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Abstract

Face recognition is one of the most challenging problems of computer vision and
pattern recognition. The difficulty in face recognition arises mainly from facial
appearance variations caused by factors, such as expression, illumination, partial
face occlusion, and time gap between training and testing data capture. More-
over, the performance of face recognition algorithms heavily depends on prior
facial feature localization step. That is, face images need to be aligned very
well before they are fed into a face recognition algorithm, which requires pre-
cise facial feature localization. This thesis addresses on solving these two main
problems —facial appearance variations due to changes in expression, illumina-
tion, occlusion, time gap, and imprecise face alignment due to mislocalized facial
features— in order to accomplish its goal of building a generic face recognition
algorithm that can function reliably under real-world conditions.

The proposed face recognition algorithm is based on the representation of local
facial regions using the discrete cosine transform (DCT). The local representa-
tion provides robustness against appearance variations in local regions caused
by partial face occlusion or facial expression, whereas utilizing the frequency
information provides robustness against changes in illumination. In addition,
the algorithm bypasses the facial feature localization step and formulates face
alignment as an optimization problem in the classification stage. Therefore, the
system is free from the misalignment problem due to erroneous facial feature
localization.

The algorithm’s robustness against partial face occlusion, expression, illumina-
tion, time gap, and uncontrolled data capture conditions is first tested on five
well-known benchmark face databases, namely on the AR, CMU PIE, FRGC,
Yale B, and extended Yale B face databases. Extensive experiments have been
conducted to analyze the effects of the algorithm’s parameters on the classifica-
tion performance. Moreover, the algorithm’s robustness against image compres-
sion and registration errors is also assessed and it is compared with well-known
generic face recognition algorithms. On all the experiments the algorithm at-
tains very high correct recognition rates. It is found to be significantly superior
to generic face recognition algorithms. It also outperforms, or performs as well
as the algorithms that are designed specifically for just one type of factor that
causes facial appearance variation, such as illumination. Experimental results
show that, in the case of upper face occlusion caused by sunglasses, the main
problem for low performance is not mainly because of missing eye region infor-
mation but because of misalignment due to erroneous manual labeling of eye
center positions. Since the algorithm is free from this problem, it also achieves
very high correct recognition rates on this type of data.



Several systems have been developed based on the proposed face recognition
algorithm. In addition to the tests on the benchmark face databases, these sys-
tems are also evaluated on data collected under real-world conditions. One of
the systems performs person identification in smart rooms and has been evalu-
ated within the CLEAR evaluations. Other real-world applications, door mon-
itoring, visitor interface, person identification in movies, have also been tested
extensively. These evaluations show that the algorithm can work reliably under
real-world conditions. The algorithm is also extended for a 3D face recognition
scheme and found to perform successfully on the 3D data.



Zusammenfassung

Gesichtserkennung ist eines der wichtigsten Probleme in den Bereichen Maschi-
nensehen und Mustererkennung. Das Gebiet, das die intensivsten Anstrengun-
gen in der Gesichtserkennungsforschung angetrieben hat, sind Sicherheitsan-
wendungen, von Authentifizierung, z.B. zur Zugangskontrolle für elektronische
Transaktionen, Computer-Login oder Internet-Zugang, bis hin zu Videoüber-
wachung, z.B. in Banken, Kaufhäusern oder auch im öffentlichen Raum.

Zudem ist Personenidentifikation eine der wichtigsten Komponenten für intel-
ligente Interaktions-Applikationen. Hierbei bedeutet intelligente Interaktion,
dass perzeptuelle Technologien eingesetzt werden, um Mensch-Mensch- und
Mensch-Maschine-Interaktionen zu erleichtern. Sowohl als Assistent in Mensch-
Mensch-Interaktionen, z.B. als Gedächtnisstütze, die einem sagt, mit wem man
gerade redet, als auch in Mensch-Maschine-Interaktionen, z.B. eine Maschine,
die ihren Benutzer identifiziert und ihre Einstellungen entsprechend anpasst,
liefert Personenidentifikation das wichtigste Merkmal natürlicher Interaktionen:
Personalisierung. Weiterhin kann die Identität einer Person genutzt werden,
um die Leistung anderer perzeptueller Technologien zu erhöhen, wie z.B. Ana-
lyse von Gesichtsausdrücken oder Kopfdrehungen, da es durch sie möglich wird,
personenspezifische Modelle zu verwenden.

Gesichtserkennung und Sprecheridentifikation sind bekanntermaßen natürliche
Identifikationsmethoden, da das Gesicht und die Sprache die Modalitäten sind,
die wir im täglichen Leben benutzen, um Menschen zu identifizieren. Obwohl
andere Methoden, wie z.B. die Identifikation anhand von Fingerabdrücken,
bessere Identifikationsleistungen erreichen können, sind sie aufgrund ihrer in-
trusiven Natur ungeeignet für natürliche Interaktionen. Der größte Vorteil von
Gesichtserkennung ist, dass sie die Möglichkeit der passiven Identifikation bi-
etet, die zu identifizierende Person also nicht kooperieren oder eine bestimmte
Aktion ausführen muss. Zum Beispiel kann ein intelligenter Supermarkt seine
regelmäßigen Kunden wiedererkennen, wenn sie den Laden betreten. Die Kun-
den müssen nicht sprechen oder direkt in eine Kamera schauen, um erkannt
zu werden. Dies macht Gesichtserkennung zu einer idealen Wahl für natürliche
Interaktions-Applikationen, da sie unauffällig im Hintergrund laufen kann, ohne
die zu identifizierenden Personen zu behindern oder zu unterbrechen.

Gesichtserkennung hat in einer Vielzahl von intelligenten Interaktionssystemen
Anwendung gefunden. Die Anwendungsgebiete, auf die sich diese Arbeit konzen-
triert, können in drei Gruppen eingeteilt werden. Die erste Gruppe besteht
aus Gesichtserkennung für intelligente Umgebungen. Diese Gruppe beinhaltet
Identifikationsaufgaben an einem festen Ort, z.B. in einem intelligenten Haus,
das Familienmitglieder automatisch identifiziert. Die zweite Gruppe verwen-
det Gesichtserkennung für intelligente Maschinen. In dieser Gruppe identifiziert



eine Maschine die Person, die mit ihr interagiert, z.B. ein Auto, das seinen
Fahrer identifiziert, oder ein Roboter, der die Person, die ihn bedient, wieder-
erkennt. Die letzte Gruppe besteht aus Gesichtserkennung für intelligente Bild-
oder Videosuche. In dieser Gruppe werden Gesichtsbilder als Hinweise zur Suche
nach Personen benutzt.

Gesichtserkennung ist ein sehr anspruchsvolles Problem in den Bereichen Maschi-
nensehen und Mustererkennung. Das Abbild eines Gesichtes kann aufgrund von
Unterschieden in Gesichtsausdruck, Beleuchtung, Verdeckung, Kopfdrehung und
Alterung stark variieren. Die Variationen, die durch diese Faktoren verursacht
werden, sind oft stärker als die Variationen zwischen Gesichtsbildern unter-
schiedlicher Personen. Ein anderer wichtiger Faktor, der Gesichtserkennung er-
schwert, ist die Registrierung von Gesichtsbildern. Um Gesichtsbilder geeignet
vergleichen zu können, müssen die Positionen lokaler Merkmale zueinander
passend ausgerichtet sein. Dies erfordert die präzise Lokalisierung bestimmter
Gesichtsmerkmale, was eine sehr schwierige Aufgabe ist.

Eine Vielzahl potenzieller Anwendungen hat zu ausgiebigen Forschungsaktivitä-
ten im Bereich der Gesichtserkennung geführt. Viele Algorithmen wurden ent-
wickelt, die einen einzelnen oder eine Kombination zweier Faktoren, die Variatio-
nen in der Ansicht von Gesichtern verursachen, zu behandeln versuchen. Beson-
ders der Behandlung von Beleuchtungsveränderungen wurde große Aufmerk-
samkeit zuteil [AMU97, CWX+06, GBK01, GMB04, LHK05, SRR01, ZACJ07].
Alle diese Algorithmen werden nur gegen Ansichtsvariationen evaluiert, für die
sie entwickelt wurden. Zum Beispiel werden Algorithmen, die entwickelt wur-
den um Beleuchtungsänderungen zu behandeln, mit Datensätzen evaluiert, die
nur Beleuchtungsänderungen enthalten. Daraus resultierend existieren viele
Gesichtsdatenbanken, die meist unter kontrollierten Bedingungen aufgenom-
men wurden und die Ansichtsvariationen enthalten, die von einem einzelnen
Faktor oder einer Kombination zweier Faktoren verursacht wurden. Diese Stu-
dien haben wertvolle Einblicke in verschiedene Aspekte der Gesichtserkennung
geliefert und die Datenbanken, die gesammelt wurden um die Algorithmen
zu evaluieren, sind sehr nützlich, um die Robustheit eines Algorithmus gegen
bestimmte Quellen von Ansichtsvariationen zu bestimmen. Sie geben jedoch
keine Hinweise darauf, wie gut der getestete Algorithmus unter realen Bedin-
gungen funktioniert. Es ist notwendig und wichtig, einen Gesichtserkennungs-
algorithmus auf diesen Benchmark-Datenbanken zu testen. Dies ist aber nicht
genug, um zu garantieren, dass er zuverlässig unter realen Bedingungen funk-
tioniert, auch wenn er gute Ergebnisse auf allen Datenbanken erzielt. Die
Hauptgründe hierfür sind zum einen, dass in den Benchmark-Datenbanken die
Ansichtsvariationen durch eine einzelne Quelle oder eine Kombination zweier
Quellen verursacht werden. Unter realen Bedingungen werden die Ansichtsvaria-
tionen jedoch durch zahlreiche Quellen gleichzeitig verursacht. Zum anderen en-
thalten die Benchmark-Datenbanken diskrete Variationen, z.B. Kopfdrehungen
bestimmter Winkel. In Wirklichkeit sind jedoch alle Kopfdrehungen, Gesicht-



sausdrücke, Beleuchtungsänderungen, usw. in kontinuierlichen Intensitäten mög-
lich. Zudem wurden die Benchmark-Datenbanken unter kontrollierten Bedin-
gungen mit Kooperation der aufgezeichneten Personen aufgenommen. D.h. dass
der/die Proband/in angewiesen wurde in die Kamera zu schauen und er/sie
wusste, dass sein/ihr Bild aufgenommen wurde. Dies ist ein passendes Szenario
für eine Authentifikationsaufgabe, bei der Kooperation erwartet werden kann.
In anderen Anwendungsszenarien hingegen, wie z.B. in intelligenten Räumen,
wird passive, unauffällige Identifikation benötigt.

Diese Arbeit hat daher zum Ziel, einen neuartigen, generischen Gesichtserken-
nungsalgorithmus zu entwickeln, der robust gegen Änderungen des Aussehens
von Gesichtern ist, die durch Gesichtsausdruck, Beleuchtung, Verdeckung, Al-
tern und unkontrollierte Aufnahmebedingungen verursacht werden.

Die Hauptschritte des vorgeschlagenen Gesichtserkennungsalgorithmus werden
im Folgenden kurz dargestellt.

Die diskrete Cosinus-Transformation (DCT) wird benutzt um lokale Regionen
zu repräsentieren. Die Verwendung der DCT hat mehrere Vorteile: Zum einen
sind die datenunabhängigen Basisfunktionen der DCT sehr praktisch in der
Anwendung, da z.B. keine repräsentative Menge von Trainingsdaten vorbe-
reitet werden muss, um einen Unterraum zu berechnen. Zum anderen liefert
die DCT Frequenzinformationen, was sehr nützlich für die Behandlung von
Variationen des Aussehens von Gesichtern ist. Es ist zum Beispiel bekannt,
dass manche Frequenzbänder gut geeignet sind um Beleuchtungsvariationen
zu kompensieren. Außerdem wird in dieser Arbeit gezeigt, dass die DCT-
basierte Repräsentation lokaler Regionen für Gesichtserkennung bessere Ergeb-
nisse liefert als Repräsentationen basierend auf den Karhunen-Loève-, Fourier-,
Wavelet- oder Walsh-Hadamard-Transformationen.

Im vorgeschlagenen, auf lokalen Ansichten basierenden, Ansatz zur Gesicht-
serkennung, wird ein detektiertes und registriertes Gesichtsbild in 8 × 8-Pixel
große Blöcke aufgeteilt. Danach wird die DCT auf jedem Block ausgeführt. Die
resultierenden DCT-Koeffizienten werden mit dem zig-zag-scanning-Verfahren
sortiert. Basierend auf einer Strategie zur Merkmalsselektion werden M Koef-
fizienten benutzt. Das Resultat ist ein M -dimensionaler lokaler Merkmalsvek-
tor. Schließlich werden die lokalen Merkmalsvektoren konkateniert, was einen
Merkmalsvektor für das gesamte Bild ergibt. Die Klassifikation wird von einem
Nächster-Nachbar-Klassifikator durchgeführt, der die L1-Norm als Distanzmet-
rik benutzt.

Der Gesichtserkennungsalgorithmus hat zwei wesentliche Punkte. Zum einen
wird das Frequenzband, das zur Klassifikation verwendet wird, automatisch aus-
gewählt. Dazu wird zunächst die Klassifikation mit mehreren Frequenzbändern
durchgeführt, indem ein Fenster der Größe M über die extrahierten DCT-
Koeffizienten geführt wird, und für jede Fensterposition die Klassifikation mit



den selektierten Koeffizienten durchgeführt wird. Das Frequenzband, das die
besten zwei Kandidaten optimal separiert, wird als zuverlässigstes Frequenz-
band angenommen und zur Klassifikation verwendet. Auf diese Weise kann
sich der Algorithmus durch Verwendung des passenden Frequenzbandes au-
tomatisch an veränderte Beleuchtungsverhältnisse anpassen. Der zweite Punkt
betrifft die Merkmalsnormalisierung. Um die Beiträge der Koeffizienten und
Blöcke für die Klassifikation vergleichbar zu machen, werden die Koeffizienten
jedes Merkmalsvektors zuerst durch ihre Standardabweichungen dividiert, und
danach jeder lokale Merkmalsvektor zu einem Einheitsvektor normiert.

Im vorgeschlagenen Ansatz wird die Gesichtsregistrierung durchgeführt, indem
die kleinste Distanz im Klassifikationsschritt minimiert wird. Da alle Menschen
dieselbe Gesichtskonfiguration haben, können die Positionen der Gesichtsmerk-
male mit Hilfe der Position und Größe des Gesichtes grob geschätzt werden.
Danach wird eine Suche um die geschätzten Positionen herum nach den exakten
Positionen der Gesichtsmerkmale durchgeführt. Die Kandidaten für die exakten
Positionen der Gesichtsmerkmale werden benutzt, um für jeden Vergleich eines
Test- mit einem Trainings-Gesichtsbild mehrere Registrierungen des Gesichtes
vorzunehmen. Diejenige Registrierung, die zur minimalen Distanz zwischen
Test- und Trainingsbild führt, wird zur Klassifikation verwendet. Daher wer-
den die Augenpositionen eines Trainings-Gesichtsbildes für jeden Vergleich mit
einem Test-Gesichtsbild neu ermittelt, wodurch Inkonsistenzen in den manuellen
Annotationen der Augenpositionen der Trainingsbilder gehandhabt werden.

Diese Arbeit konzentriert sich darauf, einen generischen, robusten Gesichtserken-
nungsalgorithmus zu entwickeln, der zuverlässig in realen Applikationen einge-
setzt werden kann. In Richtung dieses Zieles wurden die folgenden Beiträge
geleistet:

Ein Gesichtserkennungsalgorithmus wurde entwickelt, der Variationen des Ausse-
hens von Gesichtern behandeln kann, die von Verdeckungen, Gesichtsausdruck,
Beleuchtung, zeitlichem Abstand und unkontrollierten Aufnahmebedingungen
verursacht werden. Der Algorithmus wurde mit Hilfe von Standard-Benchmarks
eingehend unter verschiedenen Bedingungen evaluiert, und es wurde festgestellt,
dass er sowohl den bekannten generischen Algorithmen, als auch den spezifisch-
en Algorithmen, die entwickelt wurden um einen Variationsfaktor zu behan-
deln, signifikant überlegen ist. Der Algorithmus erreichte eine korrekte Erken-
nungsrate von 98,5% und 96,2% auf den Bildern der face recognition grand
challenge Datenbank (FRGC) [PFS+05], unter kontrollierten Bedingungen – in
einem Studio mit kontrollierter Beleuchtung – und unkontrollierten Bedingun-
gen – unter wechselnden Bedingungen, in Gängen, Hallen oder in Außenbe-
reichen. Die Leistung auf der AR Gesichtsdatenbank [MB98] bei Verdeckung
des oberen und unteren Gesichtsteils beträgt 97,3% und 98,2%. Die erziel-
ten Resultate bei Beleuchtungsvariationen betragen 100% auf der CMU PIE



Gesichtsdatenbank [SBB03], auf allen Beleuchtungsuntergruppen der Yale Ge-
sichtsdatenbank B [GBK01], sowie auf der zweiten und dritten Beleuchtungsun-
tergruppe der erweiterten Yale Gesichtsdatenbank B [LHK05], während die Re-
sultate der vierten und fünften Beleuchtungsuntergruppe bei 98,7% und 99,0%
liegen. Es ist das erste Mal in der Literatur, dass alle Variationen des Ausse-
hens von Gesichtern von einem generischen Algorithmus behandelt werden, d.h.
ohne individuelle Algorithmen für jede der Variationsquellen zu entwickeln.

Anders als bei konventionellen Gesichtserkennungssystemen benötigt der vor-
geschlagene Algorithmus keinen zusätzlichen Schritt zur Lokalisierung von Ge-
sichtsmerkmalen, um die Registrierung durchzuführen. Er führt die Lokali-
sierung implizit während des Klassifikationsschrittes durch. Weiterhin wurde
gezeigt, dass der vorgeschlagene Registrierungsansatz sogar besser funktioniert
als die Registrierung mit manuellen Annotationen. Z.B. betragen die Ergebnisse
auf der AR Gesichtsdatenbank [Mar02] bei Verdeckung der unteren Gesichts-
hälfte bei Registrierung mit manuellen Annotationen 91,8%, während die Re-
sultate mit dem vorgeschlagenen Ansatz bei 97,3% liegen. Es wurde ebenfalls
gezeigt, dass das Hauptproblem bei Verdeckungen der oberen Gesichtshälfte
Fehler in der Registrierung sind, und nicht die Verdeckung selbst. Wegen einer
Sonnenbrille können Augenpositionen, die weithin zur Registrierung verwen-
det werden, selbst manuell nicht zuverlässig annotiert werden. Wenn nur die
manuellen Annotationen zur Registrierung verwendet werden, liegen die Resul-
tate bei Verdeckung der oberen Gesichtshälfte durch eine Sonnenbrille bei 38,2%
auf der AR Gesichtsdatenbank [Mar02]. Wird jedoch die vorgeschlagene Reg-
istrierung verwendet, steigen die Resultate auf 97,3%. Die Optimierungsproze-
dur, die in den Klassifikationsschritt integriert ist, macht den Algorithmus also
unempfindlich gegenüber falsch lokalisierten Gesichtsmerkmalen. Bis zu einer
Distanzabweichung von 18% zwischen den Augäpfeln liefert der Algorithmus
stabile Leistungen.

Der Algorithmus wurde in mehreren realen Systemen eingesetzt und arbeitet
zuverlässig unter realen Bedingungen. Die entwickelten Systeme beinhalten ein
Türüberwachungssystem, bei dem Personen, die einen Seminarraum betreten,
unauffällig mit einer Kamera, die gegenüber der Eingangstür angebracht ist,
identifiziert werden; ein Besucher-Interface, bei dem ein Besucher auf einem
Monitor eine personalisierte Nachricht angezeigt bekommt, bevor er an die Tür
klopft; ein System bei dem ein Roboter die Person identifiziert, mit der er gerade
interagiert; und ein System zur Personensuche in Videos anhand von Gesichts-
bildern. Zusätzlich wurde der Algorithmus in einem Gesichtserkennungssystem
benutzt, das in den CLEAR Evaluationen [SBB+07] evaluiert wurde. Hier-
bei besteht der Datenkorpus aus realen Daten, die während vorlesungsartiger
Seminare oder kleinerer Arbeitsgruppenseminare in intelligenten Räumen auf-
gezeichnet wurden. Das vorgeschlagene System erzielte die beste Leistung bei
allen Kombinationen von Trainings- und Testdaten in den CLEAR 2007 Evalu-
ationen [SBB+07].



Das entwickelte Gesichtserkennungssystem wurde mit einem Sprecheridentifika-
tionssystem kombiniert [EJFS07], um multimodale Personenidentifikation durch-
zuführen. Ein adaptiver Ansatz zur Gewichtung der Modalitäten wurde ein-
geführt, der erfolgreich die beiden Modalitäten kombiniert. Im Rahmen der
CLEAR 2007 Evaluationen stellte sich heraus, dass der vorgesehene Gewich-
tungsansatz auch bei variierenden Erkennungsleistungen in und zwischen den
beiden Modalitäten signifikante Verbesserungen durch die Fusion erzielte. Zum
Beispiel erreichte das Gesichtserkennungssystem für eine bestimmte Kombina-
tion auf den Testdaten eine korrekte Erkennungsrate von 94,6%, während das
Sprecheridentifikationssystem eine Rate von 96,4% erreichte. Die Fusion der
Modalitäten erhöhte die Erkennungsrate auf 99,1%. Bei einigen Training-Test-
Kombinationen erzielte die Sprecheridentifikation eine wesentlich schlechtere
Leistung als die Gesichtserkennung, z.B. 41,9% gegenüber 84,9% oder 69,6%
gegenüber 90,8%. Das multimodale System erzielte mit 86,3% bzw. 93,5%
trotzdem eine im Vergleich zu den Einzelmodalitäten verbesserte Leistung.
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1 Introduction

Face recognition is one of the most important problems of computer vision and
pattern recognition. The main group of applications that has fueled intense
efforts on face recognition research is security applications, ranging from au-
thentication tasks, such as for access control that can be used in electronic
transactions, desktop login, and Internet access, to surveillance tasks, such as
bank/store and public area security.

In addition to security applications, person identification is one of the most cru-
cial building blocks for smart interaction applications. Here, smart interaction
refers to using perceptual technologies for improved human-human and human-
machine interactions. Either as an assistant in human-human interactions, e.g.
a memory aid that tells the person who he is talking to, or in human-machine
interactions, e.g. a machine that recognizes its user and customizes the pref-
erences accordingly, person identification provides one of the most important
characteristic of natural interactions: personalization. Besides, the identity of a
person can be used to improve the performances of other perceptual technolo-
gies, such as expression analysis systems or head pose estimation systems, by
enabling the use of person-specific models.

Face recognition and speaker identification are known to be the most natural
person identification methods, since face and voice are the modalities that we
use to identify people in our daily lives. Although other methods, such as finger-
print identification, can provide better performance, they are not appropriate
for natural interactions due to their intrusive nature. The most important ad-
vantage of face recognition is the passive identification that it can provide, that
is, the person to be identified does not need to cooperate or take any specific
action. For example, a smart store can recognize its regular customers while
they are entering the store. The customers do not need to talk or look directly
into the camera to be recognized. This makes face recognition technology a
perfect match for natural interaction applications, since it can work unobtru-
sively in the background without disturbing or interrupting the subjects to be
identified.

Face recognition has found a wide range of smart interaction applications. The
application areas, which have been focused on in this thesis, can be classified
into three groups. Face recognition for smart environments constitutes the first
group. This application group corresponds to identification tasks at a fixed
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location, for instance, a smart home that identifies the family members. The
second group is face recognition for smart machines. In this application group,
a machine identifies the subject that it interacts with, for example, a car that
identifies its driver or a robot that recognizes the person it serves. The last
application group is face recognition for smart image/video retrieval. In this
group, face images are used as cues for identity retrieval.

1.1 Motivation

Face recognition is a very challenging computer vision and pattern recognition
problem. Facial appearance can undergo severe variations due to changes in
facial expression, illumination, occlusion, head pose, and aging. In fact, facial
appearance variations caused by these factors often dominate the one caused
by identity differences. Another important factor that causes difficulty in face
recognition is face alignment. In order to have a proper comparison between
face images, they need to be aligned precisely. This requires, in turn, precise
facial feature localization, which is a challenging task.

A wide range of potential applications have motivated extensive research efforts
on face recognition. Many algorithms have been developed that aim at handling
a single factor or combination of two factors that cause facial appearance varia-
tions. Especially handling illumination changes has been one of the main point
of interest [AMU97, CWX+06, GBK01, GMB04, LHK05, SRR01, ZACJ07]. All
these algorithms are only evaluated against the facial appearance variations that
they are developed for. For example, the algorithms that are developed to han-
dle illumination variations are tested on data sets that contain only illumination
variations. As a result, there exist many face databases that have been collected
mainly under controlled settings and that contain facial appearance variations
caused by a single factor or a combination of two factors. Sample images from
some of these databases are given in Figure 1.1(a,b,c). These studies have pro-
vided valuable insights about different aspects of performing face recognition
and the databases collected to test them are quite beneficial to find out the
algorithms’ robustness against specific sources of variations. However, they do
not provide a cue about how the tested algorithm is going to perform under
real-world conditions. That is, it is necessary and important for a face algo-
rithm to be tested on these benchmark face databases, but it is not sufficient
to guarantee that it will work reliably under real-world conditions, even if it
performs successfully on all of them. The main reasons are:

• In the benchmark face databases, the variations on the facial appearance
are produced by controlling only a single source or combination of two
sources of variation, however, in real-world, these variations occur by the
combinations of multiple sources.
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• The benchmark face databases contain discrete variations, e.g. head poses
at some specific angles. On the other hand, in real-world, all kinds of pose
variations and all kinds of expression, illumination variations at different
strength levels can be encountered.

• The benchmark face databases are collected in a cooperative setting. That
is, the individual is informed to stay in front of the camera and he/she
is aware that his/her image is being recorded. This data collection setup
is reasonable for the authentication task, in which cooperation is needed.
However, it is incapable to address the application scenarios that require
passive, unobtrusive identification, such as face recognition in smart envi-
ronments.

Sample images collected from some of the real-world applications are shown in
Figure 1.1(d,e).

Keeping these facts in mind, this thesis aims at developing a novel, generic face
recognition algorithm that performs robustly in spite of the facial appearance
variations caused by expression, illumination, occlusion, aging, and uncontrolled
recording conditions. The algorithm has been extensively tested under all these
conditions on the benchmark face databases, and on each condition it has been
found to perform robustly. Another important novel property of the developed
algorithm is that it does not necessarily need a facial feature localization step
for face alignment, which makes it insensitive against registration errors due
to erroneous facial feature localization. It has also been deployed for several
applications and was found to work reliably under real-world conditions. Fur-
thermore, the algorithm has been shown to perform successfully on 3D face
data.

1.2 Approach

The main steps of the proposed face recognition algorithm are explained briefly
in the following subsections.

1.2.1 Discrete Cosine Transform-based Local Facial
Appearance Representation

The discrete cosine transform (DCT) is used to represent local regions. There
are several advantages of using the DCT. Its data independent bases make it
very practical to use. There is no need to prepare a representative set of train-
ing data to compute a subspace. In addition, it provides frequency information,
which is very useful for handling changes in facial appearance. For instance, it
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(a)

(b)

(c)

(d)

(e)

Figure 1.1: Sample images used to test the proposed face recognition algorithm.
(a) The FRGC database. (b) The CMU PIE face database. (c)
The AR face database. (d) CLEAR person identification evaluation
corpus. (e) Door monitoring system evaluation corpus.
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is known that some frequency bands are good for combating against illumina-
tion variations. Moreover, it has been found that the DCT-based local appear-
ance representation is better than representations based on the Karhunen-Loève,
Fourier, wavelet, and Walsh-Hadamard transforms in terms of face recognition
performance.

1.2.2 Local Appearance-based Face Recognition

In the proposed local appearance-based face recognition (LAFR) approach, a
detected and registered face image is divided into blocks of 8 × 8 pixels size.
Afterwards, the DCT is performed on each 8×8 pixels block. The obtained DCT
coefficients are ordered using zig-zag scanning. From the ordered coefficients,
according to a feature selection strategy, M of them are selected and normalized,
resulting in an M -dimensional local feature vector. Finally, the DCT coefficients
extracted from each block are concatenated to construct the overall feature
vector. The classification is done using a nearest neighbor classifier with L1
norm as the distance metric.

1.2.3 Feature Selection and Feature Normalization

There are two main points in the algorithm. The first one is to decide au-
tomatically which frequency band to use for classification. In the algorithm,
the classification is done using multiple frequency bands, that is, by selecting
different DCT coefficients with a sliding window of size M and performing clas-
sification with each frequency band. The band that provides the maximum
separation between the closest two candidates is chosen as the most reliable
band and its decision is used as the classification result. This way, by using
the appropriate frequency band, the algorithm can adapt itself automatically to
changing illumination conditions.

The second point is about feature normalization. In order to balance the coef-
ficients’ and blocks’ contributions to the classification, the coefficients in each
feature vector are first divided by their standard deviations and then the local
feature vector is normalized to unit norm.

1.2.4 Face Registration by Minimizing the Closest
Classification Distance

In the proposed approach, face registration is done by minimizing the closest
distance at the classification step. Since all humans have the same facial feature
configuration, once the face is located, positions of the facial features can be
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roughly estimated. Search for the precise facial feature positions is conducted
around the estimated positions. Various candidate facial feature positions are
used to provide several aligned test face images, while comparing a test face
image with an already aligned training face image. The facial feature positions,
which lead to the aligned test face image that has the minimum distance to the
training image, are selected as the facial feature locations. Thus for each training
sample, separate eye center positions are determined for the test face image. In
this way, inconsistencies across manual eye center labels of the training images
are also handled.

1.3 Contributions

This thesis focuses on developing a generic, robust face recognition algorithm
that can be used reliably for real-world applications. Towards this goal, the
following contributions have been made:

• A face recognition algorithm that can handle facial appearance variations
caused by facial occlusion, expression, illumination, time gap, and uncon-
trolled capture conditions, has been developed. The algorithm has been
extensively evaluated on the standard benchmarks under different condi-
tions and it is found to be significantly superior to both well-known generic
face recognition algorithms and to specific face recognition algorithms that
have been designed for each of the factors that cause facial appearance vari-
ations. The algorithm achieved 98.5% and 96.2% correct recognition rates
on the images from the Face Recognition Grand Challenge face database
(FRGC) [PFS+05] captured under the controlled —in a studio setting with
controlled illumination— and uncontrolled —under changing conditions in
hallways, atria or outdoors— conditions, respectively. The performance
on the AR face database [MB98] against upper and lower facial occlusion
is 97.3% and 98.2%, respectively. The obtained results under illumination
variations are 100% on the CMU PIE face database [SBB03], on all illumi-
nation subgroups of the Yale face database B [GBK01] and on the second
and third illumination subgroups of the extended Yale face database B
[LHK05], whereas they are 98.7% and 99.0% on the fourth and fifth il-
lumination subgroups of the extended Yale face database B [LHK05]. It
is the first time in the literature that all facial appearance variations are
handled with one generic algorithm, i.e. without devising individual algo-
rithms for each variation.

• Different from traditional face recognition systems, the proposed algo-
rithm does not need an additional facial feature localization step for face
registration. It implicitly performs feature localization at the classifica-
tion step. Moreover, it has been shown that the proposed registration
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approach performs even better than doing registration with manual la-
bels. For instance, on the AR face database [MB98], against lower facial
occlusion, the obtained result when the test images are aligned using the
manual labels was 91.8%, while with the proposed registration approach
it has become 97.3%. It has also been shown that the main problem with
the upper face occlusion is due to registration errors and not the occlusion
itself. Due to the sunglasses, the eye center points that are widely used
for face alignment cannot be reliably labelled even manually. When only
the manual labels are used to align the test images, the achieved correct
recognition rate against upper facial occlusion with sunglasses is 38.2% on
the AR face database [MB98]. However, when the proposed registration
approach is applied, the performance jumps to 97.3%. The optimization
procedure integrated to the classification step makes it also insensitive to
registration errors caused by mislocalized feature points. The algorithm
can tolerate upto 18% of the interocular distance as localization error and
up to this point it provides stable performance.

• The algorithm has been deployed for various real-world systems and is able
to work reliably under real-world conditions. The developed systems are:
a door monitoring system, where individuals entering a seminar room are
identified unobtrusively with a camera located opposite to the entrance
door; a visitor interface, where a visitor looks at a monitor to read the
displayed message before knocking on the door and receives a personalized
information according to his/her identity; a system where a robot iden-
tifies the person who interacts with it; and a cast retrieval system where
the main characters are retrieved using their face images. In addition,
the algorithm has been used in a face recognition system which has been
evaluated in the CLEAR evaluations [SBB+07], where the data corpus
consists of real-world data collected in smart rooms from lecture-like sem-
inars and interactive small working group seminars. The proposed system
was the best performing system on all training-testing combinations in the
CLEAR 2007 evaluations [SBB+07].

• The developed face recognition system has been combined with a speaker
identification system [EJFS07] to perform multimodal person identifica-
tion. An adaptive modality weighting scheme that can successfully com-
bine audio and visual modalities has been introduced. It has been shown
that the proposed weighting scheme is robust even if the validation data
is misleading in terms of recognition performance of individual modalities
and even if the performances of the systems are not balanced. For ex-
ample, the validation set provided in the CLEAR 2007 evaluations, was
easier than the data set provided for testing. The face recognition algo-
rithm achieved 100% correct classification rate in most cases and always
outperformed the speaker identification on the validation set. However, on
the testing set it turned out that at some training-testing combinations,
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speaker identification is more successful. Nevertheless, this does not af-
fect the performance of the proposed adaptive modality weighting scheme.
For example, at one combination on the test set, face recognition achieved
94.6% correct recognition rate and speaker identification reached 96.4%.
The combination of the modalities provided 98.7% correct classification.
At some training-testing combinations speaker identification performed
significantly worse than face recognition, for example, 84.6% versus 41.9%
or 90.8% versus 69.6%. However, the multimodal system still reached an
improved performance, with 86.3% for the former and 93.5% for the latter
case.

1.4 Outline

The organization of this thesis is as follows:

In Chapter 2, an overview of the related work is given. Well-known generic face
recognition algorithms, specialized face recognition algorithms developed for
combating illumination variations and occlusion, component-based face recogni-
tion algorithms, and discrete cosine transform based face recognition algorithms
are briefly presented.

In Chapter 3, the proposed local appearance-based face recognition algorithm
is introduced. First, the advantages of using a local approach are explained.
Then, possible local appearance representation methods are presented. Finally,
the details of the proposed algorithm are given.

In Chapter 4, parameters of the local appearance-based face recognition al-
gorithm are analyzed. At the beginning of the chapter, information about
benchmark face databases and experimental setups is given. The effects of the
following parameters are investigated: feature normalization, distance metric,
block size, frequency band, image partitioning strategy, and local appearance
representation method. In addition, in this chapter, the algorithm’s robustness
against compression is assessed.

In Chapter 5, the proposed face registration and automatic frequency band se-
lection approaches are described. The chapter starts with showing appearance-
based face recognition algorithms’ sensitivity to misalignment. Then, the pro-
posed registration technique is explained in detail and the obtained experimen-
tal results are discussed. Afterwards, the automatic frequency band selection
method is introduced. The chapter ends with a comparison of the proposed face
recognition algorithm with well-known face recognition approaches.

In Chapter 6, real-world face recognition systems are presented. In this chap-
ter, detailed information about person identification in smart rooms, the door
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monitoring system, the visitor interface, face recognition for humanoid robots
and person identification in movies is provided. In addition, the extension of
the proposed face recognition algorithm for 3D face recognition is described.

In Chapter 7, the outcomes of the thesis are discussed and conclusions are
given.
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2 Literature Review

This chapter gives an overview of the related work that has been conducted on
face recognition. The chapter consists of five sections. In Section 2.1, generic
face recognition algorithms are reviewed. Face recognition algorithms developed
to handle illumination variations and facial occlusion are presented in Sections
2.2 and 2.3, respectively. In Section 2.4, algorithms that use local components
for identification are explained. Finally, discrete cosine transform based face
recognition algorithms are described in Section 2.5.

2.1 Generic Face Recognition Algorithms

There have been many generic face recognition algorithms proposed. However,
three of them have had a large impact on the face recognition research com-
munity and they have inspired countless studies. These are eigenfaces [TP91],
Fisherfaces [BHK97], and Bayesian face recognition [MJP00]. In this section,
these approaches are described shortly.

The eigenfaces approach [TP91] is the most well-known face recognition algo-
rithm. In the algorithm, first a face subspace is constructed from training face
images using the principal component analysis (PCA). The face images are then
represented in this subspace, which corresponds to the eigenvectors, also called
eigenfaces, of the covariance matrix of the face images. Only a subset of the
eigenvectors are used to represent the face images, in order to achieve dimen-
sionality reduction. For an M -dimensional subspace, the selected eigenvectors
are the ones that correspond to first M eigenvalues, sorted in descending order
according to their magnitudes. This way the face images can be reconstructed
with the smallest mean-square error for any given subspace dimensionality. The
classification is done by comparing the face images in this subspace.

As an extension to the eigenfaces approach, to handle head pose variations,
the view-based eigenfaces approach is introduced in [PMS94]. In this method,
for each different view of an individual an eigenspace is constructed. When a
test image arrives, at first the eigenspace that can best represent the view of
the face image is determined and then classification is done in that eigenspace.
This method performs better than the universal eigenfaces approach in which
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only one face space is constructed disregarding the different views of the indi-
viduals.

Similar to the idea in [PMS94], to represent the variations in the face space more
efficiently, the mixtures of eigenfaces approach is proposed in [FCH98, KKB02,
TC02]. While the ordinary eigenfaces algorithm represents the face images
with only one subspace, these mixture methods use more than one subspace to
represent them. The motivation behind these methods is the belief that the
face space can possess clusters corresponding to the variations. Therefore, one
hopes that representing each cluster by a local subspace is a more reasonable
approach than representing the whole space with a single linear subspace.

Nonlinear extensions of the eigenfaces algorithm via kernel methods have been
also studied [YAK00, KJK02, Yan02]. In these approaches, the input face space
is first mapped into a higher dimensional space by using nonlinear functions
such as a polynomial kernel. The PCA is performed in this higher dimensional
new space.

Fisherfaces is another very well-known face recognition approach [BHK97]. It
uses linear discriminant analysis (LDA) for subspace projection. The aim of the
LDA is to extract the projection directions that are effective for discrimination.
To achieve this goal, LDA utilizes class information and tries to find the best
subspace where the ratio of between-class scatter to within-class scatter is max-
imized. Recall that PCA tries to maximize the total scatter across all classes.
The Fisherfaces approach also has extensions. For example in [KKB03], a LDA
mixture model is used, where for each cluster in the face space, a separate LDA
is performed and in [Yan02] a nonlinear extension of it, the kernel Fisherfaces
algorithm is proposed.

Bayesian face recognition approach [MJP00] is famous for its formulation of the
multi-class face recognition problem as a two-class classification problem. In
this method, intrapersonal and extrapersonal differences are used to exploit the
knowledge of critical variations for discriminating the individuals.

In addition to these approaches, there are several other popular face recog-
nition algorithms, such as face recognition by elastic bunch graph matching
[WFKM97], Laplacianfaces [HYH+05], local binary patterns [AHP06], etc. A
survey on face recognition algorithms can be found in [ZCPR03].

2.2 Illumination

One of the most addressed problems in face recognition is illumination varia-
tions. It has attracted significant attention during the last decade and there
have been many solutions proposed for this problem [AMU97, SK01, SRR01,
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WLWZ03, CWX+06, GBK01, VT02, GMB02, LHK05, ZACJ07, LCLZ07]. These
solutions can be classified as: invariant features, canonical forms, and varia-
tion modeling [SK01]. In the first approach, features insensitive to illumina-
tion variations are searched for [AMU97]. The second approach tries to re-
move the illumination variation either by an image transformation or by syn-
thesizing a new image [SK01, SRR01, WLWZ03, CWX+06]. Finally in the
third approach, illumination variation is learned and modeled in a suitable sub-
space [GBK01, VT02, GMB02, LHK05, ZACJ07]. Besides these solutions, in
[LCLZ07] near-infrared lighting is proposed to achieve illumination invariant
capture conditions.

2.2.1 Invariant Features

In [AMU97] different face representation approaches, such as edge maps, Gabor-
like functions, derivatives of the gray-level, and log transformations, are eval-
uated under lighting direction changes. In total, 107 different operators are
tested, but none of them provided insensitiveness against illumination. In this
study, it is concluded that the variance in appearance of one person under differ-
ent lighting conditions, the inner class variance, can be greater than the variance
in appearance of different persons under the same lighting condition, the inter
class variance.

2.2.2 Canonical Forms

The face shape is extracted from a single image using a statistical shape-from-
shading model in [SK01]. After extracting the face shape, new face image sam-
ples are synthesized under different illumination conditions. In [SRR01], the
quotient image method is introduced. In this method, first an illumination
invariant signature image is obtained. Afterwards, using this image, face im-
ages with varying illumination are generated. A face normalization algorithm
that transforms the lighting of one face image to that of another face image is
presented in [WLWZ03]. The logarithmic total variation model is proposed in
[CWX+06]. Illumination invariant facial structure is obtained from a single face
image with this model.

2.2.3 Variation Modeling

The illumination cones method is introduced in [GBK01], in which facial appear-
ance variations caused by different illumination conditions are modeled using a
small set of face images taken under different lighting directions. The tensorfaces
approach is presented in [VT02]. In contrast to eigenfaces [TP91], in which only
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the space of face images is spanned, in this method, multilinear analysis is used
to decompose the facial image data tensor into five different matrices that span,
in addition to face images, the space of people parameters, viewpoint parame-
ters, illumination parameters, and expression parameters. Light-fields theory is
utilized and used in a linear discriminant analysis framework in [GMB02]. In
[LHK05], it is shown that the subspace that can model the appearance variations
caused by changing lighting conditions, can be established by directly using the
face images that are captured under pre-arranged lighting conditions.

2.3 Occlusion

Partial face occlusion is one of the most challenging problems in face recognition.
In this section, related work about this topic will be briefly presented.

In [Mar02], face images are analyzed locally in order to handle partial face
occlusion. The face image is first divided into k local regions and for each region
an eigenspace is constructed. If a region is occluded, it is automatically detected.
Moreover, weighting of the local regions is also proposed in order to provide
robustness against expression variations. A similar approach is presented in
[TCZZ05], where a self-organizing map (SOM) is used to model the subspace
instead of Gaussians or mixtures of Gaussians as in [Mar02].

A face is represented by the face attributed relational graph (ARG) structure
in [PLL05]. This representation contains a set of nodes and binary relations
between these nodes. In testing, first the correspondences between the ARG
representations of the training and testing samples are established. According
to the distance between these representations, the classification is performed.

In [FSL06], robustness against occlusion is provided by combining the subspace
methods that aim at best reconstruction, such as principal component analysis,
with the subspace methods that aim at discrimination, such as linear discrimi-
nant analysis.

A sparse signal representation is used to analyze partially occluded face images
in [WGYM07]. Another representation based approach is proposed in [JM08].
Different from the studies [FSL06, Mar02, PLL05, TCZZ05, WGYM07] in which
occluded images are only included in the testing set, in [JM08] they are included
both in the training and testing sets. The occlusion problem is handled as a
reconstruction problem and the classification is done according to the obtained
reconstruction error on a test image.

A common point of the studies listed in this section is the use of the AR face
database [MB98] for the face recognition experiments.
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2.4 Component-based Approaches

Face recognition based on local facial regions has attracted a significant amount
of interest. Approaches that utilize local regions either use salient regions or
they just partition the face image into rectangular blocks. The approaches that
exploit salient regions can also be further divided into two subgroups as the
ones using predefined regions, such as eyes, and the ones using automatically
learned regions. In this section, first brief information about the salient region-
based studies is given, then the methods that perform generic partitioning are
overviewed.

In [BP93], whole face template as well as eyes, nose, and mouth are used for
face recognition (See Figure 2.1.). The relative location of these regions with
respect to the eye position is the same for each face image. Template matching is
employed for identification. Normalized cross correlation is used as the matching
score. The resulting scores from each representation, that is from the whole
face and local regions, are accumulated and the test face image is assigned with
the identity of the training sample that attains the highest matching score.
According to the classification performance of the individual representations,
the eye region is found to be the most discriminative region. The second best
result is obtained by the nose region. The mouth region takes the third place.
Interestingly, the entire face image is found to have the least discrimination
power.

Figure 2.1: Local regions used for face recognition in [BP93] (From [BP93]).

Automatically detected facial features are utilized for identification in [PMS94].
The eigenfeature-based approach is used for facial feature detection. In this
method, first an eigenspace, which is named eigenfeature, is built for each facial
feature. Afterwards, at each pixel, the distance-from-feature-space is computed,
which indicates how well the eigenfeature can represent the region under ex-
amination. Low distance values correspond to good representation capability,
whereas high distance values correspond to poor representation capability. This
way a distance map is obtained and the global minimum of this distance map
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is selected as the facial feature location. The detectors are developed for the
left eye, right eye, nose, and mouth regions. Sample facial feature templates are
shown in Figure 2.2. However, the mouth region is not used for identification,
since it is sensitive to expression variations. The performances of three differ-
ent representation schemes are assessed. These are whole face, combined facial
features and combined whole face and facial features representation. Feature
extraction is done by projecting the whole face and the facial features onto the
corresponding eigenspaces. It is observed that in the lower feature dimensions,
combined facial feature representation outperforms the whole face representa-
tion. The fusion of these representations improves the performance slightly.

Figure 2.2: Local regions used for face recognition in [PMS94] (From [PMS94]).

A normalized face image is divided into four predefined regions in [LKK05].
These regions are the left eye region, the right eye region, the nose region, and
inner face region excluding the mouth (see Figure 2.3). Similar to the approach
in [PMS94], the mouth region is excluded due to its sensitivity to expression
variations. So called DCT/LDA based features are extracted from these regions,
as well as from the whole face and both are then used for classification.

Figure 2.3: Local regions used for face recognition in [LKK05] (From [LKK05]).
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In [KKHK05], two different partitioning schemes are considered. Similar to
[BP93], the relative locations of these regions with respect to the eye position are
the same for each face image. The first scheme has 14 overlapping components
consisting of small and large regions (See Figure 2.4(a).). Small regions are
located around the salient points such as eyes, nose or mouth. The large regions
are located around the forehead, cheeks, and neck. The second scheme has five
overlapping components (See Figure 2.4(b).). These components are obtained
by combining two or three components of the first partitioning scheme into one.
This is done by exhaustively searching for the best performing combinations on
the training set. The resulting components contain the forehead including the
eyebrows, the left eye region, the right eye region, the lower left face region, and
the lower right face region both including most of the nose. In this method, LDA
is applied both on the whole face and on the components. The extracted feature
vectors are combined and another LDA is applied on the resulting combined
feature vector.

(a) (b)

Figure 2.4: Local regions used for face recognition in [KKHK05] (From
[KKHK05]).

Facial features are detected by a two level, component-based face detector in
[HHWP03]. The first level corresponds to detection of facial features, whereas
the second level checks for the geometrical configuration to verify whether there
exists a face or not in the scene. Facial feature detection is based on support
vector machine (SVM) classifiers. In the study, 14 facial components, which
are shown in Figure 2.5(a), are detected. From these 14 components, the com-
ponents around the cheeks and the highly overlapped ones are discarded and
10 of them are kept for face recognition. These components can be seen in
Figure 2.5(b). Face recognition is also done with SVM classifiers. The one-
vs-all strategy is employed, where for each subject an SVM classifier is trained
discriminating the person from the other subjects.

14 automatically learned components are used for face detection and identifi-
cation in [HSP07]. These components are depicted in Figure 2.6. Similar to
[HHWP03], SVM classifiers are used to detect facial features and to classify
faces.
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(a) (b)

Figure 2.5: Local regions used for (a) face detection, (b) face recognition in
[HHWP03] (From [HHWP03]).

(a) (b)

Figure 2.6: Local regions used for (a) face detection, (b) face recognition in
[HSP07] (From [HSP07]).
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Generic partitioning has also been employed in several studies. In [AHP06,
CEW05, GA04, PB99, PZ96, Sco03, TLV04, ZR04], the face is divided into non-
overlapping blocks, whereas in [EMR00, KD98, LC04, Nef99, SP03a] overlapping
blocks are used. In [AHP06], local binary pattern histograms are extracted
from 18 × 21 pixels resolution blocks. The DCT is applied on image blocks in
[CEW05, PB99, PZ96, Sco03, TLV04, ZR04]. 8 × 8 pixels blocks are used in
[CEW05, TLV04]. Different block sizes are tried in [PB99, PZ96, Sco03, ZR04].
PCA is utilized in [GA04], where the input face image is divided into 4 to 4096
non-overlapping blocks. In all the works that use overlapping image blocks,
the DCT is used for feature extraction and the extracted features are fed into
parametric classifiers. In [EMR00, KD98, Nef99], the extracted features are
given as input to a HMM classifier, whereas in [LC04, SP03a] they are given as
input to a Gaussian mixture model (GMM) classifier.

2.5 DCT-based Face Recognition Algorithms

The discrete cosine transform has been used as a feature extraction step in
several studies on face recognition. In [PZ96], block-based DCT is used to
extract the features. A subset of the obtained DCT coefficients are then vector
quantized and the classification is done using the nearest neighbor classifier. The
experiments are conducted on a database of 25 people. Two different block sizes,
16×16 and 32×32 pixels resolution, and two different local feature dimensions,
8 and 16, have been tested with respect to different codebook sizes, 16, 32,
64, and 128. It has been observed that larger block size and codebook size
result in better performance. However, no significant performance improvement
is obtained when increasing the feature dimension from 8 to 16 in the case of
32× 32 pixels block size. The performance of the DCT-based feature vectors is
also compared with the one of raw pixel intensity values. It has been found that
16-dimensional DCT-based feature vectors perform as well as 256-dimensional
pixel intensity values-based feature vectors, which implies that using the DCT,
feature dimensionality can be reduced greatly without losing performance.

The DCT-based features are classified with a one-dimensional hidden Markov
model (HMM) in [KD98]. DCT is applied on overlapping image blocks. The
obtained DCT coefficients are ordered using the zig-zag scan pattern and only
the first few coefficients are selected as features. Image blocks are processed se-
quentially from top left part of the face image to bottom right and the extracted
observation sequence is fed into the one-dimensional HMM. The algorithm is
evaluated on the ORL face database [SH94] with respect to image block size,
percentage of overlap between the neighboring blocks, and the number of used
DCT coefficients. The best result is attained with an image block size of 16×16
pixels, having 75% overlap and using ten DCT coefficients.
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In [PB99] the DCT coefficients of the entire image or its blocks are computed and
from the obtained coefficients, only a subset of them is selected by diagonally
scanning the upper-left part. The coefficients are then given as an input to a
multi-layer perceptron. The algorithm’s performance is extensively tested on
the ORL face database [SH94] by varying the parameters of the number of
coefficients, number of hidden neurons, and block size. The best performance is
attained on the entire image, with 35 coefficients and 75 hidden neurons. The
results obtained on 8 × 8 and 16 × 16 pixels resolution blocks are shown to be
slightly inferior than the ones obtained on the entire image. The main reason
for this could be attributed to the fact that the location information of the local
features are lost while feeding them into a neural network structure.

DCT coefficients of image blocks are used as observation vectors of an embedded
hidden Markov model (HMM) in [Nef99]. In this approach, each face region —
forehead, eyes, nose, mouth, and chin— are modeled with a super state. Each
super state contains embedded states. In the algorithm, the face image is scanned
with a window size of 8 × 10 pixels resolution. There exists overlap between
the neighboring blocks. For each block only six DCT coefficients are used. The
proposed method has been evaluated comparatively with the eigenfaces [TP91]
and other HMM-based face recognition approaches [Sam94] on the ORL face
database [SH94]. The results show that use of embedded HMM scheme with
DCT coefficients as the observation vectors provides improved performance.

Another method that uses DCT coefficients as observation vectors of an HMM
scheme is proposed in [EMR00]. DCT is performed on overlapping 8× 8 pixels
blocks and 15 DCT coefficients are extracted by diagonally scanning the upper-
left part of the DCT coefficient block. The proposed method is tested on the
ORL face database [SH94]. 100% correct recognition rate is obtained on this
database.

In [HL01], the DCT is performed on the entire image and a square subset of the
DCT coefficients from the top-left part is used as the feature vector. The nearest
neighbor classifier, which uses the L2 norm as the distance metric, is used in
the study. The proposed algorithm’s performance is assessed with respect to
varying parameters such as number of training images per person, number of
used DCT coefficients, and geometric normalization on the Achermann database
from the University of Bern, the ORL database [SH94], the MIT database, and
the CIM database, which was collected at the Center for Intelligent Machines
(CIM) in McGill University. The algorithm is also compared with the eigenfaces
approach [TP91] and found superior to it.

A derived coefficient set, called mod 2 feature set, from the DCT coefficients
are proposed in [SP03a] for face-based identity verification. 8× 8 pixels blocks,
having 50% overlap between horizontally and vertically neighboring blocks, are
used. Each block is represented with the DCT-mod 2 feature set, which are ob-
tained by replacing the first three DCT coefficients according to the zig-zag scan
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pattern with their horizontal and vertical deltas. The deltas correspond to the
difference between the horizontally or vertically neighboring blocks’ DCT coeffi-
cients and they are interpreted as representing transitional spatial information.
In addition to DCT-mod 2 feature set, three feature sets, namely the DCT-delta,
DCT-mod, and DCT-mod-delta feature sets are also analyzed. DCT-delta fea-
ture set is extracted by replacing the DCT coefficients with their horizontal and
vertical deltas. DCT-mod feature set is extracted by removing the first three
DCT coefficients from the DCT-based feature vector. DCT-mod-delta is de-
rived again by removing the first three coefficients from the DCT-based feature
vector and combining the remaining coefficients with the corresponding DCT-
delta feature vector. Gaussian mixture models (GMM) are used for modeling
the distribution of extracted feature vectors and verification is done by com-
paring the average log-likelihood value of the claimant being genuine and the
average log-likelihood value of the claimant being an impostor. For the GMM,
eight mixtures are used and 15 coefficients are selected for the DCT. The ex-
periments are conducted on the VidTIMIT audio-visual database [SP03b] with
artificially varying illumination conditions and on Weizmann database [AMU97].
The DCT-mod 2 feature set is shown to be the most suitable feature extrac-
tion method compared to the DCT-delta, DCT-mod, and DCT-mod-delta. The
proposed method is also evaluated comparatively with the eigenfaces approach
[TP91], ordinary DCT and Gabor wavelets. The experimental results indicate
that the DCT-mod 2 feature set is more discriminative and more robust to
illumination variations than these approaches.

In [Sco03], a network of networks (NoN) model is fed by the DCT coefficients
extracted from image blocks. The DC coefficient, the DCT coefficient at the
top-left, is excluded from the feature computation and five different feature
vectors are computed from the remaining DCT coefficients. The first method
computes the squared sum of the DCT coefficients at each block, whereas the
second method sums the absolute values of the DCT coefficients. The third
method calculates the mean squared value of the DCT coefficients. Similarly,
the fourth method calculates the mean absolute value of the DCT coefficients
in a block. Finally, the fifth method first subtracts the average DCT value of
the image block from the values of the DCT coefficients and then calculates the
mean absolute value of resulting differences. For all of the five methods, the
best recognition rates are obtained using 8×8 pixels block size on the ORL face
database [SH94].

The idea of having separate image partitioning schemes and fusing their classifi-
cation outcomes at the decision level is proposed in [ZR04]. In this method, three
different approaches, Bayesian face recognition [MJP00], Fisherfaces [BHK97],
and DCT are performed both on the entire face image and on the partitioned face
images. Three different image partitioning schemes are employed. The first one
divides the face image horizontally into four equal pieces. The second and third
ones segment the face image both vertically and horizontally, the former leading
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to four equal pieces and the latter leading to twelve equal pieces. The classifi-
cation outputs of each partitioning scheme and the original image are fused at
the decision level via the sum rule [KHDM98]. In the DCT-based method, the
top-left square subset of DCT coefficients are used for classification. From the
results on the Yale [BHK97] and ORL [SH94] face databases, it is observed that
fusing the information coming from different partition schemes improves the cor-
rect recognition rates. In the experiments, the DCT-based method outperforms
Bayesian face recognition [MJP00] and Fisherfaces [BHK97].

The energy histogram of the DCT coefficients is used for face recognition in
[TLV04]. In this approach, the DCT is performed on 8 × 8 image blocks and
four different feature sets are constructed with the obtained DCT coefficients.
The first feature set contains only the top-left DCT coefficient; the second,
third, and fourth ones contain square subsets of DCT coefficients from the top-
left part having the size of 2×2, 3×3, and 4×4, respectively. Energy histograms
of these feature sets are used as feature vector for classification. The nearest
neighbor classifier is used. The L2 norm is employed as the distance metric.
The experiments are conducted on the Yale face database [BHK97]. The effects
of bin size and use of different feature sets are analyzed. The best recognition
performance is attained by using the second feature set with a histogram bin
size of 30.

In [CEW05] PCA and LDA are performed in the DCT domain. First, DCT is
applied on the 8 × 8 pixels resolution blocks. The resulting DCT coefficients
are quantized and then ordered according to the zig-zag scan pattern. Only a
number of DCT coefficients containing high magnitudes is kept. The obtained
DCT coefficients from each block are concatenated. PCA and LDA are applied
on this combined vector. The FERET database [PMRR00] is used for the
experiments. It is shown that PCA and LDA can be applied in the DCT domain
without losing performance, while having reduced storage requirements and
computational load.

A component-based DCT/LDA approach is proposed in [LKK05]. In this ap-
proach, the DCT and LDA are applied successively both on the entire face image
and on four predefined facial components. These components are, left and right
eye regions, nose region, and inner face region excluding the mouth. The DCT
is applied both on the intensity and edge images. The Sobel operator is used
to extract the edge image. From the resulting DCT coefficients, the ones that
have a high ratio of between class variance to within class variance are kept and
fed into the LDA. The classification is done by finding the minimum weighted
Euclidean distance between the feature vector of the test image and the feature
vectors of the training images. The magnitudes of feature vectors extracted
from each component are normalized before calculating the distance. Separate
weights are assigned to the components. To speed up the classification process,
a representative feature scheme is introduced, which is defined as the median
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features of each class. During classification, the feature vector of the test face
image is first compared with the representative features. Then, it is compared
with all the training samples of the top candidate identities found in the first
step. The proposed method is evaluated on the MPEG-7 data set and a data
set from the Korean Broadcasting System and its performance is compared with
the one of MPEG-7 advanced face recognition descriptor (AFRD). Component-
based DCT/LDA approach is found to be more successful than the MPEG-7
AFRD.

In [ECW05], the DCT is applied on the entire face image. Low frequency DCT
coefficients are discarded from the feature representation to provide robustness
against illumination variations. Feature representations from each class are
then clustered in order to model the nonlinear face manifold with multiple lin-
ear manifolds, hence improving the performance of the LDA, which takes the
clustered feature representations as input. Finally, the output of the LDA is
fed into radial basis function (RBF) neural networks. Several experiments have
been conducted on the ORL [SH94], FERET [PMRR00], and Yale [BHK97]
databases. The proposed method is found to achieve high correct recognition
rates on each of these databases.

The DCT is applied on logarithm images in order to normalize illumination
variations in [CEW06]. The transform is performed on the entire image. Values
of the coefficients are normalized according to the DC coefficient’s value, that is,
the coefficients are scaled so that each face image have the same DC coefficient
value. Low frequency DCT coefficients, which are sensitive to the illumination
variations, are removed from the DCT representation. The face image is recon-
structed by using the remaining DCT coefficients. Logarithm images are used
for classification, no inverse logarithm is taken. Correlation and the eigenfaces
[TP91] method are applied on the normalized face images. The nearest neigh-
bor classifier with the L2 distance metric is employed. The experimental results
on the CMU PIE [SBB03] and Yale face database B [GBK01] show that the
proposed approach is robust against illumination variations.
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3 Local Appearance-based Face
Recognition

The local appearance-based face recognition algorithm is a generic, practical,
and robust face recognition algorithm that utilizes representations of local facial
regions and combines them at the feature level which provides conservation of
the spatial relationships. The underlying ideas for preferring a local appearance-
based approach over a holistic appearance-based approach are as follows:

• In a holistic appearance-based face recognition approach, a change in a
local region can affect the entire feature representation, whereas in local
appearance-based face recognition it affects only the features that are ex-
tracted from the corresponding block while the features that are extracted
from the other blocks remain unaffected.

• A local appearance-based algorithm can facilitate weighting of local re-
gions. It can put more weight to the regions which are found to be more
discriminant. Moreover, this can also improve robustness against occlu-
sion, by giving less weight to the regions where an occlusion is detected.

A diagram indicating the feature extraction via local appearance representation
is shown in Figure 3.1. In the approach, a detected and aligned face image is
first divided into local regions. For example, in Figure 3.1 it is done without
considering any salient regions, such as eyes. Then, a transform can be used to
represent local facial regions. Afterwards, the extracted representation coeffi-
cients from each block are combined in order to provide the feature vector that
represents the entire face image.

In this chapter, first, the representation approaches that can be used to model
the local facial regions are overviewed. According to the experimental results,
the discrete cosine transform (DCT) has been found to be the optimal repre-
sentation method. Therefore, in the second section local appearance-based face
recognition using the DCT is explained in detail. In the last section a brief
information about the nearest neighbor classification method, which has been
used as the classifier in the face recognition algorithm, is given.
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Figure 3.1: Local appearance representation.

3.1 Local Appearance Representation

Methods

In the following subsections, the image transforms that can be used to represent
local facial appearance are briefly explained.

3.1.1 Discrete Cosine Transform

The discrete cosine transform (DCT) is a well-known signal analysis tool used
in compression standards due to its compact representation power, which is
superior to that of the other widely used input independent transforms, e.g.
discrete Fourier transform and Walsh-Hadamard transform [GW01]. Although
Karhunen-Loève transform (KLT) is known to be the optimal transform in terms
of information packing, its data dependent nature makes it infeasible for use in
some practical tasks. Furthermore, DCT closely approximates the compact
representation ability of the KLT, which makes it a very useful tool for signal
representation both in terms of information packing and in terms of computa-
tional complexity due to its data independent nature.

The 2-D discrete cosine transform of an m×m image block is defined as

C(u, v) = α(u)α(v)
m−1∑
x=0

m−1∑
y=0

(f(x, y)cos[
(2x+ 1)uπ

2m
]cos[

(2y + 1)vπ

2m
]) (3.1)

for u, v = 0, 1, ,m− 1 where,

α(u) =

{ √
1/m for u = 0√
2/m for u = 1, 2, ...,m− 1

(3.2)
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and the 2-D inverse discrete cosine transform is defined as

f(x, y) =
N−1∑
u=0

N−1∑
v=0

(α(u)α(v)C(u, v)cos[
(2x+ 1)uπ

2N
]cos[

(2y + 1)vπ

2N
]). (3.3)

The DCT basis functions can be seen in Figure 3.2. As can be seen from the top-
left part of the basis functions and also from Equation 3.1, the (0, 0) component
represents the average intensity value of the image, which is directly affected by
illumination variations. From the figure, it can also be noticed that the (0, 1)
and (1, 0) components represent the vertical and horizontal intensity changes,
respectively.

Figure 3.2: DCT basis functions for m = 8.

A sample DCT output is depicted in Figure 3.3. As one can observe, the co-
efficients that account for a greater degree of the representation capability are
located at the top-left block of the matrix. To construct the feature vector from
the 2D DCT coefficients, the coefficients are ordered using the zig-zag scan-
ning pattern (see Figure 3.4). In this way, the coefficients containing the most
information are preserved when the vector is truncated.

3.1.2 Principal Component Analysis

Principal component analysis (PCA) is one of the most well-known dimen-
sionality reduction techniques. It is an unsupervised method and it tries to
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Figure 3.3: Sample DCT output of a face image block. The processed block is
marked with a red bounding box.

Figure 3.4: Zig-zag scan pattern.

38



find the best representation subspace that minimizes the reconstruction error.
The method has been widely used for holistic face recognition, for example
for eigenfaces [TP91]. It can be also used for representing local facial regions
[PMS94, GA04].

In principal component analysis, first, the subspace that represents the input
data is learned from the available training samples. Let Bi represent an m ×
n resolution image block. By concatenating the rows or columns, the two-
dimensional image block can be converted to a N = m× n dimensional vector
yi. Let yi,1,yi,2,yi,3, . . . ,yi,K be the set of the ith blocks from K images. The
average ith block, yi,m, is calculated as

yi,m =
1

K

K∑
k=1

yi,k. (3.4)

The difference between the training face image block and the average face image
block is

ȳi,k = yi,k− yi,m. (3.5)

The N ×N covariance matrix, C, can be calculated as

C = FF T , (3.6)

where F is anN×K matrix, containing the ȳi,ks in its columns. If the dimension
of the image block is less than the number of training images, N < K, then
the eigenvectors of C can be calculated directly. If the dimension of the image
block is higher than the number of training images, K < N , then first K ×K
matrix L is computed

L = F TF . (3.7)

The eigenvectors vL and eigenvalues λL of L can be calculated as

LvL = λLvL. (3.8)

By substituting L with Equation 3.7

F TFvL = λLvL. (3.9)

Multiplying both sides by F
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FF TFvL = λLFvL. (3.10)

Substituting FF T with C

CFvL = λLFvL. (3.11)

As it can be seen from Equation 3.11, the eigenvectors vC of the covariance
matrix C can be calculated as

vC = FvL. (3.12)

A face image block can be represented in this space without loss of informa-
tion, by weighted sum of these eigenvectors. However, generally, a small set of
eigenvectors is enough to represent the face image blocks properly. The first
M eigenvectors, M < N , corresponding to the highest first M eigenvalues, are
chosen to construct the subspace. The face image blocks are represented with
M -dimensional feature vectors rk by projecting them onto the subspace

rk = V T ȳk, (3.13)

where V is the N ×M dimensional matrix that contains the M eigenvectors in
its columns.

3.1.3 Wavelet Transform

Wavelet transformation is a powerful signal analysis tool, widely used for feature
extraction, compression, and denoising. As its name implies, wavelet transform
represents the signal with small waves of limited durations, which are called
wavelets. It provides examination of the signal both in frequency and time
domains.

The two-dimensional wavelet transform is performed by applying the one-dimen-
sional wavelet transform to the rows and columns of the input image block
consecutively. Tree representation of one level, two-dimensional wavelet decom-
position is shown in Figure 3.5. In this figure, H represents high-pass filtering,
L represents low-pass filtering, and ↓ 2 represents downsampling by a factor
of 2. The input image block Bi of resolution m × m is first filtered along the
rows and downsampled by 2 producing two m×m/2 images Bi,H and Bi,L that
have high and low frequency contents, respectively. After this decomposition,
the wavelet transform is applied to the columns of these m × m/2 resolution
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images. In the final stage of the decomposition, there are four m/2×m/2 res-
olution subband images: A1, the scaling component containing low-pass global
information obtained by low-pass filtering the rows and columns, H1, the hori-
zontal details obtained by low-pass filtering the rows and high-pass filtering the
columns, V1, the vertical details obtained by high-pass filtering the rows and
low-pass filtering the columns, D1, the diagonal details obtained by high-pass
filtering the rows and columns. This process is illustrated in Figure 3.5. The
scaling component can be decomposed further to obtain higher order wavelet
transform.

Figure 3.5: Tree representation of one-level 2-D wavelet decomposition.

3.1.4 Fourier Transform

Fourier transform is one of the widely used signal analysis tools. It transforms
the input image from spatial domain to frequency domain, where the image is
represented as weighted sum of sines and cosines at different frequencies. At
some signal processing tasks, the features that are not observable in the spatial
domain can be easily attained in the frequency domain. Therefore, analyzing
the signal in the frequency domain can be beneficial for feature extraction.

The two-dimensional discrete Fourier transform of the input image block Bi of
resolution m× n pixels can be calculated as

F (u, v) =
1

mn

m−1∑
x=0

n−1∑
y=0

Bi(x, y)e−j2π(ux/m+vy/n), (3.14)

for u = 0, 1, 2, . . . ,m− 1, v = 0, 1, 2, . . . , n− 1.
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As can be seen from Equation 3.14, F (0, 0) corresponds to the average intensity
value of the image block, whereas F (m − 1, n − 1) corresponds to the highest
frequency content.

3.1.5 Walsh-Hadamard Transform

Another image transform that can be used to represent local regions is Walsh-
Hadamard transform (WHT). The Walsh-Hadamard kernel forms a matrix of
±1s and its rows and columns are orthogonal to each other. 1-D transformation
kernel for m = 8 can be seen in Equation 3.15.

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


(3.15)

Given an image block Bi of size m×m, the discrete transform can be represented
as:

T (u, v) =
m−1∑
x=0

m−1∑
y=0

Bi(x, y)g(x, y, u, v) (3.16)

The 2-D Walsh-Hadamard kernel is formulated as

g(x, y, u, v) =
1

m
(−1)

∑n−1
i=0 [ci(x)ri(u)+ci(y)ri(v)]. (3.17)

where

r0(u) = cm−1(u) (3.18)

r1(u) = cm−1(u) + cm−2(u) (3.19)

r2(u) = cm−2(u) + cm−3(u) (3.20)

...

rm−1(u) = r1(u) + r0(u) (3.21)
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The summations are performed in modulo 2 arithmetic and ck(z) is the kth bit
representation of z. For instance, if n = 3 and z = 4 (100 in binary), c0(z) = 0,
c1(z) = 0, and c2(z) = 1.

Walsh-Hadamarad basis functions for m = 8 can be seen in Figure 3.6

Figure 3.6: Walsh-Hadamard basis functions for m = 8.

3.2 Local Appearance-based Face Recognition

Using Discrete Cosine Transform

In the proposed local appearance-based face recognition (LAFR) approach, a
detected and registered face image is divided into local regions. Then, on each
local region, the DCT is performed. The obtained DCT coefficients are or-
dered using zig-zag scanning. From the ordered coefficients, according to a
feature selection strategy, M of them are selected and normalized resulting in
an M -dimensional local feature vector. Finally, the DCT-based feature vectors
extracted from each block are concatenated to construct the overall feature vec-
tor. The classification is done using a nearest neighbor classifier. As one can
notice there are several parameters involved in such an approach. These are:

• Feature normalization: Since the DCT coefficients have a different mag-
nitude range and since local blocks with different brightness levels lead to
DCT coefficients with different value levels, it is important to balance the
contribution of each coefficient and each block to the classification.
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• Block size: Applying DCT on large local regions provides more compact-
ness in representation, however, it provides a poor statistical represen-
tation of the region. A better statistical representation can be provided
using small local regions, however, this time the representation become
less compact.

• Image partitioning: The face image can be partitioned by considering
some salient regions, such as eyes, or by putting a rectangular grid without
considering any salient region.

• Feature selection: Different types of facial appearance variations can be
handled by using different frequency bands. Therefore, an automatic fre-
quency band selection method is required to determine the appropriate
frequency band to be used for classifying the test image.

In the next chapters, these points will be explained and analyzed in detail.

3.3 Nearest-neighbor Classification

Due to the non-parametric distribution of face data and due to the small sample
size available for training, the nearest neighbor classification method has been
widely used for face recognition. It is an easy and efficient, so called lazy classifi-
cation algorithm, where there is no work done in training stage, such as density
estimation, and all the work is conducted during testing. The classification is
done by comparing a test sample with all the training samples in the database
and by finding the training sample that has the closest distance. Several dis-
tance metrics can be used for the nearest neighbor classification, such as L1, L2
norms, and normalized correlation. The choice of the distance metric is very
important and the classification performance can change dramatically according
to the used distance metric.

44



4 Experiments

In this chapter, parameters of the proposed local appearance-based face recogni-
tion (LAFR) approach are analyzed through extensive experiments. The chapter
starts with describing the benchmark face databases and experimental setups.
Following sections convey detailed assessment of the effects of the parameters —
feature normalization, distance metric, block size, frequency band, image parti-
tioning strategy, and representation method— on the classification performance.
Finally, in the last section, the proposed algorithm’s robustness against com-
pression is tested.

4.1 Benchmark Databases

Due to tremendous interest in face recognition research, many face databases
have become publicly available to comparatively evaluate the performance of the
face recognition algorithms. Five of them have been chosen in order to test the
robustness of the proposed face recognition algorithm against facial appearance
variations caused by partial face occlusion, expression, illumination, time gap,
and uncontrolled conditions. The used databases are:

• The face recognition grand challenge (FRGC) database [PFS+05],

• The CMU pose, illumination, and expression (CMU PIE) database [SBB03],

• The AR face database [MB98],

• The Yale face database B [GBK01], and

• The Extended Yale face database B [LHK05].

Overview of the data sets and experimental setups are given in Table 4.1.

In the experiments, all the images were aligned with respect to the eye centers
and scaled to 64× 64 pixels resolution.

In the following subsections information about these databases, the derived data
sets, and the experimental setups are given.
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Name of the
database

Number
of sub-
jects

Number of
training im-
ages per
subject

Number of
testing images
per subject

Contained vari-
ations

FRGC 120 10 / 10 10 / 10 Controlled, un-
controlled con-
ditions, expres-
sion, time gap

CMU PIE 68 1 20 Illumination
AR 110 1 / 1 / 1 / 1 1 / 1 / 1 / 1 Occlusion (sun

glasses and
scarf), time gap

Yale 10 7 / 7 / 7 / 7 12 / 12 / 14 /
19

Illumination
with different
strength levels

Extended
Yale

38 7 / 7 / 7 / 7 12 / 12 / 14 /
19

Illumination
with different
strength levels

Table 4.1: Overview of the data sets and experimental setups. Multiple numbers
in the cells indicate the number of training, testing samples used for
each training-testing condition from the same database.

4.1.1 The Face Recognition Grand Challenge Database

The FRGC database was collected at the University of Notre Dame during 2002-
2004 academic years. It is the database that has been used in the face recognition
grand challenge experiments which has been conducted by the National Institute
of Standards and Technology (NIST) from May 2004 to March 2006 [PFS+05].
The database contains high resolution still images and 3D images. The still
images are collected both in a controlled and uncontrolled way. The images
collected in a controlled way contain frontal faces that are captured in a studio
setting. These images have two different lighting conditions caused by use of
two or three studio lights, and two different facial expressions which are neutral
and smiling. The average distance between the centers of eyes is 261 pixels.
The images that are collected in an uncontrolled way also contain frontal face
images, but this time instead of having a studio setting, the data is captured
under changing illumination conditions in hallways, atria, or outdoors. They
also contain two different facial expressions —neutral and smiling. The average
distance between the centers of eyes in this case is 144 pixels. For detailed
information about the database please see [PFS+05]. From the FRGC database,
two different data sets were derived that consist of still images. One of the data
sets contains images taken under controlled settings and the other contains
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images taken under uncontrolled settings. These images are selected from the
fall 2003 and spring 2004 recordings. There are 120 subjects in the created data
sets, who have at least ten images both in fall 2003 and spring 2004 recordings.
The images from fall 2003 are used for training and the ones from spring 2004
are used for testing. Table 4.2 shows the setups of the experiments on the FRGC
database. Sample input images and registered images are given in Figure 4.1.

(a)

(b)

(c)

(d)

Figure 4.1: Sample images from the FRGC database. (a) Sample input im-
ages collected under controlled conditions from fall 2003. (b) Corre-
sponding registered images from fall 2003. (c) Sample input images
collected under uncontrolled conditions from spring 2004. (d) Cor-
responding registered images from spring 2004.
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Label
of the
experi-
ment

Number
of sub-
jects

Training set Number
of train-
ing im-
ages per
subject

Testing set Number
of testing
images
per sub-
ject

FRGC1 120 Controlled
face images
from fall
2003

10 Controlled
face images
from spring
2004

10

FRGC4 120 Uncontrolled
face images
from fall
2003

10 Uncontrolled
face images
from spring
2004

10

Table 4.2: Experiments on the FRGC database.

4.1.2 The CMU Pose, Illumination, and Expression
Database

The CMU PIE face database was collected at Carnegie Mellon University be-
tween October and December 2000. As the name implies, the database contains
face images with varying head pose, illumination, and facial expression. There
are 68 subjects in the database. In this work, frontal images from the illumi-
nation subset of the CMU PIE database are used, where each subject has 21
images captured under varying illumination conditions. Changing illumination
conditions are provided by controlling 21 flashes during the image capture. For
details about the capture conditions please see [SBB03]. The average distance
between the centers of eyes is 82 pixels. In the experiments, for each subject
a single image, where the face is frontally illuminated, is used for training and
the remaining 20 face images, which are taken under varying illumination con-
ditions, are used for testing. The setup of the experiment is given in Table 4.3.
Sample input images and registered images are shown in Figure 4.2.

Label of
the ex-
periment

Number
of sub-
jects

Training
set

Number of
training

images per
subject

Testing set Number
of testing
images per
subject

CMUPIE 68 Frontally
illumi-
nated face
image

1 Face images
under vary-
ing illumi-
nation

20

Table 4.3: Experiment on the CMU PIE face database.
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(a)

(b)

(c)

Figure 4.2: Sample images from the CMU PIE face database. (a) Sample input
images. (b) Registered training image of a subject. (c) Registered
testing images of the same subject.
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(a)

(b)

Figure 4.3: Sample images from the AR face database. (a) Sample input images.
(b) Corresponding registered images.

4.1.3 The AR Face Database

The AR face database was collected at the Computer Vision Center at the
Universitat Autonoma de Barcelona (UAB), in Spain, in 1998 [MB98]. The
database contains frontal face images with different facial expression, illumina-
tion, and occlusion. There are 126 subjects in the database. Each subject was
recorded in two separate sessions. There is a time gap of two weeks between the
sessions. The average distance between the centers of eyes is 105 pixels. From
the database, one image per subject is used from the first session for training.
This image is annotated as “1: neutral expression”. For testing, two images
per subject are used from each session, which are annotated as “8/21: wearing
sunglasses”, “11/24: wearing scarf”, where the first number corresponds to the
label in the first recording session and the second one corresponds to the label in
the second recording session. From these two images, the ones with annotations
“8/21: wearing sunglasses” are used for testing against upper face occlusion and
the ones with annotations “11/24: wearing scarf” are used for testing against
lower face occlusion. In the data set, there are 110 subjects who have all these
samples in both of the sessions. Four separate experiments are conducted on
this data set. Two of them are trained and tested within the first session and
two of them are trained with the images from the first session and tested with
the images from the second session. Setups of the experiments are presented
in Table 4.4. Sample input images and registered images are shown in Figure
4.3.
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Label of the
experiment

Number
of sub-
jects

Training set Number
of train-
ing im-
ages per
subject

Testing set Number
of testing
images
per
subject

AR1scarf 110 Face images
without oc-
clusion
from ses-
sion 1

1 Face im-
ages with
scarf from
session 1

1

AR1sun 110 Face images
without oc-
clusion
from ses-
sion 1

1 Face images
with sun-
glasses from
session 1

1

ARinterscarf 110 Face images
without oc-
clusion
from ses-
sion 1

1 Face im-
ages with
scarf from
session 2

1

ARintersun 110 Face images
without oc-
clusion
from ses-
sion 1

1 Face images
with sun-
glasses from
session 2

1

Table 4.4: Experiments on the AR face database.
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4.1.4 The Yale Face Database B / The Extended Yale
Face Database B

The Yale face database B and the extended Yale face database B were collected
at Yale University. The database contains pose and illumination variations.
There are 10 subjects in the Yale face database B and 38 subjects in the extended
Yale face database B. The Yale face database B is a subset of the extended Yale
face database B. Separate experiments are conducted on the Yale face database
B and the extended Yale face database B in order to compare the results with
the ones in the literature that are obtained on these databases. Illumination
variations are obtained by using a geodesic lighting rig with 64 computer con-
trolled strobes. This way, for each person, in each pose, 64 images with different
illumination conditions have been captured. These 64 images are divided into
five subsets according to the angle between light source direction and camera’s
optical axis. Subset 1, with the angles less than 12 degrees, contains seven im-
ages. Subset 2, with the angles between 20 and 25 degrees, contains 12 images.
Subset 3, with the angles between 35 and 50 degrees, contains 12 images. Subset
4, with the angles between 60 and 77 degrees, contains 14 images and finally
subset 5, with the angles larger than 77 degrees, contains 19 images. From
the database frontal face images under all illumination variations were selected.
The average distance between eye centers is 92 pixels. For training, the first
subset that has close to frontal illumination is used. For testing, subsets 2, 3, 4,
and 5 are used. With increasing subset number, illumination variations become
stronger as can be observed from the sample images in Figure 4.4. Setups of
the experiments are presented in Table 4.5.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.4: Sample images from the Yale face database B. (a) Sample input
images. (b) Sample registered images from Subset 1. (c) Sample
registered images from Subset 2. (d) Sample registered images from
Subset 3. (e) Sample registered images from Subset 4. (f) Sample
registered images from Subset 5.
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Label of
the ex-
periment

Number
of sub-
jects

Training
set

Number of
training

images per
subject

Testing set Number
of testing
images per
subject

Yale2 10 Face im-
ages from
subset 1

7 Face images
from subset
2

12

Yale3 10 Face im-
ages from
subset 1

7 Face images
from subset
3

12

Yale4 10 Face im-
ages from
subset 1

7 Face images
from subset
4

14

Yale5 10 Face im-
ages from
subset 1

7 Face images
from subset
5

19

ExtYale2 38 Face im-
ages from
subset 1

7 Face images
from subset
2

12

ExtYale3 38 Face im-
ages from
subset 1

7 Face images
from subset
3

12

ExtYale4 38 Face im-
ages from
subset 1

7 Face images
from subset
4

14

ExtYale5 38 Face im-
ages from
subset 1

7 Face images
from subset
5

19

Table 4.5: Experiments on the Yale face database B / Extended Yale face
database B.
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4.2 Feature Normalization

Feature normalization is a very important processing step in local appearance-
based face recognition using discrete cosine transform. There are two main
points that should be taken into consideration. The first point is the total
magnitude of each block’s DCT coefficients. Since DCT is an orthonormal
transformation and conserves all the energy of the processed input blocks, blocks
with different brightness levels lead to DCT coefficients with different value
levels. Because of this reason, the blocks with brighter content have more impact
on the classification results. The other main point is the value range of the
DCT coefficients. The first coefficients have higher magnitudes than the later
ones. Therefore, they contribute more to the calculated distance in a nearest
neighbor classification scheme, hence have more importance in the classification.
However, it is known that, being able to represent more energy does not imply
having more discriminative power [ES04].

In order to prevent the problems that may occur due to the imbalance between
the blocks’ impact to the classification, the feature vector extracted from each
block is normalized to unit norm. Let fi be a set of DCT coefficients used as the
feature vector of the ith block in the image, then the normalized feature vector
fB

i becomes:

fB
i = fi/ ‖fi‖ . (4.1)

In order to solve the second problem —the imbalance between the coefficients’
impact to the classification—, the coefficients are divided by their standard
deviations that are learned from the training samples of all the used data sets.
The standard deviation is calculated over all blocks, that is, there are no block
specific values for the coefficients. The standard deviations obtained this way
are illustrated in Figure 4.5. It can be seen from this figure that the first
coefficients have a higher magnitude range. Let fi,j be the jth DCT coefficient
from the ith block in the image and σ (fj) be the standard deviation of the jth

DCT coefficient. The normalized coefficient, fCi,j, is calculated as

fCi,j = fi,j/σ (fj) , (4.2)

and the normalized feature vector fCi consists of these normalized coefficients

fC
i =

[
fCi,1, f

C
i,2, . . . , f

C
i,M

]
, (4.3)

where M denotes the local feature vector dimension.
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Figure 4.5: Standard deviations of the DCT coefficients. DCT coefficients are
ordered according to the zig-zag scan pattern. The 0th coefficient is
excluded.

In order to balance the contributions of both the blocks and their coefficients to
the classification at the same time, a combined normalization is performed by
dividing the coefficients by their standard deviations and normalizing the local
feature vector to unit norm:

fB,C
i = fC

i /
∥∥fC

i

∥∥ . (4.4)

In the feature normalization experiments, the 64 × 64 pixels resolution input
face image is divided into 8× 8 pixels resolution blocks. On each block DCT is
applied. From the ordered DCT coefficients according to the zig-zag scan pat-
tern, ten of them are selected by omitting the first DCT coefficient and selecting
the following ten. The overall feature vector is constructed by concatenating
the local feature vectors. It is then classified by using a nearest neighbor clas-
sifier. In the experiments, the effect of using different distance metrics to the
classification results is also analyzed. Three different distance metrics, the L1
norm, the L2 norm, and the normalized correlation are compared,

dL1 =
K∑
k=1

|ftraining,k − ftest,k| , (4.5)

dL2 =
K∑
k=1

(ftraining,k − ftest,k)2 , (4.6)

dncorr =
ftraining∗ ftest

|ftraining| ∗ |ftest|
, (4.7)
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where K denotes the dimension of the overall feature vector, ftraining,k is the kth

(k = 1, 2, . . . , K) component of the training feature vector, and ftest,k is the kth

component of the test feature vector.

The comparative results of different feature normalization methods are shown
in Figures 4.6, 4.7, and 4.8. The comparison of using different distance metrics
at the combined feature normalization is given in Figure 4.9. In each figure, the
x-axis contains the experimental setups and the y-axis shows the corresponding
correct recognition rates. Due to limited space, the labels of the experiments are
shortened. In the shortened form, F1 corresponds to FRGC1, F4 corresponds
to FRGC4, CP corresponds to CMUPIE ; A1sc, A1sun, Aisc, Aisun correspond
to AR1scarf, AR1sun, ARinterscarf and ARintersun; Y2, Y3, Y4, Y5 corre-
spond to Yale2, Yale3, Yale4 and Yale5 ; EY2, EY3, EY4, EY5 correspond to
ExtYale2, ExtYale3, ExtYale4, ExtYale5, respectively.

From Figures 4.6, 4.7, and 4.8, it can be observed that at each experimental
setup, the combined normalization has the best performance, except for the
experiments Yale2, Yale3, and ExtYale2, where the correct recognition rate is
already 100% without doing any normalization. Among the distance metrics,
L1 norm is found to be the one which provides the highest correct recognition
rate at each experimental setup as can be seen from Figure 4.9, except for the
experiments Yale2, Yale3, ExtYale2, and ExtYale3, where with each distance
metric 100% correct recognition rate is achieved. For example, in the experi-
ment with the label FRGC4, with L1 norm as the distance metric, combined
feature normalization achieves 90.8% correct classification rate, whereas unit
norm feature normalization achieves 84.8% and feature normalization by divid-
ing the DCT coefficients to their standard deviations achieves 62.8%. Without
doing any feature normalization the obtained correct classification rate is 63.2%.
The significant improvement justifies the necessity of feature normalization in
local appearance-based face recognition using DCT. Interestingly, unit norm fea-
ture normalization provides much better results than standard deviation-based
feature normalization. Moreover, applying standard deviation-based feature
normalization alone does not improve the resuls over applying no normalization
in most of the cases. However, using it in combination with unit norm feature
normalization contributes positively to the performance. This results indicates
that in the local appearance-based face recognition approach, it is more impor-
tant to equalize the impacts of the blocks. Without doing this, thus having
block importance directly proportional to the blocks’ brightness levels causes a
large drop in the performance. The benefit of equalizing the impact of the DCT
coefficients is more visible, when the blocks’ contributions to the classification
are balanced.

The performance increase is higher when the experiment is difficult, that is,
when there is a large difference between the appearances of the training and
testing face images. The absolute performance improvement with combined
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feature normalization with respect to applying no normalization is 4.1% in the
experiment with the label FRGC1 and 0.2% in the ExtYale3. In Yale2, Yale3,
and ExtYale2, it is 0% since in both cases the correct recognition rate achieved
in these experiments is 100%. On the other hand, the absolute increase is 27.6%
in FRGC4, 38.7% in CMUPIE, 33.6% in AR1scarf, 10.9% in AR1sun, 30.9%
in ARinterscarf, 20.9% in ARintersun, 48.6% in Yale4, 83.6% in Yale5, 66.8%
in ExtYale4, and 89.5% in ExtYale5. These values are calculated using the L1
norm as the distance metric. However, as can be seen from Figures 4.7 and 4.8,
similar observations are also valid when the L2 norm or normalized correlation
is used. The main reason for having more improvement in the difficult clas-
sification experiments is the higher imbalance between the blocks’ brightness
levels in these cases. When there is a large illumination variation, occlusion or
uncontrolled conditions, some of the blocks on the face image contain very high
intensity values compared to some of the other blocks on the same face image,
thus dominating the classification decision. This can be seen, for example, from
the Figure 4.4 (e) and (f). Therefore, in these cases, it is more important to
balance the contribution of each block to the classification decision.

The following correct recognition rates are attained when the L1 distance is used
as the distance metric and combined feature normalization is applied: 97.9%
in FRGC1, 90.9% in FRGC4, 99.8% in CMUPIE, 91.8% in AR1scarf, 37.3%
in AR1sun, 80.9% in ARinterscarf, 38.2% in ARintersun, 100% in Yale2 and
Yale3, 95.7% in Yale4, 95.2% in Yale5, 100% in ExtYale2 and ExtYale3, 93.1% in
ExtYale4 and ExtYale5. As one can notice, except the upper face occlusion —the
AR1sun and ARintersun experiments— the performance is very high even under
very difficult illumination conditions. This shows that upper face occlusion
is a bigger problem than the changes in expression, illumination variations,
uncontrolled conditions, and lower face occlusion. As the illumination variation
becomes stronger, e.g. in ExtYale4 and ExtYale5 experiments, the performance
drops. However, it still remains high.

According to the findings in the feature normalization experiments, in the follow-
ing experiments combined normalization will be applied on the utilized DCT
coefficients and the L1 norm will be used as the distance metric for nearest
neighbor classification.
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Figure 4.6: Comparison of feature normalization methods. The classification is
done with a nearest neighbor classifier using the L1 norm as the
distance metric.
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Figure 4.7: Comparison of feature normalization methods. The classification is
done with a nearest neighbor classifier using the L2 norm as the
distance metric.
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Figure 4.8: Comparison of feature normalization methods. The classification is
done with a nearest neighbor classifier using the normalized corre-
lation as the distance metric.
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Figure 4.9: Comparison of distance metrics. Combined feature normalization is
performed.
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4.3 Block Size

Block size is one of the important parameters in local appearance-based face
recognition. Applying DCT on large blocks provides more compactness in rep-
resentation, however, it provides poor statistical representation of the block. On
the other hand using small blocks as an input to DCT provides better statisti-
cal representation but less compactness. Hence, determining the block size is a
trade-off between compactness and representation capability.

In order to observe the impact of block size on the face recognition perfor-
mance, on each experimental setup, local appearance-based face recognition is
performed with varying block sizes. Six different block sizes with the following
pixel resolutions, 2 × 2, 4 × 4, 8 × 8, 16 × 16, 32 × 32, 64 × 64, are compared.
The partitionings with different block resolutions are shown in Figure 4.10. The
block resolution of 64 × 64 pixels corresponds to the entire face image. So, at
this block size, the approach is based on whole appearance rather than the local
appearance.

Figure 4.10: Face image partitioning with different block resolutions. The block
resolutions are 2× 2, 4× 4, 8× 8, 16× 16, 32× 32, 64× 64, from
left to right, respectively. The block resolution of 64 × 64 pixels
corresponds to the entire face image.

In the block size experiments, the 64× 64 pixels resolution input face image is
divided into blocks with a certain block size. On each block DCT is applied.
From the ordered DCT coefficients according to the zig-zag scan pattern, M of
them are selected by omitting the first DCT coefficient and selecting the fol-
lowing first M of them. The selected coefficients are divided by their standard
deviations that have been calculated for that block size from the training sam-
ples. Afterwards, the local feature vector is normalized to the unit norm. The
overall feature vector is constructed by concatenating the local feature vectors.
The global feature vector is then classified by using a nearest neighbor classi-
fier. The number of obtained blocks can be calculated by simply dividing the
image resolution to the block resolution. For example, in the case of using 2× 2
pixels resolution blocks, there are 1024 blocks and in the case of using 64× 64
pixels resolution blocks there is only one block which is the face image itself.
The global feature dimension is calculated as the number of blocks times the
dimension of the local feature vector. Therefore, the global feature dimension
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can be only the multiples of number of blocks. For instance, the global feature
dimension can be 1024, 2048, and 3072, when the block size of 2× 2 is used.

The results of the block size experiments at different global feature vector dimen-
sions can be seen from Figures 4.11-4.25. At dimensions that are higher than
2000, the blocks with resolution 2×2, 4×4, 8×8, 16×16 pixels outperform the
blocks with resolution 32 × 32 and 64 × 64 pixels. The performance increases
rapidly with the increasing global feature dimension till some point. After that
point, depending on the experiment, the correct recognition rate either remains
the same, increases slightly or decreases. For the experiments with the face im-
ages that contain strong illumination variations, such as CMUPIE, Yale4, Yale5,
ExtYale4, and ExtYale5, it remains the same or it increases even slightly at some
block sizes. The reason is that, in DCT-based representation, having higher di-
mensional feature vector implies adding the DCT coefficients that correspond
to higher frequency content to the feature vector. Since it is known that these
coefficients are less sensitive to the illumination changes, adding them to the
feature vector improves the performance. In the experiments that do not con-
tain strong illumination changes, the performance decreases by the increasing
feature dimensionality. Overall, as can be derived from the Figures 4.11-4.25,
using only a portion of the DCT coefficients would suffice to have high correct
recognition rates. Moreover, using lower dimensional feature vectors decreases
the computational load, which facilitates real-time processing. In order to an-
alyze the results in detail at low dimension, the lowest common global feature
vector dimension, which is 1024, is chosen and the correct classification rates
obtained with different block sizes are compared. Note that, one can use even
lower dimensional global feature vector at different block sizes. Nevertheless,
since this is the lowest possible global feature size when using 2× 2 pixel reso-
lution blocks, this dimension is used to be able to compare all the block sizes.
The results attained at this dimension are given in Table 4.6. In most of the
cases, the best results are obtained with the 8× 8 block size. The best result is
obtained with 4×4 block size in CMUPIE and with 16×16 block size in Yale5.
However, if one looks carefully at Figures 4.13 and 4.21, it can be observed that
the block size of 8 × 8 outperforms the block sizes of 4 × 4 and 16 × 16 on
these databases at dimensions lower than 1024. In addition to having better
performance with respect to other block sizes, the 8 × 8 block size provides a
good compromise between compactness and representation power. It is also the
block size that is used in JPEG image compression standard which is based on
DCT. Using DCT and having the same block size as in JPEG, makes the local
appearance-based face recognition approach less sensitive to the problems that
may arise due to compression. The only difference in representation between
local appearance-based face recognition and JPEG is that there is no quantiza-
tion step in the former, while there exists one in the latter. In the remaining
experiments, only the block size of 8× 8 pixels will be used.
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Experiment 2× 2 4× 4 8× 8 16× 16 32× 32 64× 64

FRGC1 97.2% 98.2% 98.5% 95.9% 92.5% 91.9%
FRGC4 67.6% 89.8% 91.4% 89.9% 80.6% 71.6%

CMUPIE 96.1% 100% 99.9% 99.7% 98.5% 96.5%
AR1scarf 87.3% 89.1% 90.9% 79.1% 71.8% 62.7%
AR1sun 30.9% 35.5% 37.3% 25.5% 15.5% 12.7%

ARinterscarf 69.1% 79.1% 82.7% 73.6% 67.3% 56.4%
ARintersun 30.9% 33.6% 35.5% 26.4% 14.5% 10.9%

Yale2 100% 100% 100% 100% 100% 100%
Yale3 100% 100% 100% 100% 100% 100%
Yale4 89.9% 95.7% 98.6% 96.4% 94.9% 93.5%
Yale5 71.4% 96.3% 96.8% 98.9% 84.% 51.3%

ExtYale2 100% 100% 100% 100% 100% 100%
ExtYale3 100% 100% 100% 100% 100% 100%
ExtYale4 74.8% 95.2% 96.6% 94.1% 83.2% 82.4%
ExtYale5 43.5% 96.4% 97.1% 94.1% 62.4% 28.6%

Table 4.6: Correct recognition rates obtained with different block sizes at the
global feature dimension of 1024.
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Figure 4.11: Comparison of different block sizes on FRGC1.
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Figure 4.12: Comparison of different block sizes on FRGC4.
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Figure 4.13: Comparison of different block sizes on CMUPIE.
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Figure 4.14: Comparison of different block sizes on AR1scarf.
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Figure 4.15: Comparison of different block sizes on AR1sun.
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Figure 4.16: Comparison of different block sizes on ARinterscarf.
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Figure 4.17: Comparison of different block sizes on ARintersun.
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Figure 4.18: Comparison of different block sizes on Yale2.
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Figure 4.19: Comparison of different block sizes on Yale3.
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Figure 4.20: Comparison of different block sizes on Yale4.
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Figure 4.21: Comparison of different block sizes on Yale5.
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Figure 4.22: Comparison of different block sizes on ExtYale2.
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Figure 4.23: Comparison of different block sizes on ExtYale3.
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Figure 4.24: Comparison of different block sizes on ExtYale4.
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Figure 4.25: Comparison of different block sizes on ExtYale5.
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4.4 Analysis of Frequency Bands

Another aspect in local appearance-based face recognition using the DCT is the
selection of frequency content to be used for classification. That is, to determine
the width and location of the window that the DCT coefficients are chosen from.
As illustrated in Figure 4.26, each DCT basis has a different response which goes
from coarser to finer as the basis index increases. Figure 4.26 shows each basis’
output separately for an input image. If these outputs are analyzed in detail, it
can be noticed that they depict how strong a specific basis pattern is observed
in the corresponding block. For instance, the top-left output image contains the
average values of the blocks, the one next to it shows the amount of vertical de-
tails, whereas the one below it shows the amount of horizontal details occurring
in the blocks. The low frequency coefficients represent most of the input block’s
energy, whereas the higher frequency coefficients correspond to finer details.
However, neither conserving more energy nor having finer details guarantees
better discrimination. Depending on the identification task, the required local
feature dimensionality and the frequency band may change. In order to observe
the effect of feature dimensionality and frequency content simultaneously, a slid-
ing window scheme is employed where windows with varying sizes are moved
from the beginning to the end of the ordered DCT coefficients. The coefficients
obtained this way are divided by their standard deviations and the local fea-
ture vector is normalized to unit norm. The results of the experiments can be
seen from Figures 4.27-4.41. In the figures, the x-axes show how many DCT
coefficients are removed from the beginning, while y-axes show the local feature
dimension. The number of possible shifts depends on the dimensionality of the
local feature vector. For example, when the local feature dimension is two, there
are 63 possible shifts and when 63-dimensional local feature is used only two
shifts are possible. The upper diagonals in the figures are padded with zeros,
since at that region there exists no local feature dimension and shift combina-
tion. Dark red color indicates high correct recognition rates, whereas dark blue
color corresponds to low correct recognition rates. Since the main goal in this
experiment is to observe the relative performance of each frequency band, the
color ranges are stretched for the illustration purposes. So that the best result
gets the dark red color, even though it is not 100% correct classification.

On the FRGC1 experiment (Figure 4.27), it is observed that the best result
zone is the region where the number of removed coefficients is low and the lo-
cal feature dimension is higher than a certain value. Quantitatively speaking,
having more than four-dimensional local feature vectors by removing up to ten
DCT coefficients from the beginning provides high correct classification rates
on the FRGC1 experiment. The same observation holds for the FRGC4 ex-
periment (Figure 4.28). However, it is better to use higher dimensional local
feature vectors, that is the ones with more than seven or eight dimensions. On
the CMUPIE experiment, a larger high performance zone is obtained. Besides
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Figure 4.26: A sample frequency output of a face image. The face image at the
top is the input image. The other images show the DCT outputs.
Each image corresponds to an output transformed with a different
basis. The order of the DCT outputs are the same as the order of
the bases in Figure 3.2
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some frequency bands with low dimensional feature vectors, the results are high.
Even on some certain frequencies, with low dimensional feature vectors, the cor-
rect recognition rates remain high. The high performance zones from lower face
occlusion experiments (Figures 4.30 and 4.32) are limited to a low number of
removed coefficients and a certain local feature dimension range. The number of
removed coefficients is up to six and the local feature dimension is between five
and twenty. The region for upper face occlusion (Figures 4.31 and 4.33) is even
more limited. A small region of low frequency content provides the best results.
On the Yale2, Yale3, ExtYale2, and ExtYale3 experiments (Figures 4.34, 4.35,
4.38, 4.39), where the illumination variations are not very strong, the correct
classification rates are high no matter which frequency band with how many
feature dimensions is used. On Yale2 and ExtYale2, lower frequency content
is found to be more discriminative than the higher frequency content, but the
results are still high with the high frequency content. On the experiments with
stronger illumination variations (Figures 4.36, 4.37, 4.40, 4.41), it has been ob-
served that higher dimensional local feature vectors, local feature vectors with
ten-dimension or higher, are required in order to reach a high correct classifica-
tion rate.
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Figure 4.27: Comparison of different
feature sets on FRGC1.
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Figure 4.28: Comparison of different
feature sets on FRGC4.
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Figure 4.29: Comparison of different
feature sets on CMUPIE.
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Figure 4.30: Comparison of different
feature sets on AR1scarf.
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Figure 4.31: Comparison of different
feature sets on AR1sun.
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Figure 4.32: Comparison of different
feature sets on ARiscarf.
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Figure 4.33: Comparison of different
feature sets on ARisun.
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Figure 4.34: Comparison of different
feature sets on Yale2.
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Figure 4.35: Comparison of different
feature sets on Yale3.
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Figure 4.36: Comparison of different
feature sets on Yale4.

10 20 30 40 50 60

10

20

30

40

50

60

Number of Removed Coefficients

Lo
ca

l F
ea

tu
re

 D
im

en
si

on

 

 

0

20

40

60

80

100

120

140

160

180

Figure 4.37: Comparison of different
feature sets on Yale5.
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Figure 4.38: Comparison of different
feature sets on ExtYale2.
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Figure 4.39: Comparison of different
feature sets on ExtYale3.
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Figure 4.40: Comparison of different
feature sets on ExtYale4.
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Figure 4.41: Comparison of different
feature sets on ExtYale5.

In Figure 4.42 reconstruction outputs, that are generated using different fre-
quency bands, are given. Different frequency bands that contain ten DCT co-
efficients are selected by moving a window from beginning to the end of the
ordered DCT coefficients. This way 55 different frequency bands are obtained.
In the figure, the top-left face image is the input face image, the one next to
it corresponds to the reconstruction output with the first ten DCT coefficients,
the third one in the first row corresponds to the reconstruction output with the
DCT coefficients between and including the second and eleventh ones. The cor-
respondence between the outputs and the used frequency band continues in this
fashion. The number of DCT coefficients, that are removed from the beginning,
increases from left to right and from top to bottom. The bottom-right image
corresponds to the reconstruction output with the last ten DCT coefficients. As
can be observed, the reconstructions with low frequency bands contain coarse
information, whereas the ones with high frequency bands contain finer details.
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The corresponding classification results for ten-dimensional feature vector are
plotted in Figures 4.43, 4.44, 4.45, and 4.46. On the FRGC experiments (Fig-
ure 4.43), removing the first DCT coefficient improves the results. The results
change only very slightly with additional removal of the coefficients. The cor-
rect recognition rate deteriorates if too many coefficients are removed. Similarly,
on the AR experiments (Figure 4.44), where occlusion exists, the performance
increases with the removal of the first coefficient and drops when too many coef-
ficients are removed. On the experiments with illumination variations (Figures
4.45 and 4.46), more coefficients are required to be removed, since low frequency
content is sensitive to the appearance changes due to illumination variations.

Figure 4.42: Reconstruction outputs generated by using different frequency
bands.
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Figure 4.43: Comparison of ten-dimensional local features on the FRGC
experiments.
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Figure 4.44: Comparison of ten-dimensional local features on the AR
experiments.
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Figure 4.45: Comparison of ten-dimensional local features on the Yale
experiments.

0 10 20 30 40 50 60
40

50

60

70

80

90

100

Number of removed coefficients

C
or

re
ct

 r
ec

og
ni

tio
n 

ra
te

 (
%

)

 

 

CMUPIE
ExtYale2
ExtYale3
ExtYale4
ExtYale5

Figure 4.46: Comparison of ten-dimensional local features on the CMU PIE and
extended Yale experiments.
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4.5 Generic vs. Salient Region-based

Partitioning

In this part of the experiments, five different salient region-based partition-
ing schemes, that are derived from previous modular/component/patch based
studies [BP93, PMS94, HSP07, KKHK05, LKK05], are compared for the local
appearance-based face recognition approach. These salient region-based parti-
tioning schemes are also compared with generic partitioning of the face image.
In the implementation, the salient regions are divided into 8 × 8 pixels reso-
lution non-overlapping blocks and the DCT is applied on each block. From
the DCT coefficients that are ordered according to the zig-zag scan pattern,
ten of them are selected by omitting the first DCT coefficient and selecting the
following ten of them. The selected coefficients are divided by their standard
deviations. Afterwards, the local feature vector is normalized to the unit norm.
The overall feature vector for a salient region is constructed by concatenating
the local feature vectors that are extracted from the blocks of the correspond-
ing salient region. The feature vector of the combined regions is generated by
concatenating the local feature vectors of each region.

The first partitioning scheme (P1 ) is similar to the one in [BP93]. It consists
of three regions: eyes, nose, and mouth. A sample image, illustrating this
partitioning scheme, is given in Figure 4.47. The obtained results with the
individual components and the combined representation on each experimental
setup is shown in Figure 4.48. The correspondences between the abbreviations
on the x-axis and the experiment labels are the same as the ones in Section 4.2.
The best results are obtained with the combined representation except on the
ARintersun experiment, where the mouth region provides the highest correct
classification rate. The eye region is found to be the second best performing
region, except in the experiments where upper face occlusion exists. On Yale2
and ExtYale2, 100% correct recognition rate is achieved using only the eye re-
gion. Depending on the experimental setup, either the nose region or mouth
region comes third. In the experiments with high illumination variations, such
as CMUPIE, Yale4, Yale5, ExtYale4, and ExtYale5, the mouth region is found
to be more useful for identification than the nose region. This is expected, since
in the case of illumination variation due to cast shadows the appearance of the
nose region is affected severely. The other reason for this outcome is the lack of
expression variations in the used data sets for these experiments. The mouth
region works also better in the experiments that contain upper face occlusion,
namely, AR1sun and ARintersun experiments. Having sunglasses decreases the
amount of the discriminative information that the nose region contains. In
the FRGC1, FRGC4, AR1scarf, and ARinterscarf experiments the nose region
reaches higher recogniton rates than the mouth region. The expression varia-
tions in FRGC1 and FRGC4 experiments deteriorate the performance of the
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mouth region. Obviously, in the case of lower face occlusion, as in AR1scarf
and ARinterscarf experiments, the mouth region has no use.

Figure 4.47: Salient regions obtained with the P1 partitioning scheme.
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Figure 4.48: Correct identification rates obtained with the P1 partitioning
scheme.

The second partitioning scheme (P2 ) is from [PMS94]. Four salient regions are
used for face recognition: left eye, right eye, nose, and mouth. The partitioning
on a sample image is shown in Figure 4.49. The results obtained by this parti-
tioning scheme can be seen in Figure 4.50. The outcomes are similar to the ones
obtained with the P1 partitioning scheme. Combined representation achieves
the best results. Eye regions have the second place. There is no big difference
in left and right eye regions’ correct classification rates. The same observations
are valid for the nose and mouth regions. The only difference is observed on
the CMUPIE experiment where the mouth region performs slightly better than
the eye regions. It can also be observed that the performance difference be-
tween the mouth region and the eye regions is less than the one obtained on the
experiments that contain illumination variations with P1 partitioning scheme.
The reason is, the region that contains both of the eyes has more discriminative
power than the individual eye regions.
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Figure 4.49: Salient regions obtained with the P2 partitioning scheme.
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Figure 4.50: Correct identification rates obtained with the P2 partitioning
scheme.
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The third partitioning scheme (P3 ) is derived from [LKK05]. Larger left eye
and right eye regions that contain partially the nose and some parts below
the eyes, and the nose region are the salient regions used in this partitioning
scheme. The partitioning on a sample image is shown in Figure 4.51. The
correct identification rates that are achieved with the P3 partitioning scheme is
presented in Figure 4.52. Combined representation attains the highest correct
recognition rates in most of the experiments. On AR1sun and ARintersun,
nose region achieves the best results, whereas on AR1scarf, right eye region
outperforms the others. One more time, it has been observed that, except for
upper face occlusion, eye regions contain more discriminative power than the
nose region.

Figure 4.51: Salient regions obtained with the P3 partitioning scheme.
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Figure 4.52: Correct identification rates obtained with the P3 partitioning
scheme.

The fourth partitioning scheme (P4 ) is an approximation of the one in [KKHK05].
It has five regions: forehead, left eye, right eye, lower left, and right parts of the
face. The partitioning on a sample image is shown in Figure 4.53. Figure 4.54
shows the correct identification rates obtained by the P4 partitioning scheme.
The best performance is always achieved with the combined representation.
On the experiments with lower face occlusion, as expected, lower face regions
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perform poorly and on the experiments with upper face occlusion, eye regions
perform poorly. In most of the cases the forehead region achieves higher correct
recognition rates compared to the other salient regions on the experiments that
contain large illumination variations, since this region is less affected from the
changes in lighting. Both the eye regions and lower facial parts contain partially
the nose region which makes them sensitive to the changes in appearance due
to cast shadows.

Figure 4.53: Salient regions obtained with the P4 partitioning scheme.

F1 F4 CP A1sc A1sun Aisc Aisun Y2 Y3 Y4 Y5 EY2 EY3 EY4 EY5
0

10

20

30

40

50

60

70

80

90

100

Experiment id.

C
or

re
ct

 R
ec

og
ni

tio
n 

R
at

e 
(%

)

 

 

Forehead
Left Eye
Right Eye
Lower Left
Lower Right
Combined

Figure 4.54: Correct identification rates obtained with the P4 partitioning
scheme.

The fifth partitioning scheme (P5 ) is derived from [HSP07]. There are 14 learned
components as shown in Figure 4.55. Correct identification rates obtained by
the P5 partitioning scheme is given in Figure 4.56. Most of the time the best
performance is achieved with the combined representation. Only on AR1scarf,
ARinterscarf experiments the nose bridge region and on AR1sun the right cheek
region performs better. Depending on the experimental condition, the perfor-
mance order of the facial parts changes. Except for the experiments with upper
face occlusion, right eye, left eye, right eyebrow, and left eyebrow regions con-
sistently achieve high classification rates.
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Figure 4.55: Salient regions obtained with the P5 partitioning scheme.

F1 F4 CP A1sc A1sun Aisc Aisun Y2 Y3 Y4 Y5 EY2 EY3 EY4 EY5
0

10

20

30

40

50

60

70

80

90

100

Experiment id.

C
or

re
ct

 R
ec

og
ni

tio
n 

R
at

e 
(%

)

 

 

Right Eye
Left Eye
Right Eyebrow
Left Eyebrow
Nose Bridge
Nose
Right Nostril
Left Nostril
Right Mouth Corner
Left Mouth Corner
Upper Lip
Lower Lip
Right Cheek
Left Cheek
Combined

Figure 4.56: Correct identification rates obtained with the P5 partitioning
scheme.
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The comparison of the combined representation of different partitioning schemes
are shown in Figure 4.57. Generic partitioning is found to be superior to the
salient region-based partitioning in most of the cases. For example, on FRGC4,
the performance is 83.0% with P1, 85.6% with P2, 82.3% with P3, 89.8% with
P4, 82.8% with P5, and 90.8% with generic partitioning. Only on the Yale4
experiment P1 partitioning scheme outperforms generic partitioning. However,
on ExtYale4, which contains Yale4 as a subset, generic partitioning provides
better results. P4 partitioning scheme also provides consistently high results.
On the experiments that contain large illumination variations, P3 partitioning
scheme is found to be the poorest performing one. The reason is that on each
part the nose is included to some extend, which makes it sensitive to cast shad-
ows. P1 performs better than P2 on these experiments again due to its less
sensitivity to the cast shadows. These results indicate that there is no need to
detect any salient regions and perform salient region-based partitioning.

F1 F4 CP A1sc A1sun Aisc Aisun Y2 Y3 Y4 Y5 EY2 EY3 EY4 EY5
0

10

20

30

40

50

60

70

80

90

100

Experiment id.

C
or

re
ct

 R
ec

og
ni

tio
n 

R
at

e 
(%

)

 

 

P1
P2
P3
P4
P5
Generic

Figure 4.57: Correct identification rates obtained with the combined represen-
tation schemes.
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4.6 Comparison of Local Appearance

Representation Methods

In this section, the discrete cosine transform based local appearance representa-
tion is compared with different well-known transformation methods that can also
be used to represent local regions. These are Karhunen-Loève transform (KLT),
Walsh-Hadamard transform (WHT), Fourier transform (FT), and wavelet trans-
form (WT). In the experiments, the input face image is divided into 8× 8 pixel
blocks and these basis functions are used to represent these blocks. In KLT,
ten-dimensional local feature vectors are used, which are obtained by projecting
input face images onto the first ten eigenvectors of the face space that is learned
during the training stage. Ten-dimensional feature vectors that are extracted
by removing the first DCT coefficient and keeping the following first ten of them
are used in DCT. In WHT, the same feature extraction setup as the one used
for DCT is utilized. In FT, the magnitudes of the Fourier coefficients are used,
which provides 64-dimensional local feature vector. For wavelet transform, the
Daubechies 4 wavelet is used, which has been shown to perform better in terms
of computation time and recognition performance with respect to the other or-
der Daubechies wavelets, and other well-known wavelets [ES05]. The first order
scaling component that provides 16-dimensional representation is used as the
feature vector.

Figure 4.58 gives the correct recognition rates obtained with each basis function.
The correspondences between the abbreviations on the x-axis and the experi-
ment labels are the same as the ones in Section 4.2. As can be seen in most of the
experiments the best results are achieved with the DCT. On the FRGC1 and
FRGC4, DCT and WHT are found to be superior to the other representation
methods. On FRGC1, DCT and WHT reach 97.9% and 98.2%, whereas KLT,
FT, and WT obtain 91.2%, 92.6%, and 90.1%, respectively. On FRGC4, the
correct recognition rate attained by DCT is 90.8%, it is 88.3% by WHT, both
being again significantly higher than the ones obtained by KLT —70.8%—, FT
—62.9%— and WT —71.0%. This indicates that against expression variations
and uncontrolled conditions DCT and WHT provide robust representations. In
the case of occlusion, DCT outperforms the other basis functions, except on
the AR1sun experiment, where WHT, FT, and DCT perform very closely. Ex-
cept FT, in the case of illumination variations the basis functions are found to
work well. DCT-based representation achieves consistently high correct clas-
sification rates. For example, on CMUPIE experiment, DCT achieves 99.8%,
WHT 99.5%, KLT 97.4%, and WT 95.5%. On Yale4 and Yale5, KLT performs
slightly better than DCT. The correct recognition rates for KLT are 97.1% and
97.4% and for DCT they are 95.7% and 95.2%, respectively. On the other
hand on ExtYale4, ExtYale5 experiments, DCT outperforms KLT. The results
are 93.1%, 93.1% for DCT versus 91.0%, 90.6% for KLT. Note that Yale face
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Figure 4.58: Performance comparison of local appearance representation
methods.

database B is a subset of the extended Yale face database B and contains less
number of subjects. Overall, DCT consistently achieves very high correct classi-
fication rates over different conditions, which validates its robust representation
capabilities.

4.7 Performance Analysis against

Compression

The robustness of the proposed local appearance-based approach against JPEG
compression is also assessed. Two different experiments are conducted. In one of
the experiments, both the training and testing images are compressed with the
same quality factor. In the other one, the original, uncompressed face images
are used for training, while the testing face images are compressed with varying
quality factors. Ten different quality factors are used. Sample compressed
images can be seen in Figure 4.59. Especially at low quality factors, compression
defects are strongly visible. The quality factors and the corresponding mean
compression rates for the face images, which are calculated on the training
samples of all the used data sets, are depicted in Figure 4.60. The compression
rate is around two when the quality factor is 100. At the quality factor 90,
it doubles and becomes four. The compression rate continues to increase with
the decreasing quality factor and at the quality factor ten, the compression rate
becomes eleven.
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Figure 4.59: Sample JPEG compressed face images with different quality fac-
tors. Top row, from left to right, with quality factors 10, 20, 30,
40, 50. Bottom row, from left to right, with quality factors 60, 70,
80, 90, 100.
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Figure 4.60: Compression rate vs. quality factor.
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The results of the face recognition experiments are shown in Figures 4.61-4.66.
Ten-dimensional DCT features, that are extracted by omitting the first DCT
coefficient and having the following first ten of them, are used in the experi-
ments. The plots are divided into three classes in order to have better visualiza-
tion: the FRGC experiments —FRGC1, FRGC4 —, the occlusion experiments
—AR1scarf, AR1sun, ARinterscarf, ARintersun—, and the illumination exper-
iments —CMUPIE, Yale4, Yale5, ExtYale4, ExtYale5. The results of Yale2,
Yale3, ExtYale2, ExtYale3 experiments are not plotted, since these experiments
are relatively easy and 100% correct recognition rate is achieved on these ex-
periments at each quality factor. In the figures, Org stands for the original
image.

Figures 4.61 and 4.62 plot the correct recognition rates obtained on the FRGC
experiments. Figure 4.61 corresponds to the matched case where both the train-
ing and testing face images are compressed, whereas Figure 4.62 corresponds to
the unmatched case where only the testing face images are compressed. As can
be observed, on the FRGC1 experiment, both at the matched and unmatched
case, the recognition rates remain stable till the quality factor is 30. It decreases
after this point. The results at matched and unmatched conditions are simi-
lar, except with the quality factor ten, at which unmatched condition is worse.
The recognition rates on the FRGC4 experiments show slight decrease till the
quality factor is 40. A high drop in the performance is observed at the quality
factor 10. The unmatched condition’s correct recognition rates are better than
the matched condition’s at lower quality factors.
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Figure 4.61: Correct recognition rates obtained with respect to different quality
factors on the FRGC experiments. Training and testing face images
are compressed with the same quality factor.
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Figure 4.62: Correct recognition rates obtained with respect to different quality
factors on the FRGC experiments. Original training images are
used. Only the testing face images are compressed.

The correct recognition rates obtained on occlusion experiments can be seen in
Figures 4.63 and 4.64. The correct recognition rates drop at very low quality
factors. The performance is stable at high quality factors. There is no signifi-
cant performance difference between the matched and unmatched cases at high
quality factors. The biggest differences are observed on AR1scarf experiment
at the quality factor 10 and on ARinterscarf experiment at the quality factor
30. Except these points, the results are similar.

Figures 4.65 and 4.66 show the results on the illumination experiments. On
CMUPIE, Yale4, and ExtYale4 experiments, the observations are similar to the
ones obtained on the FRGC and occlusion experiments, that is, the correct
recognition rates remain relatively constant at high quality factors and they de-
crease at low quality factors. However, on the experiments Yale5 and ExtYale5,
where strong illumination variations exist, the performance decreases after the
quality factor 100. This indicates the importance of high frequency components
in doing identification under strong illumination variations, which are elimi-
nated during compression. The unmatched cases are found to perform better
than the matched cases on the illumination experiments.

As a summary, it has been shown that the proposed approach is robust against
compression both in the case of matched and unmatched training testing com-
binations. The performance remains stable till very low quality factors. The
highest drop in the correct recognition rates occur when the quality factor be-
comes ten. Nevertheless, in the situation of strong illumination variations, the
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Figure 4.63: Correct recognition rates obtained with respect to different quality
factors on the occlusion experiments. Training and testing face
images are compressed with the same quality factor.
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Figure 4.64: Correct recognition rates obtained with respect to different quality
factors on the occlusion experiments. Original training images are
used. Only the testing face images are compressed.
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Figure 4.65: Correct recognition rates obtained with respect to different quality
factors on the illumination experiments. Training and testing face
images are compressed with the same quality factor.
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Figure 4.66: Correct recognition rates obtained with respect to different quality
factors on the illumination experiments. Original training images
are used. Only the testing face images are compressed.
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decrease in the performance starts after the quality factor 100, which implies
that high frequency content plays a crucial role in the classification of such face
images.
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5 Robust Face Recognition

This chapter presents two extensions to the proposed local appearance-based
face recognition algorithm. These extensions consist of an automatic face reg-
istration approach that provides robustness against registration errors caused
by imprecise facial feature localization and an automatic frequency band se-
lection approach that provides robustness against facial appearance variations
caused by changing illumination conditions. The chapter also contains a de-
tailed comparison of the proposed approach with well-known face recognition
algorithms.

5.1 Performance Analysis against Registration

Errors

Registration is one of the important factors that affect pattern recognition sys-
tems’ performance. For example, in [WHH+89], a time-delay neural network
(TDNN) structure is proposed to provide shift invariance. This way superior
phoneme recognition performance is achieved. Also, for handwriting recognition
a multi-state time-delay neural network (MS-TDNN), which is an extension of
the TDNN, is utilized to attain high recognition rates [MB94]. Similarly, reg-
istration is an important component of a face recognition system. When an
appearance-based approach is to be utilized, precise alignment is crucial in or-
der to achieve high correct recognition rates [LP02, RSPP06]. To analyze the
robustness of the local appearance-based face recognition approach against reg-
istration errors, in the experiments, training images are registered with respect
to the manually annotated eye center positions, whereas equally distributed ran-
dom noise, ranging from 1% to 15% of the distance between the eyes, is added to
the manually annotated eye center positions of the test images. For each noise
level a separate classification is done. This way, translation, rotation, and scale
variations are provided at different strengths and the local appearance-based ap-
proach’s performance is assessed at each variation-level. A face image registered
with the manually generated labels and sample misaligned face images can be
seen from Figure 5.1. The top-left image corresponds to the original registered
image. The amount of the added noise increases from left to right and top to
bottom. As the modification in the labels increases, the change in registered
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images becomes more visible. Especially, when the added noise is too high, it
is obvious that there can not be a meaningful comparison between a well reg-
istered training image and a misaligned test image when an appearance-based
approach is applied, since the appearances are no longer similar.

Figure 5.1: Sample misaligned face images with different amount of noise added
to the manually labeled eye center positions. First row, from left
to right, no modification is induced and induced modifications of 1,
2, 3, 4, 5% of interocular distance. Second row, from left to right,
induced modifications of 6, 7, 8, 9, 10, 15% of interocular distance.

The results of the experiments are plotted in Figure 5.2. In the experiments,
ten-dimensional feature vectors that are extracted by removing the first DCT
coefficient and keeping the following first ten of them are used. Experiments
are performed only on the AR and FRGC data sets, where both the original
images and corresponding manually annotated eye center labels are available.
The CMUPIE, Yale, and ExtYale setups are excluded from the experiment, since
only the already aligned images are available from these data sets. However, the
outcomes of these experiment are also valid for these setups, since misalignment
is a source of variation that is decoupled from the facial appearance changes. The
obtained results also justify this claim. No matter what the facial appearance
variation in the training-testing combination is, the same performance trends
are observed. The performance deteriorates with increasing amount of added
noise. For example, in the FRGC1 experiment, the correct classification rate
achieved on the face images that are registered with the original labels is 97.9%,
it drops to 96.6% when 1% of the interocular distance is added as a noise to the
labels. The performance continues to decrease with increasing noise. It becomes
92.7% and 80.5% with addition of 2% and 3% of the interocular distance as a
noise, respectively. At the noise level of 9% of the interocular distance, the
correct recognition rate drops below 10%. When 15% of interocular distance is
added to the labels as a noise, the attained performance is only 1.1%.

These results validate that the registration step plays a crucial role in appearance-
based face recognition. In order to have high correct recognition rates, the reg-
istration should be done as precise as possible, otherwise an appearance-based
approach is destined to perform poorly. However, a precise registration is not
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Figure 5.2: Performance of the local appearance-based face recognition approach
with respect to registration errors.

always possible due to imperfections in feature localization. On account of this
reason, one should take this problem into consideration while designing a face
recognition algorithm. The problem of imprecise registration can also be seen
from Figures 5.3, 5.4 and 5.5. In order to analyze the effect of having imperfec-
tions in eye center localization, 1 to 10 pixels variation is added to the manual
eye center annotations of a subset of training samples from the AR face database
[MB98]. The face images are aligned according to these newly created labels.
This way, positive and negative x-shift and y-shift; smaller and larger scale;
clockwise and counterclockwise rotation is provided. From the registered face
images, ten-dimensional DCT-based local feature vectors are extracted. The
L1 norm distance is calculated between the feature vector of the face image
registered with the manual label and the feature vector of the same face image
registered with the modified label. The obtained averaged distances are plotted
in Figure 5.3. It is observed that the distance value increases with the increasing
modification. Another interesting point that can be derived from the figure is
that the scale and rotation causes larger distances than shifts. In Figure 5.4, the
distribution of the distances between the best two matches for correct and false
classifications are given. These values are obtained by classifying the images
that are annotated as “neutral expression” in the second recording session of
the AR face database. The training face images are from the first recording
session and they have the same annotation. As can be seen from the figure, the
false classifications occur when the distance between the best two matches is
less than twenty. This value is also the one obtained when a picture is shifted
by one pixel and the distance value is calculated between the feature vectors of
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the original image and the shifted image. So, obviously, it is not reliable to de-
termine the identity if the distance between the best two matches are very close.
The distribution of the distances to the closest matches are given in Figure 5.5.
As expected, the false classifications occur when the distance is high. Consid-
ering the distance values due to mislocalization in Figure 5.3, the sensitivity of
the classification results to the registration errors is apparent.
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Figure 5.3: Obtained distance values with respect to the change in label coordi-
nates. The distance is calculated between the feature vector of the
face image which is registered with the original label and the feature
vector of the same face image registered with the modified label.

5.2 Face Registration by Minimizing the

Closest Classification Distance

In this section, a face registration approach, in which alignment is done by
minimizing the closest distance at the classification step, is presented. This
method eliminates the need of a feature localization step that exists in tradi-
tional face recognition systems and formulates alignment as an optimization
process during classification. In other words, instead of performing a separate
feature localization step and localizing facial features according to some type
of feature matching scores, in the proposed method, alignment is done in such
a way that directly the classification score is optimized. Moreover, it is shown
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Figure 5.4: Distribution of the distances between the best two matches for cor-
rect and false classifications.
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Figure 5.5: Distribution of the distances to the closest matches for correct and
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that the proposed method can also be used in face recognition systems that do
registration via feature localization in order to combat against problems due to
erroneous feature localization.

Figure 5.6: Traditional face recognition systems versus the proposed face recog-
nition system.

Since all humans have the same facial feature configuration, once the face is
located it is easy to roughly estimate the locations of the facial features. In order
to show this, the relative eye center positions with respect to the center of the
bounding boxes of faces in the AR [MB98] and the FRGC [PFS+05] databases is
plotted in Figure 5.7. For this analysis, the training samples of the AR, FRGC1
and FRGC4 data sets are used. The face bounding boxes are detected with
a generic face detector [Int08]. The center of the face rectangle is subtracted
from the manually labeled eye center locations and the obtained distances are
scaled according to the width of the face bounding box. As can be observed
from Figure 5.7, despite using different databases and a generic automatic face
detector, the normalized relative eye center positions are densely located. The
median values of these eye center positions are calculated both for the left and
right eye to produce an eye center hypothesis with respect to the automatically
located face rectangle. The obtained eye center position, in pixels, for the left
eye is (−11.5, 6.5), and for the right eye it is (11.5, 6.5). In order to contain all
the deviations from these calculated values due to variations in feature positions
across different identities and variations in the bounding boxes generated by the
automatic face detector, a window size of 11 × 11 pixels is determined around
the eye centers. It can be seen in Figure 5.7 that a window size of 9 × 9
pixels would suffice to cover all the points. Furthermore, with a fine tuned face
detector and improved face segmentation accuracy, this region can become even
smaller. However, for the sake of having a generic approach without relying
on the accuracy of the face detector and in order to tolerate in-plane and out-
of plane rotations up to some extend, a larger window size is selected. These
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regions are used as search regions to determine the best matching eye centers
between the test image and training samples. This fine eye center localization
is integrated to the classification step, bypassing a separate feature detection
process. In the proposed approach, the eye center positions of the test image are
determined in such a way that the classification distance of the test image to a
training sample is minimized. This way, for each training sample, separate eye
center positions are determined for the test face image, which lead to the aligned
test face image that has the minimum distance to the training image. In this
approach, inconsistencies across manual eye center labels of the training images
are also handled, since, as already mentioned, for each training sample a separate
eye localization is performed by optimizing the classification distance. This is
different from the traditional face recognition approaches where only one eye
center estimate is used to match the test image against all the training samples
ignoring the possibility of having inconsistencies among the manually labeled eye
center positions of the training samples. In order to save processing time during
testing, in the implementation, the generation of aligned face images using the
eye center coordinates within the determined region is performed offline, on the
training side. That is, a window size of 11 × 11 pixels around the manually
labeled eye center position is used as possible eye center region and additional
aligned training face images are generated with respect to the possible eye center
combinations from this region. The algorithm can be summarized as follows:

• Training:

(i) Have all the eye center location combinations between the left and
right eyes within the 11 × 11 pixels window around the manually
labeled eye center positions,

(ii) Generate aligned face images according to these eye center positions,

(iii) Extract a feature vector from each aligned face image.

• Testing:

(i) Do face localization and estimate the eye center positions by adding
(−11.5, 6.5) for the left eye center and (11.5, 6.5) for the right eye
center to the center of the scaled face bounding box,

(ii) Align test face image with respect to the estimated eye center posi-
tion,

(iii) Compare the aligned test face image with all the aligned face images
generated from a training sample,

(iv) Find the aligned face image from the training sample that provides
the minimum classification distance,

(v) Perform steps (iii) and (iv) for each training sample,
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(vi) Find the training sample that provides minimum classification dis-
tance,

(vii) Assign the identity of the best matching training sample to the test
image.
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Figure 5.7: Distribution of the eye centers with respect to the center of the face
bounding box.

One can notice that having a window size of W × W pixels around the eye
centers causes W 4 eye center coordinate combinations. In the case of a window
size of W = 11, the number of combinations is 14641, which means 14641 times
as many feature vector comparisons have to be done. However, the amount
of comparisons can be significantly decreased by utilizing a hierarchical search
scheme. Instead of having all the position combinations within ±5 pixels, first
the combinations at ±2 pixels locations can be searched. This way, the number
of eye center position combinations at the first search step becomes 625. After
determining the combination that provides the minimum classification distance
at the first step, at the second step, the search is done ±1 pixel around the
determined eye center positions from the first search step. Thus, at the second
step W becomes 3, providing 81 combinations. Since the classification is already
done with the face image aligned using the determined eye center positions from
the first search step, only 80 additional comparisons are needed to be done at the
second step, making overall a total of 705 comparisons per training sample. This
search pattern is depicted in Figure 5.8(a). The ’+’ shows the search locations
at the first step, whereas ’x’ shows the search locations at the second step. The
computational load can be further decreased by having a window size of W = 9,
and performing the search first at the combinations of ±3 pixels and then at
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the combinations of ±1 pixel around the determined eye center locations from
the first step, which makes in total 161 comparisons per training sample. The
search pattern for W = 9 is shown in Figure 5.8(b).

It should be noted that, although on one hand the amount of computation
increases due to higher number of feature comparisons, on the other hand, due
to omitting a separate feature detection step, some amount of computation is
saved. Moreover, feature comparison consists of only a subtraction operation
which can be done very fast.

(a) (b)

Figure 5.8: Search pattern for (a) W = 11, (b) W = 9. The ’+’ shows the search
locations at the first step, whereas ’x’ shows the search locations at
the second step.

The experimental results of the proposed automatic face recognition system
which does not need facial feature localization are presented in Table 5.1. In
the experiments ten-dimensional local feature vectors that are extracted from
each 8 × 8 pixels block by removing the first DCT coefficient and keeping the
following first ten of them are used. The selected coefficients are divided by
their standard deviations and normalized to unit norm. As in the robustness
analysis experiments against registration errors in Section 5.1, experiments are
performed only on the AR and FRGC data sets, where both the original im-
ages and corresponding manual eye center labels are available. The achieved
correct recognition rates on the AR experiments are very low when the training
images are aligned using only the manually annotated eye center labels and the
test face images are detected with a generic automatic face detector [Int08] and
aligned using the estimated eye center positions. The results improve signifi-
cantly when all the eye center combinations within the determined eye center
regions are used to align the training face images. For example, the correct
recognition rate increases from 32.7% to 97.3% in the AR1scarf experiment
and from 20% to 95.5% in the AR1sun experiment. As can be seen from the
table, there is no significant performance difference between brute-force search
and hierarchical search when the window size is W = 11. However, the results
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are lower, when the window size is W = 9, especially on the expeirments that
contain occlusion. The main reason is, due to occlusion, face detection quality
is very low in these cases, which in turn causes poor eye center position esti-
mates that cannot be covered with a smaller window size. Another interesting
observation that can be derived from the table is that, very high correct clas-
sification rates are obtained against occlusion problem. Especially eye region
occlusion is known to be one of the biggest challenges in face recognition. The
obtained results imply that mainly the erroneous feature localization, thus im-
precise face alignment causes the poor performance in the case of eye region
occlusion. It is also intriguing to observe that the correct recognition rate ob-
tained in the ARinterscarf experiment is lower than the one obtained in the
ARintersun experiments, although lower face occlusion is known to be an easier
problem than the upper face occlusion. The reason can be the textured surface
of the scarfs which might affect the classification decision more than the black
sunglasses. It should be also considered that, as already shown, the main is-
sue with the upper face occlusion is the misalignment and once it is handled,
very high performance can be reached. Note that the achieved correct identi-
fication rates are significantly higher than the ones presented in the literature
[GSC01, Mar02, TCZZ05, PLL05, FSL06, WGYM07, JM08].

The results obtained on the FRGC experiments are similar to the ones attained
on the AR experiments. There is a big improvement in the correct recognition
rates when the proposed approach is used. Again, hierarchical search performs
as good as brute force search.

Est. labels
only

Brute-
force
search

Hierar.
search
W = 11

Hierar.
search
W = 9

AR1scarf 32.7% 97.3% 97.3% 94.6%
AR1sun 20.0% 95.5% 95.5% 90.9%
ARinterscarf 40.0% 90.0% 89.1% 84.6%
ARintersun 13.6% 93.6% 93.6% 79.1%
FRGC1 66.4% 98.2% 98.2% 98.3%
FRGC4 43.8% 93.8% 93.4% 91.8%

Table 5.1: Correct recognition rates obtained on the AR and FRGC face data
sets. The results in the first column are obtained using just the man-
ually labeled eye center positions to align a training sample. The
ones in the other columns are achieved using all the eye center po-
sition combinations to align the training sample. Either brute force
or hierarchical search is conducted to find the best matching aligned
training sample.
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5.3 Robust Face Recognition against

Registration Errors

Although the proposed system is free from feature localization, it is still possible
to integrate a feature detector to it. In this case, instead of using the estimated
eye center positions, the output of the facial feature detector is used as the initial
point of the optimization process. In the scaled faces, the distance between the
eyes is 27 pixels. Conducting search within ±5 pixels in the case of window
size W = 11 provides insensitivity to the localization errors of up to 18% of the
interocular distance, whereas conducting search within ±4 pixels in the case of
window size W = 9 provides insensitivity to the localization errors of up to 14%
of the interocular distance.

In this section, to analyze the contribution of the proposed method to the per-
formance of the face recognition system that uses a separate feature detection
step, several experiments are conducted by using the manually labeled eye cen-
ter positions of the test face image as the localization output of an automatic
feature detector and adding different levels of noise to them to imitate the reg-
istration errors. In the experiments, the same experimental setup, as the one in
experiments against registration errors in Section 5.1, is used. That is, training
images are registered with respect to the manually annotated eye center labels,
whereas random noise, ranging from 1% to 15% of the distance between the
eyes, are added to the manually annotated eye center labels of the test images.
For each noise level a separate classification is done. A face image registered
with the manually generated labels and sample misaligned face images can be
seen from Figure 5.1. Ten-dimensional local feature vectors that are extracted
from each 8× 8 pixels block by removing the first DCT coefficient and keeping
the following first ten of them are used. The selected coefficients are divided
by their standard deviations and normalized to unit norm. Correct recognition
rates obtained by brute force and hierarchical search with window size W = 11
are plotted. In these experiments, hierarchical search with window size W = 9
has been also used, which has been found to perform similarly to the hierarchical
search with window size W = 11, except at the noise level of 15% of the distance
between the eyes, where a slight decrease in performance has been observed.

In Figures 5.9, 5.10 and 5.11 the correct recognition rates are plotted with re-
spect to varying localization errors added to the manually annotated eye center
positions. The results of the experiments in Section 5.1 are also plotted in the
figures to visualize the improvement provided by the proposed method. In Fig-
ure 5.9, the correct recognition rates obtained on the ARscarf experiments are
depicted. The AR1scarf and the ARinterscarf plots correspond to the results
attained using just the provided eye center positions. The plots with the suffix
“bf” correspond to using multiple eye center position combinations and doing
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brute force search, and the ones with the suffix “hs” correspond to using mul-
tiple eye center position combinations and doing hierarchical search. As can
be observed, even without adding any errors and using the provided manually
labeled eye center positions (the point “0” in the x-axis), the proposed method
improves the correct recognition rates significantly. On AR1scarf, the perfor-
mance increases from 91.8% to 97.3% and on ARinterscarf, it increases from
83.6% to 90.0%. Both brute force and hierarchical search provide the same
results at this level. As can be seen, as the error increases, the performance
deteriorates, however, with the proposed method the achieved correct recog-
nition rates stay consistent with respect to different error levels. There is no
significant performance difference observed between doing brute force search
and hierarchical search.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Amount of noise added to the labels (% of interocular distance)

C
or

re
ct

 r
ec

og
ni

tio
n 

ra
te

 (
%

)

 

 

AR1scarf
AR1scarf−bf
AR1scarf−hs
ARinterscarf
ARinterscarf−bf
ARinterscarf−hs

Figure 5.9: Correct recognition rates obtained on the AR scarf experiments with
respect to localization errors. The plots without suffix correspond
to using only provided labels, the ones with the suffix “bf” corre-
spond to using multiple eye center position combinations and doing
brute force search, and the ones with the suffix “hs” correspond to
using multiple eye center position combinations and doing hierar-
chical search. The proposed approach provides stable results over
localization errors.

The correct recognition rates obtained on the AR sun experiments are plotted
in Figure 5.10. The improvement in correct classification rates provided by the
proposed approach is even more remarkable in these experiments. The correct
recognition rate is 38.2% on the AR1sun and 37.3% on the ARintersun exper-
iments when only the manually labeled eye center positions are used. They
become 97.3% and 95.5%, respectively, when all the eye center position com-
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binations are utilized within the determined eye region. This outcome is not
surprising, since it is not possible to precisely label the actual eye centers even
manually due to occlusion caused by sunglasses which leads to misalignment.
Again, correct recognition rates remain stable with respect to varying error lev-
els. However, this time, it decreases when 15% of the interocular distance is
added to the manually annotated eye center labels as noise. As stated before,
in these experiments, these labels are assumed to be precise and the errors are
induced to these labels in order to imitate the localization errors. Nevertheless,
these labels are not precise in the case of wearing sunglasses. Because of this
reason, when the eye center positions are modified by 15% of the interocular
distance, depending on how precise the manually generated label is, on some
test images the modification could be higher than 18% of the interocular dis-
tance with respect to the actual eye center positions, which is the upper limit
of localization error that the proposed system can tolerate.
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Figure 5.10: Correct recognition rates obtained on the AR sun experiments with
respect to localization errors. The plots without suffix correspond
to using only provided labels, the ones with the suffix “bf” corre-
spond to using multiple eye center position combinations and doing
brute force search, and the ones with the suffix “hs” correspond to
using multiple eye center position combinations and doing hierar-
chical search. The proposed approach provides stable results over
localization errors.

In Figure 5.11, the results of the FRGC experiments can be seen. One more time,
it is shown that the proposed approach provides robustness against localization
errors, having consistent correct recognition rates over varying localization er-
rors. The high resolution face images in the FRGC data sets lead better manual
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labeling of the eye center positions. Therefore, on the FRGC experiments, the
increase in the performance attained with the proposed method, at the condi-
tion where no errors are added to the manually annotated eye center positions,
is less than the ones obtained on the AR experiments. It is 1.5% on the FRGC1
where the face resolution is the highest, and 3.7% on the FRGC4 experiment,
while 5.5%, 59.1%, 6.4% and 58.2% increases are achieved on the AR1scarf,
AR1sun, ARinterscarf and ARintersun experiments, respectively.
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Figure 5.11: Correct recognition rates obtained on the FRGC experiments with
respect to localization errors. The plots without suffix correspond
to using only provided labels, the ones with the suffix “bf” corre-
spond to using multiple eye center position combinations and doing
brute force search, and the ones with the suffix “hs” correspond to
using multiple eye center position combinations and doing hierar-
chical search. The proposed approach provides stable results over
localization errors.

Again note that the achieved correct recognition rates are very high compared
to the ones presented in the literature that are attained on the same database
[GSC01, Mar02, TCZZ05, PLL05, FSL06, WGYM07, JM08]. For example, in
[GSC01], the experiments are conducted on 116 subjects and the best result
obtained against lower face occlusion due to scarf is 81% in the within session
experiment and around 65% in the between session experiment. The best results
obtained against upper face occlusion due to sunglasses are 48% and 35%, in
within and between session experiments, respectively. In [Mar02], where 50
subjects are used for the experiments, the correct recogntion rates are 82%
and 50% against scarf, and 80% and 55% against sunglasses, in within session
and between session experiments, respectively. Another study [PLL05] that only

108



performs within session experiments on 135 subjects, reports correct recognition
rates of 85.2% against scarf and 80.7% against sunglasses.

The results of using only manually generated labels and the proposed alignment
approach are given in Table 5.3. As mentioned before, the correct recognition
rates obtained with the proposed alignment approach is superior to the ones
obtained using the manually generated labels. No significant performance differ-
ence is observed between doing hierarchical search with W = 11 and W = 9.

Manual la-
bels only

Brute-
force
search

Hierar.
search
W = 11

Hierar.
search
W = 9

AR1scarf 91.8% 97.3% 97.3% 98.2%
AR1sun 38.2% 97.3% 97.3% 99.1%
ARneutral 92.7% 100% 100% 99.1%
ARinterscarf 83.6% 90% 90% 88.2%
ARintersun 37.3% 95.5% 95.5% 94.6%
FRGC1 97.3% 98.7% 98.8% 98.1%
FRGC4 90.1% 93.9% 93.8% 93.8%

Table 5.2: Correct recognition rates obtained on the AR and FRGC face data
sets. The results in the first column are obtained using just the man-
ually labeled eye center positions to align a training sample. The
ones in the other columns are achieved using all the eye center po-
sition combinations to align the training sample. Either brute force
or hierarchical search is conducted to find the best matching aligned
training sample.

Besides the proposed approach, only a few studies have focused on building
face recognition systems which are robust to misalignment [Mar02, SCG+04,
WYH+08]. In [Mar02], from each training sample, 6615 additional images are
generated by perturbing the facial feature locations. These images are pro-
jected onto the eigenspace and for each subject the resulting feature vectors
are modeled with a Gaussian or a mixture of Gaussians. The identification is
done by finding the closest Gaussian or mixture of Gaussians model. Similarly,
in [SCG+04], 81 additional samples are derived from each training sample by
modifying the eye center locations. These samples are then used as input to
the Fisherfaces algorithm [BHK97]. Different from these two studies, in which
additional samples are generated, in [WYH+08], misalignment parameters are
learned by solving an optimization problem. Although these approaches have
improved performance over the baseline, they still cannot fully handle misalign-
ment. For example, in [Mar02], on the AR face database [MB98], around 80%
and 50% correct recognition rates are obtained against occlusion over randomly
selected 50 subjects, for the within session and between session experiments, re-
spectively, whereas in this study around 95% and 90% correct recognition rates
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are achieved for the same conditions over 110 subjects. In [SCG+04], even with
two pixels translation, the performance drops by 30%, whereas in this study,
the performance stays constant with respect to translations up to 18% of the
interocular distance. Similarly, in [WYH+08], there is still a significant perfor-
mance drop even in the case of small modifications, such as rotation of ±5◦,
scaling with [0.95, 1.05], or ±1 pixel shift, whereas in this study rotations up to
±30◦, scaling factors up to [0.64, 1.36], and shifts up to 18% of the interocular
distance, are tolerated.

5.4 What affects more: Occlusion or

Registration?

As can be observed from the Figure 5.10, registration plays a very important
role in face classification. It also shows that the poor results reported in the lit-
erature under the condition of upper face occlusion is not mainly due to missing
discriminative information that exists around eyes, but due to imprecise label-
ing of the eye center coordinates. To justify this finding, additional experiments
were performed on the FRGC1 and FRGC4 data sets. In the experiments face
images are aligned using the manually labeled eye center positions. After the
alignment, the blocks at the second and third row of the testing face images are
painted to black as shown in Figure 5.12. Again, ten-dimensional local feature
vectors that are extracted from each 8 × 8 pixels block by removing the first
DCT coefficient and keeping the following first ten of them are used. The se-
lected coefficients are divided by their standard deviations and normalized to
unit norm.

Figure 5.12: Sample aligned face image and corresponding occluded face image.

The classification results with this experimental setup is given in Table 5.3. The
results obtained on the test face images without occlusion are also presented in
the table for comparison purposes. It is apparent that missing eye region in-
formation causes a decrease in the correct classification rate. Especially, if the
experiment is more difficult, as in the FRGC4 experiment, where the train-
ing and testing data is collected under uncontrolled conditions, the decrease
is more prominent. However, compared to the results in Figure 5.11, the de-
crease is much less than the one caused by erroneous feature localization. This
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validates that registration has more influence on the classification results than
occlusion.

FRGC1 FRGC4

Without occlusion 97.9% 90.8%
With occlusion 95.9% 83.8%

Table 5.3: Correct recognition rates obtained on the FRGC experiments. The
results in the first row are obtained using test face images that have
no occlusion. The ones in the second row are attained using test face
images that contain upper face occlusion as depicted in Figure 5.12.

5.5 Automatic Feature Selection

Different types of facial appearance variations can be handled by different fre-
quency bands. Therefore, in the proposed face recognition algorithm an auto-
matic frequency selection scheme is employed. In the utilized method the clas-
sification is done using multiple frequency bands, that is, by selecting different
DCT coefficients with a sliding window of size M and performing classification
with each frequency band. The band that provides the maximum separation be-
tween the closest two candidates is chosen to be the most reliable band, and its
decision is used as the classification result. This way, by using the appropriate
frequency band, the algorithm can adapt itself automatically to the changing il-
lumination conditions. The correct classification rates obtained this way can be
seen in Table 5.4. As can be observed, automatic feature selection contributes
to the performance significantly, especially in the case of uncontrolled conditions
and illumination variations.

5.6 Comparison with Well-Known Face

Recognition Algorithms

In this section, the proposed local appearance-based face recognition algorithm
is compared with the well-known generic face recognition algorithms. These al-
gorithms are eigenfaces [TP91], Fisherfaces [BHK97], embedded hidden Markov
model [Nef99], and Bayesian face recognition [MJP00].

The obtained correct recognition rates on the face images that are aligned with
respect to the manually annotated eye center positions are presented in Table
5.5. In the experiments, for eigenfaces the MAHCOS metric is used in nearest-
neighbor classification as suggested in [YDB02]. Fisherfaces and Bayesian face
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Experiment Without Auto. Feature Sel. With Auto. Feature Sel.

FRGC1 98.8% 98.5%
FRGC4 93.8% 96.2%

CMUPIE 99.8% 100%
AR1scarf 97.3% 97.3%
AR1sun 97.3% 98.2%

ARinterscarf 90% 93.6%
ARintersun 95.5% 95.5%

Yale2 100% 100%
Yale3 100% 100%
Yale4 95.6% 100%
Yale5 96.8% 100%

ExtYale2 100% 100%
ExtYale3 100% 100%
ExtYale4 93.1% 98.7%
ExtYale5 93.1% 99.0%

Table 5.4: Results of automatic feature selection experiments.

recognition algorithms are not used when there exists only one training sample
per subject. As can be observed, the proposed algorithm achieves significantly
higher correct identification rates than well-known face recognition approaches,
especially when the experiment is more difficult, for example as in the exper-
iments FRGC4, (Ext)Yale4, (Ext)Yale5. As can be seen, the algorithm can
handle illumination variations very well. Compared to the published results in
the recent studies [CWX+06, LHK05, ZACJ07], the proposed algorithm per-
forms as well as these approaches. Note that in [CWX+06, LHK05, ZACJ07]
prior illumination-related information is utilized and the approaches are tested
on databases that contain only illumination variations. The proposed algorithm
also reaches very high correct recognition rates even when the face images are
recorded under uncontrolled conditions, as in FRGC4. The main challenge re-
sults from occlusion. Especially sunglasses cause a significant performance drop,
since they cause misaligned face images.

The obtained correct recognition rates on the face images that are aligned with
respect to the eye center labels provided by the proposed registration approach
are given in Table 5.6. Experiments are performed only on the FRGC and AR
data sets, where both the original images and corresponding manually annotated
eye center labels are available. As can be seen, there is a significant improvement
in the performance of the proposed face recognition algorithm, whereas the
other algorithms are not able to benefit from the proposed face registration
technique.
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LAFR Eigenfaces Fisherfaces EHMM Bayesian

FRGC1 97.8% 92.8% 97.8% 90.2% 95.6%
FRGC4 91.6% 57.3% 65.6% 42.3% 63.4%

AR1scarf 89.1% 28.2% - 16.4% -
AR1sun 32.7% 17.3% - 7.3% -

ARintercarf 78.2% 17.3% - 10.9% -
ARintersun 32.7% 17.3% - 3.6% -
CMUPIE 100 64.9% - 52.6% -

Yale2 100% 100% 100% 100% 100%
Yale3 100% 97.5% 100% 55.9% 100%
Yale4 100% 60.1% 58.7% 21.0% 68.1%
Yale5 100% 41.3% 19.6% 11.6% 24.3%

ExtYale2 100% 100% 100% 98.5% 100%
ExtYale3 100% 97.8% 99.1% 32.0% 100%
ExtYale4 98.7% 49.2% 34.6% 4.4% 37.6%
ExtYale5 99.0% 15.8% 7.7% 3.7% 8.1%

Table 5.5: Comparison of local appearance-based face recognition algorithm
(LAFR) with well-known face recognition algorithms. Face images
are aligned with respect to manually labeled eye center positions.

LAFR Eigenfaces Fisherfaces EHMM Bayesian

FRGC1 98.5% 89.7% 98.1% 88.8% 47.3%
FRGC4 96.2% 49.6% 56.1% 36.6% 32.7%

AR1scarf 97.3% 23.6% - 17.3% -
AR1sun 98.2% 26.4% - 16.4% -

ARinterscarf 93.6% 15.5% - 14.6% -
ARintersun 95.5% 23.6% - 8.2% -

Table 5.6: Comparison of local appearance-based face recognition algorithm
(LAFR) with well-known face recognition algorithms. Face images
are aligned with respect to the eye center labels provided by the pro-
posed registration approach.
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6 Real-World Applications

Several real-world systems, which are based on the proposed face recognition al-
gorithm, have been developed. These systems are classified into three groups:

1. Face recognition for smart environments: This application group com-
prises the identification tasks at a constant location [SES07, EJFS07,
EFS07, SBE+06, EP06]. For example, in a smart home, family mem-
bers can be identified while they are entering the rooms of the house and
their location can be determined in order to automatically route incom-
ing phone calls. This application group requires identification of people
without any cooperation and under uncontrolled conditions, without any
constraints on head pose, illumination, use of accessories, etc.

2. Face recognition for smart machines: In this application group, a ma-
chine identifies the subject that it interacts with. For instance a car that
identifies its driver [SEE+07], a laptop that recognizes its user, or a robot
that recognizes the person it serves [SEF+07]. In this application group
an implicit cooperation exists between the person and the machine due
to the standard actions the person performs, e.g. the driver looking at
the road, or the computer user looking at the screen. Therefore, the head
pose variations are limited in such systems. The difficulty in this group
arises due to changing environmental conditions.

3. Face recognition for smart image/video retrieval: In this application group,
face recognition is used as a search tool to retrieve relevant images or
videos. It is the most difficult application case, since all the conditions are
completely unconstrained.

In this chapter, some of the sample systems from these application groups are
presented briefly.

6.1 Person Identification in Smart Rooms

Person identification in smart rooms is one of the sample applications of face
recognition for smart environments. The system presented in this section is de-
veloped for the CLEAR evaluations [SBB+07], in which the person identification

115



system needs to identify participants of the lecture-like seminars and interactive
small working group seminars.

Doing person identification in a smart room poses many challenges. In terms of
face recognition, there is no cooperation of the subjects being identified, there
are no constraints on head pose, illumination conditions, use of accessories,
etc. Moreover, depending on the distance between the camera and the subject
the face resolution varies and generally the face resolution is low. In terms
of speaker identification, again, there is no cooperation and the system should
handle a large variety of speech signals, corrupted by adverse environmental
conditions. The only factors that can help to improve the person identification
performance in smart rooms are the video data of the individuals from multiple
views provided by several cameras and the multi-channel speech signal provided
by microphone arrays that are mounted in the smart room. With the fusion
of these modalities, the correct identification rates can be improved further. A
sample smart room layout and sample images from different cameras are shown
in Figure 6.1.

6.1.1 Video-based Face Recognition

The face recognition system is based on the local appearance-based face recog-
nition approach and it processes multi-view video data provided by four fixed
cameras. In the training stage all the images from all the cameras are put
together. Although the manual annotations of the images are available in the
database, due to the low resolution faces these manual labels might be imprecise.
In order to prevent the registration errors that can be caused by these impre-
cise labels, 24 additional samples are also generated by modifying the manually
annotated face bounding boxes by moving the center of the bounding box by
one pixel and changing the width or height by two pixels. In the testing stage,
at an instant all four camera views are compared to the representatives in the
database. Their distances are converted to confidence scores using min-max
normalization [SUM+05],

ns = 1− s−min(S)

max(S)−min(S)
, (6.1)

where, s corresponds to a distance value of the test image to one of the training
images in the database and S corresponds to a vector that contains the distance
values of the test image to the ten closest matches among the training images.
The division is subtracted from one, since the lower the distance is, the higher
the probability that the test image belongs to that identity class. This way, the
score is normalized to the value range of [0,1], closest match having the score ’1’
and the furthest match having the score ’0’. To have equal contribution of each
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Figure 6.1: A sample smart room layout and sample images captured by cameras
mounted at the corners.
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frame, these scores are re-normalized by dividing them to the sum of their values.
Each frame is weighted using the distance-to-second-closest (DT2ND) metric
[SES07]. In [SES07], it has been observed that the difference of the distances, x,
between the closest and the second closest training samples is generally smaller
in the case of a false classification than in the case of a correct classification. It
has been found that the distribution of these distances resembles an exponential
distribution:

ε(x;λ) = 0.1λe−2x with λ = 0.05. (6.2)

The weights are then computed as the cumulative distribution function:

ωDT2ND(x;λ) = 1− e−2x. (6.3)

The obtained confidence scores are summed over camera views and over image
sequence. The identity of the face image is assigned as the person who has the
highest accumulated score.

6.1.2 Speaker Identification

The speaker identification system is based on mel-frequency cepstral coeffi-
cients (MFCC) that are modeled with Gaussian mixture models (GMM) [Fur97,
Rey95]. Feature warping and reverberation compensation are applied on MFCC
in order to improve robustness against channel mismatch. The reverberation
compensation approach uses a different noise estimation compared to the stan-
dard spectrum subtraction approach [JPS06]. The feature warping method
warps the distribution of a cepstral feature stream to a standardized distribu-
tion over a specified time interval [JPS06, PS01, XCN+02]. The identification
decision is made as follows:

s = iargmax {L (Y |Θi)} Y = (y1, y2, . . . , yN) (6.4)

where s is the identified speaker and L (Y |Θi) is the likelihood that the test
feature set Y was generated by the GMM Θi of speaker i, which contains M
weighted mixtures of Gaussian distributions

Θi =
M∑
m=1

λmN (X,Um,Σm) i = 1, 2, . . . , S (6.5)

where X is the set of training feature vectors to be modeled, S is the total
number of speakers, M is the number of Gaussian mixtures, λm, Um, and Σm
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are the weight, mean, and diagonal covariance matrix of the mth Gaussian dis-
tribution.

As there are 64 channels for each speech recording, GMMs are trained for each
speaker on each of the 64 channels. Channel 7 is randomly selected as the test
channel. The ”frame-based score competition (FSC)” approach is applied when
computing the likelihood scores of test features given a speaker with M GMMs.
The idea of the FSC approach is to use the set of multiple GMM models rather
than a single GMM model. A multiple microphone setup emits speech samples
from multiple channels. As a consequence, multiple GMM models can be built
for each speaker k, one for each channel i and they are referred as Θk, Chi. For
a total number of 64 channels one gets Θk = {Θk, Ch1, . . . ,Θk, Ch64} models
for speaker k. In each frame the incoming feature vector of channel Ch7 is
compared to all GMMs {Θk, Ch1, . . . ,Θk, Ch64} of speaker k. The highest log
likelihood score of all GMM models is chosen to be the frame score. Finally,
the log likelihood score of the entire test feature vector set X from channel h is
estimated as:

LL (X|Θk) =
N∑
n=1

LL (xn|Θk) =
N∑
n=1

max {LL (xn|Θk,Chj)}64
j=1,j 6=h (6.6)

This competition process based on multiple channels differs from the standard
scoring process based on one channel in that the per-frame log likelihood scores
are not necessarily derived from the same microphone. This speaker identifica-
tion system is developed by Qin Jin [EJFS07].

6.1.3 Fusion

The effects of three main steps of the fusion process are investigated. They are:
score normalization, modality weighting, and modality combination.

Score normalization is the first step in the process of modality fusion. Due to
the different ways of feature extraction and classification, the distribution of the
resulting scores may differ between the modalities. For example, in this study,
the face recognition system generates accumulated min-max normalized scores,
whereas the speaker identification system provides likelihood scores. In order
to combine these scores, two well-known score normalization methods, namely
the min-max and hyperbolic tangent normalization are utilized and compared.
The min-max normalization can be calculated as in Equation 6.1 without the
need of subtracting the obtained division value from one, since the modality
scores are directly proportional to the modality confidences. Hyperbolic tangent
normalization nonlinearly maps the confidence scores to the (0,1) range and
calculated as,
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nc =
1

2

[
tanh

(
0.01

(c−mean(C))

std(C)

)
+ 1

]
(6.7)

where, nc denotes the normalized confidence score, c denotes a confidence score
of an identity candidate in the database whose image or speech signal has been
compared with, and C denotes the vector that contains the confidence scores of
all the identity candidates in the database.

Modality weighting is the second step in the fusion process. A new adaptive
modality weighting scheme is introduced which is based on the separation of the
best two matches. It is named as cumulative ratio of correct matches (CRCM)
and utilizes non-parametric modeling of the distribution of the correct matches
with respect to the confidence differences between the best two matches. It
relies on the observation that the difference of the confidences between the
closest and the second closest training samples is generally smaller in the case
of a false classification than in the case of a correct classification. The greater
the confidence difference between the best two matches is, the higher the weight
the individual modality receives. Figure 6.2 shows the obtained correct match
distribution over the confidence differences and the corresponding weighting
model for the face recognition system. This weighting model has been computed
on a validation set by taking the cumulative sum of the number of correct
matches achieved at a confidence difference between the best two matches.

(a) (b)

Figure 6.2: (a) Distribution of the correct matches, (b) The weighting model.

In addition to the adaptive modality weighting scheme, individual correct iden-
tification rates of each modality that are obtained on the validation set are also
taken into account. Modalities are assigned with fixed weights according to
their performance.
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Finally, the modalities are combined using the well-known classifier combination
methods: sum rule, product rule, and max rule [KHDM98].

6.1.4 Experimental Results

The experiments have been conducted on a database that has been collected by
the CHIL consortium [WSS04] for the CLEAR 2007 evaluations [SBB+07]. The
recordings are from lecture-like seminars and interactive small working group
seminars that have been held at different CHIL sites: AIT, Athens, Greece,
IBM, New York, USA, ITC-IRST, Trento, Italy, UKA, Karlsruhe, Germany,
and UPC, Barcelona, Spain. Sample images from the recordings can be seen
in Figure 6.3. The data used for the identification task consists of short video
sequences of 28 subjects, where the subject is both speaking and visible to
the cameras at the same time. The recording conditions are uncontrolled and
depending on the camera view and the position of the presenter/participant low
resolution faces ranging between 10 to 50 pixels resolution are acquired. Two
different training —15 and 30 seconds— and four different testing durations —1,
5, 10, 20 seconds— are used in the experiments. Identity estimates are provided
at the end of each test sequence duration using the available audio-visual data.

Figure 6.3: Sample images from different smart rooms.

In the database, face bounding box labels are available for every 200ms. Only
these labeled frames are used for the experiments. The face images are cropped
and scaled to 40× 32 pixels resolution. They are then divided into 8× 8 pixels
resolution non-overlapping blocks making 20 local image blocks. From each
image block ten-dimensional DCT-based feature vectors are extracted and they
are concatenated to construct the final 200-dimensional feature vector.
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13-dimensional MFCC is extracted from the speech signal as the speaker feature.
A GMM with 32 mixtures is trained for each speaker using the expectation-
maximization (EM) algorithm under the 30 seconds training condition and 16
mixtures for each speaker under the 15 seconds training condition. The classi-
fication is performed as described in Section 6.1.2.

Experiments on the Validation Set

The correct identification rates of the face recognition and speaker identification
systems obtained on the validation set are presented in Table 6.1. In the table,
the first row contains training durations and the second row contains testing
durations. The third and fourth rows show the results for different training-
testing duration combinations. As expected, as the duration of training or
testing increases the correct identification rate increases. Both of the systems
achieve 100% correct identification when the systems are trained with 30 seconds
of data and tested with the sequences of 20 seconds duration. Face recognition is
found to be significantly superior to speaker identification at the other training-
testing duration combinations.

These results are used to determine the fixed weights that each modality receives.
It is done in two different ways. The first way is by determining the weights
directly proportional to the correct identification rates. For example, if the face
recognition system has 100% and the speaker identification system has 85%
correct identification rates, then they are weighted by 1 and 0.85 respectively for
that training-testing duration combination. The second way is by determining
the weights inversely proportional to the false identification rates. For instance,
if the face recognition system has 5% and the speaker identification system has
10% false identification rates, then the face recognition system receives twice as
much weight than the speaker identification system.

Training duration (sec) 15 30
Testing duration (sec) 1 5 10 20 1 5 10 20

Face Reco. (%) 91.4 99.1 100 100 94.3 100 100 100
Speaker Id. (%) 56.4 67.9 89.3 92.9 61.1 84.8 98.2 100

Table 6.1: Correct identification rates of the individual modalities on the vali-
dation set.

Experiments on the Test Set

The correct identification rates of the face recognition and speaker identification
systems obtained on the test set are given in Table 6.2. Similar to the obtained
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results on the validation set, as the duration of training or testing increases
the correct identification rate increases. Only at one second testing, it does
not change too much for the speaker identification system. As can be noticed,
on the test set the speaker identification performs as well as or even better
than the face recognition at longer duration test segments. In the case of fixed
modality weighting, this implies that the validation set is misleading, since on
the validation set face recognition has been found to be more successful at these
test segments. The other observation that can be derived by comparing Tables
6.1 and 6.2 is the lower correct identification rates obtained on the testing set.
The main reason is that the time gap between training set and test set recordings
is larger than the one between the recordings of training and validation sets.

Training duration (sec) 15 30
Testing duration (sec) 1 5 10 20 1 5 10 20

Face Reco. (%) 84.6 90.8 93.3 94.6 89.3 94.4 94.6 96.4
Speaker Id. (%) 41.9 69.6 92.0 96.4 41.2 78.3 96.4 99.1

Table 6.2: Correct identification rates of the individual modalities on the test
set.

Fusion Experiments

In the following subsections, steps of the fusion process are examined.

Comparison of Score Normalization Methods: In the first fusion exper-
iment, the min-max and hyperbolic tangent score normalization methods are
compared. For modality weighting, fixed weights are used which are directly
proportional to the correct identification rates obtained on the validation set.
Sum rule is utilized for classifier combination. The resulting correct recognition
rates are shown in Table 6.3. As can be observed, there is no significant per-
formance difference between using min-max or hyperbolic tangent methods for
score normalization. Although, for this experiment a very simple fixed weight-
ing scheme is used, in most of the training-testing duration combinations the
correct identification rates are higher than the ones obtained by the individual
modalities.

Training duration (sec) 15 30
Testing duration (sec) 1 5 10 20 1 5 10 20

min-max (%) 84.8 91.1 94.2 94.6 89.8 94.9 95.5 97.3
tanh (%) 85.8 91.7 95.1 94.6 90.4 96.0 96.9 98.2

Table 6.3: Comparative results of min-max and hyperbolic tangent score nor-
malization methods.
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Comparison of Modality Weighting Methods: In the second fusion ex-
periment, the modality weighting schemes are analyzed. First, the fixed weight-
ing schemes, at which the weights are either directly proportional to the correct
classification rate or inversely proportional to the false identification rate ob-
tained on the validation set, are compared. These fixed modality weighting
schemes are named as DPC and IPF, respectively. Sum rule is used for classi-
fier combination. The results are presented in Table 6.4. As already mentioned
in the previous subsection, even with these simple weighting schemes, in most
of the training-testing duration combinations the correct recognition rates are
higher than the ones obtained by the individual modalities.

Training duration (sec) 15 30
Testing duration (sec) 1 5 10 20 1 5 10 20

DPC, min-max (%) 84.8 91.1 94.2 94.6 89.8 94.9 95.5 97.3
DPC, tanh (%) 85.8 91.7 95.1 94.6 90.4 96.0 96.9 98.2

IPF, min-max (%) 84.6 90.8 93.3 94.6 89.4 94.4 94.6 97.3
IPF, tanh (%) 84.8 90.8 93.3 94.6 89.9 94.4 94.6 98.2

Table 6.4: Comparative results of fixed weighting schemes.

The results obtained with the more sophisticated adaptive modality weighting
scheme are given in Table 6.5. Again, sum rule is used for classifier combi-
nation. Compared to the Table 6.4, CRCM provides a significant increase in
correct identification rates. Note that, in terms of performance of each modal-
ity, the validation set was not quite representative. On the validation set, at
some training-testing duration combinations face recognition was found to be
superior, but on the test set speaker identification performed better. Therefore,
performance based fixed weighting can be misleading. The results obtained by
CRCM indicate that confidence differences are more robust cues for modality
weighting.

Training duration (sec) 15 30
Testing duration (sec) 1 5 10 20 1 5 10 20

CRCM, min-max (%) 86.3 93.5 98.2 99.1 89.6 97.3 98.7 99.1
CRCM, tanh (%) 81.0 91.7 97.3 98.2 84.7 96.9 99.1 100

Table 6.5: Results of adaptive weighting scheme.

The adaptive weight and the fixed weights are also combined. Score normal-
ization is done with min-max normalization and the classifiers are combined
with the sum rule. As can be observed from Table 6.6, there is no significant
performance difference between the CRCM and DPC+CRCM results. The per-
formance degrades with IPF+CRCM. The reason is the hard modality weighting
in IPF. Since, on the validation set at some training-testing combinations, face
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recognition had 0% false identification rate, at these combinations only the face
recognition system’s decision is trusted.

Training duration (sec) 15 30
Testing duration (sec) 1 5 10 20 1 5 10 20

DPC + CRCM (%) 86.7 93.5 98.2 99.1 89.9 97.3 98.7 99.1
IPF + CRCM (%) 86.7 91.7 93.3 94.6 89.9 94.4 94.6 99.1

Table 6.6: Comparative results of combined adaptive and fixed weighting
schemes.

Comparison of Classifier Combination Methods : Finally, the weighted
scores are combined using the sum rule, product rule, and max. rule. Combined
DPC and CRCM is used for modality weighting. From Table 6.7, it can be seen
that the max. rule operates better on the min-max normalized confidence scores.
Sum rule and max. rule are found to perform slightly better than the product
rule. However, no big difference is observed in the correct identification rates.

Training duration (sec) 15 30
Testing duration (sec) 1 5 10 20 1 5 10 20

Sum, min-max (%) 86.7 93.5 98.2 99.1 89.9 97.3 98.7 99.1
Sum, tanh (%) 83.2 92.9 97.8 98.2 87.2 96.9 99.1 100

Product, min-max (%) 86.7 92.6 95.5 95.5 90.4 96.2 97.3 98.2
Product, tanh (%) 86.8 92.6 95.5 95.5 90.7 96.2 96.9 98.2
Max., min-max (%) 84.8 92.2 97.8 99.1 88.2 96.2 90.1 100

Max., tanh (%) 68.8 83.5 93.8 97.3 72.7 89.1 97.8 100

Table 6.7: Comparative results of classifier combination methods.

6.1.5 Summary of the Experiments

In the experiments, no significant performance difference between well-known
score normalization or classifier combination approaches is found. It is observed
that the modality weighting has a major impact on the correct identification
rate. An adaptive modality weighting model is proposed, which is derived from
the confidence differences between the best two matches. It is named as cumu-
lative ratio of correct matches (CRCM) and the weighting model is computed
by taking the cumulative sum of the number of correct matches achieved at a
confidence difference between the best two matches. In Table 6.8, the correct
identification rates of the individual modalities and the multimodal system are
listed. The multimodal system included in the table uses min-max normalized
confidence scores, CRCM modality weighting, and the sum rule. From the table,

125



it is clear that multimodal fusion contributes to the performance significantly.
This also indicates that the face and voice modalities are complementary bio-
metric traits.

Training duration (sec) 15 30
Testing duration (sec) 1 5 10 20 1 5 10 20

Face Reco. (%) 84.6 90.8 93.3 94.6 89.3 94.4 94.6 96.4
Speaker Id. (%) 41.9 69.6 92.0 96.4 41.2 78.3 96.4 99.1
Combined (%) 86.3 93.5 98.2 99.1 89.6 97.3 98.7 99.1

Table 6.8: Comparative results of individual modalities and the multimodal
system.

6.2 Door Monitoring System

The door monitoring system is one of the sample applications of face recognition
for smart environments. The real-time face recognition system presented in this
section monitors the entrance door of a seminar room. Individuals are recognized
when they enter the room. They behave naturally, since they are not required to
interact with the recording system in any special way, e.g., looking at the camera.
As a consequence, the system is confronted with real-world facial appearance
variations that are caused by partial face occlusion, changing illumination, and
head pose (Figure 6.4).

Figure 6.4: Sample images from the door monitoring system.

Faces are detected in a two-stage process. First, regions of interest are deter-
mined by skin color segmentation and then the eyes are detected with a classifier
cascade of Haar-like features [VJ04]. The eye positions are used to register the
faces to a fixed orientation and scale (Figure 6.5). Please note the variations
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in expression, illumination, pose, and resolution as well as blurring effects from
motion.

Figure 6.5: Sample aligned images from the door monitoring system.

To evaluate the recognition performance, both a k-nearest-neighbors (k-NN)
and a Gaussian mixture model (GMM) approach are used. In the k-NN case,
video-based classification is achieved by accumulating the normalized individual
frame scores. In the GMM approach, this is done with Bayesian inference.
As not all frames are of the same quality, a weighting scheme consisting of
two sub-schemes is introduced into the k-NN approach to weight each frame’s
influence on the final decision. The scheme distance-to-model identifies frames
that are inconsistent with the training data, therefore modeled inappropriately,
and assigns them a lower weight. Distance-to-second-closest compares the top-2
matches and reduces a frame’s weight if the classification is ambiguous, that is,
if the top-2 matches are very close. A smoothed version of the GMM approach
is also developed with the underlying idea that the identity of a person does not
change over time. Consequently, frames which are inconsistent with the current
hypothesis get a small weight. This approach still allows a change of identity
if there is strong enough evidence, but it avoids rough sudden jumps between
different classifications [SES07].

In order to show the robustness of the local appearance-based face recogni-
tion approach under real-world conditions, it is first compared with several
well-known face recognition algorithms, such as eigenfaces [TP91], Fisherfaces
[BHK97, ZCP99], and Bayesian face recognition [MJP00] on the collected door
database. This experiment is conducted frame-based, that is, the classification
is performed based on single frames. A database of 2294 video sequences of
41 individuals, which have been automatically recorded during seven months
with the developed system [SES07], is used for the experiments. The data is
divided into training and testing sets according to the recording date. The se-
quences recorded earlier are used for training and the ones recorded later are
used for testing. Five-dimensional local DCT-based features are used for the
local appearance-based face recognition algorithm, making a 320-dimensional
combined feature vector. The feature vectors are classified using a nearest
neighbor classifier. The L1 norm is used as a distance metric. The same feature
dimensionality is used for the other face recognition approaches as well. For the
eigenfaces, Mahalanobis cosine (MAHCOS) [YDB02] is also used as a distance
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metric in nearest neighbor classification. The correct identification rates are
given in Table 6.9. The local appearance-based face recognition approach out-
performs well-known face recognition algorithms. The most interesting result
that can be observed from this table is the very low correct identification rate
obtained by Bayesian face recognition [MJP00] which has been known to be the
one of the best performing face recognition algorithms. Varying pose, illumi-
nation changes, registration errors make the intra-personal and extra-personal
variations almost identical, which causes this low performance.

Method Performance

Local DCT 80.6%
LDA 75.9%

PCA, L1 68.7%
PCA, MAHCOS 66.1%

Bayesian 28.0%

Table 6.9: Frame-based experiment results.

In video-based evaluations, the same database is used, but this time the clas-
sification is performed using the entire sequence. As can be seen from Table
6.10, the system successfully extends the frame-based approach to video-based
data. In the table, Video-based results correspond to equally weighting each
frame, whereas Weighted corresponds to frame weighting approach in k-NN
and Smooth corresponds to smoothing process in the GMM approach. Correct
recognition rates are significantly higher when the entire sequence of images are
used as the increased amount of input data compensates for low-quality frames.
Results improve further if bad frames can be identified and their influence is
reduced. Note that, the frame-based result with k-NN in Table 6.10 is lower
than the one in Table 6.9. The reason is that the training samples are clustered
in video-based face recognition to make the system run in real-time.

Classifier Frame-based Video-based Weighted Smooth

KNN 68.4% 90.9% 92.5% N/A
GMM 62.7% 86.7% N/A 87.8%

Table 6.10: Correct recognition rates achieved by the door monitoring sys-
tem. Weighted and Smooth are only available for k-NN and GMM,
respectively.

6.3 Visitor Interface

The visitor interface system is one of the sample applications of face recogni-
tion for smart machines. The system performs open-set face recognition and
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Figure 6.6: A snapshot of the visitor interface system in operation.

it has been designed as a visitor interface, where a visitor looks at the monitor
before knocking on the door. A welcome message is displayed on the screen.
While the visitor is reading the welcome message, the system identifies the vis-
itor unobtrusively without needing the person’s cooperation. According to the
identity of the person, the system customizes the information that it conveys
about the host. For example, if the visitor is unknown, the system displays only
availability information about the host. If the visitor is known, depending on
the identity of the person, more detailed information about the host’s status is
displayed. A snapshot of the system in operation can be seen in Figure 6.6.

Open-set identification can be seen as the most generic form of face recognition
problem. Several approaches can be considered to solve it. One of them is
to perform verification and classification sequentially, that is, to perform first
verification to determine whether the encountered person is known or unknown
and then, if the person is known, finding out who he/she is by doing classifica-
tion. An alternative approach can be training an unknown identity class and
running just a classifier. A third option is running just verifiers. A test image is
compared against each known subject to see whether it belongs to that subject
or not. If all the verifiers reject, then the image is classified as belonging to an
unknown person. If one or more verifiers accept, then the image is classified as
belonging to a known person. Among these approaches, the last one is opted
for, which is named as the multi-verification approach. The main reason for this
choice is the better discrimination provided via multiple verifications. The first
method requires a verifier to determine known/unknown persons. This requires
training the system with face images of known and unknown persons. Since
human faces are very similar, generating a single known/unknown verifier can
not be highly discriminative. In the second method, training a separate un-
known class would not be feasible. Because the unknown class covers unlimited
number of subjects that cannot be completely modeled using a limited number
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of subjects. On the other hand, with the multi-verification approach, only the
available subjects are modeled.

In the system, an identity verification component is trained for each known
subject in the database. When a test image is captured, it is verified against
each known subject in the gallery, either using a support vector machine or
nearest neighbor classifier. If all of the verifiers reject, the person is reported
as unknown; if one accepts, the person is accepted as known and the verified
identity is assigned to him/her; if more than a single verifier accepts, the person
is accepted as known and the identity of the verifier with the highest confidence
is assigned to him/her. Verifier confidences are inversely proportional to the
distance values obtained by the nearest-neighbor or SVM classifier.

The system is evaluated on a data set that consists of short video recordings of
50 subjects captured in front of an office over four months. There is no control
on the recording conditions. The sequences consist of 150 consecutive frames
where both face and eyes are detected. Figure 6.7 shows some sample captured
frames. As can be seen, the recording conditions can change significantly due
to lighting, motion blur, distance to camera, and change of the view angle. The
subjects are assigned to two separate groups as known and unknown subjects.
In the experiments, five subjects, who are the members of a research group, are
classified as known people. 45 subjects who are mainly university students and
some external guests, are classified as unknown people. The set of recording
sessions is then further divided into training and testing data. Known subjects’
recordings are splitted into non-overlapping training and testing sessions. From
the 45 unknown subjects, 25 of them are used for training and twenty of them
are used for testing. There is no overlap between the unknown subjects who
are used for training and testing. The organization of the data can be seen in
Table 6.11. As can be noticed, for each verifier training, there exists around 600
frames (4 sessions, 150 frames per session) from the known subject. On the other
hand the number of available frames from the unknown subjects is around 3750
frames (25 sessions, 150 frames per session). In order to limit the influence of
data imbalance during verifier training, unknown recordings are undersampled
to 30 images per used training session, making a total of 750 frames.

Training data
Known 5 subjects 4 sessions
Unknown 25 subjects 1 session

Testing data
Known 5 subjects 3 – 7 sessions per person
Unknown 20 subjects 1 session per person

Table 6.11: Data organization for open-set face recognition experiments.
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Figure 6.7: Sample images from the data set.

Open-set face recognition systems can make three different types of errors.
False classification rate (FCR) indicates the percentage of correctly accepted
but misclassified known subjects, whereas false rejection rate (FRR) shows the
percentage of falsely rejected known subjects and false acceptance rate (FAR)
corresponds to the percentage of falsely accepted unknown subjects. The equal
error rate (EER) is defined as the point on the receiver operating characteristic
(ROC) curve where FAR = FRR + FCR.

First, the frame-based verification is performed. Frame-based verification im-
plies doing verification using a single frame instead of an image sequence. Each
frame in the recordings is verified separately, that is, the decision is taken only
using a single frame at a time. The results of this experiment at the point of
equal error rate are reported in Table 6.12. In the table CCR denotes the correct
recognition rate and CRR denotes the correct rejection rate. The SVM-based
classification outperforms the nearest-neighbor approach in correct classification
performance by almost 10%, false acceptance rate and false rejection rate are
also lower.

Classifier CCR FRR FAR CRR FCR
NN 81.6 % 15.5 % 17.8 % 82.2 % 2.9 %
SVM 90.9 % 8.6 % 8.5 % 91.5 % 0.5 %

Table 6.12: Frame-based nearest-neighbor and SVM classification results.

Figure 6.8 shows the ROC curves for both SVM and NN-based verification.
To analyze the effect of FRR and FCR on the performance, they are plotted
separately in these figures. The dark gray colored region corresponds to the
errors due to false known/unknown separation and the light gray colored region
corresponds to the errors due to misclassification. Similar to the finding in
[SES07], it is observed that determining whether a person is known or unknown
is a more difficult problem than finding out who the person is.

As the data set consists of short video sequences, the additional information
can be used to further improve classification results. In the video-based ver-
ification, the decision is taken after using all the frames of the entire video.
Table 6.13 shows the improved results with the help of accumulated scores. As
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(a) ROC curve of SVM-based classification.
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(b) ROC curve of NN-based classification.

Figure 6.8: ROC curves of the frame-based verification.

can be seen SVM-based classification outperforms the nearest neighbor-based
classification.

CCR FRR FAR CRR FCR

NN 95 5 15 85 0
SVM 100 0 0 100 0

Table 6.13: Video-based nearest-neighbor and SVM classification results.

6.4 Face Recognition for Humanoid Robots

Similar to the visitor interface system, face recognition for humanoid robots is
a sample application of face recognition for smart machines. In this scenario,
the face recognition system identifies the person, who interacts with the robot.
This system is developed for the Karlsruhe humanoid robot [SEF+07]. It per-
forms open-set identification and has the same working principles as the visitor
interface system. The only difference is, it is integrated to a more sophisticated
tracker [NS07] than the one used for the visitor interface. A sample snapshot of
the system can be seen in Figure 6.9.

6.5 Person Identification in Movies

The proposed face recognition algorithm is also used for person retrieval in
videos, which is a sample application of face recognition for smart image/video
retrieval. The developed system first segments the input video into its shots and
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Figure 6.9: A snapshot illustrating face recognition with a humanoid robot.

in each shot automatically detects and tracks persons. It extracts features from
these tracks which can be used to reliably identify the persons in the video. This
application group poses many challenges. Unlike the first application group,
the location is not fixed. There exists no implicit cooperation between the
subjects and the system as in the second application group. Therefore, this
application group is the most difficult application case, since all the conditions
are completely unconstrained. Sample images from this application scenario can
be seen in Figure 6.10.

Figure 6.10: Sample frames from a TV series.

The shot boundary detection system contains four separate detectors [EFG+07],
one for each type of shot boundary transition: cuts, fast dissolves, fade in/fade
outs, and dissolves. Within the shot, the faces are tracked with a particle filter
approach. The tracking algorithm uses skin color, which is modeled in HSV
color space and a face detector, which is based on a cascade of classifiers that
use Haar-like features [VJ04], as observation cues. The face detector has been
modified, so that in addition to providing binary decisions —face exists or not—,
it also generates confidence values.

For face classification, three types of application scenarios are considered. The
first one is closed-set identification. In this application scenario, given a set of
main characters in a TV series, the system is required to determine who is who
in each shot. The second application scenario is automatic retrieval. In this
scenario, given a set of query faces of a person, it is required to find the faces
of the same person in different shots. The last one is interactive retrieval. This
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Algorithm Correct classification rate

DCT (10) 70.5%
DCT (5) 69.4%
EHMM [Nef99] 67.9%
Fisherfaces [BHK97] 63.2%
Eigenfaces [TP91] 50.4%
Bayesian [MJP00] 27.7%

Table 6.14: Results for the closed-set identification scenario.

scenario is similar to the automatic retrieval, the only difference is that, the user
can provide feedback to the system to refine the search.

The developed system is evaluated on an episode of British TV Series Cou-
pling. The face tracks and the corresponding identities are labeled to provide
the ground truth. The obtained closed-set correct identification results are given
in Table 6.14. The experiment is conducted frame-based. That is, the classifi-
cation is performed and evaluated on single frames. Two different local feature
dimensions, five and ten, are used for the proposed local appearance-based face
recognition approach. Some of the well-known face recognition algorithms are
also tested on the same data. It can be observed that the correct recognition
rates are lower than the ones obtained on the standard benchmark databases.
This was also the case in frame-based experiments of the door monitoring sys-
tem. The main reason is that under uncontrolled conditions, using single frames
is not sufficient to produce a reliable result. Moreover, it has also been observed
that one of the main characters has significantly less amount of training data
compared to the other main characters, leading to false classifications of the test
face images belonging to that character.

Person retrieval results are plotted in Figure 6.11. In the interactive retrieval,
first, the top matching faces are returned to the user. The similarity of these
matches to the query face image set exceeds a certain threshold. The user
then selects the correctly retrieved faces and with this additional training data
the system refines and enlarges its retrieval results. The performance of the
system improves significantly with the interactive setup. For example, with ten
feedbacks from the user, the recall rate reaches around 90% at a precision rate
of 95%.
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Figure 6.11: Person retrieval results.

6.6 Local Depth-based 3D Face Recognition

In addition to the real-world systems, the proposed algorithm is also extended
for 3D face recognition. In this section, this 3D face recognition system is
presented.

6.6.1 Discrete Cosine Transform-based Local Depth
Models

Feature extraction from depth images using local appearance-based face repre-
sentation can be summarized as follows: The input depth image is divided into
blocks of 8×8 pixels size. Each block is then represented by its DCT coefficients.
These DCT coefficients are ordered using the zig-zag scanning pattern [GW01].
From the ordered coefficients, M of them are selected according to the feature
selection strategy resulting in an M -dimensional local feature vector. Finally,
the DCT coefficients extracted from each block are concatenated to construct
the overall feature vector of the corresponding depth image.

6.6.2 Experimental Results

Extensive experiments have been conducted on the Face Recognition Grand
Challenge (FRGC) version 2.0 data set [PFS+05] to analyze the performance
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Figure 6.12: Local blocks in depth image, DCT features are extracted using
zig-zag scan.

of the proposed local depth-based 3D face recognition approach. The 3D data
corpus of the FRGC database was collected by imaging subjects with a range
scanner. For the experiments, the subjects who have at least two range images
in the spring 2003 recordings of the database are selected and their images from
these recordings are used for training. For testing, the range images of these
subjects from the spring 2004 recordings are used. The training data contains
neutral expressions, whereas the testing data contains different expressions, such
as frowning, smiling, etc. In total 218 range images of 109 subjects are used for
training, where each individual has two samples, and 758 range images are used
for testing, where each individual has a different number of samples, ranging
from one to twelve. Sample pre-processed range images and the corresponding
registered depth images from the training and testing data sets are shown in
Figure 6.13. The depth images are scaled to 64× 64 pixels resolution.

In the experiments, a nearest neighbor classifier is used with the L1 norm as
distance metric, since it has been shown that the L1 norm provides better results
than the L2 norm and normalized correlation [ES06]. A support vector machine
(SVM) classifier is also tested as a more sophisticated classifier.

Figure 6.13: First row: Pre-processed range images rendered with shade model
in training and test set. Second row: registered depth images. (a)
neutral (b) frowning (c) smiling (d) surprised (e) puffy
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Analysis of Local Depth-based 3D Face Recognition

In the first part of the experiments, the effects of local feature dimension, feature
selection, and face registration on face recognition performance are analyzed.
Figure 6.14 shows the face recognition performance with respect to increasing
local feature dimensionality. In this experiment, the 3D faces were registered
using all of the eleven manually labeled landmark points, and depth images
were generated using ray-casting. At each local block, the first coefficient was
removed from the ordered DCT coefficients, since it only represents the aver-
age depth of a local image block. From the remaining coefficients, the first
M of them were selected. The selected local feature vector was normalized to
have unit norm as suggested in [ES06] which has been shown to improve the
face recognition performance. As can be observed from the figure, high correct
recognition rates can be attained by using only five-dimensional local feature
vectors. The performance continues to increase slightly till to the feature di-
mension of ten. The correct recognition rate remains the same or decreases
slightly, when the dimensionality increases further. Therefore, ten-dimensional
local feature vectors are used for the rest of the experiments.

Figure 6.14: Correct recognition rate vs. local feature dimensionality.

The second experiment assesses the effect of frequency content on face recogni-
tion performance. In order to consider the correct recognition rate with different
sets of features having different frequency contents, the first N (N = 0, 1, . . . , 6)
low frequency DCT coefficients are discarded and the following first ten coeffi-
cients are used. The same experiments are conducted with three different regis-
tration setups to observe whether the selected features produce consistent results
over each registration framework. The registration configurations were named
ManualLM 11, AutoLM 11, and ICP . ManualLM 11 and AutoLM 11 cor-
respond to face registration with eleven manually and automatically labeled
landmarks, respectively, whereas ICP corresponds to registration with ICP .
Ray-casting is used to generate depth images from the registered 3D faces. Cor-
rect recognition rates obtained from these three different experimental setups

137



are plotted in Figure 6.15. In all of the experiments, the best results are ob-
tained using the DCT-4 feature set, which implies that removing the coefficients
that represent horizontal and vertical changes as well as the one that represents
the average depth, improves the face recognition performance.

Figure 6.15: Recognition rate of DCT-based local depth approach using different
feature sets. (DCT-N: Discard first N coefficients and select the
first ten coefficients from the remaining ones.)

The effects of landmark points used for registration and the depth image gen-
eration techniques are analyzed in the third experiment. Usually using more
landmarks for registration improves correspondence, but if the landmark points
are poorly placed, correspondence may get worse. If more than necessary land-
mark points are used while performing the TPS warping, the cumulative noise
of the landmarks may result in degenerate deformations. Therefore, some of
the landmarks are discarded to analyze their effectiveness. In the experiment,
five possible landmark combinations, illustrated in Figure 6.16a, are tested for
registration. Both ray-casting and closest-point methods are used for depth
image generation. The DCT-4 feature set is used for classification. The corre-
sponding results can be seen in Figure 6.16b. The highest scores are achieved
by selecting ten landmarks, excluding the landmark located in the middle of the
mouth. This is expected, since this point is not easy to label on faces that have
different facial expressions. As can be observed, ray-casting mapping always
outperforms closest-point mapping. With optimal landmark combination and
ray-casting, 95.5% correct recognition rate is achieved.

The effect of automatic landmarking is investigated in the last experiment. Ta-
ble 6.15 compares the performance of the proposed face recognition algorithm on
the 3D face images that are registered using manually labeled landmark points,
automatically via ICP and using automatically detected landmark points. The
depth images were generated by ray-casting and DCT-4 feature set was used for
classification. The results obtained using the automatic registration methods
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Figure 6.16: (a) Five landmark combinations. (b) Recognition rate of DCT-
based local depth approach with different landmark combinations.

-with ICP and with automatically detected landmark points-, are slightly lower
than the results obtained on the images that are registered using the manual
labels. This decrease in the performance is mainly caused by the errors intro-
duced by ICP registration and automatic landmark detection. Better results
were attained on the images that are registered using automatically detected
landmark points than on the ones registered via ICP. This indicates that de-
formation onto a common frame is able to mitigate the effects of expression
variations.

Registration Method Recognition Rate

Manual LM 10 95.5%
ICP 92.7%

Automatic LM 10 93.1%

Table 6.15: Manual registration vs. automatic registration.

Analysis of Different Bases

In this part of the experiments, the discrete cosine transform-based local depth
representation is compared with different well-known basis functions that can
also be used for representing the local regions. In addition, the proposed lo-
cal depth-based approach is compared with the discrete cosine transform-based
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holistic approach. In these experiments, the 3D faces were registered using
ten manually labeled landmark points and depth images were generated using
ray-casting.

The discrete cosine transform is compared with Karhunen-Love transform (KLT),
Walsh-Hadamard transform (WHT), Fourier transform (FT), and wavelet trans-
form (WT). In KLT, 20-dimensional local feature vectors are used; in WHT the
same feature setup as the one used for DCT is used; in FT, the magnitudes of
the Fourier coefficients are utilized. For wavelet transform, the Daubechies 4
wavelet is used, which has been shown to perform better in terms of computation
time and recognition performance with respect to the other order Daubechies
wavelets and other well-known wavelets [ES05]. The first-order scaling compo-
nent is utilized as the feature vector [ES05]. Table 6.16 gives the correct recog-
nition rates obtained with each basis function. As can be seen, DCT achieves
the best result. After DCT, WHT also reaches high correct recognition rate
compared to the other basis functions. The other basis functions attain lower
performance although they use higher dimensional feature vectors. The feature
dimension is 20 in KLT, 64 in FT, and 16 in WT, whereas it is 10 in DCT and
WHT.

The comparison of DCT-based local and holistic 3D face recognition is given
in Table 6.17. In the holistic approach, the same dimensional feature vector
is selected for the entire image using the same feature selection strategy as
the one used for local depth-based approach, that is, removing the first four
DCT coefficients and selecting the remaining first 640 DCT coefficients that are
ordered according to the zig-zag pattern. The results show the importance of
applying DCT locally and then combining the local analysis results in order to
construct the overall feature vector.

The results from Table 6.16 and 6.17 indicate that the obtained performance
improvement with the proposed algorithm is not solely based on doing classi-
fication in the frequency domain or using the discrete cosine transform. For
instance, Fourier transform-based local depth and the discrete cosine transfom-
based holistic 3D face recognition approaches have been found to perform poorly.
This shows that the performance improvement is provided by performing local
analysis and using the discrete cosine transform to represent the local regions.

Method Performance

DCT 95.5%
KLT 84.0%
WHT 92.4%

FT 80.6%
WT 74.5%

Table 6.16: Performance comparison of local depth representation methods.
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Method Performance

Local DCT 95.5%
Holistic DCT 84.0%

Table 6.17: Local DCT vs. Holistic DCT.

Performance Comparison

In this part of the experiments, the proposed local depth-based 3D face recogni-
tion approach is compared with several well-known face recognition algorithms:
eigenfaces [TP91], linear discriminant analysis (LDA) [BHK97], Bayesian face
recognition [MJP00], embedded hidden Markov model (EHMM) [Nef99], point
set difference (PSD) [İGA04], and point distribution model (PDM) [CTCG95].
For the local depth-based approach, an SVM classifier is also used instead of
a nearest neighbor classifier to assess the performance of a more sophisticated
classification scheme.

Table 6.18 shows the experimental results of each algorithm. Both of the cor-
rect recognition rates attained on manually and automatically registered images
are given. In eigenfaces, Bayesian face recognition, and PDM algorithms, 100
principal components are used. This is the number of principal components
with which the best results are achieved. For LDA, the LDA+PCA algorithm
provided in the CSU face identification evaluation system [CSU09] is used. This
version of LDA uses a soft distance measure proposed by Zhao et al. [ZCP99].
In EHMM, a 4 × 4 size DCT coefficients matrix is used as HMM observation,
which is extracted from a 12 × 12 image block by using DCT. In local depth-
based 3D face recognition, both for nearest neighbor and for SVM classification,
the ten-dimensional DCT-4 feature set is used. Radial basis function was the
kernel function in the SVM classifier.

From the results given in Table 6.18 it can be observed that the proposed local
depth-based approach outperforms the other well-known face recognition algo-
rithms as well as the local DCT features classified with SVM, which may suffer
from a small training set problem. The performance of all algorithms decreases
slightly when they use the images that are registered using automatically de-
tected landmarks. These results indicate that the proposed local DCT features
provide a powerful and robust representation of depth images for classification
purposes.
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Method Manual LM 10 Automatic LM 10

Local DCT 95.5% 93.1%
Local DCT + SVM 90.0% 89.0%

EHMM 87.9% 85.5%
Eigenfaces 88.6% 86.5%

LDA 92.4% 88.5%
Bayesian 94.9% 89.7%

PSD 81.4% 80.6%
PDM 87.6% 84.7%

Table 6.18: Performance comparison of 3D face recognition methods with man-
ual and automatic landmark-based registration.
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7 Conclusions

In this thesis a novel face recognition algorithm that is able to work under dif-
ferent conditions is presented. It is the first time in the literature that a generic
algorithm can handle facial appearance variations without having specific mod-
ifications for each variation. The algorithm is based on appearances of local
facial regions that are represented with discrete cosine transform coefficients.
The local representation provides robustness against appearance variations in
local regions caused by factors such as facial occlusion or expression, whereas
automatic frequency band selection provides robustness against changes in illu-
mination. Moreover, different from the traditional face recognition systems, the
algorithm does not need a facial feature detection step for face registration.

The algorithm has been tested extensively on 15 different training-testing condi-
tions using well-known face recognition benchmark databases. First, the param-
eters of the LAFR approach —feature normalization, block size, region parti-
tioning, and local appearance representation— are analyzed. It has been found
that feature normalization has paramount importance in local appearance-based
face recognition. Balancing the impact of the coefficients on classification by di-
viding them by their standard deviations and then balancing the impact of
different blocks on classification by normalizing the local feature vector to unit
norm has improved the performance significantly. For example, in the FRGC4
experiment, with feature normalization the obtained correct classification rate
is 90.8%, whereas without doing any feature normalization it is 63.2%. Experi-
mental results have shown that 8× 8 pixels local block size for an input image
size of 64 × 64 provides the best recognition performance. It is observed that
generic partitioning provides higher correct recognition rates than salient region-
based partitioning approaches, which indicates that there is no need to focus
on salient regions and perform salient region-based partitioning. Discrete cosine
transform is found to be superior in representing the local facial regions com-
pared to principal component analysis, wavelet transform, Fourier transform,
and Walsh-Hadamard transform, in terms of face recognition performance.

The robustness of the proposed algorithm is assessed against compression and
registration errors. Afterwards, a novel face registration approach is introduced,
which does not require a facial feature localization step. The proposed approach
formulates the registration problem as an optimization process, in which the
closest classification distance is minimized. It has been shown once more that
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registration plays a very crucial role in appearance-based face recognition. The
following points have been observed in the experiments:

• The facial feature localization step can be eliminated from the face recog-
nition systems and the alignment can be performed by directly aiming at
minimizing the closest classification distance.

• The proposed registration approach performs even better than doing regis-
tration with manual labels. For instance, on the AR face database [MB98],
against lower facial occlusion, the obtained result when the test images are
aligned using the manual labels was 91.8%, while with the proposed reg-
istration approach it has become 97.3%.

• The main problem with the upper face occlusion is due to registration
errors and not the occlusion itself. Due to the sunglasses, the eye center
points that are widely used for face alignment can not be reliably labeled
even manually. When only the manual labels are used to align the test
images, the achieved correct recognition rate against upper facial occlu-
sion with sunglasses is 38.2% on the AR face database [MB98]. When
the proposed registration approach is applied, the performance jumps to
97.3%.

• The optimization procedure integrated to the classification step makes the
face recognition system insensitive to facial feature localization errors. The
algorithm can tolerate up to 18% of the interocular distance as localization
error and up to this point it provides stable performance.

The effect of frequency bands is also analyzed and an automatic frequency band
selection method is proposed. Significant improvements have been achieved with
the use of the proposed automatic frequency selection scheme. For example in
the Yale4 experiment, the correct recognition rate increased from 95.6% to
100%, similarly in the Yale5 experiment, it increased from 96.8% to 100%.

The LAFR approach has been compared with well-known face recognition al-
gorithms and found to be significantly superior to them. Furthermore, the
attained results are as good as or even better than the state-of-the-art algo-
rithms specifically developed for illumination or occlusion variations. The algo-
rithm is extended for 3D face recognition and promising results are obtained.
The proposed face recognition system has also been combined with a speaker
identification system for multimodal person identification. An adaptive modal-
ity weighting scheme, named as cumulative ratio of correct matches (CRCM),
where modalities are weighted according to their confidence in their decisions, is
developed. Several real world systems —a door monitoring system, a visitor in-
terface, face recognition for humanoid robots, person identification in movies—
have been developed, which are shown to work robustly under challenging real-
world conditions.
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