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Abstract. In this paper, we present biometric person recognition experiments in 
a real-world car environment using speech, face, and driving signals. We have 
performed experiments on a subset of the in-car corpus collected at the Nagoya 
University, Japan. We have used Mel-frequency cepstral coefficients (MFCC) 
for speaker recognition. For face recognition, we have reduced the feature  
dimension of each face image through principal component analysis (PCA). As 
for modeling the driving behavior, we have employed features based on the 
pressure readings of acceleration and brake pedals and their time-derivatives. 
For each modality, we use a Gaussian mixture model (GMM) to model each 
person’s biometric data for classification. GMM is the most appropriate tool for 
audio and driving signals. For face, even though a nearest-neighbor-classifier is 
the preferred choice, we have experimented with a single mixture GMM as 
well. We use background models for each modality and also normalize each 
modality score using an appropriate sigmoid function. At the end, all modality 
scores are combined using a weighted sum rule. The weights are optimized  
using held-out data. Depending on the ultimate application, we consider three 
different recognition scenarios: verification, closed-set identification, and  
open-set identification. We show that each modality has a positive effect on  
improving the recognition performance. 

1   Introduction 

Biometric person identification is a new and exciting research area which finds appli-
cation in many different problems related to authentication, access control, keyless 
entry, and secure communications. Application of person and behavior identification 
in a vehicular environment has also attracted interest recently. This paper presents ex-
periments for recognizing people in moving vehicles. 

Due to competition in automotive industry, it is not too far when we will have 
cameras, microphones and various other sensors inside a vehicle that will gather and 
process multimedia data with the purposes of safer driving, improved comfort of 
driver and the passengers, and secure communications. Recognizing people in a car 
will be important to achieve the following benefits [1]: 
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1. Ensuring safety of the vehicle by requiring authorization before and/or during 
driving a car to make sure the current driver is an authorized driver, 

2. Personalizing the vehicle suiting the driver’s physical and behavioral charac-
teristics, thereby, creating a comfortable, safe and efficient driving environ-
ment which minimizes distractions, and hence avoidance of many accidents 
attributed to driver distraction,  

3. Providing safety to the vehicle, people, and goods in a commercial vehicle, 
via passive and active warning systems, even enabling authorities to disallow 
a driver who should not be or is not in a condition to be behind a wheel, 

4. Opening opportunities to secure mobile transactions within a car, such as mo-
bile banking, using biometric authentication. 

There are serious challenges to person identification inside a car, especially if we 
are to assume no user cooperation. Over the past two decades, many algorithms, sys-
tems, and even technologies for speaker and face identification have been developed 
with varying degree of success (acceptable through excellent). Having been designed 
under idealized and controlled environments, however, both modalities suffer due to 
non-ideal conditions in real-world environments. In face recognition, for instance, 
change of illumination and pose, occlusions, facial expression, facial accessories, fa-
cial hair tend to deteriorate performance. For speaker recognition, external noise and 
channel effects, illnesses affecting the glottis and vocal tract, emotional speech may 
decrease performance. There are many studies to improve the performance of each 
modality within itself, such as to extract more robust features and to use more effi-
cient normalization methods. Unfortunately, most of the methodologies under consid-
eration are fairly mature and major breakthroughs are not forthcoming. Alternately, 
the research focus has shifted to the usage of multiple modalities together, so that 
when one of the modalities is not reliable or fails, other modalities can be relied upon.  

In this paper, we attempt to use three different modalities, namely, speech, face and 
driving signals to recognize drivers of moving vehicles. We use MFCC features for 
speech, PCA features for face and the features extracted from the pressure readings of 
the acceleration and brake pedals and their derivatives. We combine information from 
each modality by computing a weighted sum of normalized modality scores. We de-
termine the best weights by optimizing the verification performance on held-out1 data. 
We consider three different types of person recognition:  (i) verification, (ii) closed 
set identification, and (iii) open set identification, which will be explained in the next 
section. 

We report our experimental results on a twenty people subset of the in-car corpus 
collected by the Center for Integrated Acoustic Information Research (CIAIR) [2]. 
We organize the paper in the following way. After introducing types of person recog-
nition problems in section 2, we briefly introduce speaker and face recognition algo-
rithms in sections 3 and 4. We explain how we used driving signals to recognize peo-
ple in section 5. Next, we give details about our fusion algorithm. The experimental 
results are presented in section 7 and the conclusions are provided in section 8. 
                                                           
1  The held-out data is a portion of available training data that is not used during training or 

testing, but used to adjust certain parameters of the recognition system. Sometimes held-out 
data is called validation data. 
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2   Problem Formulation 

The task of recognizing people in vehicles is difficult for the following reasons: 

•   In vehicles, the subjects, especially the driver, are not expected to pose for 
the camera since their first priority is to operate the vehicle safely. Hence, 
there are large illumination and pose variations. In addition, partial occlu-
sions and disguise are common. 

•   The quality of video is usually low, and due to the acquisition conditions   
and the physical constraints in positioning the camera, the face image sizes 
are smaller (sometimes much smaller) than the assumed sizes in most exist-
ing still image based face recognition systems. 

• Speech acquisition in a car is prone to noise and channel distortions due to 
the engine and mechanical noise and reverberations in the vehicular cham-
ber. For comfort and ease of use, far-talking microphones are employed in-
stead of near-talking or head-set microphones, which decreases signal-to-
noise ratio significantly and makes speaker recognition much more difficult. 

Therefore, the use of multimodal biometrics becomes the most sensible route to 
follow for robust and reliable person identification inside a moving vehicle.  

As in all other applications, the person recognition inside a car can be formulated 
as either a verification problem or an identification task. In the verification problem, a 
person’s claimed identity is verified using her/his model in a known pool of subjects. 
On the other hand, one must be more careful in formulating an identification problem, 
which can be cast as either an open-set or a closed set identification problem. In the 
closed-set case, a reject scenario is not defined and an unknown subject is classified 
as one of the N-registered people. In the open-set case, the goal is to decide whether 
the person is among the registered people in the database or not. The system identifies 
the person if there is a match and otherwise rejects the claimed identity. Hence, the 
problem becomes an N+1-class identification problem, including a reject class. It is 
not difficult to see vehicle safety application can be addressed using an open-set iden-
tification scenario, while in-vehicle secure transactions application may be addressed 
under a verification task.  

3   Speaker Recognition Mode 

Speech signal is the most natural and non-invasive modality to identify a person in a 
vehicle. As in many other parametric speech processing applications, a set of features 
are extracted for each frame of speech over a short overlapping and advancing time 
window. It is worth noting that we preprocess speech signals to detect voice activity 
and extract features only from regions of audio where voice activity is present.  

Features used for speaker recognition differ slightly from the ones used for speech 
recognition. In this study, we have used 12 coefficients of the Mel-frequency cepstral 
coefficients (MFCC) feature vector [3], i.e., in order to avoid dependence on acquired 
voice’s energy, we have not included the energy coefficient. In this work, we did not 
use ∆  and ∆∆  features, which approximate first and second differences at the cur-
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rent frame respectively, as well, since their inclusion did not show noticeable im-
provement as reported in an earlier study [4].  

MFCC features are obtained using a filterbank of overlapping triangular filters 
placed according to the critical bands of hearing [3]. The logarithms of filter output 
energies are computed. Then a DCT transform of these log-filterbank-energies is 
taken to de-correlate and reduce the dimension of the feature set as follows: 
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where {ck} represent MFCC features and {mj} stand for log-filterbank-energies. 
These speaker features are considered as independent identically distributed random 
vectors drawn from a parametric probability density function (pdf). To model the 
pdf, Gaussian mixture models (GMM) are commonly used in speech processing 
community:  
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Here x represents the feature vector, kγ  are mixture coefficients and N( , , )k kx µ Σ are 

individual Gaussians for representing a particular speaker Si. For computational rea-
sons, kΣ  are chosen to be diagonal matrices. GMMs have been used in text-

independent speaker recognition with great success [5]. A popular way of using 
GMMs in speaker recognition is to train a large background speaker model (say with 
1024 Gaussians) and adapt this model to each speaker using that particular speaker’s 
data. GMM training is performed via the EM algorithm [6]. 
     In this paper, we train a GMM for each speaker from scratch and we use eight 
mixtures, which nevertheless gives satisfactory performance in this application. We 
had compared the performance of eight and sixteen mixtures in an earlier study [4] 
and obtained a better result using eight mixtures. During the testing phase, the per-
frame log-likelihood value of observed data 
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We also train a background model, one more GMM, with twice the number of mix-
tures. Background GMM is required for normalization in likelihood ratio testing for 
speaker verification. The log-likelihood of the observed data under the background 
model, Lg can also be computed in a similar way. For verification task, the Bayesian 
decision amounts to the comparison of the log-likelihood-ratio, Li-Lg to a threshold. 

Robustness against noise can be an important issue in speaker recognition, espe-
cially if the training and testing conditions are mismatched. In our case, we have had 
the training and testing conditions matched. Hence, we did not perform any specific 
robustness algorithm such as feature and score normalization. In our future studies, 
we plan to include algorithms for robustness against noise and channel effects. 
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4   Face Recognition Mode 

Among the plethora of face recognition methods, the paradigm based on face 
appearance data, template-based algorithms and their concomitant subspace 
versions, such as PCA and LDA methods are the most popular (see [7] for a 
comprehensive review). Since number of pixels in a face image can be rather large, 
it is reasonable to reduce feature dimension by projecting to a lower dimensional 
subspace. Thus, subspace projection techniques perform well for face recognition. 
Principal component analysis (PCA) is the most popular subspace projection 
technique used for face recognition [8-10].  

PCA computes a linear transformation that maximizes the total scatter of the face 
images in the projected space. PCA aims to determine a new orthogonal basis vector 
set that best reconstructs the face images in the mean-squared error sense. These or-
thogonal basis vectors, also called eigenfaces, are the eigenvectors of the covariance 
matrix of the face images, associated with the highest eigenvalues. 

In this study, we have trained a single Gaussian model for each person’s face. 
Since we are using video signals, it is feasible to obtain many face images of a single 
person and it is feasible to use a statistical model for recognition. The decision  
making process is identical to the speech case after the statistical model is built. 

5   Person Recognition Using Driving Signals 

Can drivers be identified from their driving behavior? or equivalently, is the driving 
behavior a biometric trait? To answer this question, researchers at CIAIR and the au-
thors of this paper have studied driving signals as measured by different sensors in the 
vehicle. Driving signals that were analyzed include pressure readings from accelerator 
and brake pedals, as well as the vehicle speed variations [11]. After trying Fourier 
analysis and multi-dimensional linear prediction techniques with limited success, both 
groups have employed GMM method to model driving signal characteristics. GMMs 
are successfully used for modeling speech signals in speaker recognition and are well-
suited for application to driving signals as well. We believe this can be attributed to 
the fact that temporal characteristics of driving signals exhibit quasi-stationary behav-
ior like speech. Smoothed and sub-sampled driving signals (acceleration and brake 
pedal pressures) and their first derivatives were used as features for modeling driving 
behavior of the drivers. Driving signals can be obtained by frequent sampling in time, 
thus we can collect ample data from a single person to train a statistical model. After 
feature extraction, the statistical modeling (driver/impostor models) part is just like 
the speech case. Similarly, we construct a GMM to model the driving features of each 
person and also train a background model.  

6   Fusion 

In this work, fusion of information from different modalities is performed at the 
matching score level, which is often called “decision fusion”. We have used the 
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weighted sum rule to combine scores from different modalities. As reported in litera-
ture [12, 13], the weighted sum rule is more robust against noise and other distur-
bances as compared to several other score combination rules, such as product rule, 
max rule and min rule, and often outperforms them. 

An important aspect of classifier combination at the score level is to carefully nor-
malize scores from each modality before the actual combination. Typical likelihood 
ranges for genuine and impostors could differ largely among modalities. Thus, log-
likelihood-ratio scores from different modalities cannot be directly superimposed. 
Therefore, it is logical to normalize scores to make them compatible. One way to 
normalize scores is to use the mean and standard deviation of likelihood scores ob-
tained from held-out validation data. Normalization can be performed using a sigmoid 
function which will map the scores to the (0,1) range.  
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Here Sk denotes the old log-likelihood-ratio score for the kth modality, Sk’ represents 
the new score. Furthermore, µ and σ are mean and standard deviation of old scores 
obtained on the validation set using all validation instances and all speaker models. In 
this work, we have used top 3Nt scores for Nt validation instances to compute the 
mean and standard deviation of scores, otherwise the mismatch scores (outnumbering 
genuine scores 19 to 1) would have dominated the statistics.  

After normalization, we compute the weighted sum of new scores for each valida-
tion test case using the following formula: 
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We have chosen fixed weights wk to minimize the verification equal error rate (EER) 2 
on the validation data. The minimization is performed by exhaustively searching the 
weight space. After determining the optimal values for the weights on the validation 
data, we have employed them during testing phase for test data to compute overall  
final scores. 

7   Experiments and Results 

CIAIR at Nagoya University in Japan has been collecting an in-car speech database 
since 1999 with a data collection vehicle they have designed [2]. This vehicle sup-
ports synchronous recording of multi-channel audio data from 12 microphones that 
can be placed in flexible positions, multi-channel video data from 3 cameras and the 
vehicle related data such as the vehicle speed, the engine rpm, the steering wheel  
angle, acceleration and brake pedal pressures, where each channel is sampled at  

                                                           
2  EER for verification is defined as the error rate when the false accept rate (FAR) is equal to 

the false reject rate (FRR) on the receiver operating characteristics curve which plots FRR 
versus FAR for different classification thresholds. 
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1.0 kHz. During the data collection stage, each subject has conversations with three 
types of dialogue systems. One is a human navigator, another is a Wizard of Oz  
system, and the last is a conversational system [2]. 

We have carried out person recognition experiments over a 20 person subset of the 
CIAIR database which consists of 812 drivers with well over a terabyte of data. We 
have used the camera facing the driver and the audio signal from the headset micro-
phone for each person as video and audio sources, respectively. The faces were hand-
cropped to 64x40 pixel size and non-silence audio sections were hand selected. We 
have smoothed and down-sampled the brake and acceleration pedal pressure readings 
by a factor of ten and their first derivatives to be the features for modeling the behav-
ior of the driver. This resulted in four features at 100 Hz. Twelve static MFCC  
features (excluding c0) at 100 Hz were used as audio features. For faces, the PCA 
method was used to reduce the feature dimension to 20 for each image frame. The 
frame rate is 25 frames per second for the video. 

From each driver, 50 image frames, 50 seconds of non-silence audio and around 
600 seconds of driving signals were utilized. We extracted features from this dataset 
and divided all features into 20 equal length parts for each driver and modality and 
number the parts from one to 20. When we have formed the multimodal test-sets, we 
have assumed that each modality part was associated with the parts that have the same 
number in other modalities. 

We have then performed a leave-one-out training procedure, where for each single 
testing part, seventeen parts were used for training and two parts were held-out for 
validation to optimize normalization parameters and fusion weights. This gave us 20 
tests for each person (each time the training data is different although not independ-
ent), leading to 400 (20x20) genuine tests total. GMMs were used with eight, one and 
eight mixture components for speech, face and driving signals, respectively. Back-
ground GMM models were trained for each modality as well [6].  

 

Fig. 1. System block diagram for training the multimodal driver recognition system 

Input 
image 

Input 
audio 

Input driving 
signals 

Face detection 
and localization 

Face 
Normalization 

PCA feature 
extraction 

Statistical 
modeling 

Voice activity 
detection 

MFCC feature 
extraction 

Statistical 
modeling 

Feature 
extraction 

Statistical 
modeling Model  

Inventory 

TRAINING: 



 Multi-modal Person Recognition for Vehicular Applications 373 

 

 

Fig. 2. System block diagram for testing the multimodal person recognition system 

Block diagram of our training procedure is shown in Figure 1. Person recognition 
system is illustrated in Figure 2. We performed verification, closed set identification 
and open set identification tasks with the data. For verification, we have assumed each 
person’s data as an impostor for the remaining 19 other drivers resulting at 7600 
(19x20x20) impostor tests in total. For open-set identification tests, we leave one 
identity out at a time and perform open-set identification using the remaining 19 as 
genuine identities. We cycle through the set of identities to leave a different identity 
out each time to obtain 20 different testing setups for each test data. This procedure 
gives us 7600 genuine tests and 400 impostor tests. In this paper, we define EER for 
open-set scenario as the error rate when false-accept rate among the impostor attempts 
is equal to the sum of false-reject and false-classify rates among the genuine attempts. 

The modalities were fused by the weighted score summation method mentioned 
earlier in section 6. Our findings from both the unimodal and multimodal perform-
ances are presented in Table 1.  

The results from single-mode identification and verification are encouraging. As 
expected, audio-only yields the best performance since the speech samples were from 
the close-talking headset microphone. In a controlled lab environment face recogni-
tion algorithm has performed very successfully [1]. But in the CIAIR database, driver 
face segments were fairly small in comparison to other studies [4] and hence the  
results are expectedly not as good. We expect to get significantly higher results from 
face modality by using a custom-designed camera built-in to the visor which can be 
focused primarily on the face of the driver. The results based on analog driving  
signals are quite satisfactory and show improvement over an earlier study [11].  
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Table 1. Closed-set person identification, person verification and open-set person identification 
results 

Modality Weights Closed-set ID  
(Accuracy %) 

Verification 
(EER %) 

Open-set ID 
(EER %) 

A Audio only 98.00 2.15 8.05 
F Face only 89.00 6.08 18.56 
D Driving only 88.25 4.00 21.06 
A+D (.62,.38) 99.25  0.83 3.75 
F+D (.43,.57) 98.00 1.62 8.86 
A+F (.63,.37) 99.75 0.50 1.75 
A+F+D (.47,.33,.20) 100.0 0.25 0.25 

Pair-wise fusion scenarios result in significantly better performance over the face-
only or driving-signals-only cases and even an incremental improvement is observed 
over the audio-only case. In many driver verification applications, an error rate of 0.5-
1.62 percent would be satisfactory. For open-set identification, an EER rate of 1.75 
percent, achieved by audio and face modalities, could be quite satisfactory as well.   

As expected, the inclusion of all three modalities increases the performance of the 
person recognition system to an encouraging level. We believe that error rates of ¼ 
percent can bring most of the applications cited at the introduction section to reality 
and commercially viable systems can be built. Using multi-modal person recognition 
in a car is even more important than these results reveal, since any one of these  
modalities may fail or become impractical in certain cases, such as during driving at 
night or when there is presence of radio or other speakers in the vehicle. 

However, we would like to point out that the results reported here are based on a 
relatively small data set and the investigators are experimenting with a much larger 
data set from the CIAIR corpus. We are also putting together a framework for a com-
prehensive and language/region-independent driver-specific data collection setup for 
the purposes of person recognition in a vehicle. 

8   Conclusion 

In this paper, we have introduced a multi-modal person recognition system that uses 
speech, face and driving signals for in-vehicle applications. It is interesting to note 
that, every modality has its own importance and improves the performance of the rec-
ognition system. Especially, it is interesting to see that driving signals are indicative 
of the person and those signals can be considered as a biometric trait which was not 
considered before.  

We have obtained very encouraging results from a 20 person subset of the CIAIR 
database and have observed improvement in every multi-modal combination that we 
tried. These results show that, multimodal person recognition in a car is very promis-
ing. We conjecture that the improvement will be more important for adverse condi-
tions when one of the modalities may become totally unreliable; nevertheless, it will 
still be possible to rely on the remaining modalities.  
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