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ABSTRACT
In this paper, we present a system capable of visually de-
tecting pointing gestures and estimating the 3D pointing
direction in real-time. In order to acquire input features
for gesture recognition, we track the positions of a person’s
face and hands on image sequences provided by a stereo-
camera. Hidden Markov Models (HMMs), trained on differ-
ent phases of sample pointing gestures, are used to classify
the 3D-trajectories in order to detect the occurrence of a
gesture. When analyzing sample pointing gestures, we no-
ticed that humans tend to look at the pointing target while
performing the gesture. In order to utilize this behavior,
we additionally measured head orientation by means of a
magnetic sensor in a similar scenario. By using head orien-
tation as an additional feature, we observed significant gains
in both recall and precision of pointing gestures. Moreover,
the percentage of correctly identified pointing targets im-
proved significantly from 65% to 83%. For estimating the
pointing direction, we comparatively used three approaches:
1) The line of sight between head and hand, 2) the forearm
orientation, and 3) the head orientation.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis

General Terms
Algorithms, Experimentation, Human Factors
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pointing gestures, gesture recognition, person tracking, com-
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1. INTRODUCTION
In the concept of multimodal user interfaces, users are

able to communicate with computers using the very modal-
ity that best suits their current request. Apart from mouse
or keyboard input, these modalities include speech, hand-
writing or gesture. Among the set of gestures intuitively
performed by humans when communicating with each other,
pointing gestures are especially interesting for applications
like smart rooms, virtual reality or household robots.

A pointing gesture in the context of this paper is a move-
ment of the arm towards a pointing target. Humans per-
form the gesture in the communication with others to mark
a specific object, location or direction. Pointing gestures
are often used in combination with speech, as they can help
to resolve ambiguities and specify parameters of location in
verbal statements (”Switch that light on!”). In the recogni-
tion of pointing gestures, two problems have to be addressed:
the detection of the occurrence of the gesture in natural arm
movements and the estimation of the pointing direction.

In this paper, we present a system that is able to detect
pointing gestures and to determine the 3D pointing direction
in real-time. To obtain input features for gesture recogni-
tion, we first track a person’s head and hands in 3D. To de-
tect the occurrence of pointing gestures in the input feature
stream, we use Hidden Markov Models which were trained
on different phases of sample pointing gestures (begin, hold,
end). We evaluate this approach in a scenario with 10 dif-
ferent persons.

A body of literature suggests that people naturally tend
to look at the objects with which they interact. Maglio et
al. [1] for instance investigated how people use speech and
gaze when interacting with an ”office of the future”. They
report that the subjects nearly always looked at a speech-
enabled office device before addressing it. Similar results
are reported by Brumitt et al. [2]. They investigated how
people use different interfaces to control room lights. They
also report that subjects typically looked at the lights they
wanted to control.

To analyze whether this behavior could be used to improve
our pointing gesture recognition system, we tracked head
and hand positions as well as people’s head orientations in
a second experiment. By using additional features derived
from head orientation in our feature vector, we could ob-
serve significant gains in both recall and precision of pointing
gesture detection. In addition, the percentage of correctly
identified pointing targets improved significantly.



a. Left camera image b. Disparity map c. Skin-color map

Figure 1: Tracking of head and hands is based on skin-color classification (dark pixels represent high skin-color
probability) and stereoscopic range information.

The main contributions of this paper are the following:
1) We present a robust approach for real-time 3D tracking
of head and hands using color and range information. 2)
We describe how Hidden Markov Models can be trained to
detect the occurrence of a pointing gesture in the 3D input
feature stream. 3) We experimentally show the usefulness of
head orientation tracking to improve both pointing gesture
detection and estimation of pointing direction.

The remainder of this paper is organized as follows: In
Section 2 we describe our approach to track a user’s head
and hands in 3D from stereo images. In Section 3 we de-
scribe how we use Hidden Markov Models to detect pointing
gesture, describe the used features and present experimen-
tal results. In Section 4 we describe experiments with addi-
tionally used head orientation features. Section 5 compares
three different approaches for the estimation of pointing di-
rection: using a) the line of sight between head and hand, b)
the estimated forearm orientation and c) head orientation.
Finally, we conclude the paper in Section 6.

1.1 Related Work
There are numerous approaches for the extraction of body

features by means of one or more cameras. In [3], Wren et
al. demonstrate the system Pfinder, that uses a statistical
model of color and shape to obtain a 2D representation of
head and hands. Azarbayejani and Pentland [4] describe
a 3D head and hands tracking system that calibrates au-
tomatically from watching a moving person. An integrated
head and silhouette tracking approach based on color, dense
stereo processing and face pattern detection is proposed by
Darrell et al. [5]. Compared to these works, the character-
istic of our approach lies in the early assignment of dense
stereo to skin-color information, thus allowing for combined
clustering.

Hidden Markov Models have been used for years in con-
tinuous speech recognition [14], and have also been applied
successfully to the field of gesture recognition: In [6], Starner
and Pentland were able to recognize hand gestures out of the
vocabulary of the American Sign Language with high accu-
racy. Becker [7] presents a system for the recognition of T’ai
Chi gestures based on head and hand tracking. In [8], Wil-
son and Bobick propose an extension to the HMM frame-
work, that addresses characteristics of parameterized ges-
tures, such as pointing gestures. Poddar et al. [9] recognize
different hand gestures (including pointing gestures) per-
formed by a TV weather person. They combine an HMM-
based detection of gestures on head and hand movements
with spoken keywords.

Kahn et al. [10] demonstrate the use of pointing gestures
to locate objects. Their system operates on various fea-
ture maps (intensity, edge, motion, disparity, color). Jojic
et al. [11] detect and estimate pointing gestures solely in
dense disparity maps. Unlike these approaches, we model
the dynamic motion of pointing gestures and not the static
posture.

2. TRACKING HEAD AND HANDS
In our approach we combine stereoscopic range informa-

tion and skin-color classification in order to achieve a robust
tracking performance. The setup consists of a fixed-baseline
stereo camera connected to a standard PC. We use a com-
mercially available library [12] to calculate a dense disparity
map made up of pixel-wise disparity values, and to provides
3D coordinates for each pixel (Fig. 1b). A histogram-based
model represents the distribution of human skin-color in the
chromatic color space (rg color space). In order to initialize
and maintain the model automatically, we search for a per-
son’s head in the disparity map of each frame. Similar to
an approach proposed in [5], we first look for a human-sized
connected region, and then check its topmost part for head-
like dimensions. Pixels inside the head region contribute
to the skin-color model. The result of the classification by
means of the the model is the skin-color map (Fig. 1c), that
provides the skin-color probability for each pixel.

In order to find potential candidates for the coordinates
of head and hands, we search for connected regions in the
morphologically filtered skin-color map. For each region, we
calculate the centroid of the associated 3D pixels. If the
pixels belonging to one region vary strongly with respect to
their distance to the camera, the region is split by applying
a k-means clustering method. We thereby separate objects
that are situated on different range levels but accidentally
merged into one object in the 2D image. In the clustering
procedure, all pixels are weighted by their individual skin-
color probabilities.

2.1 Search for best Hypothesis
The task of tracking consists in finding a good hypothesis

st for the positions of head and hands at time t. The de-
cision is based on the current observation Ot (the 3D skin-
pixel clusters) and the hypothesis for the preceding frame
st−1. With each new frame, all combinations of the clus-
ters’ centroids are evaluated to find the hypothesis st that
maximizes the product of the following 3 scores:
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Figure 2: Observed positions of the right hand rel-
ative to the head (depicted by a circle) over a time
of 2 minutes.

• The observation score P (Ot|st) is a measure for the ex-
tent to which st matches the observation Ot. The cal-
culation of this score is based on the weighted sum of
the skin-pixels that are inside a certain radius around
the predicted head and hand positions. P (Ot|st) in-
creases with each skin-pixel that complies with the hy-
pothesis.

• The posture score P (st) is the prior probability of the
posture. It is high if the posture represented by st is
a frequently occurring posture of a human body. It
is equal to zero if st represents a posture that breaks
anatomical constraints. To be able to calculate P (st),
a model of the human body was built from training
data. The model consists of the average height of
the head above the floor, a probability distribution
of hand-positions relative to the head (see Fig. 2), as
well as a series of constraints like the maximum dis-
tance between head and hand.

• The transition score P (st|st−1) is a measure for the
probability of st being the successor of st−1. It is
higher, the closer the positions of head and hands in
st are to their positions in st−1.

2.2 Results
Our experiments indicate that by using the method de-

scribed, it is possible to track a person robustly, even when
the camera is not fixed and when the background is clut-
tered. The tracking of the hands is affected by occasional
dropouts and misclassification. Reasons for this can be tem-
porary occlusions of a hand, a high variance in the visual
appearance of hands and the high speed with which peo-
ple move their hands. Due to the automatic updates of the
skin-color model, the system does not require manual ini-
tialization.

3. RECOGNIZING POINTING GESTURES
In this paper, we define a pointing gesture as a movement

of one arm towards a pointing target. Hand posture or finger
positions are not considered. When looking at a person
performing pointing gestures, one can identify three different
phases in the movement of the pointing hand:

P0

2 4 6 8 10 12 14

[sec]

PB
PH
PE

Figure 3: Log-probabilities of the phase-models dur-
ing a sequence of two pointing gestures

• Begin (B): The hand moves from an arbitrary starting
position towards the pointing target.

• Hold (H): The hand remains motionless at the pointing
position.

• End (E): The hand moves away from the pointing po-
sition.

We examined pointing gestures performed by different per-
sons, and measured the length of the separate phases. The
average length of a pointing gesture was 1.8sec. Among
the three phases, the hold phase shows the highest duration
variance (from 0.1sec up to 2.5sec).

For estimating the pointing direction, it is crucial to detect
the hold phase precisely. Therefore, we model the three
phases separately: Three dedicated HMMs (MB , MH , ME)
were trained exclusively on data belonging to their phase.
We choose the same HMM topology (3 states, left-right)
for each of the three models. For each state, a mixture of 2
Gaussian densities represents the output probability. To get
a reference value for the output of the phase models, we train
a null model M0 on short feature sequences (0.5sec) which
do not belong to a pointing gesture. For M0, we choose an
ergodic HMM with 3 states and 2 gaussians per state. The
models were trained with hand-labeled BHE-phases using
the Baum-Welch reestimation equations (see [14]).

3.1 Classification
As we want to detect pointing gestures on-line, we have

to analyze the observation sequence each time a new frame
has been processed. The length of the BHE-phases varies
strongly from one gesture to another. Therefore, we classify
not only one, but a series of subsequences s1..n, each one
starting at a different frame in the past and ending with
the current frame t0 (see also [7]). The lengths of the se-
quences are chosen to be within the minimum/maximum
length of a pointing gesture. For each of the phase models,
we search for the subsequence ŝB,H,E that maximizes the
probability of being produced by the respective model. As
P (ŝ|M0) represents the probability, that ŝ is not part of a
pointing gesture, we use it to normalize the phase-models
output probabilities1:

ŝB,H,E = argmax logP (s1..n|MB,H,E) (1)

PB,H,E = logP (ŝB,H,E |MB,H,E)− logP (ŝB,H,E |M0)

1Note that in order to avoid numerical underflow, we use
log probabilities rather than probabilities.
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Figure 4: The hand position is transformed into a
head-centered cylindrical coordinate system.

In order to detect a pointing gesture, we have to search
for three subsequent time intervals that have high output
probabilities PB , PH and PE . Ideally, the respective model
would significantly dominate the other two models in its
interval. But as Fig. 3 shows, MH tends to dominate the
other models in the course of a gesture. That is why we
detect a pointing gesture whenever we find three points in
time, tB < tH < tE , so that

PB(tB), PH(tH), PE(tE) > 0 (2)

PE(tE) > PB(tE)

PB(tB) > PE(tB)

3.2 Features
The raw input features for the gesture models are the

3D cartesian coordinates of the hands, as provided by the
tracking module. We evaluated different coordinate system
transformations of the feature vector. In our experiments it
turned out that cylindrical coordinates of the hand (see Fig.
4) produce the best results for the pointing task. The origin
of the coordinate system is set to the center of the head, in
order to achieve invariance to the person’s location.

The radius r represents the distance between hand and
body, which is an important feature for pointing gesture
detection. Unlike its counterpart in spherical coordinates, r
is independent of the hand’s height y.

Since we want to prevent the model from adapting to abso-
lute hand positions – as these are determined by the specific
pointing targets within the training set – we use the deltas
(velocities) of θ and y instead of their absolute values The
final feature vector is (r, ∆θ, ∆y) .

Acceleration features have not been evaluated, since our
3D-trajectories turned out to be too noisy to generate mean-
ingful second derivatives. For a comparison of different fea-
ture vector transformations for gesture recognition see [15].

3.3 Experiments and Results
In order to evaluate the performance of our system, we

prepared an indoor test scenario with 8 different pointing
targets. Ten test persons were asked to imagine the camera
was a household robot. They were to move around within
the camera’s field of view, every now and then showing the
camera (the “robot”) one of the marked objects by pointing
on it. In total, we captured 206 pointing gestures within a
period of 24 min.
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Figure 5: The feature sequence of a typical pointing
gesture.

Two measures were used to determine the quality of the
gesture detection:

• the detection rate (recall) is the percentage of pointing
gestures detected correctly,

• the precision of the gesture detection is defined as the
ratio of the number of correctly detected gestures to
the total number of detected gestures (including false
positives).

We evaluated by means of the leave-one-out method to
make sure that the models were evaluated on sequences that
were not used for training. In this experiment, the estima-
tion of the pointing direction is based on the line of sight
between head and hand (see section 5 for details on pointing
direction estimation). Table 1 summarizes the results.

While the detection rate is similar in both cases (88%),
the person-dependent test set has a lower number of false
positives compared to the person-independent test set, re-
sulting in a higher precision.

In addition, the estimation of the pointing direction is
more accurate in the person-dependent case, so that 97% of
the targets were identified correctly. This indicates that it is
easier to locate the H-phase correctly when the models are
trained individually for each subject. However, even in the
person-independent case, 90% of the targets were identified
correctly.

person person
dependent independent

Detection rate (recall) 88% 88%
Precision 89% 75%

Avg. error angle 13◦ 21◦

Targets identified 97% 90%

Table 1: Evaluation of the quality of pointing ges-
ture recognition. The person-independent results
are the average results on ten subjects. For the
person-dependent case, average results on three sub-
jects are given (see text for details).



4. USING HEAD ORIENTATION FOR
POINTING GESTURE RECOGNITION

In our recorded data, we noticed that people tend to look
at pointing targets in the begin- and in the hold-phase of
a gesture. This behavior is likely due to the fact that the
subjects needed to (visually) find the objects at which they
wanted to point. Also, it has been argued before that people
generally tend to look at the objects or devices with which
they interact (see for example the recent studies in [1] and
[2]).

To analyze whether this behavior could be used to im-
prove the performance of pointing gesture recognition, we
measured head rotation (θHead, φHead) by means of a mag-
netic sensor2. We calculate the the following two features:

θHR = |θHead − θHand| (3)

φHR = |φHead − φHand|

θHR and φHR are defined as the absolute difference between
the (magnetically measured) head’s azimuth/elevation angle
and the (visually extracted) hand’s azimuth/elevation angle
in a spherical head-centered coordinate system. The features
were chosen so as to prevent any adaption of the HMMs to
the target positions in our test scenario.

Fig. 5 shows a plot of all features values during the course
of a typical pointing gesture. As can seen in the plot, the
values of the new features θHR and φHR decrease in the
begin-phase and increase in the end-phase. In the hold-
phase, both values are low, which indicates that the hand is
”in line” with head orientation.

4.1 Results
In a new test scenario (similar to the one in section 3.3),

we captured both video and head orientation. Four test
persons performed a total number of 118 gestures. While
the magnetic sensor was attached to their head, they were
still able to walk around in the camera’s field of view.

We comparatively trained the models a) using only the
hand features (r, ∆θ, ∆y), and b) using the head orientation
features in addition to the hand features: (r, ∆θ, ∆y, θHR,
φHR). Again, we evaluated the quality of gesture recognition
with the leave-one-out method. Table 2 shows the average
results on four subjects.

As we can see, the performance improved significantly,
when head orientation was included to the feature vector:
The recall value increased from 78% to 87% while precision
improved from 83% to 86%. Moreover, the error in deter-
mining the pointing direction was reduced from 37◦ to 28◦,
resulting in a higher percentage of correctly identified tar-
gets (1 out of 8).

without head- with head-
orientation orientation

Detection rate (recall) 78% 87%
Precision 83% 86%

Avg. error angle 37◦ 28◦

Targets identified 65% 83%

Table 2: Evaluation of pointing gesture recognition
with head orientation as an additional feature.

2Flock of Birds Tracker, Ascension Technology Corporation.

Figure 6: Different approaches for estimating the
pointing direction. (The lines were extracted in 3D
and projected back to the camera image.)

In both cases the head-hand line during the detected hold-
phases was used for pointing direction estimation. We can
therefore conclude, that the higher accuracy is the result of
the increased ability of the HMMs to locate the gesture’s
hold-phase precisely.

5. ESTIMATING THE POINTING
DIRECTION

We explored three different approaches (see Fig. 6) to
estimate the direction of a pointing gesture: 1) the line of
sight between head and hand, 2) the orientation of the fore-
arm, and 3) the head orientation. While the head and hand
positions as well as the forearm orientation were extracted
from stereo-images, the head orientation was measured by
means of a magnetic sensor.

5.1 Estimating the Forearm Orientation
In order to identify the orientation of the forearm, we

calculate the covariance matrix C of the 3D-pixels that lie
within a 20cm radius around the center of the hand. The
eigenvector e1 with the largest eigenvalue (the first principal
component) of C denotes the direction of the largest variance
of the data set. As the forearm is an elongated object, we
expect e1 to be a measure for the direction of the forearm
(see Figure 7).

This approach assumes that no other objects are present
within the critical radius around the hand, as those would
influence the shape of the point set. We found that in the
hold phase, the distance between hand and body and be-
tween hand and target object is mostly high enough for not
influencing the measurement. Nevertheless, we reject the
forearm measurement, when the ratio e1/e2 of the first and
the second principal component is < 1.5.

5.2 Results
In order to evaluate the accuracy of the pointing direction

estimation, we used the test-set described in section 4. The
estimate of the pointing direction is based on the mean value
of the measurements within the hold-phase of the respective
gesture.

Because the gesture phases were manually labeled, this
evaluation is not influenced by the gesture detection module,
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Figure 7: A principal component analysis of the 3D
pixels around the center of the hand reveals the ori-
entation of the forearm (arrow).

which sometimes may fail to locate the hold-phase precisely.
Nevertheless, there is an error induced by the stereo vision
system as the camera’s coordinates do not comply perfectly
with the manual measurements of the target positions (see
Figure 8).

Three measures are used to compare the different ap-
proaches: a) the average angle between the extracted point-
ing line and the ideal line to the target, b) the percentage of
gestures for which the correct target (1 out of 8) was iden-
tified, and c) the availability of measurements during the
hold-phase. The results (see table 3) are the average results
on four subjects.

The good result of the head-hand line (25◦ error, 90%
target identification) indicates that most people in our test
set intuitively relied on the head-hand line when pointing on
a target. For 98% of the gestures, head and hand positions
were available during the hold-phase, so that the pointing
direction could be estimated.

By means of the forearm line, 73% of the targets were
identified. The test persons were pointing with an out-
stretched arm almost every time, thus reducing the poten-
tial benefit even of a more accurate forearm measurement3.
Note that forearm measurements were available only for 78%
of the gestures.

As head orientation was measured by means of an at-
tached sensor, the results cannot be compared directly with
the head-hand resp. forearm line, which were extracted from
video. Nevertheless, the results indicate, that pure head ori-
entation is inherently a good estimate for pointing direction
estimation.

Head-hand Forearm Head
line line orientation

Avg. error angle 25◦ 39◦ 22◦

Targets identified 90% 73% 75%
Availability 98% 78% (100%)

Table 3: Comparison of three different approaches
for pointing direction estimation.

3Unlike the relatively stable head position, the forearm mea-
surements vary strongly during the H-phase.
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Figure 8: Target positions in the test set. Target #6
is equal to the camera position. The arrows indicate
the camera’s field of view.

6. CONCLUSION
We have presented a 3D vision system which is able to

track a person’s head and hands robustly, detect pointing
gestures, and to estimate the pointing direction. The system
was designed to function in natural environments, to operate
in real-time4, and to be person- and target-independent.

By using dedicated Hidden Markov Models for different
gesture phases, high detection rates were achieved even on
defective trajectories. In a person-independent evaluation
with 10 test persons, our system achieved a gesture detec-
tion rate (recall) of 88% and a precision of 75%. For 90%
of the gestures, the correct pointing target (one out of eight
targets) could be identified. When training the HMMs on
individual subjects (person-dependent), we noticed a signif-
icant performance gain.

In a second experiment, we measured head orientation by
means of a magnetic sensor and used the absolute differ-
ence between head orientation and hand position as addi-
tional features. We found, that by using these additional
feature derived from the user’s head orientation, the preci-
sion and recall values of the gesture recognition as well as
the accuracy of the pointing direction estimation increased
significantly.

For estimating the pointing direction, we compared three
different approaches: the line of sight between head and
hands, the forearm orientation and the head orientation.
Here, the head-hand-line turned out to deliver the most reli-
able estimate for pointing direction (90% correctly identified
targets).

Since our results strongly indicate the usefulness of head
orientation features for pointing gesture and target detec-
tion, we are now working on integrating purely vision-based
estimation of a user’s head orientation in our system.
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