
Modeling Background from Compressed Video

Weiqiang Wang1,2 Datong Chen1 Wen Gao2 Jie Yang1

School of Computer Science, Carnegie Mellon University, Pittsburgh, 15213, USA1

Institute of Computing Technology &Graduate School, Chinese Academy of Sciences, Beijing 100080, China 2

{wqwang, wgao}@jdl.ac.cn, {datong, jie.yang}@cs.cmu.edu

Abstract
Background models have been widely used for video

surveillance and other applications. Methods for

constructing background models and associated application

algorithms are mainly studied in the spatial domain (pixel

level). Many video sources, however, are in a compressed

format before processing. In this paper, we propose an

approach to construct background models directly from

compressed video. The proposed approach utilizes the

information from DCT coefficients at block level to construct

accurate background models at pixel level. We implemented

three representative algorithms of background models in the

compressed domain, and theoretically explored their

properties and the relationship with their counterparts in the

spatial domain. We also present some general technical

improvements to make them more capable for a wide range

of applications. The proposed method can achieve the same

accuracy as the methods that construct background models

from the spatial domain with much lower computational cost

(50% on average) and more compact storages.

1. Introduction

The explosive growth of video sources has created new

challenges for data transmission, storage, and analysis.

Various data compression technologies have been widely

used to solve problems of video transmission and storage.

We are now able to continuously record multiple video

streams from video cameras onto a computer hard disk using

hardware compression devices. However, how to process

these video data is still an open problem. Traditional

computer vision algorithms may not be efficient enough to

process huge video data, because most computer vision

algorithms are designed for uncompressed images in the

spatial domain. Suppose we record video at 30 frames per

second. For only one camera, we would have 2,592,000

frames per day. It is clear that we need more efficient ways

to process these video data.

Video surveillance is a major source that can generate

huge video data. Visual surveillance systems use video

cameras to monitor the activities of targets in a scene, such as

human activity in indoor environments and vehicles in

parking lots. It is very difficult, however, for a human

operator to remain alert for more than a few hours.

Automatic tracking technologies have been studied for

decades to replace or reduce human efforts. A fundamental

technology used in the existing tracking systems is

background subtraction, which segments moving regions in

an image sequence captured from a static camera by

comparing each new frame with a background model. A

crucial step of this technique is to obtain a stable and

accurate background model from a video sequence.

Much research has been directed to building background

models. Background models have been estimated from pixel

values at each location in a video sequence. Pixel values can

be gray or color. Basic methods are the average method [1],

the running average method, the median method [2], and the

selective average method. Advanced methods are mostly

based on statistical modeling techniques, such as the single

Gaussian estimator (pfinder) [3], the mixture of Gaussian

estimator [4], the kernel density estimator [5], the sequential

kernel density estimator [6], the mean-shift estimator [6], the

eigen background [7], and the robust PCA background [8].

Some methods also take the correlations of pixels with their

neighborhood into account [9]. All the above methods

require a video sequence in uncompressed format. On the

other hand, researchers in multimedia processing areas have

also proposed some methods for building background models

in the compressed domain [10][11][12][13]. They were

developed for segmenting moving objects or for encoding

purposes. Most algorithms use only Discrete Cosine

Transformation (DCT) DC coefficients and work on block

level. For example, the algorithm in [11] extracts objects at a

size of 8 by 8 blocks and can not obtain accurate object

contour. Furthermore, these algorithms are disconnected

from the spatial domain, where many computer vision and

image processing technologies have been developed.

In this paper, we propose an approach to model

background directly from a compressed video using DCT

coefficients. The proposed approach can not only efficiently

construct background models from compressed video but

also achieve accuracy as good as that of algorithms in the

spatial domain. This can lead to a more efficient framework

to process compressed video data from both compressed

domains and spatial domains. Furthermore, the proposed

approach can take advantage of the structure and available

information in the compressed video in implementing state-

of-the-art background modeling algorithms. For example,

when we use a mixture of Gaussian (MoG) to model the

background from compressed video, the model has less non-

zero parameters, because DCT coefficients are orthogonal.

The rest of the paper is organized as follows. In Section 2,

we introduce modeling a background in the spatial domain

and some basics for compressed video. We describe three

Second Joint IEEE International Workshop on Video Surveillance and Performance Evaluation of Tracking and Surveillance,

In conjunction with the Tenth IEEE International Conference on Computer Vision, Beijing, China, October 15-21, 2005.

common background models: running average, median, and

MoG, used in the spatial domain. In section 3, we present the

proposed method. We discuss implementations of running

average, median, and MoG in the compressed domain. The

proposed three algorithms can achieve the same or

comparable accuracy in the compressed domain as in the

spatial domain but with much less computational cost. This

means that those models obtained from the compressed

domain can be directly used in the spatial domain, which

bridges two domains together. In Section 4, we show the

experimental results. In Section 5, we conclude the paper.

2. Problem Description

The goal of background modeling is to automatically obtain

a static image that contains only background from a sequence

of video captured by a fixed camera. Intuitively, we consider

the main challenge of the background modeling is the

occlusions of foreground objects. In practice, there are many

other challenges from the motions of background objects and

illumination changes of the environment, for example, the

high-frequency background object motion (water waves, tree

branches, and CRT display), camera oscillations, long-term

static foreground object (e.g., a parked car), gradual lighting

changes from sunshine, sudden lighting changes from clouds

and regular lighting changes from indoor lights, etc.

2.1. Background Modeling in the Spatial Domain

Many background modeling methods have been proposed in

the spatial domain. Here, we overview three typical

algorithms in details. Lo et al. [1] proposed a fast algorithm

that constructs the background image as the average of the

previous n frames. The algorithm requires plenty of memory

to store the previous n frames. A alternative method is called

running average, which estimates the background 1tB from

only the current frame tF and the previous background tB :

1 1t t tB F B , (1)

where the learning rate is typically set as 0.05.

The drawback of these average methods is that the

foreground objects can leave some “ghosts” in the

background images. Cucchiara et al. [2] proposed to use a

median function to obtain the background. In this algorithm,

each location ,x y in the background image (,)tB x y at

time t is computed by the following equation:

,

0,..., 0

(,) arg min (,)
n

i j
t t

i n j

B x y D x y , (2)

where
,

{ , ,)
(,) max (,). (,).i j

t t i t j
c r g b

D x y F x y c F x y c , (3)

and the (,).tF x y c are the R, G, B values of the pixel at (x, y)

in the frame for time t .

We can also use selective algorithm to remove residues

from foreground objects. Each pixel in the current frame is

first classified as either foreground or background. Those

foreground pixels are not used in constructing the

background model. The difficulty of the selective method is

how to choose the classification threshold. Wren et al. [3]

proposed to fit one Gaussian distribution to the histogram of

the pixel values in previous n frames. This gives the

background PDF with variances rather than single means

(average values). Stauffer et al. [4] extended this idea into

MoG (,) ~ , ,i i i
t t t tB x y N w . Each pixel has a MoG,

which is firstly initialized by k-means and updated by every

new frame. The algorithm first computes the matching

models for each pixel (x, y):

1 (,) 2.5

0

i i
t t ti

t

F x y
M

otherwise
. (4)

The weights are then updated as:

11i i i
t t tw w M , (5)

where is a constant related to the speed of the distribution

change. The unmatched models remain the same and the

matched model is updated as:

11 (,)i i i i
t t t t tF x y and

11 ((,)) ((,))i i i i i T i
t t t t t t t tF x y F x y , (6)

where

2

2

(,)
exp()

2 2

i
t t

i
t i i

t t

F x y
.

We will implement the counterparts of these three

algorithms in the compressed domain in Section 3.

2.2 Compressed Video and DCT

To transmit and store video data efficiently, video

compression techniques are employed to reduce the size of

an image sequence by removing spatial and temporal

redundancy. According to the popular international standards

of video compression, such as MPEG-1, 2, 4, and H.26X, a

compressed video consists of I, P, B frames where P and B

frames can only be reconstructed by using adjacent I frames.

Each I frame is first partitioned into 8 by 8 pixel blocks in

the spatial domain, and then each pixel block is encoded as a

set of Discrete Cosine Transformation (DCT) coefficients.

The Discrete Cosine Transformation is defined as follows:

7 7

,
0 0

(,) (,) (,) , 0,1,...,7i j
i j

C u v I i j b u v u v (7)

where),(jiI is a pixel value at the location (,)i j in pixel

blocks, (,)C u v is a DCT coefficient matrix, which

characterizes the power distribution of signals with different

frequencies (,)u v . The basis matrix is defined by

,

(2 1) (2 1)
(,) () ()cos()cos()

16 16
i j

i u j v
b u v u v , (8)

where 1
()

2 2
s if 0s , 1

()
2

s , otherwise .

If we concatenate every column of the matrix (,)C u v

together into a 64-dimensional column vector c , and form

another column vector p using all the pixels of (,)I i j in

the same way, DCT can be rewritten into a compact matrix

multiplication, as

c Kp , (9)

where K is a 64 by 64 matrix and its
thm column is just

the vector form of the matrix
, (,) , 8i jb u v m i j . Because

DCT is an orthogonal transformation,
1 TK K . Thus,

inverse DCT (IDCT) can be defined by Equation (10),

Tp K c (10)

where
TK denotes the transpose of the matrix K .

The IDCT is the most expensive part of video decoding.

An algorithm operating in the compression domain generally

means IDCT computation is not involved in the algorithm.

3. Background Construction in DCT Domain

In our framework, we use a set of DCT coefficients as the

data structure to represent a background, i.e.,

{ , 1, 2,... }kD d k L , where
kd is a 64-dimensional vector

characterizing an 8 by 8 region corresponding to the
thk pixel block, L is the number of blocks in a frame of the

analyzed video sequence. Through reviewing those state-of-

the-art background subtraction techniques, we found many

popular algorithms exploit a sequence of linear evaluations to

construct their background models. Here, we will

mathematically prove that, if a background construction

algorithm only involves a sequence of linear evaluations, the

proposed background representation will have a counterpart

in the DCT domain, which has much lower time complexity

but does not lose any accuracy for a generated background.

We use the matrix
1 2[... ...]k L

i i i i iF f f f f to denote the

frame i in a video sequence, and use a 64-dimensional

column vector k
if to denote the

thk block. Thus, the DCT

transformation of the matrix
iF can be computed by

i iD KF , (11)

where 1... L
i i iD d d and the DCT coefficients of each

block
k k
i id Kf . So the IDCT can be computed through:

i

T

i DKF . (12)

Suppose a spatial domain background tB is modeled

using linear combination of recent frames,

0

N

t i t i

i

B F , (13)

where ,...)2,1(ii
 are weights specified by background

modeling algorithms. Let the matrix
tB and

iF have the

same structure as those defined in Equation (11), i.e., each

column vector corresponds to a block in a frame, and let both

sides of Equation (13) be multiplied by the DCT kernel

matrix K , we obtain

0

()
N

t i t i

i

KB KF

Let
t

B

t KBD ,
ii KFD , we have

0

N
B

t i t i

i

D D . (14)

 Apparently
B

tD is a matrix made up of DCT coefficients.

Thus, Equation (14) gives an equivalent background

computation model in the DCT domain, through which

background can be constructed with the same accuracy as its

counterpart does in the spatial domain, but fully

decomposing a video sequence is not required.

3.1 Running Average Algorithm in DCT domain

In the running average algorithm only linear evaluations are

involved, so we can obtain its equivalent version in DCT

domain. If we initialize the background by 1 1B F and let

Equation (1) be iteratively extended, we will have

1

1 1
0

(1) = ((1)) (1)
t

i t
t t t t i

i

B F B F F . (15)

Following the same procedure from Equation (13) to (14),

we derive the implementation of the running average

algorithm in the compression domain as:

1 (1)B B
t t tD D D (16)

where
B
t tD KB and t tD KF . Each entry in the matrix

tD

can be directly obtained with very small decoding cost for an

MPEG video decoder. Apparently an algorithm operating on

tF will generally be far less efficient than the counterpart

operating on
tD , because the former needs to frequently use

Equation (12) to obtain
tF , while the latter does not.

Moreover, the latter can obtain an estimation of background

as accurate as that generated by the former algorithm by

applying IDCT to
B

tD 1
 using Equation (12), when required.

3.2 Median Algorithm in DCT domain

The median algorithm in the pixel domain has been accepted

as a simple and effective method through experimental

evaluations. In this subsection, we first analyze

mathematically and explain the rationality of the algorithm;

then a theoretical principle will be derived for the proposed

median algorithm in DCT domain through further analysis;

finally we present the details of our median algorithm and

discuss some advantages compared with the median

algorithm in pixel domain.

In a history window at the location (,)x y , all the pixels can

be partitioned into two sets and we let),(yxFO and

),(yxBO denote the set of pixel values corresponding to a

foreground object and the set for background respectively. It

is easy to mathematically prove that, if

)},(max{ yxBO <)},(min{ yxFO (17)

 or)},(min{)},(max{ yxBOyxFO (18)

holds, the median of the set),(),(yxBOyxFO will

belong to the set that contains more elements. Generally

Equation (17) or Equation (18) holds, and),(yxBO

contains more elements in a history window, so the median

will come from),(yxBO and corresponds to the

background at the location (,)x y . That is why the median

algorithm in spatial domain can work well.

Now we consider a pixel block t

i
 that lies at the

location i in the frame at time t in a history window. The

average of all the pixel values in t

i
 is

(,) () (,) ()

1
() ((,) (,))

64 t t

t t t

x y FO i x y BO i

a i p x y p x y ,

 where ()tFO i and ()tBO i respectively denote the set of

foreground pixels and background pixels in t

i
, (,)tp x y is

the value of a pixel that lies at the location (,)x y in the

frame t . A binary value function is defined: if () tFO i is a

empty set, () 1t

i
, else () 0t

i
, to check if the block

t

i
 is completely covered by background. The function

()t

i
 partitioned all the blocks t

i
 , , 1,.....,t s s s L ,

in the history window into two sets. Correspondingly we use

)(iAB
 and)(iAF

 to denote the set of averages of those

blocks that belong the two sets respectively, i.e.:

() { | (), () 1, , 1,....., }t t

B iA i v a i t s s s L

() { | (), () 0, , 1,....., }t t

F iA i v a i t s s s L

If a pixel at),(yx belongs to background, (,)tp x y

generally changes in a very small range in a short history

window, i.e.)},(max{)},(min{ yxBOyxBO . Here we

assume that (,)tp x y takes the same value in the window

when the pixel at time t is covered by background, and that

for each location in a block, either Equation (17) always

holds or Equation (18) always holds if both),(yxFO and

),(yxBO are not empty. Then we can easily derive that for

any member ()i Bb A i , ()i Ff A i , either
i ib f always

holds in the history window or
i if b always holds.

Moreover, Since)(iAB
 generally contains more elements in

a history window, the median of)()(iAiA FB
 will belong

to)(iAB
. Based on the above analysis, we know that for the

pixel blocks t

i
(, 1,.....,t s s s L) in a history window,

if the average of a block t

i
 is just the median of the

averages of all the pixel blocks in that history window and

our assumptions hold, then all the pixels in t

i
 are covered

by background. Thus we can use the median of { ()ta i ,

, 1,....., }t s s s L , to identify the block that can

represent the background at the corresponding location.

If we let 0,0 vu in Equation (7), we obtain

7 7

0 0

1
(0,0) (,)

8 i j

C I i j . (19)

Thus, the (0,0)C reflects the average of the pixels in a block,

and it is called DC coefficient in the literatures. We use the

following notation to describe our algorithm:

The subscript c is used in the following definitions to

distinguish different components in color space YCbCr.

)(imdl t

c
 : a 64-dimensional DCT coefficient vector for

the pixel block i in the background image at time t.

},,2,1),({ iimdlBkG t

c

t

c
 is a representation of

the background image using DCT coefficients.

)(idct t

c
: a 64-dimensional DCT coefficient vector of the

pixel block i in the frame at time t.

)}(,),(),({)(idcidcidciW tnt

c

tt

c

t

c

t

c
denotes a

recent history window, where)(idct

c
 is a DC coefficient

for the pixel block i at time t .

)(vmid : the function to evaluate the median of the set v

Our background model update procedure is shown as follows:

For each input frame at time t

,...}2,1,,,),({ iCrCbYcidct t

c

{

For each component c {Y, Cb, Cr}

 For each block i with the component c
{

,...}),),(({arg)(tttTidcmidtid T

c
T

)()()(idctimdl tid

c

t

c

}

 If needed, output { CrCbYcBkGt

c ,,| }

}

Since median evaluation is a kind of nonlinear evaluation,

the proposed algorithm is not equivalent to the median

algorithm in spatial domain in theory. In comparison with the

latter, the proposed algorithm in DCT domain has two

advantages. First, the algorithm has much lower

computational cost, since IDCT is not required. Furthermore,

median evaluation is performed only one time for each pixel

block while the counterpart in pixel domain performs 64

times median evaluation. Second, the proposed block-based

algorithm will not neglect the correlation of pixels in the

same block. Our algorithm can guarantee each block in a

background image completely comes from the same frame,

while the median algorithm in pixel domain operates each

pixel independently and cannot provide such guarantee.

3.3 MoG algorithm in DCT domain

The MoG algorithm in spatial domain models each pixel as a

mixture of Gaussians. In this subsection, we propose an

algorithm that models DCT coefficients of each block in

DCT domain as a mixture of Gaussians.

We first present a block-based Gaussian background model

in DCT domain. We assume DCT coefficients in a block

satisfy a multivariable Gaussian distribution, i.e.,

1

1
32 2

1 1
(| ,) exp(() ())

2

 (2)

T
k k k k k k k k

k

p d d d
M

M

 ,

where
kd is a 64-dimensional DCT coefficients vector for

the block k , (,)k k are the mean vector and covariance

matrix. Here the different components of
kd are independent

of each other, since they are evaluated through projecting a

pixel vector onto a set of orthogonal basis using Equation (9).

MPEG Video compression standards have exploited this

orthogonal property of the DCT to remove spatial correlation

of pixels in a block. Therefore we can use a variance vector

 1,...64i
k k i to represent the covariance matrix

k k I . We can represent (| ,)k k kp d as a product of 64

univariable Gaussians, i.e.,
64

2

1

(| ,) (,)i i i
k k k k k k

i

p d p d . Thus

we can equivalently assume each DCT coefficient is a

Gaussian random variable and estimate its parameters

independently.

Equation (10) shows that each pixel in a block can be

evaluated through a linear combination of 64 DCT

coefficients. Probability theory in mathematics tells us that a

linear combination of a sequence of independent Gaussian

random variables is also a Gaussian random variable, and its

parameters can be derived from the parameters of those

independent Gaussians. In other words, Gaussians modeling

pixels in spatial domain can be directly derived from 64

Gaussians for DCT coefficients. Therefore modeling

backgrounds using Gaussians in DCT domain is consistent

with doing it in pixel domain. So we can reasonably

implement Gaussian based background construction

algorithms in DCT domain. For example, we can use

Equation (20) to estimate the parameters of a single Gaussian

background model.

, , 1 ,

, , , ,

2 2
, , 1

(1)

(1) () ()

k t k t k t

k t k t k t k t

i i i

i i i i T i i
k t k t

d

d d
(20)

The MoG algorithm in DCT domain can be further

implemented. We model each pixel block as a mixture of

64-demensional Gaussians, and assume each dimension

of a Gaussian has the same standard variance. The MoG

algorithm processes each pixel block just as the algorithm

in [4] does on each pixel. The Euclidean distance is

chosen as the matching function. A threshold is

associated with it to determine if the current block

matches a Gaussian, and the threshold will be updated in

the similar way that its counterpart deals with variances.

 A good property of the proposed algorithms is that a

pixel block is represented with a very compact form.

Generally DCT can lead to many zero DCT coefficients,

which reflects signals with some specific frequencies are

not contained by the pixel block. So a Gaussian in DCT

domain can be discarded, if its parameter | |k
 is very

small. That means we can use fewer parameters to

represent a background than the Gaussian model in pixel

domain. Since the estimation of variances is not linear

evaluation, the proposed algorithms are not equivalent to

their counterparts in pixel domain in theory. The

proposed MoG algorithm models a pixel block as a

mixture of Gaussian, instead of 64 mixtures, so much less

model parameters are estimated in the model adaptation,

which results in high efficiency in computation.

3.4. Identifying and Segmenting Foreground

Objects

To identify moving objects, the background subtraction

technique subtracts an observed image from the estimated

background image, and those pixels in the difference image

that have a larger value than a predefined threshold will be

included in a foreground object. In our framework, we first

identify those blocks from an observed image that have a

large difference from those at the same location in the

background image. Let kf , Lk ,...,2,1 denote a column

vector made up of pixel values in a block of the observed

image, and kk Kfd is the corresponding DCT

coefficients vector. For the background image, k

Bf and
k

Bd

are used to denote a corresponding pixel vector and its DCT

coefficients vector respectively. We use the Euclidean

distance between kd and k

Bd in Equation (21) to measure

the extent to which the background in the block k is

covered by a foreground object.

2

k k k

Bd d (21)

The Sum of Squared Differences (SSD) is commonly

exploited by video encoders to measure the extent to which a

block matches another block, so a large value for

2

k

B

k ff represents the block k is being covered by a

moving object. It is noted that

2

2

)()(

)()(

)()(

)()(

k

B

k

k

B

kTk

B

k

k

B

kTTk

B

k

k

B

TkTTk

B

TkT

k

B

kTk

B

kk

B

k

dd

dddd

ddKKdd

dKdKdKdK

ffffff

,

thus
k

 is a reasonable measure. If
k

, where is a

threshold, the block k will be labeled as a foreground block.

Apparently based on the measure we can select those that are

not labeled as foreground blocks to estimate a background,

which can make the estimation of the background model

more accurate. For example, the running average algorithm

in the compression domain can be improved as

1

() if
()

() (1) () otherwise

B k

B t

t B

t t

d k
d k

d k d k
,

where)(,)(t

B

t kdkd denote the
thk column vector of the

matrix B

tD and
tD respectively at time t .

In some applications, the accurate shape information of a

moving object is preferred. In our framework, given a

background { () , 1,2,...}B B

t tD d k k and an observed

image { () , 1,2...}t tD d k k , a function : t tS D B is

defined to accurately segment a foreground object, where

{ () , 1,2...}t tB b k k denotes a binary image. A

background pixel is represented by the value 0 while a

foreground pixel by 1. If the block is not a foreground block,

()tb k 0, 0 is a zero vector; otherwise, let

() (() ())T B

t ttb k K d k d k , and (,)tb i k is the

thi component of ()tb k , if the absolute value (,)tb i k ,

 is a threshold, (,) 1tb i k ; else (,) 0tb i k . If we desire

the texture and color of moving objects to be kept in the

resultant image
tB and 0 represents a background pixel, just

let (,) (() ()) ()T B T B

t t t tb i k K d k d k K d k , when

(,)tb i k .

4. Further Discussion of DCT-based

Background Construction

In this section we will discuss some implementation issues of

the proposed approaches for different applications.

4.1 Usage of P Frames and B Frames

P frames and B frames (see in Section 2.2) can also be

exploited for updating a background model or extracting

moving objects. A block in P frames or B frames is called as

an intra-coded block, if it can be encoded independently.

DCT coefficients of an intra-coded block can be easily

obtained. An inter-coded block requires information from

other blocks in encoding. It is usually encoded through

motion compensation, i.e., a motion vector marking a

reference block in reference images plus compensation errors,

i.e.,

er kddkd)()(, (22)

where)(kd ,
rd ,

ekd)(denote DCT coefficients vectors

for the current inter-coded block, its reference block, and

prediction errors. If a block in P frames is a part of

background and is inter-coded, its reference block should

intuitively be at the same location in a reference frame. Due

to high-frequency background objects such as tree branches,

and noises, if the motion vector)(kmv is smaller than a very

small threshold , i.e.,)(kmv < , we can approximate it

as a zero vector (0,0), which means
rd can be estimated by

the block at the same location in the reference frame, thus

rr kdd)(.
ekd)(can be directly obtained. If

rkd)(is

available,)(kd can be evaluated through

er kdkdkd)()()(and then)(kd can be used for

background construction or foreground extraction. If
rkd)(

is not available, i.e.,)(kmv > , the block k will be

ignored. For B frames, the similar process can be used to find

those blocks whose DCT coefficients can be directly or

indirectly obtained precisely, so that they can be used by the

framework in the same way as blocks in I frames.

4.2 Filters and Preprocessing

In a generic background subtraction algorithm operating in

the spatial domain, filters, especially linear filters are usually

used in the preprocessing step. For example, simple temporal

and/or spatial smoothing filters can be used as a

preprocessing step to reduce noises. Here we will present a

scheme to show how linear filters can be implemented and

applied in DCT domain.

Let a 64-dimensional vector)(kf denote a block k in

the spatial domain, and the corresponding vector in the DCT

domain is)(kd , so)()(kdKkf T . A linear filter

operating on a block in the spatial domain can be

characterized by a 64 by 64 matrix F . Because the kernel

matrix for DCT is an orthogonal matrix, we can derive

() ()

 () ()

 [() ()]

T

T T

T T

Ff k FK d k

K K FK d k

K KFK d k

. (23)

Equation (23) tells us that if a linear filter F is applied

onto a block in the spatial domain, a corresponding filter
TKFK can be found in the DCT domain, and the results

obtained after applying two filters to the DCT pair of a single

block also form a DCT pair. Thus, for a spatial linear

filter F , we can construct a filter
TKFK to implement the

same function in the compressed domain for a single block.

Compared with the spatial filters operating in pixel domain,

the proposed scheme in the DCT domain operates in a

special way. It filters a frame through filtering each block in

the frame, so block effects may exist due to the same reason

as margin effects may exist for a filter operating in pixel

domain. The limitation is inherent due to the techniques

adopted by the popular video compression standards

For a temporal linear filter T , T can be represented by a

vector
nwww ,...,, 10

. Let)(kfi
, nttti ,.....,1,

denote pixel values vector in the block k at time i , and

)()(kKfkd ii
, nttti ,.....,1, . Applying the filter

T to the block k along the temporal axis, we have

0 0

0

() [()]

 ()

n n
T

i i i i
i i

n
T

i i
i

w f k w K d k

K w d k

. (24)

Equation (24) shows that in our framework we can

directly apply a temporal linear filter T to a block’s DCT

coefficients to implement the same function. Different from

the proposed spatial linear filter, the proposed temporal

linear filter is completely equivalent to its counterpart in

pixel domain.

5. Experiments

We have evaluated the proposed algorithms using the

USF/NIST image sequences, which is publicly available for

background subtraction and gait analysis [14]. We chose 6

outdoor sequences, and some representative frames are

shown in Figure 1, captured at two locations with walking

humans from the USF/NIST database. One location has

concrete floor and the other has meadow. Three sequences

for the same location are captured under different lighting

conditions. There are many background variations in these

sequences, such as sudden lighting changes, small motion of

tree branches, small motion of bushes and shadow distortions

by the walking people.

Figure 1 The Frames extracted from the testing

image sequences

To simulate the video compression effects, we

compressed each sequence into the MPEG-2 format. In our

experiments, the background models are constructed only

using I frames, which exist every other 9 frames in our

compressed video streams. Figure 2 shows the background

images generated by the proposed running average, median,

and the MoG algorithms in the DCT domain, in comparison

with those generated by the corresponding algorithms in the

spatial domain. The learning rate in the running average

algorithms and in the MoG algorithms are 0.05. The length

of the history window is 9 in the median algorithm. The

variance in the MoG algorithm is initialized as 10. All these

configurations keep the same for the algorithms in both

spatial and DCT domains.

Running average Median MoG

Sequence 02463C0AL

Sequence 03500C0AL

Sequence 03693C0AR

Sequence 03532G0AL

Sequence 03653G0AL

Sequence 03678G0BR

Figure 2 Background generated by our algorithms and

their counterparts in spatial domain

Figure 2 gives all the background images generated for

six video sequences. For each sequence, the images in the

first row are generated by our algorithms, and the second row

by their counterparts in the spatial domain. Our eyes can not

perceive evident difference in visual quality between them.

The computation speed of the proposed methods is averagely

1.02 times faster than their counterparts in the spatial domain

plus decoding cost. The detailed speed ratio of each

algorithm is shown in the following Table.

Table. 1 Computation speed ratios between the proposed

algorithms and it counterparts in pixel domain

 Average Median Gaussian MoG

Speed 1.37 2.50 1.21 3.03

These experimental results are consistent with our

theoretical analysis.

6. Conclusions

We have proposed some algorithms to construct background

models directly from compressed video data. In the proposed

methods, a background model is represented through a set of

DCT coefficients representing the power of different

frequencies, and computed based on each 8 by 8 pixel block,

instead of per pixel. We have mathematically proved that if a

background construction algorithm in the spatial domain

only involves a sequence of linear evaluations, there must be

a counterpart in the DCT domain, which has much lower

computational complexity but the same accuracy. To

demonstrate the validity of the framework, we have proposed

three representative algorithms with different styles within

the framework, i.e., running average, median, Gaussian, and

further presented some general possible technical

improvements to make them more capable for a wide range

of applications. For each proposed algorithm we all give

some theoretical derivation and analysis to explore their

properties and the relationship with the counterparts in the

spatial domain. The experimental results on standard

evaluation video sequences are consistent with our

theoretical discussion. Since our approach has the attractive

visual accuracy for generated background images, much

lower computational cost, compact model storage, as well as

reasonable theoretical explanation, it has many potential

applications in processing compressed video.

References

[1] B.P.L. Lo and S.A. Velastin, Automatic congestion

detection system for underground platforms, Proc. of 2001

Int. Symp. on Intell. Multimedia, Video and Speech

Processing, pp. 158-161, 2000.

[2] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati.

Detecting moving objects, ghosts and shadows in video

streams. IEEE Trans. on PAMI, 25(10):1337-1342, 2003.

[3] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland,

“Pfinder:Real-time Tracking of the Human Body,” IEEE

Trans. on PAMI, 19(7):780-785, 1997.

[4] C. Stauffer, W.E.L. Grimson, Adaptive background

mixture models for real-time tracking, Proceedings of

CVPR, Vol. 2, pp. 246-252, 1999.

[5] M. Elgammal, D. Harwood, L. S. Davis, Non-parametric

Model for Background Subtraction, Proceedings of the 6th

ECCV, pp. 751 – 767, 2000.

[6] B. Han, D. Comaniciu, and L. Davis, Sequential kernel

density approximation through mode propagation:

applications to background modeling, Proc. ACCV, 2004.

[7] N. M. Oliver, B. Rosario, and A. P. Pentland, “A Bayesian

Computer Vision System for Modeling Human

Interactions,” IEEE Trans. on PAMI, 22(8): 831-843, 2000.

[8] F. De la Torre, M. J. Black, A framework for robust

subspace learning, International Journal of Computer

Vision, 54(1-3): 117-142, 2003.

[9] M. Seki, T. Wada, H. Fujiwara, K. Sumi, “Background

detection based on the cooccurrence of image variations”,

Proc. of CVPR 2003, vol. 2, pp. 65-72

[10] R.S. Aygun, A. Zhang, Stationary background generation

in mpeg compressed video sequences, IEEE ICME, pp.

701- 704, 2001.

[11] X. Yu, L. Duan, Q. Tian, Robust moving video object

segmentation in the MPEG compressed domain, Proc. ICIP

vol.2, pp. 933-936, 2003.

[12] W. Zeng, W. Gao, D. Zhao, Automatic moving object

extraction in mpeg video, Proc. of ISCAS'03, vol.2, pp.

524-527, 2003.

[13] B. Ugur Töreyin, A. Enis Çetin, Anil Aksay, M. Bilgay

Akhan. Moving Region Detection in Compressed Video.

ISCIS, pp.381-390, 2004.

[14] J. Phillips, S. Sarkar, I. Robledo, P. Grother, and K.

Bowyer. Baseline results for the challenge problem

of human id using gait analysis. Proceedings of Face

and Gesture Recognition, 2002

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

