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Jonas Gehring, Quoc Bao Nguyen, Van Huy Nguyen, and Alex Waibel

Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany
{heck,christian.mohr,sebastian.stueker,m.mueller,kevin.kilgour,

jonas.gehring,quoc.nguyen,van.nguyen,waibel}@kit.edu

Abstract. In this paper we investigate the automatic segmentation of recorded
telephone conversations based on models for speech and non-speech to find sentence-
like chunks for use in speech recognition systems. Presented are two different
approaches, based on Gaussian Mixture Models (GMMs) and Support Vector
Machines (SVMs), respectively. The proposed methods provide segmentations
that allow for competitive speech recognition performance in terms of word error
rate (WER) compared to manual segmentation.

Keywords: support vector machines, segmentation, speech activity detection

1 Introduction

Speech recognition in telephone calls is still one of the most challenging speech recog-
nition tasks to-date. Besides the special acoustic conditions that degrade input features
for acoustic modelling, the speaking style in telephone conversations is highly sponta-
neous and informal. Each channel of a conversation contains large parts with no speech
activity. Assuming equal participation of both speakers in the conversation, at least 50%
per channel can therefore be omitted for recognition. Omitting non-speech segments on
one hand improves recognition speed and on the other hand can improve the recognition
accuracy since insertions due to falsely classified noises in the non-speech segments can
be avoided, which is especially promising in the variable background noise conditions
of telephone and mobile phone conversations.

We investigate two methods of automatic segmentation to determine sentence like
chunks of speech and filter out non-speech segments for speech recognition. As a base-
line we regard the segmentation on the output of a regular speech recognizer. Our exper-
imental setups make use of a GMM based decoder method and an SVM based method.

Evaluation is done according to speech recognition performance since references
for speech segments are not very accurate. The evaluation took place on corpora of
four distinct languages, that were recently released as the IARPA Babel Program [1]
language collections. babel106b-v0.2f and the subset babel106b-v0.2g-sub-train cover
Tagalog and are used in two training data conditions, unlimited and limited, respec-
tively. In the unlimited scenario, a full data set covering approximately 100 hours of
transcribed audio material was available for training, whereas for the limited case only
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a subset of the available data was approved for training, comprising approximately 10
hours each. The additional three languages collections used for the limited case are
babel101-v0.4c for Cantonese, babel104b-v0.4bY for Pashto and babel105b-v0.4 for
Turkish.

The outline of the paper is structured as follows. Sections 2, 3 and 4 describe the
segmentation methods we used. In Section 5 the handling of the training data for the
speech/non-speech based methods is described. Evaluation is shown in Section 6 and
Section 7 concludes and points out future work.

2 Baseline

For the baseline automatic segmentation a fast decoding pass with a regular speech
recognition system on the unsegmented input data is done to determine speech and non-
speech regions as in [2]. Segmentation is performed by consecutively splitting segments
at the longest non-speech region with a minimal duration of at least 0.3 seconds.

Like all HMM based systems addressed in this paper the speech recognition system
used for decoding was trained and tested using the JANUS Recognition Toolkit that
features the IBIS single pass decoder [3]. The system employs left-to-right HMMs,
modelling phoneme sequences with 3 HMM states per phoneme.

3 GMM Based Decoder Method

Since for segmentation the classification problem only consists of two classes, namely
speech and non-speech, in the GMM-based method we use the same Viterbi decoder
as in the baseline method and use GMM models for speech and non-speech. We found
that splitting the non-speech model into a general non-speech model and a silence model
increased performance. Our HMM segmentation framework is based on the one in [4]
which is used to detect and reject music segments. This approach was also used in [5] for
acoustic event classification. Similar approaches for the pre-segmentation of very long
audio parts for speech recognition systems were used in [6] where GMM models were
trained for speech, speech + background music, non-speech noise, music and pause.
Alternatively a phoneme decoder using regular phoneme models and a phoneme bi-
gram model is investigated. HMM based segmentation of telephone speech was also
presented in [7].

We use MFCCs with 13 coefficients and its delta and double delta as input features.
Window size is 16 milliseconds with a window shift of 10 milliseconds. We tested
additional features such as a zero crossing rate, but it did not improve performance. We
also tried to stack the MFCC plus delta and double delta features of both audio files
for each call to take into account that – neglecting parts of cross-talk – if a segment
contains speech in one channel, the other channel does not. However, audio files of
both the training and test data set were not synchronised channel-wise, so that the dual
channel models decreased performance.

A-priori probabilities are modelled as 2-grams but we assume equal probability for
all segments and 2-grams since we handle each telephone call as two channels, one for
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each speaker, and assume both speakers have the same contingent in the conversation
so at least half of each file contains non-speech segments.

All types of segments are modelled as single HMM states, with the minimal seg-
ment durations being modelled directly by the HMM topology. For speech segments the
minimal duration is 250 milliseconds, for non-speech segments 150 milliseconds. Each
GMM consists of 128 Gaussians with 39 dimensions. Models are trained in a maxi-
mum likelihood way on the training samples as described in Section 5. The Gaussian
mixtures are grown incrementally over several iterations.

Since the GMM based decoder classifies speech segments on a per frame basis
and only uses a one frame context from the delta and double delta features, speech
segments are cut off very tightly. The speech recognition system can handle non-speech
frames that were misclassified as speech, but false negative frames can not be recovered.
Expanding the speech segments on both sides by 0.4 seconds improved the segmenter’s
performance.

4 SVM Based Method

SVMs have already been applied to the closely related voice activity detection (VAD)
problem in the past by [8]. Since then, several works such as [9] extended these ideas.
The latter work, among many others defines the speech/non-speech discrimination prob-
lem as two-class discrimination problem. With works like [10] there also exist studies
that extend this task to a multi-class problem by splitting speech/non-speech detection
into sub-tasks. Similar to [11], our main objective is to maximize the improved intelli-
gibility of speech under noisy channel conditions.

As SVMs naturally model two-class decision cases, it is straightforward to train a
model on reference samples mapped to two distinct classes for speech and non-speech.
The mapping is performed as described in Section 5. However, no exact phoneme-to-
audio alignments that could serve as references were accessible for our experiments,
thus it has been decided to perform training on previously computed labels that have
been generated by our baseline system. Consequently, the references for training are not
exempt from errors, albeit the quality of references still being high enough to enable an
effective training.

4.1 SVM Training

The classifier is trained on the (trainsvm) set, using the LIBSVM library [12]. We
decided to use the C-Support Vector Classification (C-SVC) formulation, as it is the
original SVM formulation [13], and fits our requirements. The SVM will find a hyper-
plane a high-dimensional space, which separates the the classes in a linear fashion and
with a maximal margin between them. With a soft margin parameter C > 0, a penalty
parameter of the error term can be used for adjustment [12]. The decision function we
use for classification is:

sgn

(
l∑
i=1

yiαiK(xi,x) + b

)
with K(xi,xj) = e−γ||xi−xj ||2 (1)
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where K(xi,xj) is the RBF kernel function [12]. The values for (C, γ) are deter-
mined automatically during classifier training via a steepest ascent hill climbing algo-
rithm by optimizing the frame based classification accuracy on (devsvm). The C and
γ are exponentially growing, following the recommendation of [14]. In order to avoid
numerical problems, vector scaling is applied during training and testing [14].

Feature Selection Initial experiments aimed at the identification of the most useful
front-end for automatic segmentation. Similar to [15], a major focus was on testing
standard feature vectors such as MFCCs, as they are commonly used for solving other
automatic speech processing tasks. Loosely related to [16], we also utilize linear dis-
criminant analysis (LDA) for preferably low-loss dimensional reduction.

The following front-ends have been evaluated: a) standard logMel feature vectors
comprising 30 parameters b) standard 13 dimensional MFCC feature vectors c) 15 ad-
jacent MFCC vectors stacked and LDA-transformed

Our experimental evaluations on devsvm show that it is always of advantage to
integrate temporal information. In all cases, the SVMs trained on stacked variants of
feature vectors outperformed the non-stacked variants. Moreover, stacking 15 adjacent
frames outperformed the computation of ∆ and ∆∆. Ultimately, the systems using
LDA-transformed feature vectors outperformed all other alternatives.

Further improvements were obtained by adding various features such as frame based
peak distance or zero crossing rate. The enhancements were tested with all front-ends
but the LDA based vectors. Where stacking or ∆ computation was applied, the feature
vectors were extended before the respective operation.

In order to minimize the dimensionality for reduced training complexity, we ex-
perimented with feature selection via the f-score measure. Except for logMel feature
vectors, the discriminative capabilities of the original features are higher for low di-
mensions and gradually decrease for higher dimensions. None of the solutions with
lower dimensionality was able to outperform the original systems. Contrary to expec-
tations the discriminative abilities of the resulting models decreased, thus rendering
dimensional reduction inefficient.

4.2 Post-processing

The output of SVM classification is a string of 1’s and 0’s, hypothesizing whether a
frame belongs to a speech or non-speech region. However, operating on frame-level
is too fine-grained and makes post-processing necessary to obtain a useful segmenta-
tion of the audio. For smoothing the raw SVM classification data we follow a 2-phase
approach. First, smoothing is performed on frame-level to remove false positives and
false negatives. Then, merging on segment level is performed to acquire more natural
segments of reasonable length.

Smoothing on Frame-Level The smoothing technique we apply is derived from the
well-known opening strategy of morphological noise removal in computer vision. An
erosion step on sequences of frames hypothesized as speech is followed by a dilation
step. A major difference to the classic operation is that our algorithm is extensive, i.e,
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the resulting segment is larger than the original. This is achieved by differing factors
for erosion and dilation, where ferode < fdilate. As a result, the idempotence property
of the opening algorithm is also lost.

Our intention is to remove very short segments classified as speech by setting ferode =
3, under the assumption that these are likely to be noise or artifacts arising from chan-
nel characteristics. A factor of 3 leads to a cut-off of 36 milliseconds of audio on each
side of the respective hypothesized speech segment, and the deletion of isolated seg-
ments with a duration below 72 milliseconds. These values roughly approximate the
estimates for minimal and average phoneme lengths [17]. By a stronger dilation, short
gaps of predicted non-speech between parts of speech shall be removed. This has sev-
eral justifications: For one, the dilation has to compensate for the erosion operation.
Then, we follow the assumption that it is likely to reduce falsely rejected speech parts
by closing comparatively short gaps. Furthermore, lost data by erroneous segmentation
is more harmful than the inclusion of potentially noisy parts for decoding. To avoid too
strict segment borders, the dilation step further serves as padding operator, extending
the segment borders to a certain degree.

Segmentation Generation Commonly, automatic segmentation maintains a minimal
distance segdist between individual segments, e.g., for establishing sentence-like struc-
tures. Our goal was to exclude especially large parts of silence from decoding, and to
minimize the occurrence of artifacts, without loss of relevant information. Both phe-
nomenons directly arise from the nature of the recorded telephone conversations. A
minimal distance between speech segments was defined by setting segdist = 0.5 mil-
liseconds. Segments with a lower gap in between are merged. Moreover, isolated parts
in the signal hypothesized as speech, but having a very short duration are pruned away.

5 Data Selection

To get the training samples for the speech and non-speech models we used forced align-
ments of the training data with the provided references. For alignment we used the same
system than for the decoding experiments, or at least one of similar performance.

For the two-class case of speech/non-speech classification, a phoneme mapping was
defined that maps phonemes modelling linguistic sound units to a speech category, and
models that represent phenomenons that are considered noise and filler entities to a non-
speech category. In the GMM-framework, additionally, non-speech samples classified
as silence are mapped to a silence category.

We developed our systems for the Tagalog unlimited training data condition, that
means around 100 hours of transcribed audio training data was available.

For the GMM based decoder method computational resources were no critical issue
for the model training, so all data was used for training.

For the SVM based approach, the vast amount of training samples renders a training
on the full data set entirely infeasible. Thus, a sample subset of approx. 200.000 sam-
ples was selected as training set (trainsvm), and approx. 100.000 samples were used
as development test set (devsvm). Data extraction was conducted equally distributed
among the target classes. Therefor, sample vectors were extracted phone-wise. From



6 Michael Heck et al.

each utterance, an equal amount of samples was extracted to cover all data. Further,
the extraction considers the shares of phonemes in the data. Every sample is belong-
ing to either speech or non-speech, according to the pre-defined mapping. This way,
both classes see an equal amount of data, equally distributed over the full data set and
representing each original phoneme class according to their respective proportion.

6 Experiments

As ground truth for our experimental evaluation we used the manually generated tran-
scriptions that came along with the development data. It is to distinct between two
conditions: First, we performed the experimental evaluation on a test set of the same
language the development data belongs to. In addition to this test series, four more au-
tomatic segmentation systems were trained for each proposed approach, each in another
distinct language, where three of the languages are new and previously unseen during
development. Thus, the optimized training pipelines are straightforwardly applied to the
new conditions, allowing for evaluation of the generalization capabilities of our setups.

Table 1. Results for the Tagalog unlimited training data condition.

WER Subst. Del. Ins. #Seg. dur. avg. max.

manual 63.1% 39.3% 16.9% 6.9% 11353 10.7h 3.4s 35.5s
baseline 62.6% 39.5% 15.6% 7.5% 12986 11.1h 3.1s 30.0s
GMM-based 61.9% 37.6% 18.5% 5.9% 15188 9.7h 2.3s 29.3s
SVM-based 62.4% 38.8% 16.5% 7.2% 15293 8.8h 2.0s 36.4s

Table 1 shows that both automatic segmentation approaches can outperform the
manual segmentation for Tagalog. Our segmentations are further compared to the base-
line for automatic segmentation (see 2). The segmentations of both approaches lead to
a decrease in WER, if compared to the baseline.

Further analysis reveals considerable differences in the nature of the individual seg-
mentations. By reference to Table 1 it can be seen that the amount of automatically
determined segmentations is considerably higher, with at the same time notably shorter
average segment length. The higher degree of fragmentation of the audio data leads
to a lower accumulated duration. At the same time, recognition accuracy is not only
maintained, yet even increased.

Table 2 lists the evaluation results for the limited case on all four languages. A direct
comparison between both training data conditions of Tagalog reveals that the GMM-
based segmentation proves to be superior when applied on the full training set, but it is
the SVM-based segmentation that wins over the alternative, when having only a limited
amount of training data at hand. For the other languages, none of the automatically
generated segmentations can outweigh the manual partition. In the cases of Cantonese
and Turkish, however, the difference to the performance on manual segmentations is
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Table 2. Results in WER for the limited training data conditions on all four languages.

Segmentation Tagalog Cantonese Pashto Turkish

manual 78.5% 76.7% 77.5% 74.0%
GMM-based 77.5% 76.8% 78.5% 74.5%
SVM-based 76.9% 76.9% 78.4% 74.3%

0.67% relative at the most. For Pashto, both automatic approaches are not able to reach
the accuracy of the manual generated data, with 1.2% relative difference to the latter.

7 Conclusion and Future Work

This paper compares model based segmentation methods for unsegmented telephone
conversations. Two methods based on the use of general speech and non-speech models
(one GMM based and one SVM based method) are compared to a standard method
that uses a general speech recognition system. We showed that our speech/non-speech
modelling based segmentation methods achieve comparable results to those of manual
segmentation. For larger amounts of training data, the GMM based method performed
best, while the SVM based method is preferable if the amount is limited.

The languages we worked on are low resourced and not as well investigated as
other languages and the corresponding systems we used achieve high WERs. Since the
purity of the training data for the models for segmentation depends on the quality of
the alignment and therefore on the speech recognition system, the methods have to be
evaluated on well researched languages. Moreover, the dependency on the amount of
training data could be investigated.

For the GMM based method there are several parameters that have to be optimized.
The use of bottle-neck features improves speech recognition significantly (e.g. [18]) so
the application on the segmentation seems to be promising. Increasing the front-end’s
window size should be investigated in general.

LIBSVM provides probabilistic classification, which might be topic of further ex-
periments on SVM-based segmentation. Besides LDA, other transformations could be
utilized for reduction of dimensionality. Within the scope of this research, the effect of
additional features before LDA transformation remained open.
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4. Yu, H., Tam, Y.C., Schaaf, T., Stüker, S., Jin, Q., Noamany, M., Schultz, T.: The ISL RT04
Mandarin Broadcast News Evaluation System. In: EARS Rich Transcription Workshop.
(2004)

5. Kraft, F., Malkin, R., Schaaf, T., Waibel, A.: Temporal ICA for Classification of Acoustic
Events in a Kitchen Environment. In: INTERSPEECH, Lisbon, Portugal. (2005)

6. Beyerlein, P., Aubert, X., Haeb-Umbach, R., Harris, M., Klakow, D., Wendemuth, A., Mo-
lau, S., Ney, H., Pitz, M., Sixtus, A.: Large Vocabulary Continuous Speech Recognition
of Broadcast News The Philips/RWTH Approach. Speech Communication 37(12) (2002)
109–131

7. Matsoukas, S., Gauvain, J., Adda, G., Colthurst, T., Kao, C.L., Kimball, O., Lamel, L.,
Lefevre, F., Ma, J., Makhoul, J., Nguyen, L., Prasad, R., Schwartz, R., Schwenk, H., Xiang,
B.: Advances in Transcription of Broadcast News and Conversational Telephone Speech
Within the Combined EARS BBN/LIMSI System. Audio, Speech, and Language Process-
ing, IEEE Transactions on 14(5) (2006) 1541–1556

8. Enqing, D., Guizhong, L., Yatong, Z., Xiaodi, Z.: Applying Support Vector Machines to
Voice Activity Detection. In: Signal Processing, 2002 6th International Conference on. Vol-
ume 2. (2002) 1124–1127 vol.2

9. Ramirez, J., Yelamos, P., Gorriz, J., Segura, J.: SVM-based Speech Endpoint Detection
Using Contextual Speech Features. Electronics Letters 42(7) (2006) 426–428

10. Lopes, C., Perdigao, F.: Speech Event Detection Using SVM and NMD. In: Signal Pro-
cessing and Its Applications, 2007. ISSPA 2007. 9th International Symposium on. (2007)
1–4

11. Han, K., Wang, D.: An SVM Based Classification Approach to Speech Separation. In:
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference
on. (2011) 4632–4635

12. Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. ACM Transac-
tions on Intelligent Systems and Technology 2 (2011) 27:1–27:27

13. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20 (1995) 273–297
14. Hsu, C.W., Chang, C.C., Lin, C.J.: A Practical Guide to Support Vector Classification (2010)
15. Kinnunen, T., Chernenko, E., Tuononen, M., Fränti, P., Li, H.: Voice Activity Detection
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