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ABSTRACT
Helpers providing guidance for collaborative physical tasks
shift their gaze between the workspace, supply area, and
instructions. Understanding when and why helpers gaze at
each area is important both for a theoretical understanding
of collaboration on physical tasks and for the design of
automated video systems for remote collaboration. In a
laboratory experiment using a collaborative puzzle task, we
recorded helpers’ gaze while manipulating task complexity
and piece differentiability. Helpers gazed toward the pieces
bay more frequently when pieces were difficult to
differentiate and less frequently over repeated trials.
Preliminary analyses of message content show that helpers
tend to look at the pieces bay when describing the next
piece and at the workspace when describing where it goes.
The results are consistent with a grounding model of
communication, in which helpers seek visual evidence of
understanding unless they are confident that they have been
understood. The results also suggest the feasibility of
building automated video systems based on remote helpers’
shifting visual requirements.

Categories & Subject Descr iptors:  H5.3.
Information interfaces and presentation (e.g., HCI): Group
and organizational interfaces – collaborative computing,
computer-supported collaborative work

General Terms: Experimentation, Human Factors

K e y w o r d s :  Eye-tracking, computer-supported
collaborative work, video mediated communication, video
conferencing, gesture, conversational analysis, empirical
studies

INTRODUCTION
Collaborative physical tasks are tasks in which two or more
people work together on 3D objects in the real world. For

example, surgical teams collaborate to operate on patients,
telephone repair technicians provide instructions on how to
fix equipment, and architects collaborate on building
layouts. Because the expertise required for a task may not
always be present at the worksite, there is growing demand
for technologies to support remote collaboration on
physical tasks.

A growing body of research demonstrates that video
systems that focus on the workspace can provide value for
remote collaboration on physical tasks (e.g., [14], [16],
[20], [27]). Specifically, scene cameras providing static but
wider views of the workspace appear to be more beneficial
to collaborators than head-mounted cameras that show
narrow, dynamic views or to audio-only systems. Systems
that further incorporate an ability to point and gesture in
the workspace are even more valuable (e.g., [15]).

Despite their successes, however, scene cameras have
important limitations. Perhaps most problematic is that
they are typically immobile, making it impossible for
remote participants to pan the scene or zoom in on an area
of interest in the workspace. Several systems have
addressed this problem by allowing remote camera control
(e.g., [30], [31], [35], [37]); however, the task of
manipulating the camera interferes with smooth
interpersonal communication. Investigators have also tried
providing remote participants with multiple camera views
(e.g., [16], [18]), but providing multiple views is
bandwidth-intensive and has not proven beneficial to
participants. In the present work, we consider a third
possibility—combining the above strategies to provide the
right camera feed at the right time during a task. More
specifically, we investigate whether remote instructors’ gaze
patterns toward different visual resources show regularities
that would enable us to predict what view of the workspace
would be most beneficial at specific points of time during
the task. Our long-term goal is to provide guidelines for
automated camera control systems that present the right
visual information at the right time.

In addition, we investigate how task properties such as the  
ability to discriminate between task pieces affect eye gaze
patterns. Our results suggest that the use of visual
information is predictable based on several parameters,
including the global characteristics of the task (e.g.,
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difficulty), the progress of the task (e.g., number of trials
completed), and the worker’s actions.

We investigate these issues using a real-time collaborative
online task in which one partner (the “helper”) instructs
another (the “worker”) on how to build a puzzle. We record
the helper’s eye gaze, the collaborators’ dialogue, and the
worker’s actions in real time. Using this data, we
investigate the relationship between the remote helper’s
focus of attention and task parameters. The results suggest
that percentage of gaze toward different visual targets in the
workspace is highly predictable based on these parameters.

In the remainder of this paper, we first present the
theoretical framework guiding our work. Then, we describe
our experimental method and the results of our study. We
conclude with a discussion of the implication of our
findings for the design of automated video systems.

THEORETICAL BACKGROUND
Collaborative Physical Tasks
When collaborators work on a task together, they have
some information on the visual elements of their work
environment. These pieces of information include the
positions of work-related objects and tools and the status of
the task itself (e.g., [12], [21], [43]). The collaborators take
this visual information into account as they speak and act.
Through conversation, the collaborators identify target
objects to one another, describe actions to be taken and
confirm the outcome of those actions taken.

In this paper, we focus on instructional tasks in which the
collaborators' participation can be differentiated into either a
helper role or worker role. The helper guides the worker to
complete certain operations. The worker performs the actual
task actions. Such a helper-worker relationship is similar to
a teacher guiding a student on a lab project or a head
resident teaching new doctors how to treat a patient.

Given the dynamic nature of collaborative tasks, helpers
and workers must carefully coordinate their activities. A
helper needs to know when it is appropriate to interrupt and
provide assistance. After giving the advice, the helper needs
to know if it has been comprehended as intended.

Visual information plays two roles in coordinating helper
and worker communication and actions. First, it provides
situation awareness—an ongoing awareness of the work
environment and the activities taking place within it [10].
For example, if a teacher sees that a student is performing
an incorrect operation, he or she can intervene to correct the
student's mistake. Second, visual information can facilitate
conversational grounding, or the interactive process by
which communicators come to a state of mutual
understanding ([5], [6], [7]). As seen in the following
excerpt, each contribution builds up the common ground
between collaborators.

H: "Ok, now take the salmon red piece"
W: "Er... which one? This one?"

H: "No. One shade darker."
W: "This?"
H: "Yeah."

Sometimes, contributions can be grounded immediately by
an acknowledgment ("yeah", "uh huh"); other times,
clarifications or corrections will be needed before the
collaborators can reach common ground [25].

According to Clark and Marshall [5], there are three ways
collaborators can establish common ground: through
membership in a common group (community co-
membership), by relying on previous communication
(linguistic co-presence) and by sharing the same space
(physical co-presence). In this research, we focus on
physical co-presence and the visual resources it makes
available for situation awareness and conversation
grounding.

Shared Visual Space
We define shared visual space as the set of mutually
visible entities, including participants’ bodies and faces,
people and objects in the work space, and the larger
environment. When collaborators are co-present, they share
substantial visual space, which they can rely upon when
planning what to say or do next. Many previous studies
(e.g., [14], [15], [16], [27], [36]) have found that pairs who
worked side-by-side, where all sources of visual
information are readily available, completed tasks more
quickly and more accurately than pairs who worked apart
and could only converse but not see each other’s
environment.

When people are co-present, they share several types of
visual information, which vary in their importance for
maintaining situation awareness and grounding
conversation. For the purposes of the current study, it is
useful to distinguish among three key resources:
participants’ heads and faces, participants’ actions, and task
objects [27]. As illustrated in Table 1, each of these visual
resources has different benefits for collaboration depending
upon the phase of the task.

Table 1. Visual resources in collaborative physical
tasks (adapted from Kraut et al. [27]).

Type of Visual Information

Task Phase People’s
Heads/Faces

Actions Objects

Identify
Objects

Gaze direction
helps indicate
objects

Use gestures
to refer to task
objects

Use gestures to
refer to task
objects

Procedural
Instructions

N/A Use gestures
to demonstrate
procedures

Create up-to-
date descrip-
tions of objects
and locations

Monitor
compre-
hension

Observe facial
expressions

Observe
appropriate-
ness of actions

Observe
appropriateness
of changes to
task objects
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Mediating Shared Visual Space in Remote
Collaboration
While participants working side-by-side benefit from rich
shared visual information, people working together at a
distance must rely on some type of telecommunications,
which limit the type and amount of visual information that
can be shared. Most video systems can only provide a
subset of the visual cues available in side-by-side
collaboration. Benefits of video systems are task and
situation dependent [47]. Studies show that task
performance achieved by using such systems is either a
middle ground between side-by-side and audio-only
settings (e.g., [36], [16]), or not significantly better than
audio-only (e.g., [14], [44]).

One improvement suggested by Gaver et al. [18] is to
provide multiple video feeds that participants can switch
between. Such an approach is problematic due to the high
equipment requirements. Also, the ability to switch
between video feeds made it difficult for users to
understand what elements of the visual environment were
shared.

An alternative strategy is to identify the key types of visual
information used in side-by-side settings and to design or
implement systems to provide the critical elements of
shared visual space to remote collaborators. Fussell and
colleagues [16], for example, assessed the value of two
different video systems—a head-mounted video system
with eye-tracking capability and a scene camera that
provides a wider view of the work area—on a robot
construction task. Each video system matches up to one or
more sources of visual information provided by physical
co-presence. Performance with the scene camera was faster
than with audio-only, while the head-mounted camera with
eye tracking capabilities provided little benefit. Moreover,
the combination of head-mounted camera and scene camera
led to longer performance times than the scene camera
alone. The study highlights some of the difficulties of
using video systems to deliver theoretically relevant visual
cues.

A possible explanation for the marginal utility of the head-
mounted camera is that the head-mounted camera shows
where the worker is looking, not where the helper wants to
look. Perhaps, when the worker is assembling a certain part
of the robot, the helper wants to look around the workspace
for the next piece. The head-mounted camera will only
show the worker putting the piece together during this task
phase and the helper is forced to be idle, as he or she
cannot immediately access the desired visual information.
In order to design effective video systems to support
collaborative physical tasks, it is important to know what
visual information the helper needs at each stage of the
task. One way to investigate this issue is using eye-
tracking methodology to track helpers’ gaze patterns. We
discuss this possibility in the next section.

Eye-Tracking as a Method for Understanding
Visual Information in Collaborative Physical
Tasks
Eye-tracking methods allow investigators to obtain a fine-
grained understanding of people’s use of visual
information. A number of studies have used eye-tracking to
investigate relationships between gaze and actions in non-
collaborative physical tasks (e.g., [32], [33], [40]) and in
complex athletic behaviors (e.g., [38], [46]).

Eye-tracking has also been used as a tool to understand
interpersonal communication (e.g., [9], [26]). These studies
have typically used a referential communication task in
which one person describes a series of objects for another
person, who must find the target in an array of alternatives.

Other studies have used eye-tracking to determine people’s
focus of attention in conversation. Vertegaal et al. [45]
examined gaze at partners during a four-person conversation
about current events and found that gaze strongly indicated
participants’ focus of attention. Stiefelhagen & Zhu [42]
also studied gaze during four-party conversations with a
focus on how head and eye movements were associated as
cues of attention. Gullberg [22] studied gestures in
conversational settings and found that consistent with
previous research, (e.g., [1]) listeners do not always fixate
speakers’ gestures. In a slightly different vein, Dabbish and
Kraut [8] used eye-tracking to investigate the effects of the
degree of detail presented in online awareness notifications
about a partner’s status on the timing of electronic
communications.

With the exception of the Dabbish and Kraut study, none
of the studies described above looked at conversations in
which participants had to manipulate objects or perform
other physical activities while they were conversing. There
are, however, some recent studies that provide strong
evidence that people naturally look at objects or devices
with which they are interacting. Campana and colleagues
[3] describe a system that uses a speaker’s eye movements
to determine what he or she is referring to, and hence
improve the performance of a dialogue system. Maglio and
colleagues [34] investigated people’s speech and gaze when
interacting with an “office of the future” and found that
subjects nearly always looked at the addressed device before
making a request. Similar results are reported by Brumitt et
al. [2].

In the most relevant study to the current investigation,
Fussell et al. [17] used eye-tracking to determine the
relative importance of different visual resources (e.g.,
partners’ faces, partners’ actions, task pieces) in a
collaborative robot construction task. Results suggested
that helpers look more often and for longer durations at the
object being constructed, task pieces and tools, and the
worker’s hands than they look at the worker’s face and
other aspects of the work environment.

Although the Fussell et al. study is useful for
understanding how helpers make use of visual information
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during collaborative physical tasks, it suffered from some
limitations that reduce its usefulness for system design.
First, because the visual scene was constantly changing,
gaze targets had to be hand-coded rather than automatically
calculated from gaze coordinates within a set frame. This
induces an undesirable level of error in the calculations.
Second, there was no single unit of time that could be
applied both to speech and to gaze coding, so it was
impossible to investigate relationships between message
content and visual requirements. Third, workers’ actions
were not taped or coded, so the investigators could not
determine how these actions impacted helpers’ gaze.

In the current study, we use a collaborative online jigsaw
puzzle task adapted from Kraut and colleagues ([19], [20],
[28]) to provide more detailed and accurate information
about interrelationships among gaze, speech and actions. In
this task, a remote helper verbally instructs a worker to
arrange color blocks on a computer screen in a way that
matches a target puzzle. The workers’ work area can be
yoked to the helper’s screen, so that there is visual evidence
of the worker’s puzzle construction actions.

Previous studies using online puzzle tasks ([19], [20], [28])
suggest that it provides a useful analog of real-world 3D
tasks in which variables of interest can be tightly
controlled. In addition, the online puzzle task has two
important benefits for the investigation of gaze: First, the
helper’s focus of attention can be automatically and
robustly computed on a 2-D plane, allowing for a detailed
understanding of where helpers are looking and minimizing
errors induced by hand-coding gaze. Second, the time
stamping of the automatically processed gaze coordinates
can be lined up precisely with the time stamping of
utterances and worker actions. This is generally not
possible with 3D tasks.

Figure 1. Helper’s display in the online puzzle task.
The solution to the puzzle (target) is shown in the

center bottom. The pieces bay, from which pieces can
be selected, is shown on the upper right. The

workspace, where the worker is assembling the puzzle,
is shown on the upper left.

THE CURRENT STUDY
In our version of the online jigsaw puzzle task, both the
workspace, in which the worker is constructing the puzzle,
and the pieces bay, in which the puzzle pieces are stored
until use, are yoked to the helper’s screen. Helpers can thus
direct their gaze such that they obtain visual evidence of the
piece the worker is selecting or visual evidence of the
workspace where the worker is assembling the puzzle, but
not both at the same time. In addition, the target puzzle
solution is presented online as a third possible gaze target.
(Figure 1).

In this study we analyze how helpers distribute their visual
attention across the workspace, puzzle piece bay, and target
puzzle. We give some examples of how the two sources of
visual cues can facilitate different phases of the puzzle task
in Table 2.

Table 2. Functions of the two shared visual sources in
four sample task phases.

Visual Information

Task Phase Workspace Pieces Bay

Helper specifies a
color piece

By looking at the
current progress of
the task the helper
can decide which
color piece the
worker needs next

The helper needs
to describe the
c o l o r  p i e c e
accurately

Helper specifies
the location of
the single color
piece

The helper needs
to know where the
g rabbed  co lo r
piece should go

N/A

Worker grabs a
color piece

The helper can
p lan  how to
d e s c r i b e  t h e
location for that
piece

The helper can
monitor whether
the worker i s
grabbing the right
piece

Worker positions
a color piece in
the workspace

The helper can
confirm whether
t h e  w o r k e r
positions the color
piece correctly

N/A

Each puzzle, which is composed of a certain number of
color blocks, is characterized by two parameters:
complexity and color difficulty. We employed eye-tracking
technology to compute and record the intersection of the
helper’s line of sight and the screen plane. We also tracked
and recorded the worker’s movements, both in the
workspace and the pieces bay.

Hypotheses
To analyze the influence of the task characteristics on the
helper’s focus of attention, we examine four hypotheses.
These hypotheses are formulated in terms of percentage
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gaze directed at the pieces bay vs. the other two gaze targets
(workspace, target puzzle):

1. Less differentiability among pieces will lead to greater
percentage gaze at the pieces bay. We hypothesized that
the helper would look at the pieces bay more when the
colors are more difficult to differentiate. With difficult-to-
differentiate colors, there is less certainty that the worker
can correctly identify the piece and therefore a greater need
for visual evidence of the workers’ understanding.

2. Greater puzzle complexity will be associated with
greater percentage gaze at the pieces bay. We hypothesized
that the helper would look at pieces bay more when there
are more color blocks in the task, again because of a greater
need for visual evidence of the workers’ understanding.

3. Gaze at the pieces bay will decrease over trials. We
hypothesized that the helper would spend less time looking
at the pieces bay over trials, because the helper will
establish grounding of the colors with the worker. That is,
with repeated successes, the helper will become more
confident that the worker can identify the piece from his/her
description and therefore require less visual evidence of
comprehension.

4. Helpers’ gaze toward the workspace and pieces bay will
be correlated with actual worker actions in those areas.
Our assumption is that helpers look in these regions for
visual information because the evidence of the worker’s
understanding they require is, in fact, in these areas.

In addition to testing these hypotheses, we perform a
preliminary exploration of the relationship between the
content of helpers’ messages and their eye gaze.

METHOD
Design
The design formed a 2 (piece differentiability) by 3 (puzzle
complexity) by 9 (trial) factorial within-subjects study. The
factors manipulated were whether the pieces were solid or
shaded, the number of color pieces in the target puzzle and
the difficulty in differentiating the color blocks. The three
puzzles for each level piece differentiability (solid vs.
shaded) were presented in a single block.  The order of
presentation of puzzles was counterbalanced across
participants.

Participants
Twenty-four college undergraduate and graduate students,
all with normal color vision, participated in this study for
$15 each.

Equipment and Software
The eye tracking system consisted of an ISCAN RK-
426PC pupil/corneal reflection tracker, an ISCAN HMEIS
head mounted eye-imaging system with head tracking
sensor, a Polhemus InsideTRAK magnetic position sensor,
and a stand-alone scene camera (see Figure 2).

Before the task, the helper’s display’s 3-D coordinates
relative to the Polhemus magnetic sensor were registered
into the software. The experimenter then calibrated the
helper’s eyes by asking him/her to look at five stationary
points on the display. After calibration, the software could
compute the helper’s line-of-sight with his/her eye position
and head position. The intersection of the line-of-sight and
the defined plane, which was the helper’s display, was also
calculated and overlaid on the video of the scene camera in
real-time. The software recorded the calculated coordinates
at a frequency of 60HZ.

The video of the scene camera overlaid with the helper’s
eye gaze and the movement of the worker were recorded on
a Panasonic DV-VCR. Wireless microphones were used to
record the conversation between the subjects.

Figure 2. System setup on the helper’s side. The
pupil/corneal reflection tracker and the head tracking

sensor are on the helper’s helmet, the Polhemus
magnetic position sensor is behind the helper, and by

the side from behind there is a stand alone scene
camera taking videos of the helper’s display.

The helper’s display was designed in the way that the 3
areas (workspace, pieces bay, and target) were positioned
in a triangular shape (Figure 1 above). Therefore, the helper
could shift his/her eye gaze from one area directly to one of
the other two areas. To obtain the helper’s focus of
attention at a specific time we registered the index of one of
the areas with the recorded eye gaze coordinates at that
time. Nevertheless, due to the zero error of the magnetic
sensor and the pupil/corneal reflection tracker, the absolute
coordinate itself is not a reliable metric. To overcome this,
we made use of the global information: for each section we
clustered all eye gaze points by using K-Means vector
quantization (VQ) method. We chose 3 initial centers
located triangularly. Within 10 iterations the algorithm
converged and the outputs were 3 new centers. Given an
eye gaze coordinate, we classified the focus of attention
with the index of its closest center. An example of eye gaze
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Workspace Pieces

Target Puzzle

coordinate distribution from one section of the tasks and
the clustering result are shown in Figure 3.

Figure 3. An example of eye gaze distribution from one
section of the tasks. After running K-Means VQ

algorithm we got 3 clusters and classified each point’s
focus of attention.

Materials
18 target color puzzles were created by randomly selecting
color blocks and forming configurations of 5, 10 or 15
pieces (see Figure 4). There were 6 different puzzles for
each level of complexity.

Figure 4. Examples of puzzle configurations with 5, 10,
and 15 pieces, respectively.

For every puzzle complexity, three of the target color
puzzles were formed from the pieces pool that was easily
differentiated – there were at most two shades of the same
color in the pieces pool. For example, there were only two
different greens, bright green and dark green. The other
three target color puzzles were formed from the pieces pool
that was harder to differentiate—there were five shades of
the same color in the pieces pool. For example, the RGB
values of the five different greens were e6ffe6, b3ffb3,
80ff80, 4dff4d and 00dd00 (in hexadecimal). The orders of

the 18 puzzles were counterbalanced by puzzle complexity
and color difficulty.

LCD screen monitors were used as they displayed the
colors more clearly that CRT monitors. Figure 5 shows the
layout on the worker’s screen.

Figure 5. Worker’s display, with the pieces bay shown
on the right and the workspace shown on the left.

Workers’ actions in these areas were transmitted to the
helper’s display, as shown in Figure 1.

Procedure
Participants were randomly assigned to the helper and
worker roles upon arrival for the study. They were then
seated in the same room at their respective computer
terminals with a barrier between them such that they could
hear but not see one another.

The experimenter then calibrated the eye-tracker on the
helper. After the calibration, the helper gave verbal
instructions to the worker on how to move and arrange the
color blocks from the pieces bay to the workspace such that
configuration of the color blocks in the workspace matches
that of the color blocks in the target area. The worker, who
was allowed to converse freely with the helper and ask
questions whenever necessary, would then drag-and-drop
the color blocks based on the helper’s instructions from the
pieces bay to the workspace. The helper was able to see the
worker’s pieces bay and workspace and the worker’s drag-
and-drop movement as he or she gave the instructions.

When a puzzle was completed, the experimenter helped the
helper select the next puzzle, such that the helper did not
need to operate the computer at all. A 5-minute break was
taken after 9 puzzles of the same color difficulty were
completed to prevent eye-fatigue. After the break, the
experimenter calibrated the eye-tracker on the helper again
before resuming. Sessions lasted 60 to 90 minutes. During
the tasks, the coordinates of the helper’s eye gaze, the
dialogue between the partners, and the movement of the
worker are recorded.
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RESULTS
Statistical Analysis
Data was analyzed using a mixed-model design in which
subjects was a random factor and shading, puzzle
complexity, trial, and block were fixed-subjects. This
model takes individual differences in gaze into account
while computing the fixed effects.

For the current analyses, we focus on percentage gaze
directed at the pieces bay. However, because gaze toward
the target (puzzle solution) remained relatively constant,
gaze toward the pieces bay and gaze toward the workspace
are inversely related (r = -.76). Consequently, the results
for gaze toward the workspace show essentially the same
pattern of significance but in the opposite direction.
Overall, the fit of this model to the data was excellent (R
Square = .69). A total of 18% of the variance was
accounted for by the subject variable.

Puzzle Characteristics: Shading and Pieces
Gaze toward the pieces bay was significantly higher for
shaded than for solid pieces (F [1, 182] = 255.98, p <
.0001), supporting Hypothesis 1 (see Figure 6). Contrary
to Hypothesis 2, however, gaze toward the pieces bay was
significantly lower for puzzles with more pieces (F [2, 182]
= 11.28, p < .0001). There was no interaction between
shading and puzzle complexity (F < 1, ns).
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Figure 6. Percentage of gaze directed toward the pieces
bay as a function of piece discriminability (shading)

and puzzle size.

Effects of Trial
Participants completed 9 trials per block of solid or shaded
pieces, grouped into 3 puzzles of each puzzle size
(counterbalanced across participants). We hypothesized that
helpers would spend less time monitoring the pieces bay
over trials. Consistent with this hypothesis, we found a
significant effect of trial (F [1, 182] = 37.68, p < .0001).
However, as can be seen in Figure 7, the trial effect only
held for the easy to describe (solid) pieces; for shaded

pieces, gaze toward the pieces bay remained high across all
trials (for the interaction, F [1, 182] = 27.49, p < .0001).
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Figure 7. Percentage gaze directed at the pieces bay as a
function of piece discriminability and trial.

Relationship between Gaze and Worker
Actions
Worker actions were automatically detected and mapped
onto the coordinates of the visual field to determine
whether they occurred in the workspace or the pieces bay.
Consistent with Hypothesis 4, gaze toward the workspace
occurred 50% of the time that workers acted in this
workspace. Gaze toward the pieces bay was higher when the
worker was acting in that area, but just over 40% overall.
This is probably due to the low levels of gaze toward the
pieces bay for the solid colors in the later trials.
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Figure 8. Helper gaze as a function of worker actions in
the workspace and pieces bay

Relationships between Message Content
and Gaze
In order to analyze the relationships between the content of
helpers’ instructions and their eye gaze, we devised an
automated parsing program that separates each transcribed
utterance into clauses describing the next piece of the
puzzle and clauses describing where to place that piece in
the puzzle. The start and end time of each clause were
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labeled by an automatic speech recognition system, at
accuracy of 10 milliseconds. We then computed eye gaze
distributions in all clause segments. A preliminary
evaluation of the parser showed that it correctly classified
94.5% of the clauses in 238 test sentences from five
participants.

In Figure 9, we show the data from a sample of messages
describing shaded puzzles from the first five participants in
this study. This preliminary data clearly shows that gaze
pattern varies as a function of the phase of instruction
(description of the next piece vs. description of its location
within the puzzle). When describing a piece, helpers
overwhelmingly look at the pieces bay, whereas when they
are describing a location, they are much more likely to look
at the workspace.
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Figure 9. Relationship between helper message content
and gaze toward workspace, pieces bay and target for

shaded targets

DISCUSSION
The goals of this study were to understand how task
properties such as the ability to distinguish among task
pieces and repeated trials affect helpers’ gaze during a
collaborative task. Hypothesis 1 stated that when pieces
were harder to discriminate (shades in the same color
family), helpers would spend more time gazing at the
pieces bay, to ensure that workers selected the correct piece
on the basis of their instructions. This hypothesis was
strongly confirmed.

Hypothesis 2 stated that when puzzles were more complex,
as defined by the number of pieces involved, helpers would
look more at the pieces bay. Instead, we found the opposite
pattern of results. In retrospect, we believe that this is
consistent with a view of gaze as a method of grounding
utterances: As larger puzzles are constructed, there are fewer
and fewer remaining pieces, making it less necessary for
helpers to monitor the pieces bay for evidence of workers’
comprehension.

Hypothesis 3 stated that over repeated trials, helpers would
look less at the pieces bay because helpers and workers
would have previously established common ground
specifying what was meant by a given color description.
This hypothesis was confirmed, but further analysis
showed that the effect held only for the solid color, easy to
distinguish pieces. For the more difficult shaded pieces,
there was no effect of trial whatsoever. This suggests that
even with prior evidence of comprehension, when task
elements are particularly difficult to differentiate, helpers
require visual evidence of workers’ comprehension.

Hypothesis 4 stated that helpers’ gaze would be correlated
with actual worker actions. Although our results are
consistent with this hypothesis, they are not conclusive.
One problem is that the time frame within which these
calculations are made may be too narrow. On average a
worker drags/drops the mouse 3.22% of the time during the
task. Moreover, taking a color piece from the pieces bay is
much faster than positioning it in the workspace. The
majority (75.80%) of the mouse movements happened in
the workspace area.

A much more promising preliminary finding is that the
part of the instruction currently being uttered is strongly
associated with the primary focus of gaze. This suggests
that automated real-time speech recognition and parsing
techniques, once they are made robust, could be used to
drive camera choices much as is done in automated
auditoriums [11]. Although automated speech recognition
remains a complicated technical challenge, we have found
that for certain types of tasks, such as our puzzle or robot
construction tasks (e.g., [15], [16]), the vocabulary appears
to be sufficiently limited that automated speech recognition
is feasible.

While the results suggest that automatic camera switching
may be feasible, more work will be required before such a
system can become a reality. Our current model can predict
gaze toward the workspace or pieces bay at a significantly
better than chance level, but it is far from 100% accurate.
We are currently revising our models to improve predictive
accuracy in two ways: First, we are performing full parsing
of the transcripts to test whether the relationships we have
found between part of utterance and gaze will hold across
all subjects and trials. Second, we are using different
windows of analysis to provide a better test of our
hypothesis that helper gaze would be associated with
worker actions.  Finally, we are exploring new ways to do
online prediction of sentence clause contents.

In future work, we will be conducting Wizard of Oz
experiments to determine what level of accuracy in camera
view selection people will find acceptable. We will also be
broadening the scope of the work by applying our
techniques to 3D collaborative physical tasks using an
object marker system that will allow us to process gaze
toward different targets as reliably in mobile tasks as we
can in our current online puzzle simulation.
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CONCLUSION
In summary, the results demonstrate that the amount of
time helpers look at different targets can be reliably
predicted by task characteristics and repeated trials.  The
results are consistent with a grounding view of
communication, in which helpers seek visual evidence for
workers’ understanding when they lack confidence of that
understanding either from a shared common vocabulary
(color pieces) or previous interaction (trials). In addition,
the preliminary results showing relationships between
utterance parts and gaze suggest that with a robust real-time
parser, camera shifts could be automated to show helpers
what they need to see, at the time they need to see it.

ACKNOWLEDGEMENTS
This research was funded by National Science Foundation
Grant #0208903. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation. We thank Darren Gergle for
his statistical advice, Leslie Setlock for her editorial
assistance, and Xilin Chen for his help on setting up the
Polhemus tracker. We also thank the five anonymous
reviewers for their very helpful comments and suggestions.

REFERENCES
[1] Argyle, M., & Cook, M. (1976). Gaze and Mutual

Gaze. Cambridge: Cambridge University Press.

[2] Brumitt B., Krumm J., Meyers B., & Shafer S.
(2000). Let there be light: Comparing interfaces for
homes of the future. IEEE Personal Communications,
August 2000.

[3] Campana, E., Baldridge, J., Dowding, J., Hockey, B.
A., Remington, R. W., & Stone, L. S. (2001). Using
eye movements to determine referents in a spoken
dialogue system. In Proceedings of the 2001 workshop
on Perceptive user interfaces  (pp. 1–5).

[4] Chambers, C. G., Tanenhaus, M. K., Eberhard, K.
M., Filip, H., & Carlson, G. N. (2002).
Circumscribing referential domains during real-time
language comprehension. Journal of Memory and
Language, 47, 30-49.

[5] Clark, H. H. & Marshall, C. E. (1981). Definite
reference and mutual knowledge. In A. K. Joshi, B. L.
Webber & I. A. Sag (Eds.), Elements of discourse
understanding (pp. 10-63). Cambridge: Cambridge
University Press.

[6] Clark, H. H. & Wilkes-Gibbs, D. (1986). Referring as
a collaborative process. Cognition, 22, 1-39.

[7] Clark, H. H. (1996). Using language. Cambridge,
England: Cambridge University Press.

[8] Dabbish, L. & Kraut R. (2004). Controlling
interruptions: Awareness displays and social
motivation for coordination. Proceedings of CSCW
2004 (pp. 182-191). NY: ACM Press.

[9] Eberhard, K. M., Spivey-Knowlton, M. J., Sedivy, J.
C., & Tanenhaus, M. K. (1995). Eye movements as a
window into real-time spoken language processing in
natural contexts. Journal of Psycholinguistic Research,
24, 409-436.

[10] Endsley, M. (1995). Toward a theory of situation
awareness in dynamic systems. Human Factors, 37,
32-64.

[11] Farid. M,, Murtagh., F., and Starck., J.L. (2002)
Computer display control and interaction using eye-
gaze,  Journal of the Society for Information Display,
10, 289-293.

[12] Ford, C. E. (1999). Collaborative construction of task
activity: Coordinating multiple resources in a high
school physics lab. Research on Language and Social
Interaction, 32, 369-408.

[13] Frey L. A., White, K. P. Jr., & Hutchinson T. E.
(1990). Eye-gaze word processing. IEEE Transactions
on Systems, Man and Cybernetics, 20, 944–950.

[14] Fussell, S. R., Kraut, R. E., & Siegel, J. (2000).
Coordination of communication: Effects of shared
visual context on collaborative work. Proceedings of
CSCW 2000 (pp. 21-30). NY: ACM Press.

[15] Fussell, S. R., Setlock, L. D., Yang, J., Ou, J.,
Mauer, E. M., & Kramer, A. (2004). Gestures over
video streams to support remote collaboration on
physical tasks. Human-Computer Interaction, 19, 273-
309.

[16] Fussell, S. R., Setlock, L. D., & Kraut, R. E. (2003).
Effects of head-mounted and scene-oriented video
systems on remote collaboration on physical tasks.
Proceedings of CHI 2003 (pp. 513-520). NY: ACM
Press.

[17] Fussell, S. R., Setlock, L. D., & Parker, E. M.
(2003). Where do helpers look? Gaze targets during
collaborative physical tasks. CHI 2003 Extended
Abstracts (pp. 768-769). NY: ACM Press.

[18] Gaver, W., Sellen, A., Heath, C., & Luff, P. (1993)
One is not enough: Multiple views in a media space.
Proceedings of Interchi '93 (pp. 335-341). NY: ACM
Press.

[19] Gergle, D., Kraut, R.E., & Fussell, S.R. (2004).
Action as language in a shared visual space.
Proceedings of CSCW 2004 (pp. 487-496). NY: ACM
Press.

[20] Gergle, D., Millan, D. R., Kraut, R. E., & Fussell, S.
R. (2004). Persistence matters: Making the most of
chat in tightly-coupled work. CHI 2004 (pp. 431-438).
NY: ACM Press

[21] Goodwin, C. (1996). Professional vision. American
Anthropologist, 96, 606-633.

[22] Gullberg, M. (2003). Eye movements and gestures in
human face-to-face interaction. In J. Hyona, R.
Radach, & H. Deubel, (Eds.) The Mind’s Eyes:

239



CHI 2005  ׀  PAPERS: Eye Gaze and Multimodal Integration Patterns April 2–7 ׀  Portland, Oregon, USA 

 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Cognitive and Applied Aspects of Eye Movements (pp.
685-703). Oxford: Elsevier Science.

[23] Hutchinson T. E., White, K. P. Jr., Martin, W. N.,
Reichert, K. C., & Frey L. A. (1989). Human-
computer interaction using eye-gaze input. IEEE
Transaction on Systems, Man, and Cybernetics, 19,
1527–1534.

[24] Jacob, R. J. K. (1993). Eye-movement-based human-
computer interaction techniques. In H. R. Hartson  &
D. Hix (Eds.), Advances in Human-Computer
Interaction, Vol. 4 (pp. 151–190). Norwood, NJ:
Ablex.

[25] Jefferson, G. (1972). Side sequences. In D. Sudnow
(Ed.) Studies in social interaction (pp. 294-338). NY:
Free Press.

[26] Keysar, B., Barr, D. J., Balin, J. A., & Brauner, J. S.
(2000). Taking perspective in conversation: The role of
mutual knowledge in comprehension. Psychological
Science, 11, 32-38.

[27] Kraut, R. E., Fussell, S. R., & Siegel, J. (2003).
Visual information as a conversational resource in
collaborative physical tasks. Human Computer
Interaction, 18, 13-49.

[28] Kraut, R.E., Gergle, D., & Fussell, S.R. (2002). The
Use of visual information in shared visual spaces:
Informing the development of virtual co-presence. In
Proceedings of CSCW 2002 (pp. 31-40). NY: ACM
Press.

[29] Kraut, R. E., Miller, M. D., & Siegel, J. (1996)
Collaboration in performance of physical tasks: Effects
on outcomes and communication. Proceedings of
CSCW 1996 (pp. 57-66). NY ACM.

[30] Kuzuoka, H., Kosuge, T., & Tanaka, K.. (1994)
GestureCam: A video communication system for
sympathetic remote collaboration. Proceedings of
CSCW 1994 (pp. 35-43). NY: ACM.

[31] Kuzuoka, H., Oyama, S., Yamazaki, K., Suzuki, K.,
& Mitsuishi, M. (2000). GestureMan: A mobile robot
that embodies a remote instructor's actions.
Proceedings of CSCW 2000 (pp. 155-162). NY: ACM
Press.

[32] Land, M., & Hayhoe, M. (2001). In what ways do eye
movements contribute to everyday activities. Vision
Research, 41, 3559-3565.

[33] Land, M., Mennie, N., & Rusted, J. (1999). The roles
of vision and eye movements in the control of
activities of daily living. Perception, 28, 1307-1432.

[34] Maglio P., Matlock T., Campbell C. S., Zhai S., &
Smith, B. A. (2000). Gaze and speech in attentive user
interfaces. Proceedings of the International Conference
on Multimodal Interfaces. Springer.

[35] Oh, K., Kramer, A. D. I., & Fussell, S. R. (in
preparation). Comparison of scene and laser pointing

video systems for remote collaboration on physical
tasks.

[36] Ou, J., Fussell, S. R., Chen, X., Setlock, L. D., &
Yang, J. (2003). Gestural communication over video
stream: Supporting multimodal interaction for remote
collaborative physical tasks. In Proceedings of
International Conference on Multimodal Interfaces,
Nov. 5-7, 2003, Vancouver, Canada.

[37] Ou, J. (unpublished). DOVE-2: Combining gesture
with remote camera control.

[38] Oudejans, R. R. D., Michaels, C. F., Bakker, F. C.,
& Davids, K. (1999). Shedding some light on
catching in the dark: Perceptual mechanisms for
catching fly balls. Journal of Experimental
Psychology: Human Perception and Performance, 25,
531-542.

[39] Daly-Jones, O., Monk, A. & Watts, L. (1998). Some
advantages of video conferencing over high-quality
audio conferencing: fluency and awareness of
attentional focus. International Journal of Human-
Computer Studies, 49, 21-58.

[40] Pelz, J. B., & Canosa, R. (2001). Oculomotor
behavior and perceptual strategies in complex tasks.
Vision Research, 41, 3587-3596.

[41] Salvucci, D. (1999). Inferring intent in eye-based
interfaces: Tracing eye movements with process
models. Proceedings of CHI 1999 (pp. 254-261). NY:
ACM Press.

[42] Stiefelhagen, R., Yang, J., & Waibel, A. (2002).
Modeling focus of attention for meeting indexing
based on multiple cues. IEEE Transactions on Neural
Networks, 13, 928-938.

[43] Tang, J. C. (1991). Findings from observational
studies of collaborative work. International Journal of
Man-Machine Studies, 34, 143-160.

[44] Veinott, E., Olson, J., Olson, G., & Fu, X. (1999).
Video helps remote work: Speakers who need to
negotiate common ground benefit from seeing each
other. Proceedings of CHI 1999 (pp. 302-309). NY:
ACM Press.

[45] Vertegaal, R., Slagter, R., van der Veer, G., &
Nijholt, A. (2001). Eye gaze patterns in conversations:
There is more to conversational agents than meets the
eyes. Proceedings of CHI 2001 (pp. 301-308). NY:
ACM Press.

[46] Vickers, J. N. (1996). Visual control when aiming at a
far target. Journal of Experimental Psychology: Human
Perception and Performance, 22, 342-354.

[47] Whittaker, S., & O’Conaill, B. (1997). The role of
vision in face-to-face and mediated communication. In
K. Finn, A.Sellen & S. Wilbur (Eds.) Video-Mediated
Communication (pp. 23-49). Mahwah, NJ: Erlbaum.

240


