularities in the feature
extraction and correspondence finding process.

To counter this problem, an improved version of the best hypothesis tracker uses
an altered method to match measurements to tracks: Instead of considering
measurements that lie within a fixed threshold distance from existing track
positions, the algorithm adapts the threshold for each track.

To be more precise, the adaptive threshold is given by

dist = min((tnow − tlast) ∗ vmax, distmax), (3.11)

where tnow is the current time, tlast is the last time the track was updated by
a valid measurement, vmax is the upper bound on the velocity of objects and

47

distmax is an upper bound on the threshold itself.

The adaptive threshold has the advantage that only those tracks consider mea-
surements from a larger perimeter who have already lost their tracked object for
a certain time span. The threshold grows, if the track is not updated by valid
measurements. This causes the tracker to match measurements to the track
that are further away from the current position estimation. dmax ensures that
no measurements can be matched that are to far from the current position.

Additionally, dist might reduce the risk of mismatching measurements for ap-
proaching tracks. Tracks that are steadily updated with valid measurements
show a small threshold dist. If two tracks approach each other in such a case,
the small thresholds should ensure that there is a minimal amount of mismatches
between these tracks.

3.5 Multi-hypothesis probabilistic tracking

The multi-hypothesis tracker uses a probabilistic approach to update and create
tracks from the list of measurements Mt.

Assuming for the moment that the tracker has some existing tracks, the task is
to update the tracks given some new hypothetical 3-D locations of objects Mt.
The tracker has to keep the most promising and to discard the most unlikely
tracks.

As the tracker uses multiple hypotheses per track, it is important to understand
that each track consists of several track paths.

3.5.1 Assigning probabilities to track paths

In order to differentiate between valid and erroneous track paths the a posteriori
probability P (X[t]|Z[t]) for each track path is computed:

Each track path is a time stamped sequence of 3-D locations (xt, yt, zt):

Xt = {(x1), (x2), ..., (xt)} (3.12)

Zt are all the measurements Mt seen up to time t:

Zt = {M1, . . . ,Mt} (3.13)

The posterior probability for a track given a history of observations is formally:

pt = P (Xt|Zt) =
P (Zt|Xt)P (Xt)

P (Zt)
(3.14)

Assuming that P (Xt|Zt) and P (Zt) only depend on the current measurements
M t and current track position hypothesis xt, the above equation yields:

48

pt = P (Xt|Zt) =
P (Mt|xt)P (xt|Xt−1)

P (Mt)
(3.15)

We compute the probability P (Mt|xt) in the following way: The probability
distribution that a measurement is seen at location zt given the current position
of the track xt can be expressed as a Gaussian distribution:

P (zt
i|xt) =

1
(2πσ2)

3
2

exp−
1

2σ2 (xt−zt
i)

2

, (3.16)

where σ is between 20 to 40 cm. The isotropic Gaussian distribution models
the probability of observing an object given its estimated position as a quantity
that decreases with the distance between observation and estimated position. A
Gaussian carries over 90% of its probability mass in its 3σ neighborhood, thus
the chosen σ range requires the observation to be no further than 60 to 130 cm
to produce a significant P (zt

i|xt).

As measurements are not equally likely, the overall probability P (Mt|xt) can
be modelled as a weighted sum of P (zt

i|xt) probabilities. The weights P (zt
i|Mt)

are modelled to be dependent on the triangulation error and the number of
foreground regions supporting the corresponding measurement zt

i. This yields
for P (Mt|xt):

P (Mt|xt) =
n∑

i=1

P (zt
i |Mt) ∗ P (zt

i|xt) (3.17)

P (xt|Xt−1) can be as well described with a gaussian distribution:

P (xt|Xt−1) =
1

(2πσ2)
3
2

exp−
1

2σ2 (xt−xt−1)
2 ∗P (Xt−1) (3.18)

3.5.2 Updating and creating tracks

For the updating process in our approach several possible actions how to con-
tinue a path are evaluated:

A track path can be updated with a measurement using the Kalman filter de-
scribed in 2.4. As well a path can be updated by re-initializing - jumping directly
to the position of a measurement. Finally, the Kalman filter can guess a new
position without a measurement. For each action the overall P (Xt+1|Zt+1) is
computed.

As the tracker uses multiple hypotheses for a given track, the algorithm keeps
the best n resulting track paths per track.

After the update process there might be measurements which were not used to
extend any tracks. The algorithm regards these measurements as observations of

49

object that entered the scene and initializes new tracks using the measurements
as the initial position estimate.

To ensure that track paths do not accumulate at the same 3-D position, we
enforce an exclusion principle: When the distance between track paths is smaller
than the exclusion distance E, one of the paths is deleted. As we seek to keep
the more probable path, we delete the path with the smaller confidence measure.

Last but not least, during the tracking process there will be tracks that were
created earlier than other tracks. In order to make the P (Xt|Zt) values compa-
rable, a penalty per missing frame is added to the confidence measure P (Xt|Zt).
The value of the penalty corresponds to the probability that the younger track
jumped by one meter and that the track was one meter away from the near-
est measurement. This rather large penalty ensures that older tracks are kept
unless there is no data supporting them.

50

Chapter 4

Tests and Evaluation

The best algorithm is worthless without a correct implementation. Our tracking
system consists of several algorithms performing image processing and tracking.
Proofing that the algorithms are implemented correctly in a mathematical fash-
ion, would be too complex and time consuming. We use a more practical,
less stringent method: We verify the system’s correctness on a synthetic test
sequence (see section 4.3).

Beyond correct implementation of the algorithms, the system must show the
capability of tracking humans. In lack of an alternative tracking system that
provides ground truth data, online evaluation of the system is difficult. There-
fore, we chose to record several test sequences to perform qualitative and quan-
titative analysis of the tracking performance off-line. We obtained the ground
truth data by manual inspection of the sequences. Section 4.1 describes the
setup of the test environment and the details of the recording process. Section
4.2 introduces the evaluation measures applied in the quantitative analysis.

Subject to our analysis are three experiments that we conducted during the
development of the tracking system in order to improve the system’s tracking
performance on real data:

• As extracted silhouettes included shadows in the initial system, the first
experiment explores the use of different color spaces in the vision compo-
nent to improve accuracy in silhouette extraction (see section 4.4).

• The second experiment aims at improving the tracking algorithm. In
section 3.5 we already described the possible advantages of a probabilistic
multi hypothesis tracker. We compare in section 4.5 the multi hypothesis
tracker and the best hypothesis tracker described in section 3.4 that was
used in the initial tracking system.

• The third experiment discussed in section 4.7 explores if the localization of
a person’s head instead of its centroid leads to improvements in tracking

51

Figure 4.1: Schematic map of the test setup

performance.

4.1 Test set and environment

Testing the tracker in all possible environments is unfeasible. The best we can do
is to evaluate the system on a representative test setup. As our research group
focuses on human machine interfaces in meetings, a conference room serves as
the test environment.

Figure 4.1 shows a map of the conference room. In conference rooms chairs and
tables often occlude human subjects partially. To explore the influence of partial
occlusions, we used two setup configurations: On the map we indicated the area
(A) where people were walking during the recording of the test sequences. In
the first configuration we put a table in the middle of area A which yields partial
occlusions of human subjects during recordings. As a control experiment area
A was left empty in the second test configuration.

To assure a considerable variety of spatial constellations between human subjects
in the test sequences, we need to discuss the sequences’ ’choreography’:

• First of all, we told volunteer’s to walk the border of area A several times,
then to move in a circular fashion within A and finally in an eight-shaped
curve. Such a movement pattern assures that most of the area is covered

52

and that the tracking system can show that it can locate people everywhere
in area A.

• Moreover, how much time does the system need to detect people? Does
the tracker have problems to track people who change their velocity often?
To answer these question, we asked the volunteers to enter the area after
the recording had started and to abruptly stop their walking patterns once
in a while.

• If several people walk in area A simultaneously, will the system be able to
track people that pass each other closely? Will the system be able to track
people that are standing or walking some distance apart from each other?
Addressing these questions, we told the volunteers in test sequences with
several subjects to walk at first apart from each other and to later cross
their paths several times.

After having motivated the test setup’s configuration and test sequence’s chore-
ography, we can provide the details of the recording process.

In total we recorded four test sequences of three minute length each ’singleF’,
’singleT’, ’dualF’, and ’dualT’. The sequence name consists of two parts. The
first part either ’single’ or ’dual’ refers to the number of subjects in the scene.
The second part ’T’ or ’F’ refers to the setup configuration whether a table
(T) was present in area A or A was free space (F). The sequences’ images were
recorded in a resolution of 160x120 at ten frames per second. As the clocks
of the recording computers were synchronized by a network protocol with an
error of less than a millisecond, we were able to accurately time-stamp each
image during the recording. For the three pan-tilt-zoom cameras we recorded
the images in RGB color space, while for the stationary fire-wire camera we
recorded in YUV color space.

Due to problems with the driver software the fire-wire camera images did not
contain correct color information. Extracting silhouettes from these images was
difficult and resulted into considerable more noisy silhouette output than for
the other cameras. Using the silhouettes from the fire-wire camera in tracking
resulted in a deteriorated tracking performance (significantly higher false alarm
rates). The silhouettes from the fire-wire camera caused a systematic error. For
this reason, we discuss in this chapter only tracking experiments using the three
pan-tilt-zoom cameras.

4.2 Evaluation measures

To allow a quantitative analysis, the test sequences were manually inspected to
find the absolute position of each person in the scene as ground truth data:

Given a test sequence A, the task is to obtain the absolute position of each
person in A for each instance of time t. As in our test setup three cameras were

53

used, the test sequence A consists of four image sequence A1, A2, and A3. For
time t we select the corresponding image At

i from Ai, where i = 1, 2, 3. In image
At

i we find the camera coordinates Ct
i,P of the centroid for each person P in the

scene by estimating the coordinates of person P ’s belly button manually. We use
the triangulation method described in 2.1.1 to calculate from the coordinates
Ct

i,P , where i = 1, 2, 3, the absolute 3-D position xt
P = (x, y, z) of person P .

Finally, after having looked at each image of the test sequences, we obtain the
ground truth data, the absolute position xt

P of each person P at time t in the
sequences.

In the discussion of this chapter we use two measures to evaluate the perfor-
mance of tracking algorithms: The localization error per person α and the false
alarm rate β.

• α: The localization error per person measures how often a tracker fails to
locate a person P correctly in the test sequence as a percentage. Assuming
that a test sequence consists of 1000 images, a tracker that fails to produce
tracks that are within 750mm distance from P ’s position xt

P in 100 frames,
has a localization error of αP = 0.1.

Because we assume that humans in the scene are either standing or sitting
upright, it suffices to produce tracks near to the 2-D position (x, y) of the
person, not the absolute 3-D position xt

P = (x, y, z). For this reason the
distance in the calculation of α only incorporates the x and y direction.

Furthermore, α does not regard the identity of tracks: For a frame the
tracker located a person P correctly, if a track exists whose 2-D distance
from P is less than 750mm. In practice a track tP following person P
might lose P due to a failure in the vision algorithm or other noise effect,
but the system will instantly initialize a track t′P which picks up the A’s
trajectory. α only measures the frames in which the system fails to locate
person P completely until t′P re-catches the trajectory.

As α does not incorporate the notion of track identity, we do not discuss
this issue in the context of quantitative analysis. But the qualitative
analysis in section 4.6 of the performance of the best hypothesis tracker
on several test sequences will explore the trackers’s capability of tracking
a person consistently as a single trajectory.

• β : The false alarm rate measures how often a tracker fails to estimate the
correct number of people in the scene as a percentage. Assuming that a
test sequence consists of 1000 images, a tracker that fails to estimate the
exact number of people in the scene in 250 frames, has a false alarm rate
β = 0.25.

54

�����

����

��

��� ���

Figure 4.2: (a) Cylinder modelling a human subject (b) Cylinder moves to full
circles in 70s at (10 fps) in test sequence.

4.3 Test run on synthetic data

The tracking system consists of several complex algorithms. Verifying the algo-
rithms’ correct implementation by mathematical means, would be too complex
and time consuming. Instead we verify the implementation by testing the algo-
rithms on a synthetic test sequence.

The synthetic test sequence simulates a human, who is modelled by a cylinder,
walking in a circle through our physical test setup (see Figure 4.2) virtually
recorded by four cameras. During the test sequence the cylinder completes two
full cycles in 70 seconds. As the recording was simulated at 10 frames per
second, the sequence consists of 700 frames.

We use the camera models obtained from the calibration process of our physical
test setup to project the cylinder into the cameras. Figure 4.3 sketches the pro-
jection process: Four extremal points e1, e2, e3, e4 on the cylinder in the scene
are projected into the cameras as the approximate silhouette. The collection of
time stamped silhouette images (as in Figure 4.3(b)) of the four cameras forms
the synthetic test sequence.

The test sequence is used to evaluate the whole tracking system, i.e. both the
vision and the tracking component.

The vision system has to extract the cylinder’s silhouettes. The test sequence
does consist of silhouettes. Moreover, the ten first images are entirely black.
The vision component dealt with this simple task correctly: It estimated the
background image as constant black and managed to re-extract the silhouettes.
Finally, it correctly computed the silhouettes’ geometric centroids in all camera
images.

55

������

����	
��
��������	�
���

������������

��� ������������

��

��

��� ���

Figure 4.3: (a) Projecting the cylinder into a camera by identifying the ex-
tremal points (b) Project the extremal points onto the camera plane yielding
the cylinder silhouette.

For the tracking component two tracking algorithms were implemented in the
system: The best hypothesis tracker (BH1) described in 3.4 and the multi hy-
pothesis tracker (MH) described in 3.5. Additionally for control purposes, we
evaluated a variant of the best hypothesis algorithm which does not use Kalman
Filters to smooth trajectories (BH2). Figure 4.4 shows the performance of the
three tracking algorithms on the synthetic sequence.

We tested for the localization error parallel to the floor (’x/y error’), the vertical
localization error (’z error’), the localization error per person (’alpha’), and the
false alarm rate (’beta’).

In Figure 4.4 the localization error percentage (’alpha’) as well as the false alarm
rate (’beta’) is always 0, this means that the three tracking system variants
successfully keep track of the cylinder. The errors lie in the accuracy of the
localization. The vertical localization errors range from 82mm to 92mm and
the horizontal localization errors range from 49mm to 62mm.

The localization errors are due to the difference between the geometric centroid
computed from the silhouettes and the projection of the cylinder’s physical
centroid as shown in Figure 4.5. When the cylinder is projected into a cam-
era, the camera plane is not parallel to the vertical axis of the cylinder. This
causes foreshortening effects on the silhouette shifting the geometric centroid
upwards with respect to the physical centroid. A qualitative analysis showed
that the estimated trajectories were in the order of the localization error above
the cylinder’s trajectory. Moreover, the qualitative analysis showed that not
only vertical but also the horizontal localization errors were attributable to the
difference between the physical and the geometric centroids.

Another cause for the horizontal localization errors are the Kalman Filters in
the BH1 and MH variant. Using Kalman Filters always introduces a lag between
the actual position of a moving object and its current position estimation. We
can clearly observe this effect in Figure 4.4: The BH1 and MH variant have
a horizontal error of 62mm and 56mm, while the BH2 variant which does not
use Kalman Filters has only an error of 49mm. The Kalman Filters do not

56

���
���

��

���	
���

���
���

��������������

������������

�

��

��

��

��

��

��

��

��

 �

���

Figure 4.4: Tracking performance of three tracking variants (BH1,BH2,MH) on
the synthetic test sequence.

��������	�
�����	�

�
��
���	�
�����	�
��� ���

Figure 4.5: (a) Foreshortening effect in projection of the cylinder being non
parallel to the camera plane. (b) The physical centroid P projects to a point
below the geometric centroid of the silhouette G.

57

���
���

��

���	
�� �

���
�� �

��������������

������������

�

��

��

��

��

��

��

Figure 4.6: Tracking performance of three tracking variants (BH1,BH2,MH)
on the synthetic test sequence using the physical centroid projection instead of
geometric centroids from silhouettes.

introduce a lag in the vertical localization, as the localization estimate in the z
direction is constant.

To test whether the localization errors were due to the above mentioned reasons
and not to implementation errors, we computed the projection of the cylinder’s
physical centroid for each camera. We ran tracking experiments using these
coordinates as input to the tracking variants instead of the geometric centroids.
Figure 4.6 shows that the vertical localization errors vanish for all variants.
Only the Kalman Filters in BH1 and MH cause a horizontal localization error
(about 50mm), while the BH2 variant tracks perfectly.

In conclusion, we can state that the vision component, the best hypothesis
tracker and the multi hypothesis tracker were correctly implemented judging
from the successful tracking experiment on the synthetic test sequence.

All tracking variants kept track of the cylinder. Although the trackers showed
localization errors, we have shown that foreshortening and a systematic error
introduced by the Kalman Filters in the tracking algorithms cause these errors.
In an additional tracking experiment we have shown that the errors vanish, if
foreshortening and Kalman Filter lag are ruled out.

58

���� ����� ������

Figure 4.7: Silhouette extraction with three different color spaces: a) Intensity
based color space (Y) b) The chromatic color space (rg) c) a combination of the
intensity/chromatic color space (YRG).

4.4 Improving silhouette extraction

In the first experiment on real data we explored the use of different color spaces
in the background subtraction algorithm to improve silhouette extraction and to
investigate the influence of more accurate silhouettes on tracking performance.

In early versions of the tracking system we estimated the background image
based on RGB and gray scale images in the silhouette extraction algorithm (The
gray scale images used the intensity component Y of the YUV color space).

The silhouette extraction based on these color spaces had the problem of detect-
ing shadows as foreground (see Figure 4.7(a)). The neon lights mounted under
the ceiling produced sharp shadows on the ground and the walls.

In the test sequences with two human subjects shadows as false positives cause
the vision algorithm in some cases to extract the two subjects as one silhouette:
The subjects are linked by a shadow detected as foreground (see Figure 4.8).
This phenomenon causes noticeable tracking errors as we will see in the later
discussion.

The reason why shadows were detected as foreground by the silhouette extrac-
tion is the significant difference in the intensity component of the color spaces.
The RGB color space contains intensity components in all of its channels. The
YUV color space provides all of the intensity information in the Y channel.
This suggests to estimate the still background on a chromatic color space. For
instance, the chromatic color space rg or the U and V channel of the YUV space.

Following this idea the chromatic color space rg is used in Figure 4.7(b) to
extract silhouettes. No shadows are classified as foreground, but large regions
of human subjects are classified as background (false negatives). This results in
several foreground regions for a human subject rather than a single silhouette
per subject.

To have best of both worlds - few shadows and a single consistent silhouette per
subject, we have already described in section 3.2 how to combine the chromatic
(rg) and intensity based (Y) color space for silhouette extraction. Figure 4.7(c)

59

Figure 4.8: Two human subjects extracted erroneously as a single silhouette. A
shadow as a false positive in the RGB color space links the two subjects into
one silhouette.

shows the accurate silhouettes obtained by the combined YRG color space.

The three silhouette extraction variants using the Y, rg and YRG color spaces
provide more or less accurate silhouettes, but only a test run can identify the
relevance of accurate silhouettes for tracking. We selected the test sequences
with two human subjects for this experiment ’dualF’ and ’dualT’ to assess the
influence of silhouette extraction on tracking performance in complex scenes.
During the experiment we used for the tracking component the best hypothesis
tracker as described in section 3.4.

Figure 4.9 and 4.10 show the tracking performance of the three silhouette ex-
traction variants Y, rg, and YRG. The most striking result in these figures is
the difference in the false alarm rate β. The rg variant always fails to estimate
the correct number of people in the scene (β = 100%). The Y and YRG variant
have significantly smaller false alarm rates of 20% − 46% for Y and 5% − 15%
for the YRG variant.

Manual inspection of the tracking results for the rg variant reveals the reason for
the high false alarm rate: The rg vision component often extracts two foreground
regions per subject; i.e. a region for the head and a region for the subject’s lower
body. This causes the tracking algorithm to create two tracks per person and
- with two subjects in the sequence - the algorithm estimates that four tracks
are active instead of two. On the contrary, the Y and YRG variant consistently
manage to create a single silhouette per subject resulting in significantly lower
false alarm rates (< 46%). More precisely, the Y variant exhibits a false alarm
rate of 24% for ’dualF’ and 46% for the ’dualT’ test sequence. The YRG variant
shows false alarm rates of 6% for ’dualF’ and 15% for ’dualT’.

Apparently, the false alarm rate level is higher in the ’dualT’ sequence. Qualita-
tive evaluation shows that the table in the scene of the ’dualT’ sequence causes
the tracking variants to detect two active tracks per person in several cases.
The table splits the silhouette of people standing behind it into an upper and
lower part. If this situation occurs in several camera perspectives, the tracker
picks up these splits as separate active tracks and explains the higher level of β
values for the ’dualT’ sequence.

Coming back to the Y and YRG variant themselves, the Y variant shows signif-

60

�

��

���

�����	

�����	�

���

�

��

���

���

���

���

���

���

���

���

Figure 4.9: Tracking performance of three silhouette extraction variants (Y, rg
and YRG) on the ’dualF’ test sequence.

�
��

���

�����	

�����	�

���

�

��

���

���

���

���

���

���

���

���

Figure 4.10: Tracking performance of three silhouette extraction variants (Y, rg
and YRG) on the ’dualT’ test sequence.

61

icantly higher (more than 20%) false alarm rates than the YRG variant on both
sequences. The reason for this behavior are false positive shadow regions on the
wall or the floor. On the contrary, the localization errors in the sequences (α1

and α2) are on a similar level for the YRG and the Y variant (the maximum
difference is 6% and the difference of the median case is only 1%). Neither of the
variants is superior with respect to localization errors: In the ’dualT’ sequence
the α values for the YRG variant were higher than for the Y variant, while in
the ’dualF’ sequence the YRG variant showed slightly smaller α values.

To conclude, we found that the rg variant is not appropriate for tracking because
of its high false alarm rates. The Y and YRG variants exhibit significantly
lower false alarm rates and make them therefore a the better choice as vision
components in the tracking system. Although the Y and YRG components
shows localization errors on a similar level, the YRG variant is superior to the
Y variant, because of its noticeably lower false alarm rates on all test sequences.

Following the conclusion, we use in further experiments the YRG based extrac-
tion algorithm in the vision component of the system.

4.5 Best Hypothesis vs. Multi Hypothesis Track-
ing

In the second experiment we compared the performance of the Best Hypothesis
(BH) and Multi Hypothesis tracking algorithm (MH) described in section 3.4
and section 3.5.

Multi hypothesis tracking allows to postpone the decision whether a correspon-
dence belongs to a certain object: A multiple hypothesis tracker follows all pos-
sible interpretations of the data and ideally waits until he has gathered enough
information to output hypotheses with high confidence levels as the correct
track.

Despite the potential advantages of multi hypothesis tracking, its major problem
is to model a confidence measure that allows to tell the correct tracks from
erroneous interpretations of the data. For instance a subject A entering the
scene in the proximity of subject B might cause a multi hypothesis tracker to
follow A with a hypothesis belonging to subject B. The tracker ends up with
two hypothesis for B of high confidence instead of two tracks - one for A and
one track for B.

In the experiment we do not seek to create a confidence measure based on a
complex model. Instead we assess whether the multi hypothesis tracker MH
using a simple probabilistic model can provide similar or even better tracking
performance than the best hypothesis tracker BH despite of the above argu-
ment. Even if the multi hypothesis tracker MH showed similar or slightly worse
performance, it would be an interesting basis for future research, because of the
theoretical basis of its probabilistic model.

62

��

��

�����	
	��

�����	�	��

����	��

�

����

����

����

����

��

��
�

��
�

��
�

��
�

���

Figure 4.11: Tracking performance of the multi hypothesis tracker MH and the
best hypothesis tracker BH on the ’dualF’ sequence.

We conducted the experiment on the test sequences ’dualF’ and ’dualT’. The
tracking components in the experiment was a variant of the best hypothesis BH
and the multi hypothesis tracker MH both described in the previous chapter. We
allow a maximum of three hypothesis per track for the multi hypothesis tracker
MH. Preliminary tests on the simpler test sequences have shown that this is
a good choice for the maximum number of hypothesis per track. For the best
hypothesis tracking we used the refined tracking variant described in section
3.4.3 which incorporates a more flexible method to match location hypothesis
to tracks than the original best hypothesis tracker described in section 3.4.

Figure 4.11 and 4.12 show the false alarm rate β and the localization error for
the two subject in the sequence α1 and α2 on the ’dualF’ and the ’dualT’ test
sequence.

The false alarm rate β is significantly higher for the multi hypothesis tracker
(20% and 46%) than for the best hypothesis tracker (3% and 10%). Although
the localization errors α are larger for the multi hypothesis variant (3 − 5%
and 11%) than for the BH variant (0− 3% and 4− 7%), the difference is not as
striking. This finding suggests that refining the probabilistic model or applying a
simple heuristic might reduce the number of false alarms in the multi hypothesis
variant.

But manual fine tuning in small experiments and applying simple heuristics
to significantly reduce the false alarm rate was unsuccessful. Apparently, the

63

��

��

�����	
	��

�����	�	��

����	��

�

����

��

��
�

���

����

���

����

���

����

���

Figure 4.12: Tracking performance of the multi hypothesis tracker MH and the
best hypothesis tracker BH on the ’dualT’ sequence.

probabilistic model of MH is not powerful enough to distinguish the correct
hypothesis from erroneous interpretation of the data with respect to the false
alarm rate.

Either a more complex probabilistic model has to be applied or the multi hy-
pothesis approach is more suited on a different level of tracking: For instance,
we could use the multi hypothesis approach to track silhouettes at the image
processing level and find correspondences between silhouette trajectories of dif-
ferent cameras using a probabilistic model. The section 5.1 in the following
chapter on future research briefly discusses an alternative usage of the multi
hypothesis approach in more detail.

However, the significantly lower false alarm rate β and the smaller localization
error β show that the best hypothesis tracker BH is superior to the multi hy-
pothesis tracker on the test data. In the next section we will analyze the best
hypothesis tracker’s behavior in more detail. We are especially interested in
situations when the tracker fails and why the tracker fails.

In conclusion, we can state that the best hypothesis algorithm BH is superior to
the multi hypothesis approach MH in both false alarm rate and localization error
on test sequences. Moreover, the multi hypothesis tracking approach might be
useful in tracking silhouettes on the image processing level.

64

4.6 Qualitative analysis of Best Hypothesis Track-
ing

In the previous section we have seen that the best hypothesis tracker BH shows
low false alarm rates (3% and 10%) and small localization errors (0−7%) on the
test sequences ’dualF’ and ’dualT’. In this section we explore in which situations
the BH tracker causes tracking errors on these sequences.

Figures 4.13(a) and 4.14(a) show typical situations, in which the BH tracker
estimates the subjects’ trajectories accurately: The two subjects are more than a
meter apart which results in distinct silhouettes of the subjects from at least two
camera perspectives. In this situation the location hypothesis can be correctly
computed by triangulation, even if the silhouettes of the subjects overlap in
one of the cameras. We learned from a qualitative analysis of the BH tracker’s
output on the test sequences ’dualF’ and ’dualT’ that noise from the vision
component accounts for tracking errors during two seconds in the sequences,
when the subjects are physically apart from each other. Almost all of the
tracking errors occur, when the two subjects are close to each in the scene.

In Figures 4.13(b) and 4.14(b) situations of encounters between the two sub-
jects are shown. In these situations the proximity of the subjects yields only
one silhouette in all the cameras. At least one localization of a subject fails
temporarily which causes several tracking anomalies. To be more specific, we
discuss the behavior of the BH tracker in the two exemplary situations in more
detail.

In Figure 4.13(b) one subject has moved from the upper right and proceeded
to the lower left while the other subject has started from the lower left and
moved to the upper right. The two subjects have passed each other at a small
distance in the middle of the room. The BH tracker has lost the trajectory of
the subject coming from the lower left. The Kalman Filter of the trajectory has
kept its last velocity vector and has driven the trajectory out of environment to
the lower right. In the right upper area the tracker has already initialized a new
track which has captured the position of the lost subject. The trajectory of the
subject coming from the upper right and proceeding to the lower left has not
been lost, but has shown some localization errors due to the merged silhouettes
when the subjects met. The two smaller trajectories in Figure 4.13(b) were not
considered valid by the tracker, but were included in the display for debugging
purposes. In conclusion, the encounter of the two subjects has created some false
alarms by the additional created track due to the lost track. As well localization
errors were produced for both subjects.

In Figure 4.14(b) the two human subjects walk in a circle around the table in the
scene in opposite direction. They cross their paths at the lower left and proceed
their circles around the table. The BH tracker fails in this situation. The tracker
estimates that the subjects have stopped and changed their direction at the end
of the table without crossing each other: After the encounter the tracks have

65

�� ��

�

�
�

Figure 4.13: BH Tracker running on the ’dualF’ sequence: (a) The BH tracker
tracks the subjects correctly, as long as they are apart. (b) If the subjects cross
their paths, the tracker loses one track (1) , but initializes a new trajectory (2)
at the lost subject’s position. The other trajectory (3) was correctly estimated
during the encounter with minor localization errors.

�� ��

Figure 4.14: BH Tracker running on the ’dualT’ sequence: (a) The BH tracker
tracks the subjects correctly, as long as they are apart. (b) If the subjects cross
their paths, the tracker switches the identities of the two subjects.

66

switched their subjects at the end of the table. As no additional tracks are
created no false alarms are produced, but when the subjects meet, localization
errors are generated.

Instead of losing track or switching between subjects, we observed in two cases
that the BH tracker can track the subjects correctly during encounter situa-
tions: The subjects did not change their direction, when they approached each
other. The Kalman Filters could dead reckon the positions correctly. When
the silhouettes separated after the encounter, the subjects were re-localized. No
false alarms were produced in the two cases, but localization errors occurred.

In the test sequence ’dualT’ the subjects always change their direction con-
stantly as they circle around the table. Only when one of the subjects is stand-
ing and the other subject is walking by, the BH tracker estimates the trajectories
correctly. In all other encounters one or several of the above described tracking
anomalies are generated.

As well for the test sequence ’dualF’ correct tracking by the Kalman Filters
only occurs during a single encounter. All the other encounters lead to tracking
anomalies, i.e. a track is completely respectively temporarily lost or the tracks
switch the subjects.

To conclude, we found from the qualitative analysis of the BH tracker’s output
on two test sequences that the BH tracker estimates the subjects’ trajectories
correctly, as long as the subjects are physically apart from each other. The
BH tracker fails, when subjects in the scene are close to each other: During
the encounters of subjects their silhouettes merge in all cameras into a single
foreground region. As the BH tracker expects a silhouette per person, tracking
anomalies occur in these encounter situations.

4.7 Head Tracking

In the previous section we identified encounters of tracked human subjects as a
major cause of failures for the tracking algorithm BH. Figure 4.15 shows such
an encounter situation: In all cameras the silhouettes of the two subjects in the
scene merge into a single foreground region. The BH tracking algorithm only
uses silhouettes once to create localization hypothesis (see section 3.4). This
means that a single location hypothesis is created and matched to only one
trajectory. One of the two trajectories is not updated with location hypotheses
as long as the silhouettes have merged in all cameras. In this case the Kalman
Filter of the track performs dead reckoning which rarely creates an accurate
trajectory.

This problem calls for a more sophisticated approach of creating location hy-
potheses from silhouettes. In the section 5.1 on future research in the following
chapter we discuss several approaches.

In this section we will address another problem with merged silhouettes. When

67

� �

�

�
� �

Figure 4.15: When subjects (here A and B) encounter each other in the scene,
their silhouettes merge in all cameras. The centroid of neither subject can be
localized, only the position of one of the subject’s heads can be found (in this
case the head of A).

subjects encounter each other in the scene, the geometric centroid of their
merged silhouettes does not correspond to the physical centroid of any of the
subjects. Thus, the localization for both subjects is false and the BH tracker
produces localization errors.

More specifically, in Figure 4.15 we can observe that the centroid of neither
subject is localized correctly: The geometric centroid of the merged silhouette
is close to the two subjects’ physical centroids only in middle camera image
which is not sufficient for localization. But in all three camera images of Figure
4.15 the minimum1 y coordinate of the merged silhouette localizes subject A’s
top of the head. Instead of localizing the centroid of a subject the localization
of the top of the head is more robust even if the silhouettes merge. Moreover,
if shadows are included in the silhouette the localization of the top of the head
as the minimum y coordinate is still valid.

Following this idea, we conducted an experiment on the test sequences ’dualF’
and ’dualT’ with a BH tracker using the above method of ’head localization’,
i.e. not triangulating on the centroid but on the minimum y coordinate of the
silhouette. The comparison of the tracking performance of the ’head localizing’
BH tracker with the previously obtained performance results of the BH tracker
using centroid localization deserves a closer look:

Figure 4.16 and 4.17 show that both the false alarm rate and localization errors
are smaller for the BH Head variant. The BH Centroid variant has false alarm
rates of 3% and 10% while the BH Head variant has β values that are smaller
by 2% (1% and 8%). The localization errors α1 and α2 are about 3% smaller
for the BH Head variant than for the Centroid variant.

In conclusion, we can state that the simple shift to the localization of the head
instead of localizing the subject’s centroid results in a noticeable increase in
tracking performance for the BH tracker on both test sequences.

1In our system the origin of the coordinate system in images is the top left corner and the
y axis points downwards; thus the vertical position of the silhouette’s head corresponds to the
minimum y coordinate of the silhouette.

68

����

�����	
�

����������

����������

��������

�

����

����

����

����

����

����

����

����

����

���

Figure 4.16: Tracking performance of the BH tracker using centroid and head
localization on the ’dualF’ sequence.

����
�����	
�

����������

����������

��������

�

����

����

����

����

����

����

����

����

����

���

Figure 4.17: Tracking performance of the BH tracker using centroid and head
localization on the ’dualT’ sequence.

69

70

Chapter 5

Conclusion

Context awareness is a key ingredient in building next generation human ma-
chine interfaces that act like computerized servants. As a major part of human
machine interaction occurs in offices, lobbies and conference rooms, we address
in this work the problem of obtaining spatial context, i.e. locating and tracking
objects of interest, in indoor environments.

We have build a vision based tracking system using multiple calibrated cam-
eras to locate and track primarily human subjects in a conference room. The
system is designed as a distributed sensor network and relies on an adaptive
background subtraction algorithm to extract the silhouettes of human subjects.
At each camera an image processing machine sends the silhouette information
via network to a central tracking agent. The tracking agent analyzes the stream
of silhouettes to detect human subjects in the scene and estimates their trajec-
tories by means of a Kalman Filter per tracked object. Qualitative tests have
shown that the tracking system with four cameras and two human subjects in
the scene operates at a speed of five frames per second.

Moreover, we have evaluated the tracking system on a synthetic and several
real test sequences. On the synthetic test sequence the tracker’s implementa-
tion proved its correctness by accurately estimating the trajectory of a virtual
cylinder moving in a synthetic test scene. From a qualitative analysis of the
tracking output on real test sequence, we identified the situations in which the
tracker detects and tracks human subjects correctly and in which constellations
the tracking system fails:

As long as human subjects are apart from each other in the scene, the tracking
system produces accurate trajectories. But if subjects encounter each other in
the scene, the tracker fails. In these situations the subject’s silhouettes merge in
all camera images. Since the tracking system expects one silhouette per tracked
object from at least one camera perspective, the merging of silhouettes in all
cameras causes tracking errors such as loss of a trajectory or severe localization

71

errors.

To improve overall tracking performance and to address the merged silhouette
problem, we developed several variants of the tracking system. In three experi-
ments we evaluated these variants on real test sequences to assess their tracking
performance:

• In the first experiment we tried to address the merged silhouette problem
by a more sophisticated vision algorithm: More accurate silhouettes which
do not include the subject’s shadows and other noise phenomena post-
pones the merging of silhouettes as long as possible, when human subjects
approach each other in the scene. The silhouette extraction algorithm re-
lies on an adaptive background subtraction algorithm. In the experiment
we combined a chromatic and an intensity based color space to estimate
the still background. A quantitative analysis on two real test sequences
showed that the combined approach had significantly lower false alarm
rates than the original intensity based background subtraction algorithm
and comparable if not slightly smaller localization errors.

• In the second experiment we developed and evaluated a probabilistic multi
hypothesis tracking algorithm. Multi hypothesis tracking allows multiple
trajectories per tracked object. The major challenge of this approach is to
define a confidence measure for trajectory hypotheses. For the experiment
we developed a probabilistic model to measure the confidence of trajec-
tory hypotheses. Although the multi hypothesis approach is powerful and
by its probabilistic framework provides a consistent theoretical basis for
tracking, the performance of the multi hypothesis tracking algorithm was
inferior to the performance of the best hypothesis tracking algorithm of
the original system. The significantly higher false alarm rates in the ex-
periment suggest that either a more complex probabilistic model might be
necessary or the multi hypothesis approach has to be applied on a differ-
ent level. In the following section 5.1 on future work we discuss alternate
approaches for multi hypothesis tracking.

• When the silhouettes of two subjects merge, it is difficult to localize the
centroids of the subjects, but localizing one of the heads is simple: The
minimum y coordinate provides the position of the head for one of the
subjects. In the third experiment we tested a variant of the tracking
system that localizes the subject’s head instead of its centroid interpreting
the minimum y coordinate of a silhouette as the top of the head of the
tracked subject. In test runs on two test sequences the head localizing
variant has shown noticeably lower localization errors and false alarm rates
than the original tracking system.

The first and third experiment addressed the merged silhouette problem by im-
proving the tracking performance using a more sophisticated vision algorithm
and shifting the reference point from the centroid of subjects to their head. But

72

the tracking system still expects one silhouette per person. Even if head local-
ization allows to track one of the subjects during an encounter of two subjects.
Estimating the trajectory of the other subject is rarely achieved by the dead
reckoning capabilities of the Kalman Filters. For this reason we briefly discuss
in following section 5.1 on future work several alternative approaches to solve
the problem of merged silhouettes.

The final tracking system using head localization and the improved silhouette
extraction algorithm shows localization errors of less than 5% (9 seconds) and
a false alarm rate lower than 7% (12.6 seconds) on real test sequences of three
minute length.

5.1 Future Research

The tracking system presented here fails to track human subjects that are phys-
ically close to each other in the scene. In these encounter situations the sil-
houettes of the subjects merge in all camera images. As the tracking algorithm
expects a silhouette per person, the algorithm fails to estimate trajectories of
human subjects in the scene correctly. Obviously, we have to overcome the re-
striction of a silhouette per person in future versions of the system. There is a
variety of possible ways to attain this goal:

• Instead of localizing people by silhouettes; an algorithm tracking human
heads on the image processing level might be capable of localizing hu-
man subjects accurately as described in [23], even if the environment is
crowded. For bootstrapping the silhouette extraction of the presented sys-
tem might be applicable. Moreover, a multi hypothesis approach can be
incorporated to create possible head path hypothesis using a probabilistic
model as in [12]. The central tracking agent can fuse the head paths that
are projections of the real head movements in the scene exploiting the
geometric constraints between the camera perspectives.

• Currently the tracking system does not build generic models of the tracked
objects. In a future system we could use shape and color analysis or dy-
namic templates to build appearance models of human subjects. This may
allow to identify subjects in encounter and partial occlusion situations. A
discussion of such techniques is given in [11].

• Substituting the video sensors by stereo cameras might also provide a
method to distinguish human subjects in crowds by incorporating depth
information in the tracking process. For further details [2] describes a
system that successfully tracks humans through occlusions by using depth
and intensity information.

Moreover, it will be worthwhile to study the vision based tracking system as part
of a larger multimodal tracking approach. For instance we could complement

73

the visual tracking algorithms with acoustic localization techniques to create a
more robust tracking system.

74

Appendix A

Learning rate α in
background models

Choosing the right value for the learning rate α is basically asking the question
after how many frames is foreground adapted into the background. The α value
has to be small enough to ensure that foreground objects are not adapted to
quickly into the background and on the other hand α has to be large enough to
adapt to moved chairs or gradual lighting changes after a while .

A.1 Calculating α for the single-Gaussian model

For the single Gaussian model we should calculate a value for its parameter α
that ensures a minimum number of frames before an object is adapted into the
background. It is not easy to come up with such a value for this model. This is
because the time it takes to adapt an object into the background depends mainly
on the distance between the background and the foreground in the respective
color space, and secondly on the noise that belongs to the corresponding back-
and foreground signal.

To calculate a value of α in spite of these difficulties, several assumptions have
to be made. First of all, but without loss of generality, the individual color
channels are confined to the interval [0, 1]. The following assumptions restrict
the general case:

• It is assumed that back- and foreground signal never have a standard
deviation > 0.05.

• The distance of background to foreground for all color channels is > 0.2.

• An object is called ”adapted into the background” if its expectation to be

75

classified as background is greater than 50 percent.

• The single-Gaussian model is assumed to use a threshold for its classifi-
cation of 2.5σ, where σ is the standard deviation vector for the estimated
background Gaussian.

• The fore- and background signals are assumed to be produced by Gaussian
distributions with diagonal covariance matrix.

• The foreground signal has the upper bound of 2.5 ∗ σb > σf , where σb is
the smallest standard deviation in the background signal.

Before the foreground appears, the estimated Gaussian has the same mean mb

and covariance matrix as the background signal. With the appearance of the
foreground the current mean vector m will slowly converge towards the mean
vector mf of the foreground signal. From the update rule for the mean vector,
we can conclude that after i frames the mean vector is

mi = mf − (mf −mb)(1− α)n+1. (A.1)

To find an upper bound for the parameter α with the assumptions made, it
suffices to look at the one-dimensional case:

mi = mf − (mf −mb)(1− α)i+1. (A.2)

Furthermore we can set mf − mb = 0.2 since the minimal distance between
fore- and background is 0.2 and without loss of generality it can be assumed
that mf > mb. If the foreground is to be expected to be classified as background
with more than 0.5 probability, the following has to hold (due to the 2.5 ∗ σb

threshold)

mf − 2.5 ∗ σb ≤ mi (A.3)

To find the upper bound for α we can use the upper 0.05 for σb (assuming more
than n frames), and equation A.2 yields:

α ≤ 1− n+1

√
2.5 ∗ 0.05

0.2
= αmax. (A.4)

If we assume a frame rate of 10 frames per second at which images are grabbed
from a camera and want to ensure that objects are not adapted into the back-
ground for at least 20 seconds, then equation A.4 gives:

α ≤ 1− 201

√
2.5 ∗ 0.05

0.2
= 0.0144. (A.5)

76

A.2 Calculation α for the multi-Gaussian model

Calculating the correct parameters for the multi-Gaussian background model is
easier since the time it takes to adapt a foreground object into the background
does not depend on the distance of the fore- and background signal in the
respective color space, but it merely depends on the different weights of the
Gaussians. Due to this fact, for an upper bound for the learning rate α we only
have to make these weak assumptions compared to the single-Gaussian case:

• Only the most persistent Gaussian (highest weight to standard deviation
ratio) is considered as the background Gaussian.

• The Gaussian representing the background has weight wb when the fore-
ground object starts to occlude the background.

• The foreground is attached to a Gaussian that is newly initialized as the
foreground appears for the first time. This means that the weight of
this Gaussian is initially equal to the parameter set for newly appearing
Gaussians wf .

• The foreground signal has a higher or equal standard deviation with re-
spect to the background signal.

When the foreground object appears for the first time, the Gaussian representing
the background has the weight wb.

In each frame the background model matches the the color value of the pixel
either to a Gaussian (by means of a MAP criterion) or, if the pixel’s color value
differs significantly from all Gaussians, the model initializes a new Gaussian with
the pixel’s color value. The model allows only a limited number of Gaussian. If
the model is already at the limit, initializing a new Gaussian results in replacing
the least likely Gaussian.

The latter case is assumed to happen, when the foreground object appears in the
scene: No match for the new significantly differing color value can be found and
therefore a new Gaussian replacing the least likely Gaussian (smallest weight)
is initialized with the color value of the foreground and an initial small weight
wf . Most of the following color values are also matched to the new foreground
Gaussian since they originate from the foreground signal. This causes the weight
of the foreground Gaussian to increase. For a Gaussian matching the current
color value the weight is increased in the following way:

wmatch+1 = (1− α) ∗ wmatch + α (A.6)

and for an unmatched Gaussian it is decreased following the rule:

wnomatch+1 = (1− α) ∗ wnomatch (A.7)

77

For the background weight this means that wbn >= (1 − α)n wb

1+wf
after n

frames of the foreground being present. For the foreground weight that means
wfn <= 1− (1− α)n 1

1+wf
.

With respect to the assumptions above the foreground and background Gaus-
sians exchange their roles (foreground becomes adapted into background) when

wbn <= wfn (A.8)

As we are looking for an upper bound for α we can substitute the bounds we
found above for wbn and wfn and solve for α

α <= 1− n

√
1 + wf

1 + wb
= αmax (A.9)

For instance assuming a frame rate of 10 frames per second and wanting to
ensure that objects are not adapted into the background at least for 20 seconds
means setting n to 200. If we pick wb = 1 and wf = 1

30 , the above equation
gives an upper bound of α = 0.0032.

The upper bound guarantees that the foreground object is not adapted into the
background, if the assumptions above hold for the data in the experiment set.

78

Bibliography

[1] J. K. Aggarwal and Q. Cai. Human motion analysis: A review. Computer
Vision and Image Understanding, 73(3):428–440, 1999.

[2] D. Beymer and K. Konolige. Detection and tracking of people using stereo
and correlation. Technical report, SRI International, Stanford University,
Menlo Park, CA, USA, 1999.

[3] Christopher M. Bishop. Neural Networks for Pattern Recognition, chap-
ter 2. Oxford University Press, 1995.

[4] Jean-Yves Bouguet. Camera calibration toolbox for matlab. Available:
http://www.vision.caltech.edu/bouguetj/calib doc/, 2002.

[5] Q. Cai and J. Aggarwal. Tracking human motion using multiple cameras.
In Proceedings of International Conference on Pattern Recognition, pages
68–72, Vienna, Austria, 1996.

[6] R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, , Y. Tsin,
D. Tolliver, N. Enomoto, and O. Hasegawa. A system for video surveillance
and monitoring. Technical Report CMU-RI-TR-00-12, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, 2000.

[7] T. Darrell, G. Gordon, W. Woodfill, and H. Baker. A magic morphin
mirror. In SIGGRAPH ’97 Visual Proceedings, Los Angeles, CA, USA,
1997.

[8] D. M. Gavrila. The visual analysis of human movement: A survey. Com-
puter Vision and Image Understanding, 73(1):82–98, 1999.

[9] M. S. Grewal and A. P. Andrews. Kalman Filtering - Theory and Practice.
Prentice-Hall, 1993.

[10] E. Grimson, P. Viola, O. Faugeras, T. Lozano-Perez, T. Poggio, and
S. Teller. A forest of sensors. In Proceedings of DARPA Image Under-
standing Workshop, volume 1, pages 45–50, New Orleans, LA, USA, 1997.

79

[11] I. Haritaoglu, D. Harwood, and L. Davis. Who, when, where, what: A
real time system for detecting and tracking people. In Proceedings of In-
ternational Conference on Automatic Face and Gesture Recognition, pages
222–227, Nara, Japan, 1998.

[12] Michael Isard and Andrew Blake. ICONDENSATION: Unifying low-level
and high-level tracking in a stochastic framework. Lecture Notes in Com-
puter Science, 1406:893–908, 1998.

[13] A. Laurentini. The visual hull concept for silhouette-based image under-
standing. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 16(2):150–162, 1994.

[14] Wojciech Matusik, Chris Buehler, and Leonard McMillan. Polyhedral vi-
sual hulls for Real-Time rendering. In SIGGRAPH 2000 Computer Graph-
ics Proceedings, New Orleans, LA, USA, 2000.

[15] Maybeck. Stochastic Models, Estimation and Control. Academic Press,
1982.

[16] Mikic, Santini, and Jain. Tracking objects in 3-d using multiple camera
views. Technical report, Computer Vision and Robotics Research Labora-
tory, University of California at San Diego, San Diego, USA, 2000.

[17] K. S. Miller and D. M. Leskiw. An Introduction to Kalman Filtering with
Applications. Robert E. Krieger Publishing Company, 1987.

[18] K. Sato, T. Maeda, H. Kato, and S. Inokuchi. Cad-based object tracking
with distributed monocular camera for security monitoring. In Proceedings
of CAD-Based Vision Workshop, pages 291–297, Champion, PA, USA,
1994.

[19] C. Stauffer and W. Grimson. Adaptive background mixture models for
real time tracking. In Proceedings of Conference on Computer Vision and
Pattern Recognition, pages 333–339, Santa Barbara, CA, USA, 1998.

[20] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles
and practice of background maintenance. In Proceedings of International
Conference on Computer Vision, pages 255–261, Kerkyra, Corfu, Greece,
1999.

[21] Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D
Computer Vision. Prentice Hall, 1998.

[22] Christopher Richard Wren, Ali Azarbayejani, Trevor Darrell, and Alex
Pentland. Pfinder: Real-time tracking of the human body. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 19(7):780–785, 1997.

[23] J. Yang, W. Lu, and A. Waibel. Skin color modeling and adaptation. Tech-
nical Report CMU-CS-97-146, Interactive System Laboratories, Carnegie
Mellon University, Pittsburgh, PA, USA, 1997.

80

[24] Jie Yang, Xiaojin Zhu, Ralph Gross, John Kominek, Yue Pan, and Alex
Waibel. Multimodal people id for a multimedia meeting browser. In Pro-
ceedings of ACM International Multimedia Conference, Orlando, FL, USA,
1999.

[25] Zhengyou Zhang. Flexible camera calibration by viewing a plane from un-
known orientations. In Proceedings of International Conference on Com-
puter Vision, pages 666–673, Kerkyra, Corfu, Greece, 1999.

81

