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Abstract. We present an approach for tracking a lecturer during the
course of his speech. We use features from multiple cameras and micro-
phones, and process them in a joint particle filter framework. The filter
performs sampled projections of 3D location hypotheses and scores them
using features from both audio and video. On the video side, the features
are based on foreground segmentation, multi-view face detection and up-
per body detection. On the audio side, the time delays of arrival between
pairs of microphones are estimated with a generalized cross correlation
function. In the CLEAR’06 evaluation, the system yielded a tracking ac-
curacy (MOTA) of 71% for video-only, 55% for audio-only and 90% for
combined audio-visual tracking.

1 Introduction

Person tracking is a basic technology for realizing context-aware human-computer
interaction applications. The scenario addressed in this work is a smart lecture
room, where information about the lecturer’s location helps to automatically cre-
ate an audio-visual log of the presentation. As we have shown in [18], tracking ac-
curacy has an direct impact on the recognition rate of beamformed speech. Other
applications include active camera control in order to supply high-resolution im-
ages of the speaker, thus facilitating person identification and audio-visual speech
recognition.

The task of lecturer tracking poses two basic problems: localizing the lecturer
(in terms of 3D head coordinates) and disambiguating the lecturer from other
people in the room. In the proposed approach, we jointly process images from
multiple cameras and the signal from multiple microphones in order to track the
lecturer both visually and acoustically. The algorithm is based on the assump-
tion, that the lecturer - among all other people in the room - is the one that
is speaking and moving most of the time, i.e. exhibiting the highest visual and
acoustical activity.

The central issue in audio-visual tracking is the question of how to combine
different sensor streams in a beneficial way. In our approach, we integrate audio



and video features such that the system does not rely on a single sensor or
a certain combination of sensors to work properly. In fact, each single camera
and each microphone pair alone can contribute to the track. The core of the
proposed algorithm is a particle filter for the computationally efficient integration
of acoustic source localization, person detection (frontal face, profile face, upper
body) and foreground segmentation. The 3D position of the lecturer is robustly
being determined by means of sampled projection instead of triangulation.

1.1 Related Work

For acoustic source localization, several authors have proposed solving this opti-
mization problem with standard gradient based iterative techniques. While such
techniques typically yield accurate location estimates, they are typically compu-
tationally intensive and thus ill-suited for real-time implementation [2, 3]. Other
recent work on acoustic source localization includes that by Huang et al [7], who
developed an iterative technique based on a spherical least square error crite-
rion, that is nonetheless suitable for real-time implementation, as well as the
work by Ward et al [17], who proposed using particle filter together with both
time delay of arrival estimation and steered beamformers. In other work by the
same authors [10], a variant of the extended Kalman filter was used for acoustic
speaker tracking. This approach was extended in [9] to add video features.

Particle filters [8] have previously been used for audio-visual tracking for
example by [15] for a video telephony application, by [4] for multi-person tracking
or by [6] for multi-party conversation in a meeting situation. The particle filter’s
capability of representing arbitrary distributions is of central importance for the
proposed feature fusion scheme.

Concerning video features, it has often be proposed to use color models for
the task of tracking articulated objects like the human body. Unfortunately, the
appearance of color in real-world scenarios is fragile because of different light
sources, shadowing, and – specific for our lecture scenario – by the bright and
colorful beam of the video projector that often overlays the lecturer.

Color-invariant approaches that rely on background subtraction, e.g. Mikic
et al. [13], often suffer from over- or under-segmentation as an effect of noisy
foreground classification. In the proposed method, we avoid this problem: instead
of triangulating connected foreground segments, our algorithm performs sampled
projections of 3D hypotheses, as proposed by Zotkin et al. [19], and gathers
support for the respective sample in the resulting image region in each view. It
is thus less dependent on the quality of the segmentation.

Face-detection cascades as proposed by Viola and Jones [16] are known to
be both robust and fast, which makes them a good feature to support a person
tracker. However, searching high-resolution camera images exhaustively for faces
in multiple scales goes beyond the current possibilities of real-time operation.
The particles, however, cluster around likely target positions and are thus a good
approximation of the search space.



2 An Audio-visual Particle Filter

Particle filters [8] represent a generally unknown probability density function by
a set of m random samples s1..m. Each of these particles is a vector in state space
and is associated with an individual weight πi. The evolution of the particle set
is a two-stage process which is guided by the observation and the motion model:

1. The prediction step: From the set of particles from the previous time in-
stance, an equal number of new particles is generated. In order to generate
a new particle, a particle of the old set is selected randomly in consideration
of its weight, and then propagated by applying the motion model.

2. The measurement step: In this step, the weights of the new particles are
adjusted with respect to the current observation zt: πi = p(zt|si). This means
computing the probability of the observation given that the state of particle
si is the true state of the system.

Each particle si = (x, y, z) hypothesizes the location of the lectures head centroid
in 3D space. The particles are propagated by Gaussian diffusion, i.e. a 0-th
order motion model. If a particle leaves the boundaries of lecture room, it gets
re-initialized to a random position within the room. A certain percentage of
particles (in our case 5%) are not drawn from the previous particle set, but
are also initialized randomly. This way it is guaranteed, that the entire space is
roughly searched - and the tracker does not stick to a local maximum.

Using the features described in Sections 3 and 4, we calculate the weight
πi for each particle si by combining the normalized probabilities of the visual
observation Vt and the acoustical observation At.

πi = cA · p(At|si) + cV · p(Vt|si) (1)

The dynamic mixture weights cA and cV can be interpreted as confidence mea-
sures for the audio and video channel respectively. In order to determine the
values of cA,V , we consider the spread of the audio and video scores on the
ground plane (x and y components of the state vector). Let for example σA

x

denote the standard deviation of the particle set’s x-components weighted with
the audio scores, then the audio channel confidence is given by:

cA =
√

(σA
x )2 + (σA

y )2
(−1)

(2)

The video confidence cV is calculated in the same way. In order to generate
the final tracker output, we shift a 1m2 sized search window over the ground
plane and look for the region with the highest accumulated particle scores. The
weighted mean of all particles within that region is then the final hypothesis.

3 Video Features

As lecturer and audience cannot be separated reliably by means of fixed spatial
constraints as, e.g., a dedicated speaker area, we have to look for features that are



more specific for the lecturer than for the audience. Intuitively, the lecturer is the
person that is standing and moving (walking, gesticulating) most, while people
from the audience are generally sitting and moving less. In order to exploit this
specific behavior, we use foreground segmentation based on adaptive background
modeling as primary feature, as described in Section 3.1. In order to support the
track indicated by foreground segments, we use detectors for face and upper body
(see Section 3.2). Both features – foreground F and detectors D – are linearly
combined1 using a mixing weight β. So the probability of the visual information
V j

t in view j, given that the true state of the system is characterized by si, is
set to be

p(V j
t |si) = β · p(Dj

t |si) + (1− β) · p(F j
t |si) (3)

By means of the sum rule, we integrate the weights from the v different views
in order to obtain the total probability of the visual observation:

p(Vt|si) =
1
v

∑
j=1..v

p(V j
t |si) (4)

To obtain the desired (pseudo) probability value which tells us how likely this
particle corresponds to the visual observation we have to normalize over all
particles:

p(Vt|si) =
p(Vt|si)∑
i p(Vt|si)

(5)

3.1 Foreground Segmentation

In order to segment the lecturer from the background, we use a simple back-
ground model b(x, y) that is updated with every new frame z(x, y) using a con-
stant update factor α:

b(x, y) = (1− α) · b(x, y) + α · z(x, y) (6)

The foreground map m(x, y) is made up of pixel-wise differences between the
current image z(x, y) and the background model b(x, y). It is scaled using mini-
mum/maximum thresholds τ0 and τ1:

m(x, y) =
|z(x, y)− b(x, y)| − τ0

τ1 − τ0
· 255 (7)

The values of m(x, y) are clipped to a range from 0 to 255.
However, as Fig. 1 shows, the resulting segmentation of a crowded lecture

room is far from perfect. Morphological filtering of the foreground map is gener-
ally not sufficient to remove the noise and to create a single connected component
for the lecturer’s silhouette. Nonetheless, the combination of the foreground maps
from different views contains enough information to locate the speaker. Thus,
our approach gathers support from all the views’ maps without making any
”hard” decisions like a connected component analysis.
1 Note that p(Dj

t |si) and p(F j
t |si) respectively have to be normalized before combina-

tion so that they sum up to 1.



Fig. 1. Foreground segmentation is performed by means of an adaptive background
model. A ”3-boxes model” approximates the speaker’s appearance.

As described in Section 2, the particle filter framework merely requires us to
assign scores to a number of hypothesized head positions. In order to evaluate
a hypothesis si = (x, y, z), we project a ”3-boxes person model” (see Fig. 1)
centered around the head position to the image plane of each camera view, and
sum up the weighted foreground pixels m(x, y) inside the projected polygons:
The topmost box, representing the head, has a height of 28cm and a width/depth
of 18cm. The torso box has a width and depth of 60cm, whereas the box for the
legs spans 40cm. The accumulated weights of the foreground pixels within the
projected polygons are then used as the particle’s score.

As this calculation has to be done for each of the particles in all views, we use
the following simplification in order to speed up the procedure: we assume that
all cameras are set upright with respect to the ground plane, so the projection
of a cuboid can be approximated by a rectangle orthogonal to the image plane,
i.e. the bounding box of the projected polygon (see Fig. 2).

The sum of pixels inside a bounding box can be computed efficiently using
the integral image introduced by [16]. Given the foreground map m(x, y), the
integral image ii(x, y) contains the sum of the pixels above and to the left of
(x, y):

ii(x, y) =
y∑

y′=0

x∑
x′=0

m(x′, y′) (8)

Thus, the sum of the rectangle (x1, y1, x2, y2) can be determined by four lookups
in the integral image. So the particle score for the foreground feature is defined
by the sum of pixels inside the bounding boxes normalized by the size of the
bounding boxes:

p(F j
t |si) =

∑
b=H,T,L

ii(xb
2, y

b
2)− ii(xb

1, y
b
2)− ii(xb

2, y
b
1) + ii(xb

1, y
b
1)

(xb
2 − xb

1 + 1)(yb
2 − yb

1 + 1)
(9)

The index b specifies the head box (H), torso box (T), and legs box (L).
Using the recurrent formulation from [16], the generation of the integral

image only takes one pass over the foreground map, so the complexity of the
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Fig. 2. For each particle and each body segment (head, torso, legs), a cuboid centered
around the hypothesized head position (x, y, z) is projected into the views A and B.
The resulting polygon is approximated by a bounding box (x1, y1, x2, y2)

A/B .

foreground feature preparation is linear to the image size. The evaluation of one
particle can then be done in constant time, and is thus independent of the image
resolution and the projected size of the target.

3.2 Face and Upper Body Detection

As we aim at tracking the coordinates of the lecturer’s head – serving as model
point for the full body –, we need a feature that gives evidence for the head
position. The face detection algorithm proposed by Viola and Jones [16] is known
to be both robust and fast: it uses Haar-like features that can be efficiently
computed by means of the integral image, thus being invariant to scale variations.
The features are organized in a cascade of weak classifiers, that is used to classify
the content of a search window as being face or not.

Typically, a variable-size search window is repeatedly shifted over the image,
and overlapping detections are combined to a single detection. Exhaustively
searching a W ×W image region for a F × F sized face while incrementing the
face size n times by the scale factor s requires the following number of cascade
runs (not yet taking into account post-filtering of overlapping detections):

#cascade runs =
n−1∑
i=0

(
W − F · si

)2
(10)

In case of for example a 100x100 pixel image region, and a face size in between
20 and 42 (n = 8, s = 1.1), this results in 44368 cascade runs.

In the proposed particle filter framework however, it is not necessary to scan
the image exhaustively: the places to search are directly given by the particle set.
For each particle, a head-sized cuboid (30cm edge length) centered around the
hypothesized head position is projected to the image plane, and the bounding
box of the projection defines the search window that is to be classified. Thus,



the evaluation of a particle takes only one run of the cascade:

#cascade runs = #particles (11)

The face detector is able to locate the vertical and horizontal position of the face
precisely with respect to the image plane. However, the distance to the camera,
i.e. the scaling, cannot be estimated accurately from a single view. In order to
achieve tolerance against scale variation and to smooth the scores of nearby
particles, we set the i-th particle’s score to the (average) overlap2 between the
particle’s head rectangle ri = (x1, y1, x2, y2) and all the positively classified head
rectangles r′0..N by any of the other particles:

p(Dj
t |si) =

1
N

N∑
n=0

overlap(ri, r
′
n) (12)

A detector that is trained on frontal faces only is unlikely to produce many
hits in our multi-view scenario. In order to improve the performance, we used
two cascades for face detection: one for frontal faces in the range of ±45◦ and
one for profile faces (45◦ − 90◦)3. Our implementation of the face detector is
based on the OpenCV library, that implements an extended set of Haar-like
features as proposed by [12]. This library also includes a pre-trained classifier
cascade for upper body detection [11]. We used this detector in addition to face
detection, and incorporated it’s results using the same methods as described for
face detection.

4 Audio Features

The lecturer is the person that is normally speaking, therefore we can use audio
features using multiple microphones to detect the speaker position. Consider the
j-th pair of microphones, and let mj1 and mj2 respectively be the positions of
the first and second microphones in the pair. Let x denote the position of the
speaker in a three dimensional space. Then the time delay of arrival (TDOA)
between the two microphones of the pair can be expressed as

Tj(x) = T (mj1,mj2,x) =
‖x−mj1‖ − ‖x−mj2‖

c
(13)

where c is the speed of sound. To estimate the TDOAs a variety of well-known
techniques [14, 5] exist. Perhaps the most popular method is the phase transform
(PHAT), which can be expressed as

R12(τ) =
1
2π

∫ π

−π

X1(ejωτ )X∗
2 (ejωτ )

|X1(ejωτ )X∗
2 (ejωτ )|

ejωτ dω (14)

2 The auxiliary function overlap(a, b) calculates the ratio of the shared area of two
rectangles a and b to the sum of the areas of a and b.

3 The profile face cascade has to be applied twice: to the original image and to a
horizontally flipped image.



where X1(ω) and X2(ω) are the Fourier transforms of the signals of a microphone
pair in a microphone array. Normally one would search for the highest peak in
the resulting cross correlation to estimate the position. But since we are using
a particle filter, as described in Section 2, we can simply set the PHAT value at
the time delay position Tj(x = si) of the MA pair j of a particular particle si as

p(Aj
t |si) = max(0, Rj(Tj(x = si))) (15)

As the values returned by the PHAT can be negative, but probability density
functions must be strictly nonnegative, we set negative values of the PHAT to
zero.

To get a better estimate we repeat this over all m pair of microphones, sum
their values and normalize by m:

p(At|si) =
1
m

m∑
j=1

p(Aj
t |si) (16)

Just like for the visual features, we normalize over all particles in order to get
the acoustic observation likelihood for each particle:

p(At|si) =
p(At|si)∑
i p(At|si)

(17)

5 Experiments on the CLEAR’06 Evaluation Dataset

The performance of the proposed algorithm has been evaluated on the single
person tracking tasks of the CLEAR’06 Evaluation Campaign [1]. The dataset
consists of recordings of actual lectures and seminars that were held at different
sites.

The evaluation dataset comprises a total number of 14 recordings, each fea-
turing a different speaker (see Fig. 3). From each recording typically two seg-
ments of 5 minutes length are to be processed (26 segments in total). The lec-
tures are complemented by slides which are projected to a whiteboard next to
the speaker. Apart from the lecturer, there is a number of about 5-20 people in
the audience. In many recordings, there is no clear separation between speaker
area and audience. It must further be noted that every once in a while, auditors
cross the speaker area in order to enter or to leave the room.

The details of the sensor setup vary among the sites. There is, however, a
common setup of 4 fixed cameras in the room corners with full room cover-
age, and 4-6 microphone arrays mounted on the walls. Each array consists of 4
microphones: 3 in a row with a distance of 20 cm and one 30 cm above the cen-
ter microphone. The lecturer’s head centroid was labeled manually every 10th
frame. By means of the calibration information, a 3D label file was generated
and serves as ground truth for the evaluation. A separate development dataset
has been provided to tune tracking parameters and to train the face detection



Fig. 3. Snapshot from a lecture showing all 4 camera views.

cascades. This development set consists of different lectures that were collected
using the same setup as for the evaluation set.

The system has not been hand-tuned to the different data collection sites.
This means in particular:

– no images of the empty scene have been used, the background model initial-
izes automatically

– no cameras or microphones were excluded - all sensors were used
– no speaker area has been defined, the tracker scans the entire room

5.1 Results

The evaluation results presented in Table 1 are average values of all 26 lecture
segments that were provided in the single-person tracking task of CLEAR’06.
Two scores were defined to rate the tracking systems:

– MOTA: the multi-person tracking accuracy accumulates misses and false
positives and relates them to the number of labeled frames. In this evaluation,
a miss is defined as a hypothesis outside a 500mm radius around the labeled
head position. Note that each hypothesis outside the radius is a miss and a
false positive by the same time, and is thus counted as 2 errors.

– MOTP: the multi-object tracking precision is the mean error of the hypothe-
ses within the 500mm radius around the labeled head position.

Note that the most relevant score in the table is the miss rate and the MOTA
score respectively, whereas MOTP only measures the precision for those hypothe-
ses that are inside the 500mm range. For the video-only evaluation, all labeled
frames were used for scoring, whereas the audio-only condition was scored exclu-
sively on frames in which the lecturer actually speaks. The multi-modal system
was scored on both conditions.

It can be seen in the table that the video-only tracker outperforms the audio-
only tracker. The combination of both performs clearly better than the unimodal
systems as long as scoring is done on speech frames only. When being evaluated
on all frames, the audio-only tracker performs much worse than the video tracker,
so that the combination of both is not beneficial anymore. As a comparison, Ta-
ble 2 shows the results on the CLEAR’06 development set. Here, the combination
of audio and video is beneficial even when being evaluated on all frames.



Tracking mode Misses MOTA MOTP

Video only 14.3% 71.4% 127mm

Audio only 22.6% 54.8% 186mm

Video + Audio (speech frames) 5.1% 89.8% 140mm

Video + Audio (all frames) 14.6% 70.8% 143mm

Table 1. Results in 3D speaker tracking on the CLEAR’06 evaluation set.

Tracking mode Misses MOTA MOTP

Video only 16.7% 66.5% 141mm

Audio only 15.3% 69.4% 138mm

Video + Audio (all frames) 8.1% 84.0% 125mm

Table 2. Comparative results on the CLEAR’06 development set.

In 3 of 26 evaluation segments, the audio-visual system has a miss rate of
55% or higher, whereas the miss rate on the other segments is always < 30%. An
in-depth look at those segments with worst performance reveals some reasons for
this behavior: In the first of these three underperforming segments, the speaker
is often standing in a corner of the room, speaking into the direction of the
wall. Both audio and video fail here. The other two segments actually show the
question-and-answer phase of a presentation. The speaker is standing still, while
the participants are having a discussion. When being evaluated on all frames,
the audio tracker tracks the current speaker, which is most of the time not the
labeled presenter. Segments like this were not included in the development set.

5.2 Implementation and Complexity

For maximum precision, the experiments on the CLEAR’06 dataset have been
conducted with full image resolution and a number of 500 particles. The process-
ing time for 1sec of data (all sensors together) on a single 3GHz PC was 2.3sec
(audio-only), 4.8sec (video-only) and 11.6sec (audio-visual).

On the video side, the proposed algorithm consists of two parts that can be
characterized by their relation to the three factors that determine the runtime of
the algorithm. The feature preparation part (foreground segmentation, integral
image calculation) is related linearly to the image size S and a constant time
factor tV S . In contrast, the particle evaluation part is independent from S and
related linearly to the number of particles P and a constant tV P . Both parts
are likewise related linearly to the number of views V . On the audio side, the
runtime is linearly related to the number of microphone pairs M . Like in the
video case, this can be further decomposed into a constant preprocessing part
tAM and a part tAP that has to be repeated for each particle. Thus, the total
processing time per frame is determined by:

ttotal = (tV S · S + tV P · P ) · V + (tAM + tAP · P ) ·M (18)



As this equation indicates, the visual part can be intuitively parallelized for the
number of views V . We implemented such a video-only tracker using 4 desktop
PCs, each connected to a camera, in a way that the image processing is done
locally on each machine. Because only low-bandwidth data (particle positions
and weights) are shared over the network, the overhead is negligible, and a
speed of 15 fps (including image acquisition) could easily be achieved. In the live
system, image downsampling by a factor of 2 − 4 and a number of 100 − 200
particles performs reasonably well.

6 Conclusion

We presented an algorithm for tracking a person using multiple cameras and
multiple pairs of microphones. The core of the proposed algorithm is a par-
ticle filter that works without explicit triangulation. Instead, it estimates the
3D location by sampled projection, thus benefiting from each single view and
microphone pair. The video features used for tracking are based on foreground
segmentation and the response of detectors for upper body, frontal face and pro-
file face. The audio features are based on the time delays of arrival between pairs
of microphones, and are estimated with a generalized cross correlation function.

The audio-visual tracking algorithm was evaluated on the CLEAR’06 dataset
and outperformed both the audio- and video-only tracker. One reason for this
is that the video and audio features described in this paper complement one
another well: the comparatively coarse foreground feature along with the audio
feature guide the way for the face detector, which in turn gives very precise
results as long as it searches around the true head position. Another reason
for the benefit of the combination is that neither motion and face detection nor
acoustic source localization responds exclusively to the lecturer and not to people
from the audience – so the combination of both increases the chance of actually
tracking the lecturer.
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