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Abstract

Over the past decades research in the field of automatic speech recognition
has lead to systems with a sufficiently high grade of maturity that makes them
suitable for use in real-life applications. However, such recognition systems have
been developed only for very few languages. Languages addressed are mainly
those with a large population, a high economic power, or for which a high
political interest exists. For the vast majority of the 4,000-7,000 languages in
the world no well performing speech recognition systems exist.

Languages are dying at a rapid rate. Linguists estimate that up to 90% of
today’s languages may go extinct within a few generations. Often languages die,
because their speakers abandon them in favor of a more wide-spread language,
from which they expect more economic or cultural advantages. We believe that
technology can play a role in stopping this trend, if it were to provide natural
language processing technologies, including automatic speech recognition, for
all languages in the world.

The traditional way of training speech recognition systems for a new language
requires the collection of large amounts of transcribed audio recordings, text
resources, and the creation of a pronunciation dictionary. Considering the vast
number of languages in the world in combination with the fact that most of
them are only spoken by comparatively few speakers leads to the conclusion
that this approach is not feasible when wanting to address all languages in the
world.

The pronunciation dictionary is a central component of a speech recognition
system which is time-consuming and expensive to create. In this thesis we
show that the use of graphemes instead of the traditionally used phonemes is a
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feasible approach to speech recognition for many languages in the world. The
use of graphemes instead of phonemes eliminates the need for a pronunciation
dictionary, and thus significantly eases the creation of a recognition system for
a new language. Part of the knowledge previously encoded in the pronunciation
dictionary now needs to be learned by the context cluster tree of the acoustic
model. We therefore also examine the use of a more flexible cluster tree for
grapheme based speech recognition.

In order to reduce the amount of transcribed audio data that is needed for the
training of a speech recognition system, past research has developed methods
for porting phoneme based speech recognition systems to new languages with
the help of multilingual models. In this thesis we transfer this work to the
notion of grapheme based recognition systems. We show that it is possible to
train multilingual recognition systems using graphemes instead of phonemes.
We further demonstrate that the multilingual systems can be used to initialize
the acoustic model of a new language. Since the graphemes of the languages in
the world are more diverse than the phonemes, we demonstrate two data driven
approaches for applying a multilingual system to a new language.

Past research has shown that articulatory features can be reliably recognized
across languages and that they can be modelled in a multilingual way. Past
research has also developed ways of integrating models for articulatory features
into an HMM based recognition system based on phoneme models. In this thesis
we have used models for articulatory features for improving the performance
when porting phoneme based recognition systems to new languages.

Linguists estimate that the vast majority of languages in the world is without
a writing system. For the case that a speech recognition system in such a new
language needs to be created, we examined the automatic discovery of word-
like units in a new language. We treated the case that the speech recognition
system is part of a speech translation system and that only an unsegmented,
phonetic transcript of the training data in the new language is available. In our
discovery algorithm we made use of all available knowledge, including an existing
translation of the training material and compared it against a word discovery
scheme which only makes use of the monolingual, unsegmented phoneme string.
Taking into account the parallel data lead to clear improvements over the case
that only the monolingual data was used.
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Kurzfassung

In den letzen Jahrzehnten hat die Forschung auf dem Gebiet der automati-
schen Spracherkennung Systeme von hinreichender Güte für die Verwendung in
der Praxis hervorgebracht. Jedoch wurden solche Spracherkennungssysteme nur
für eine sehr beschränkte Anzahl von Sprachen entwickelt. Betrachtet wurden
hauptsächlich Sprachen mit entweder einer hohen Anzahl an Sprechern, mit
hoher Wirtschaftsleistung oder solche, die von politischer Relevanz sind. Für
die große Mehrzahl der 4.000 bis 7.000 Sprachen in der Welt wurden bisher keine
gut funktionierenden Spracherkennungssysteme entwickelt.

Sprachen sterben kontinuierlich aus, mit einer besorgniserregenden Geschwin-
digkeit. Linguisten schätzen, dass innerhalb weniger Generationen 90% der
heutigen Sprachen ausgestorben sein werden. Sprachen sterben häufig, weil ihre
Sprecher sie zu Gunsten einer anderen Sprache aufgeben, von der sie sich ma-
terielle oder kulturelle Vorteile erhoffen. Wir glauben, dass der Einsatz von
Technik helfen kann, diesen Trend zu stoppen, wenn es gelingt, Sprachverar-
beitungssysteme, einschließlich Systeme zur automatischen Spracherkennung,
für alle Sprachen in der Welt zur Verfügung zu stellen.

Der traditionelle Ansatz zum Training von Spracherkennern beinhaltet das Sam-
meln großer Mengen transkribierter Audiodaten, sowie die Erstellung eines pho-
netischen Aussprachewörterbuchs für die Zielsprache. Bedenkt man die hohe
Anzahl an Sprachen in der Welt, sowie die Tatsache, dass die meisten von ih-
nen nur über verhältnismäßig wenig Sprecher verfügen, so wird klar, dass dieser
traditionelle Ansatz nicht geeignet ist, um Erkennungssysteme für alle Sprachen
der Welt zu trainieren, da er zu zeit- und kostenintensiv ist. In dieser Arbeit
haben wir daher Methoden untersucht, um den Aufwand zur Erstellung eines
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Spracherkennungssystems in einer neuen Sprache signifikant zu reduzieren.

Graphembasierte Akustische Modellierung

Zentraler Bestandteil eines Spracherkennungssystems ist das phonetische Aus-
sprachewörterbuch. Sein Entwurf ist sehr zeitintensiv und teuer, und erfordert
häufig die Mithilfe eines Experten der Zielsprache. Daher zeigen wir in dieser
Arbeit, dass die Verwendung von Graphemen, statt der normalerweise genutzten
Phoneme, als Modellierungseinheiten in Spracherkennungssystemen eine brauch-
bare Alternative ist. Durch die Verwendung von Graphemen anstelle von Phone-
men entfällt die Notwendigkeit eines Aussprachewörterbuchs und die Entwick-
lung eines Spracherkennungssystems in einer neuen Sprache wird deutlich ver-
einfacht.

Unsere Experimente zeigen, dass Spracherkennungssysteme, die auf Graphe-
men beruhen, eine ähnlich gute Erkennungsleistung erbringen, wie phonem-
basierte. Dabei hängt die Differenz der Leistung im Vergleich zu phonem-
basierten Erkennern von der betrachteten Sprache und deren Verhältnis von
Schrift zu Aussprache ab. Das Wissen, das bei phonembasierten Systemen
im Aussprachewörterbuch enthalten ist, muss bei graphembasierten Systemen
durch das akustische Modell, inklusive des Kontextclusterbaums, gelernt wer-
den. Deshalb haben wir in unseren Experimenten die Verwendung eines flex-
iblen Clusterbaums für die graphembasierte Spracherkennung untersucht, der
das Verhältnis von Schrift zu Sprache besser erlernen kann, als es der sonst ver-
wendete Baum kann. Mit Hilfe des flexiblen Baums konnten wir Gewinne für
alle betrachteten Sprachen nachweisen.

Graphembasierte Multilinguale und Crosslinguale
Akustische Modellierung

Um die Menge der transkribierten Audiodaten, die zum Training eines Spracher-
kennungssystems in einer neuen Sprache benötigt werden, zu reduzieren, wurden
in der Vergangenheit Verfahren entwickelt, um phonembasierte Spracherken-
nungssystem mit Hilfe multilingualer akustischer Modelle schnell auf neue Spra-
chen zu portieren. In unserer Arbeit zeigen wir, dass es auch für graphem-
basierte Erkenner möglich ist, multilinguale akustische Modelle zu trainieren.
Wir zeigen ferner, dass mit Hilfe dieser Modelle, die akustischen Modelle einer
neuen Sprache initialisiert werden können. Durch die Verwendung geringer
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Mengen an Adaptionsmaterial zeigen wir, wie ein initiales Erkennungssystem
mit akzeptabler Erkennungsleistung mit Hife der multilingualen Modelle er-
stellt werden kann. Wegen der Bedeutung des Clusterbaums haben wir auch
die Verwendung der bekannten Polyphone Decision Tree Specialization unter-
sucht und sie mit einem Baumbeschneidungsverfahren kombiniert, und so die
Portierungsqualität verbessert.

Crosslinguale Akustische Modellierung mit Ar-
tikulatorischen Merkmalen

In der Vergangenheit wurde gezeigt, dass artikulatorische Merkmale zuverlässig
über Sprachen hinweg erkannt werden können, und dass es möglich ist, sie multi-
lingual zu modellieren. In der Vergangenheit wurden auch Verfahren entwickelt,
um Modelle für artikulatorische Merkmale in HMM basierte Spracherkenner,
die auf Phonemen basieren, zu integrieren. In dieser Arbeit haben wir die Mod-
elle für artikulatorische Merkmale dazu verwendet, um die Leistung bei der
Portierung von multilingualen, phonembasierten Modellen auf neue Sprachen
zu verbessern. Durch den Einsatz der artikulatorischen Merkmalen innerhalb
einer streambasierten Architektur in Kombination mit einem diskriminativen
Verfahren zur Bestimmung der Gewichte für die artikulatorischen Merkmale
konnten wir die Wortfehlerrate bei der Portierung auf neue Sprachen in ver-
schiedenen Szenarien verbessern.

Ungeschriebene Sprache: Entdeckung von Wort-
einheiten

Linguisten schätzen, dass die große Mehrzahl der Sprachen in der Welt über
kein Schriftsystem verfügt. Für den Fall, dass für eine solche Sprache ein
Spracherkennungssystem entworfen werden soll, haben wir die automatische
Entdeckung von wortähnlichen Einheiten in neuen Sprachen untersucht. Wir
haben dabei den Fall behandelt, dass das Spracherkennungssystem Teil eines
Sprachübersetzungssystems ist, und dass nur eine unsegmentierte, phonetische
Transkription des Trainingsmaterials in der neuen Sprache verfügbar ist. Unser
Verfahren zur Entdeckung der Worteinheiten bezieht dabei auch die Überset-
zung des Trainingsmaterials mit ein, die für das Training des Übersetzungssys-
tems zur Verfügung steht. Wir haben dieses Verfahren verglichen mit einem
Verfahren aus der Literatur, das nur auf den monolingualen, phonetischen Tran-
skripten arbeitet. Die Verwendung der parallelen Daten hat dabei zu Verbesserun-
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gen gegenüber dem monolingualen Verfahren geführt. Zur Evaluation der Ver-
fahren haben wir die nach unserem Wissen erste Ende-zu-Ende Evaluation
durchgeführt, die auch Spracherkennung mit den automatisch gefundenen Wortein-
heiten beinhaltet.
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Chapter 1

Introduction

During the last decades the world has been radically changed on the economic,
technological, sociocultural, and political sector by a process commonly referred
to as globalization. Though the term is often used solely in the context of eco-
nomic globalization, it in fact covers much more areas than that. Globalization
can thus be described as a process by which the people of the world are unified
into a single society and function together [Wikd, Bar08].

The availability of affordable and fast inter-continental travel and the intercon-
nection of all parts of the world by means of modern communication technology,
such as telphone or the Internet, has brought the once isolated peoples of the
world close together. The world now forms the Global Village, a term coined by
Marshall McLuhan in 1964 [McL64a, McL64b].

While modern technology makes it possible for every part of the world to
communicate with every other, while affordable long range transportation has
brought unprecedented mobility to the world, and while political initiatives have
lead to global world trade, the language barrier remains as one of the last ob-
stacles for enabling true communication among the peoples of the world [Ste06].
For example, the European Commission recognizes the language barrier as the
last remaining obstacle to free trade and to the free flow of information within
the European Union [otEC05].



2 Introduction

The extent of the problem is often underestimated. As we will show in Chapter
2, estimates place the number of languages in the world at 4,000-7,000. The vast
number of languages is only spoken comparatively small communities. Many
of these languages are threatened by extinction, unless measures are taken to
preserve them. Just as Vivian Redding, European Commissioner for Information
Society and Media, does, we see language as the paramount achievement of
mankind [Ste06]. The language of any culture is the base upon which it is built
and with which it is inseparably intertwined. We thus agree with many linguists
that the upkeep of a linguistic diversity in the world is fundamental to keeping
up a healthy cultural diversity which is essential to mankind’s prosperity.

1.1 Maturity of Speech Recognition Technology

After several decades of research, speech recognition systems for continuous
speech with large vocabulary have reached a sufficient grade of maturity, that
they are being deployed in real life. Commercial products are available for
transcribing dictated speech12, or in embedded devices such as car navigation
systems 34.

Speech recognition systems are also being deployed for transcribing continuous
speech in special, limited domains, e.g. for medical documents5, legal docu-
ments6, or pick-to-voice systems7.

Speech recognition systems are further used in combination with machine trans-
lation technology in order to form speech translation systems in as of now limited
domains. For example, in preparation of the Olympic Games 2008 in China, a
consortium of companies and universities, sponsored by the Chinese and Beijing
city government through the company CapInfo8, developed a prototype for a
limited domain speech translation systems between the languages English, Chi-
nese, and Spanish for a touristic and medical domain [SZR+06]. NTT-DoCoMo
in cooperation with ATR-TREK9 offers server based speech translation services

1IBM ViaVoice: http://www.nuance.com/viavoice, Naturally Speaking:
http://www.nuance.com/naturallyspeaking

2Windows Vista Speech Recognition: http://www.microsoft.com/enable/products/ win-
dowsvista/speech.aspx

3IBM Embedded ViaVoice http://www-01.ibm.com/software/websphere/products/ mo-
bilespeech

4, http://www.harmanbecker.com
5http://www.mmodal.com/products.jsp
6http://www.citrix.com/English/ps2/accessanswers/challenge.asp?contentID=25643
7Pick by Voice: http://www.ssi-schaefer.de/
8http://www.capinfo.com.cn
9http://www.atr-trek.co.jp/
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for their 905i cell phone series between English and Japanese, as well as between
Chinese and Japanese in a tourist domain10[POY+08]. Mobile Technologies
LLC. provides speech translation on hand-held devices in limited domains, such
as tourism or health care for travelers or humanitarian workers 11.

Lately, several research projects have made progress in speech translation tech-
nology for very large domains. From April 2004 until March 2007 the Euro-
pean Commission sponsored the project Technology and Corpora for Speech to
Speech Translation (TC-STAR)12, an effort to advance research in all core tech-
nologies for speech-to-speech translation—automatic speech recognition, spoken
language translation, and speech synthesis. TC-STAR aimed at a breakthrough
that significantly reduces the gap between human and machine translation per-
formance. The project targeted translation of unrestricted conversational speech
on large and unconstrained domains of discourse. The main task chosen was
the translation of speeches delivered in the European Parliament. Progress was
driven by annual, competitive evaluations.

On the military side, the United States’ (US) Defense Advanced Research Projects
Agency (DARPA) sponsors the project Global Autonomous Language Exploita-
tion (GALE). GALE develops technologies to absorb, analyze, and interpret
huge volumes of speech and text in multiple languages. In the program, speech
technology to recognize huge amounts of foreign speech (e.g. Chinese and Ara-
bic) is developed as well as technologies to translate this information into En-
glish.

In 2005 the International Center for Advanced Communication Technology (In-
terACT)13 presented the first simultaneous translation system from English to
German and Spanish. The system automatically recognizes English speech in
real-time and simultaneously translates it using statistical machine translation
[FWK07, WF08].

Progress in this field is still being made, and systems still commit errors depend-
ing on the task addressed and the recording conditions. However, experts are
confident that speech recognition will achieve a 99% accuracy within the next
twenty years [GP06].

10http://www.nttdocomo.com/pr/2008/001402.html
11http://www.mobytrans.com/
12http://www.tc-star.org
13http://isl.ira.uka.de/index.php
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1.2 The Challenge of Addressing all Languages
in the World

Out of the 7,000 languages of the world, only for few of them automatic speech
recognition systems have been created so far (Dragon Naturally speaking, for
example, is only available in six languages; Nuance Recognizer V9 by Nuance
Communication is available in 54 lanugages). The languages which were ad-
dressed are mainly those with a large population, a high economic value, or
with high political importance.

Especially the latter point is a very volatile one. Languages which were not
of interest in the past, can suddenly become of interest due to policy changes,
political events or natural disasters. After the terrorist attacks on the World
Trade Center in New York City and the Pentagon in Washington, D.C., which
are commonly referred to as 9/11, and the resulting war in Afghanistan, Pasthu
became of interest to the Defense Advanced Research Agency of the United
States in the project Transtac [DAR08]. This has also to be seen in the light
of the tensions about nuclear armament with the Republic of Iran. Also, due
to the events of 9/11, Arabic became a focus language in the DARPA project
GALE. After the beginning of the second Gulf War and the invasion of Iraq,
Iraqi also became of interest to the American military, and was started to be
addressed in Transtac.

As we will argue in Chapter 2, political interest from major countries is not
the only reason, why all languages in the world should be the target of auto-
matic speech recognition or natural language processing technology in general.
In order to keep up the language diversity in the world, technology can play
a vital role by allowing the speakers of endangered languages to access infor-
mation across languages using their native language only. If technology were
only to address the major, economically important languages in the world, and
occasionally some less resourced languages due to some temporary, volatile self-
interest, it would widen the digital divide between languages for which language
technology is available and those without one [Yu02]. If, for example, systems
that allow users to access information in large databases, such as Informedia
[HMC+03] or View4You [KWW00], are only available to the major languages
in the world, pressure on the endangered languages grows, and they will be more
readily abandoned by their speakers.

But, if in return, technology in the form of automatic speech recognition and
machine translation allows instant access to all information in the world, re-
gardless of which language the information is provided in, and regardless of the
mother tongue of the information seeker, this would be a significant contribution
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to keeping up the language diversity in the world. So, besides the self-interest
of not knowing which language might become interesting in the future, helping
to keep up the language diversity in the world, is an important reason to try
to cover all languages in the world by technology, including automatic speech
recognition.

1.3 The Need for Low-Resources ASR develop-
ment

The traditional process of creating an automatic speech recognition system in
a new language requires many resources. In order to train the models used in
statistical ASR, large amounts of audio recordings in the target language are
necessary—modern research systems use up to several thousands of hours of
speech. These audio recordings are usually transcribed at the word level. The
production of such transcriptions requires the help of native speakers of that
language and are usually time intensive to create.

Also, automatic speech recognition systems usually use phonemes as their mod-
eling units, and thus need a pronunciation dictionary that maps the orthography
of a word to its phoneme sequence. These pronunciation dictionaries are difficult
to create and need the help of a specialist in the target language. Some auto-
matic methods for creating dictionaries exist, but they require large amounts of
training material which also need to be created by a specialist. Often, such an
expert that can create the mapping between the words of a language and their
pronunciation is not easily available to the developers of an ASR system.

Research in the past addressed the creation of phoneme based, acoustic models
in new languages with only few adaptation material in the new language. How-
ever, these methods do not eliminate the need for the creation of a pronunciation
dictionary in the new language.

Further, many languages in the world are without a writing system. For these
languages the approach of collecting either the full amount of training material
or only even a small amount of adaptation data does not work. For many
applications, such as speech translation, it is not necessary that the result of
the automatic speech recognition corresponds to a transcript of the speech in
an existing writing system. Here, it is sufficient that the result from the ASR
component is suited for processing by the component that follows in the chain,
e.g. the translation component. In this case the words of a new language can
be automatically discovered from an unsegmented, phonetic transcript.
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1.4 Outline and Contributions

The work in this thesis is organized as follows. Chapter 2 will cover the vast
diversity of the languages in the world. In it we will argue for the importance
of keeping this diversity alive. We will further point out the role that human
language technology, e.g. in the form of automatic speech recognition, can play
in achieving that goal.

In Chapter 3 we will give a brief introduction into the field of automatic speech
recognition. This introduction is not intended as a complete reference to the
field, but rather introduces the concepts and terminology that is necessary to
understand the experiments that we conducted.

After these introductory chapters the remaining chapters will describe our ex-
periments in porting recognition systems to new languages with only limited
resources and in a rapid way with as little knowledge about the new language
as possible.

Chapter 4 treats the case in which sufficient amounts of transcribed speech data
in the target language are available, but no pronunciation dictionary for that
language. We will show in this chapter that for this case the use of graphemes
as modeling units instead of the traditional phonemes is a viable solution for
many languages in the world. We will point out the heightened importance of
the model cluster tree of an ASR system that utilizes graphemes as modeling
units. To accommodate this, we apply a flexible cluster tree that better captures
the complex relationship between graphemes and their pronunciation than our
traditionally used tree does. We will show improvements in the recognition
systems using this flexible tree.

In the past, techniques for constructing and porting multilingual, acoustic mod-
els to new languages have been studied for phoneme based speech recognition
systems. In Chapter 5 we will extend this notion to the grapheme based systems
that we introduced. We will discuss the peculiarities in constructing multilingual
grapheme based systems, namely the problem of only a bad correspondence of
the pronunciation of graphemes in different languages and the potentially low or
non-existing overlap of graphemes across different languages. We will propose
methods for finding automatic mappings between the graphemes in different
languages, by applying two data driven mapping methods. Using the automatic
mappings we will show that it is possible to port a grapheme based multilin-
gual acoustic model to a new language that uses a completely different writing
system than those of the languages in the multilingual model.

For monolingual, phoneme based ASR systems, the use of articulatory features
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has been studied in order to better model speech, especially spontaneous one.
Past research has also shown that articulatory features can be recognized across
languages. In Chapter 6 we will incorporate the use of articulatory feature
detectors into the process of porting a multilingual, phoneme based acoustic
model to a new language. We will consider different scenarios of porting acoustic
models, and apply different methods for estimating the stream weights that
are necessary for the approach used to integrated the feature models into the
recognition process.

Many languages in the world are not written, either because no writing system
for them exists, or because speakers of that language resort to a different lan-
guage for written communication. In Chapter 7 we present a novel method for
discovering new word units in an unwritten language from speech. Since these
generic word units would be of little value on their own when being recognized,
we study the use of an ASR system using them in the context of speech transla-
tion. We will show that the word units that we find are suitable for automatic
speech recognition in combination with statistical machine translation in order
to form a speech translation system. We will show that our approach gives
significant improvements over the state of the art in literature. We will further
carry out the first full speech translation evaluation in literature for this task in-
cluding both, speech recognition and machine translation, with the newly found
units.
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Chapter 2

Global Language Diversity
and its Role

The world boasts a wide variety of very different languages in high numbers.
This diversity in languages is valuable to civilization, but at the same time in
danger. Languages are dying at a rapid rate, and many will become extinct,
unless countermeasures are being taken.

In this chapter we will described the diversity in languages in more detail and its
value. We will discuss the current process of extinction and explore the reasons
for it. The European Union will serve us as an example of a political body
who has recognized the value of its language diversity and is taking steps to
protect it. We will show that modern technology, including automatic speech
recognition, can be part of the solution if it is developed in such a way that
makes it suitable for this challenge.

2.1 Language Diversity

The number of languages in the world given by linguists surprises most ordinary
readers. Since the definition of a what constitutes a language is ambiguous, and
because of insufficient research in the field, linguists’ estimates place the number
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of languages in today’s world in the range from 4,000 to 7,000 languages. The
fifteenth edition of the Ethnologue [GG05] lists 7,299 living languages. Table
2.1 shows the top 20 languages with the most first speakers according to Eth-
nologue, as summarized by Wikipedia [Wikc]. In this list the figures of Chinese
and Arabic include the sum of all of their varieties, which are not necessary mu-
tual intelligible. Though these languages all show a large population of speakers,
this is not the case for most languages in the world. 347, that is about 5% of
the world’s languages, have at least one million speakers and account for 94%
of the population. The remaining 95% of the world’s languages are therefore
only spoken by 6% of the world’s population [GG05]. Considering that there
are roughly 200 countries in the world, there are 25 to 30 times as many lan-
guages in the world as countries. But on the other side, 83% of all languages are
only spoken in one country. That means that countries exist with a high diver-
sity of languages within the country. Hand in hand with this relation between
countries and languages goes the fact that many languages exist in a diglossic
relationship [NR00]. Two languages being in a diglossic relationship means that
a functional specialization between them has evolved: One is being used for
interaction within home or personal domains, while the other is being used for
higher functions, such as government, media, and education.

When it comes to the density of languages in terms of geographical region, in
general countries around the tropics show the highest densities in languages,
with the density declining when moving towards the poles [Net98]. In total,
70% of all languages exist in only twenty countries. In contrast, in Europe only
3% of all languages reside, and in China only 2.6% of all languages, though it
contains 21.5% of the world’s population and 8.6% of its land mass. Figure 2.1
illustrates this concentration of languages in the tropic regions of the world.

Neither the economic strength of a country nor its technological degree of de-
velopment, though one might intuitively think so, seems to be a factor in the
regional density of languages. In a statistical analysis by Sutherland, neither
Gross Domestic Product nor number of television sets per 1,000 people were
significantly related to the number of languages in a country [Sut03].

Given the high diversity in languages, the fact that many languages are spoken
only by comparatively few speakers, and their location in often remote and
inaccessible areas of the world, it comes to no surprise that the vast majority of
the languages in the world is not well studied by linguists. Nettle and Romaine
[NR00] claim that many of the languages that are known today only have been
briefly looked at by the person that discovered them, often a missionary or
explorer, but has never been studied by a linguist.

Nettle, Romaine, but also other linguists, such as David Crystal, are of the
opinion that SIL International, the publisher of Ethnologue, is the most com-
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Table 2.1: The 20 languages with the most number of first speakers according
to Ethnologue, summarized by Wikipedia

Rank Language No. of Speakers in Mio.

1 Chinese 885
2 Spanish 322.3
3 English 309.4
4 Arabic 206
5 Hindi 180.8
6 Portuguese 177.5
7 Bengali 171
8 Russian 145
9 Japanese 122

10 Standard German 95.4
11 Javanese 75.5
12 Telugu 69.7
13 Marathi 68
14 Vietnamese 67.4
15 Korean 67
16 Tamil 66
17 French 64.9
18 Italian 61.5
19 Western Panjabi 60.8
20 Urdu 60.5

prehensive source on the existing languages in the world, especially the lesser
known ones [NR00][Cry00]. Though ‘SIL’ originally stood for ‘Summer Institute
of Linguistics’ it is in fact a Evangelical Christian non-profit organization and
started out as summer training session in the U.S. in order to train missionaries.
It is financed by the ‘Wycliffe Bible Translators’, an organization with the goal
to provide Bible translations in all living languages in the world.

According to Nettle and Romaine the main effort of linguistic research has been
focused on the few majority languages in the world with a large amount of
speakers. This fact makes it more difficult to provide sound and comprehensive
data on the language diversity in the world and the properties of the living
languages. Therefore, numbers and descriptions given in literature are often
approximations and different sources give different numbers.
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Figure 2.1: Geographic distribution of writing systems [from [Net98], courtesy
of Academic Press]

2.2 Extinction of Languages

The diversity of languages described above is in danger. Languages are fre-
quently disappearing. Nettle and Romaine claim that about half of the lan-
guages of the world have vanished in the last 500 years and are continuing to
do so, as they show by many examples [NR00]. Even though languages are not
living organisms, they are closely connected with humans, culture, and environ-
ment. For these reasons Nettle and Romain adopt the terminology of language
death and talk about the extinction of languages.

2.2.1 Extent of the Problem

Classifying the size of the danger to the language diversity is difficult. The
picture painted in [NR00] indicates a grave problem. Not only seems the rate
of extinction to be increasing, but language death is also not a geographically
isolated problem, but rather happens all over the world. Among linguists the
estimate that at least half of the living languages today will become extinct in the
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next century seems to find consensus [NR00] [Jan02][Cry00]. The endangerment
of language is a matter of degree. Ethnologue in its fifteenth edition lists 497
languages as nearly extinct. According to their definition that means that either
a language has fewer than 50 speakers or is only spoken by a tiny fraction
of its ethnic group [GG05]. If one assumes that languages with more than
100,000 speakers are considered safe, then there are only 600 safe languages in
the world [Kra92]. Within Europe, Irish, Scottish Gaelic, Welsh, and Breton
are considered to be endangered languages.

Sutherland classified the level of endangerment of the existing languages using
the same scheme as being used for birds and mammals [Sut03]. His analysis
showed that languages are even more threatened than birds and mammals,
classifying 7.1% of all languages as critically endangered, as opposed to 1.9%
of all birds and 4.1% of all mammals. He counted that since 1600 A.D. 306
languages have gone extinct, as opposed to 125 birds and 87 mammals.

Language death by itself is not an isolated event, but is very often the symptom
of death for a whole culture. The world’s linguistic diversity is a benchmark of
its cultural diversity

A language is said to be extinct when there are no more living people who
can fluently speak that language. If there are people living who know isolated
phrases, but are not able to freely communicate with the help of that language,
that does not count as a living language.

But inbetween the two poles of a living language and an extinct one there are
different shades of endangerment to a language, similarly as it is done for species
of animals or plants. In Crystal’s eye a three class classification for the state of
a language is common sense [Cry00]: safe, endangered, or extinct. Beyond that
Crystal cites other classification schemes which are more fine grained. Krauss
adds to this classification pattern the concept of moribund languages [Kra92].
This class refers to a language which is still living, i.e. spoken by a population,
but which is almost certain to go extinct soon, since it is not being passed on
to younger generations. In a philosophical sense, a language that is not being
passed on to younger generations is as good as dead. When only one speaker
of a language is left, that language by definition is not yet extinct. But is not
actually living anymore, since it cannot be used for communication anymore,
since the sole speaker is lacking a counterpart for communication

Then there are classification schemes which use an even finer grained resolution
and distinguish between languages which are definitely safe and those which are
lesser so, as done in [Kin91]:
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viable languages: have population bases that are sufficiently large and thriving
to mean that no threat to the long-term survival is likely

viable but small languages: have more than 1,000 speakers, and are spoken
in communities that are isolated or with a strong internal organization,
and aware of the way their language is a marker of identity

endangered languages: are spoken by enough people to make survival a possi-
bility, but only in favorable circumstances and with a growth in community
support

nearly extinct languages: are thought to be beyond the possibility of survival,
usually because they are spoken by just a few elderly people

extinct languages: are those where the last fluent speaker has died, and there
is no sign of any revival

As last example Crystal gives the classification scheme by Stephen Wurm which
has an even finer grained resolution of the endangered languages, but which is
not a full classification scheme because it excludes the safe languages [Wur98]:

potentially endangered languages: are socially and economically disadvan-
taged, under heavy pressure from a larger language, and beginning to loose
child speakers

endangered languages: have few or no children learning the language, and the
youngest good speakers are young adults

seriously endangered languages: have the youngest good speakers at age 50
or older

moribund languages: have only a handful of good speakers left, mostly very
old

extinct languages: have no speakers left

Sutherland [Sut03] used the species extinction risk which is assessed by standard
quantitative criteria based on population size, actual or suspected population
decline, range size changes, and habitat fragmentation [IUC94]:

vulnerable languages: facing a high risk of extinction in the wild in the
medium-term future

endangered languages: facing a very high risk of extinction in the wild in the
near future
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critically endangered languages: facing an extremely high risk of extinction
in the wild in the immediate future

extinct languages: There is no reasonable doubt that the last speaker has died.

Using this scheme Sutherland has classified all languages documented into these
categories, whereas 639 languages were data deficient and could not be classified.
Table 2.2 lists the result. A total of 1,676 languages, roughly 25% of the living
languages, are on this red list of languages.

Table 2.2: Red list of languages
Category Extinct Critical Endangered Vulnerable

No. of Languages 304 438 506 732

The definition of the different stages of endangerment already transfer the notion
of the circumstances or symptoms that classify a languages as being in peril. As
the reader can already guess from the varying classification schemes, different
indicators are cited in literature in order to diagnose whether a language is at
threat or not.

2.2.2 Conditions under which Languages are at Risk

Some scientists use the number of speakers as an indicator for whether a lan-
guage is at danger or not. E.g. Krauss gives as a rough estimate that a language
with at least 100,000 speakers is considered safe [Kra92]. Nettle and Romaine
however point out that the sheer number of speakers of a language is not a suf-
ficient indicator. They underline their opinion by giving a number of examples
where this arbitrary threshold is not a good indicator. For example, Icelandic
has only 100,000 thousand speakers but is far from being at risk. On the other
hand, Breton as late as 1926 had over a million of speakers. But today Bre-
ton is considered an endagered language. Thus, being a strong language in the
past does not guarantee survival. Even if a language is the official language in
a country and is actually backed by the government of a country, this is not
a guarantee for survival. Irish, for example, has a large group of speakers, is
backed by the Irish government, but is still in grave danger of being replaced
by English. On the other side, in Vanatu none of indigenous languages has
more than 3,000 speakers, but most of them seem to continue living. In Mi-
cronesia the two languages with the highest risk of extinction are the largest
one—Chamorro with 60,000 speakers—and the smallest one—Sonsorolese with
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approx. 300 speakers. So, instead of taking the number of speakers as an indi-
cator, they argue that a language is safe, i.e. will continue living, when parents
or caretakers in general pass their language on to their children. Where this is
not the case, a language will eventually die.

In that sense the classification schemes of Wurm and Kincade are a good com-
bination of these two factors, number of speakers and tradition of the language
to the next generations.

These indicators for danger to a language do not yet give reasons for why this
condition might arise. The reasons why parents refuse to pass their language
on to their children are not uniform and need to be discussed separately.

2.2.3 Reasons for Extinction

Since a language dies when its speakers die, any event that impacts the physical
well-being of a community of speakers can lead to the extinction of a language.
While for languages with a large group of speakers, that are globally wide spread,
such an event seems rather unlikely, for many of the hundreds and thousands
of languages with only very few, locally concentrated speakers, this option is
not an unlikely one. In history natural disasters such as hurricanes, floodings,
volcano eruptions, Tsunamis, and earthquakes are known to have killed large
portions of the population of the region in which the events occurred.

Crystal cites the example of a massive earthquake on 17 July 1998, off the
coast of E. Saundaun Province, Papua New Guinea [Cry00]. The earthquake
killed over 2,200 people and displaced over 10,000. Within the disaster area
were four village, of whose population 30% were killed, the rest displaced and
distributed to different medical and emergency relief centers. According to the
SIL there were strong indications that each village had its own distinct language,
with further research on that matter necessary. However, after the event of the
earthquake and the displacement of the villagers, it seems unlikely to Crystal
that these small communities and with them their language have survived.

In this event the destruction of the habitat lead to a reduction of the population
and the displacement of the remainder. In other cases the habitat might not be
destroyed but just unfavorable for survival. Often famines and drought, though
leaving the habitat mainly intact, lead to the displacement of a population.
For example the potatoe famine in Ireland between 1845 and 1851, leading
to the death of 1 million people and lead to a long period of emigration. It is
believed that this emigration is one benefactor to the threat of the Irish language,
since the emigrants often adopted the language of the country to which they



2.2 Extinction of Languages 17

fled—often English as many emigrants travelled to the U.S. Nowadays economic
factors can create the same kind of stress as famines do. Due to exploitation of
resources more and more areas are prone to the effect of dessertification which
in return leads to the displacement of people.

Especially in the case of indigenous people, imported diseases play a critical role
in the extinction of peoples and the resulting loss of their languages. Within
the 200 years of the arrival of the first Europeans in the Americas over 90%
of the indigenous population was killed by diseases, mainly smallpox, imported
by the explorers and conquerors [Duf53][Pea95][SS45]. Currently AIDS is be-
lieved to be one of the greatest threats to languages in terms of diseases. Areas
affected mainly include Sub-Saharan Africa, South and South-east Asia, and
Latin America. These areas contain over three-quarters of the world languages.

Also into the category of language extinction by physical harm to its speakers
falls the case of genocide. Nettle and Romaine cite the example of the death of
Yahi, the language of the Yahi Indians in the area of what is now California,
who were murdered and driven into exile by white settlers.

Similarly, a language can begin to die when their people are political persecuted
and the use of the language is severely punished, as for example in 1932 in El
Salvador after an Indian uprise or in the 1970s when the Ubykh living near Sochi
were scrutinized.

From all these examples it becomes already clear that the threat to a language
is not simply identified by a threat to the life of its speakers. Rather the danger
to a language results from the fact that the culture that is affiliated with that
language is in distress. The displacement of a people would not be a factor in
the death of a language, if the displacement would not mean at the same time
an immense stress to the culture of the displaced people. Thus, in the words
of Nettle and Romaine, the thread to languages extens to a thread to cultures
[NR00]. So, whenever circumstances put a culture at stress, the underlying
language is also automatically affected.

Physical threat to the health of its people are not the only cause for stress
to a culture. Often the people of a culture continue living, but their culture
fades away and with it their former language. Though Crystal makes a clear
distinction between the factors that put people’s safety at risk and factors that
change, or in the end kill, a culture, we believe this distinction to be wrong. We
rather believe that the threat to the physical safety is just one of the factors that
might extinguish a culture. The stress on culture is in our eyes the superordinate
factor for threat to people. With this notion we follow Nettle and Romaine who
also see distress to culture as the ultimate reason for the death of a language
[NR00]. So, Nettle and Romaine distinguish rather between the sudden or at
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least fast death of a language and its gradual death. For them a language always
dies out “because an enduring social network to which people sought to belong
somehow ceases to be ”. They give three major classes of reasons why this can
be the case. Like in Crystal’s classification the first reason is that the people
who speak a language cease to exist, usually by population loss, e.g. through
disasters or diseases. The other two reasons are concerned with a shift to a
different language. They distinguish between a forced shift, as their second
reason for language shift, and a voluntary shift as the third reason.

The current, premier example of a language to which speakers of a dying lan-
guage shift, a so called killer language, is English. For example, the speakers of
Gaelic and Irish are currently switching to English and the two languages are
gradually dying [Pri84]. This trend of a shift to English is a global one as can
be seen by the fact that by 1996, 70% of the world’s mail and 60% of radio and
TV broadcast were in English.

A forced shift of a language can be sought to be achieved by different means. In
history, dominant groups have often sought to suppress a language by making
the dominant language compulsory. However, this policy rarely seems to have
worked, because the stigmatized language may gain in value, becoming a symbol
of resistance. Methods that have worked in the past for forcing a dominant
language upon a less dominant people, and that are also in use today, e.g.in
the rain forest, are, according to Nettle and Romain: enslavement, forcing the
people into a sub-ordinate rule, and seizing the land and resources upon which
their communities are based.

The reasons for voluntary shift are according to Nettle and Romaine linked to
the fact that a community or people perceive an advantage by switching to a dif-
ferent language. The advantage could be an economic one, where by adopting a
different language, people might be able to obtain better jobs, improve their liv-
ing circumstances and wealth. Or, the advantage could be a perceived increase
in prestige and social status. They give as an example a study by Susan Gal who
determined that the newly available status as ‘worker’ in Austria prompted a
previously monolingual Hungarian community to start to speak German. Young
women chose to speak German in order to find German-speaking marriage part-
ners in order to adopt a new social identity, leaving the old one of a peasant
behind [Gal79].

According to [NR00] a language that gradually dies will go through a period
when it is not used for all functions anymore. Over time speakers will more and
more resort to routine and formulaic speech and will not be able to readily create
new utterances on the spot. Nettle and Romaine give the example of a study of
Dyirbal, an Australian, Aboriginal language [Sch85]. That study showed that
younger speakers of that language lost more specific words and replaced them
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with general ones. They were also prone to loose names referring to culture
specific items relating to weather, geography, ceremonies, and kinship. Other
words then had widened their meaning which now include objects introduced by
whites into Dyirbal culture. Also, the grammatical complexity of the language
will decrease over time.

Sutherland’s statistical analysis also showed that as languages become rare they
become less attractive, a self-reinforcing process [Sut03]. Abrams and Strogatz
reach a similar conclusion. They developed a model to capture the dynamics of
language death. Their model predicts that two languages cannot coexist stably,
since one will eventually drive out the other [AS03]. In their analysis, the status
of a language is the most relevant factor and could serve as good indicator for
the threat to a language.

2.2.4 Reasons to Keep Up the Language Diversity

Given the fact that languages are dying at a rapid rate for the reasons discussed
above, the question remains why we as as scientific community should actually
worry about stopping this trend and to keep up the diversity of languages in
the world. The extinction of languages due to natural disasters or through
epidemic diseases are often a force majeure which cannot be prevented by human
intervention. Other reasons, such as the switch to more prevalent languages,
e.g. English, are often due to the fact that the abandoning of a language gives
people a benefit, improving their outlook in live or their prosperity. Under the
assumption of the benefit of a free market, why should mankind intervene and
try to change conditions in order for the languages to survive? For some of
the reasons it is self-evident that they should be removed, even be fought. The
deliberate oppression of a people or culture, including the “murder” of their
language, is against the acknowledged human rights which include the right to
preserve and live ones own culture. This is even more true for the extreme
of genocide, also one of the reasons for the death of a language, which is not
to be tolerated by mankind. In these cases, it is not a question of preserving a
language, but rather preventing crimes against humanities. As a byproduct, this
prevention will also safe a language. But in these cases, the question remains,
whether it should be worth the effort to try to keep a language alive which has
been brought to the brink of extinction by political suppression or genocide,
after the crimes have been stopped. Or should one just leave the languages
on their own without interfering with their further development? Where is the
benefit in reviving such a scrutinized language?

For linguists, such as Nettle and Romaine, the obvious answer is the scientific
interest itself. Only by examining as many different languages as possible, they
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claim, linguists can extend and perfect their theory of languages. Understanding
languages is important, because they are an expression of variation in people’s
mind and thinking. According to them new discoveries about languages are still
being made by studying new languages. Since they also claim that many of
the languages in the world have not been treated by scientists yet, the death of
languages means the potential loss of a new discovery that would further our
understanding of languages. They give as an example of a near miss the language
Hixkaryana which at the writing of their book [NR00] had only 350 speakers
and is thus at the brink of extinction. Hixkaryana has an unusual sentence
structure in that sense that it puts the object of a sentence at its beginning.
Had the languages not been discovered by chance recently, it might have died
out without the scientific community ever knowing about its unique sentence
structure. Nettle and Romaine claim that many of these unique properties
of languages, and the insight into the human mind and the way it organizes
thoughts and concepts, are mainly found in isolated, small languages, which are
thus prone to extinction. The knowledge that can be gained from them cannot
be gained from languages which are widely spoken. These major languages are
being grammatically streamlined and are becoming more and more alike due to
cultural exchange and intertranslation. Thus, a loss in language diversity also
leads to a loss in complexity of expression. Crystal, also a linguist, shares this
opinion of course and also cites scientific insight as one of the reasons.

Beyond purely scientific curiosity, Nettle and Romaine also cite as a reason that
language is an uniquely human invention and key to culture, technology, and ac-
cumulated wisdom. Vivian Redding, European Commissioner for Information
Society and Media, sees language as the paramount achievement of mankind
[Ste06]. Unlike technology, to Nettle and Romaine languages are not inter-
changeable, since every language has an individual window to the world. A loss
of a language is a loss in this diversity and therefore a loss to all of us.

Both, Crystal, as well as Nettle and Domain, show that languages contain knowl-
edge which is unique to them and would be lost, should they die. From the
process of a gradual language death described above it becomes easily clear how
the knowledge encoded in specific vocabulary of a language is lost during its
gradual decline. Much indigenous knowledge is encoded in languages, such as
medical knowledge of plants in the rain forests, climate behavior in the arctic or
marine resource management in Polynesia. When the language dies that trans-
ports this knowledge, the knowledge itself vanishes. As an impressive example
Nettle and Romaine cite the example of a Paluan traditional fisherman, born in
1894 and interviewed by marine biologist R.E. Johannes [Joh81]. The fisherman
had names for 300 different species of fish, and knew the lunar spawning cycles
of several times as many species of fish as has been described in scientific lit-
erature for the entire world. Similar knowledge about sustainable management
of ecological resources or environmental knowledge is encoded in the languages
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of many other indigenous people. In the case of the Paluan fisherman, with the
switch of the younger generations to other languages, they also loose the knowl-
edge encoded in the language of their parents or grandparents. In that sense,
Nettle and Romaine see many similarities between the loss of linguistic diver-
sity and biodiversity. They call this combination today’s biolinguistic diversity
crisis.

Besides this knowledge encoded in languages, including historic knowledge,
Crystal also stresses the more abstract knowledge and insight that can be gained
by multilingualism. To him multilingualism is the normal state of human mind,
proven to him by the fact, that humans are easily capable of learning multiple
languages. He also refers to the multitude of artistic achievements achieved
through language, e.g. by literature, and doubts that works by Shakespear
would have been possible if English had been displaced by a different language.

Both, Nettle/Romaine and Crystal, see linguistic diversity as an important fac-
tor by itself. Both draw parallels to biological diversity which is vital to a
healthy ecosphere. For them, only in diversity lies the guarantee for a healthy
linguistic environment. Just as cultural and biological diversity is a desirable
state, so should be linguistic diversity.

2.2.5 Measures to Prevent the Mass Extinction of Lan-
guages

Having shown the extent of the problem of languages dying and having discussed
the conditions and reasons that lead to it, the question remains what can be
done to stop this trend. Nettle and Romaine claim that traditionally linguists
have tried to preserve languages by capturing their grammar and dictionaries
[NR00]. However, actually the preservation of a language should mean to main-
tain a group who speaks it. They distinguish two broad approaches to reaching
this goal, both being in line with the aim of a sustainable future. The first
approach is the initiation and support of bottom-up approaches. They include
the organization of local teaching of the language to the younger generations
of speakers, e.g. at local schools, by local non-governmental organizations, or
groups of parents. They cite that the absence of schooling in an endangered
language makes maintenance difficult. In a study of 46 linguistic minorities in
14 European countries, a clear link between language and schooling emerged
[All79]. A minority language which is not taught tends to decline.

In the opinion of Nettle and Romaine one should in the process of preserving
language diversity accept and seek a state of bilingualism. Not every of the small
languages in the world will be able to survive as the major language of its region.
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Often a minority language’s only chance of survival will lie within bilingualism
and existing in a state of diglossia. But, as Abrams and Strogatz showed, under
the current circumstances two languages in the same country cannot coexist
without altering the status of a language [AS03]. In their article they postulate
therefore policy-making, education, and advertisement as measures to change
the status of a language and to preserve a bilingual environment.

The second class of solutions that Nettle and Romaine suggest are top-down
strategies. Interestingly, they think that too much attention focused on official
policy statements can be counterproductive, especially in the absence of low-
level activities. Instead, they propagate to make language preservation part of
general activism on behalf of the environment. Throughout their book they
claim that environmental preservation receives more attention than language
preservation. Since the solution to both problems are in their eyes very similar,
a coupling of both approaches could be beneficial. Also, they see the area
of Human Rights as a possible field in which the preservation of languages
can be propagated. The top-down approaches should in their opinion establish
language policies on local, regional, and international level as part of overall
political planning and resource management.

Crystal postulates six measures to keep up the language diversity, which in part
overlap with the approaches above [Cry00]:

1. To increase the prestige of a language within the dominant community

2. To increase the speakers’ wealth relative to the dominant community

3. To increase the legitimate power of the speakers in the eyes of the dominant
community

4. To have a strong presence of the speakers in the educational system

5. To enable the speakers to write down their language

6. To enable speakers to make use of electronic technology

For the last point, Crystal mainly has the Internet in mind as a medium for
affordable distribution of a language. However, we believe that language tech-
nology, especially in the form of automatic speech recognition and machine
translation systems, can make a significant contribution to the upkeep of the
world’s language diversity. We will argue this point in more detail in Section
2.4
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2.3 The Example of the European Union

The European Commission (EC) has acknowledged in a communication to the
European council, the European Parliament, the European Economic and Social
Committee, and the Committee of the Regions, that multilingualism is essential
for the proper functioning of the European Union [otEC05]. In addition to 23
official languages, the EC counts 60 other indigenous languages and scores of
non-indigenous languages spoken by migrant communities [Nel96]. Table 2.3
gives an overview of the most commonly used languages within the European
Union. About half of the Union’s citizens state that they can hold a conversation
in at least one language other than their mother tongue. Figures were taken
from the Eurobarometer Report [eur05].

To the commission, language is the most direct expression of culture. This is
reflected by Article 22 of the Charter of Fundamental Rights of the European
Union, which states that the Union shall respect cultural, religious and linguis-
tic diversity. Article 21 explicitly prohibits discrimination on the grounds of
language, among other reasons.

The EC defines multilingualism as both, a person’s ability to use several lan-
guages and the co-existence of different language communities in one geograph-
ical area. The EC’s multilingualism policy has three aims: a) to encourage
language learning and promote linguistic diversity in society, b) to promote a
healthy multilingual economy, and c) to give citizens access to European Union
legislation, procedures and information in their own language.

In its communication, the EC recognizes that European businesses need skills
in the languages of the EU as well as of the trading partners around the globe,
in order to be successful in trade. The EC also states that its citizens should
be able to communicate with the institutions of the EU and read EU law in
their own national language and take part in the European project without
encountering any language barriers. It thus also recognizes that the language
barrier in the world is a potentially risk to successful international trade as well
as the functioning of a global governance. The EU spends currently 1.05% of
its total budget, or 2.28e per citizen per year, on translations. In total the
EU spends 1.1 billione per year on their translation and interpretation services
[Ste06].

In order to achieve the goal of a multilingual European Union, the commission
sponsors and supports the study of foreign languages by its citizens. It is the goal
that eventually every citizen of the EU speaks at least two foreign languages.

The European Union also sponsors and executes programs for research and de-
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velopment in multilingualism. It specifically targets fully automatic translation
systems, as of now low-to-medium quality, and automatic speech recognition
and synthesis. In the eyes of the Commission a multilingual information society
requires applications for all languages of the Union, including the less widely
used ones. Using technology it also aims at keeping the costs for translations
within the institutions of the Union in balance with the goals.

Table 2.3: Languages most commonly used in the EU
Language Mother tongue Foreign Language Total

English 13% 34% 47%
German 18% 12% 30%
French 12% 11% 23%
Italian 13% 2% 15%
Spanish 9% 5% 6%
Polish 9% 1% 10%
Dutch 5% 1% 6%
Russian 1% 5% 5%

2.4 The Role of Technology in a Linguistically
Diverse World and its Challenges

Just as language is still a barrier to trade within the European Union [Ste06] it
is a barrier to global trade and communication as well. At the same time, as
discussed in Section 2.2.4, it is desirable to keep up the high language diversity in
the world—instead of following the trend of extinction of languages towards the
establishment of only one or a few major languages. We believe that modern
technology in the form of human language technologies and speech-to-speech
translation systems can play an important role in reaching the goal of living in
a multilingual global village.

As the discussion in Section 2.2.5 has shown, many reasons that lead people
to abandon a language are related to the perceived social status of a language
or to the economic costs associated with keeping up a minority language. By
providing language technologies, such as automatic speech recognition systems,
for these endangered languages, the prestige and usefulness of that language is
heightened. It becomes more useful since thoughts expressed and information
provided in it become available to a larger audience. At the same time time
and money saving techniques that are based on speech recognition systems (e.g.
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pick-to-voice or dictation systems) become available for that language. The
availability of this technology, that only existed for a small number of languages
in the past, to a new language raises its status at the same time, removing a
discriminating factor that devalauted that language from others in the past.

As the example of the immensely high translation costs within the institutions
of the European Union show, providing affordable translation services for all
languages in the world by conventional means is not feasible. Here, automatic
speech translation systems are an alternative, providing cheap translation ser-
vices where expensive human translations are not affordable. The EU has recog-
nized the potential in that technology for reducing their own translation costs,
but the advantages are available to the whole world, not just the EU.

In the case that by automatic translation and speech translation service people
world wide are enabled to access information across languages and to freely
communicate across languages—or in other words to easily jump the language
barrier—pressure is taken from them to abandon their language in favor of a
more widely spoken language. In case of global translation, all languages become
equal in terms of reach and distribution.

In this way technology can provide to the speakers of a minority language “new
channels for the use of their language, and so to strengthen it” as Nicholas
Ostler puts it [Ost01]. In Ostler’s view the speakers of the language would then
“find that the world is their oyster and available to them on something like their
own terms”. This emphasizes the fact that the diverse people of the world could
then interact with each other and act globally while at the same time preserving
their own culture.

But in order to for this vision to become true, language technology needs to
address all languages in the world, not only the handful of languages treated
so far. Languages addressed until now are mainly those with either a large
population of speakers, with sufficient economic funding, or with high political
impact [DAR08]. The fact that applications using ASR only address a small
fraction of the world’s languages bears the danger of creating a digital divide
between those languages for which ASR systems exist and those without one.
Also, one of the criteria that have prompted the treatment of specific language
so far—political impact—can be a very volatile one. Due to conflicts, natural
disasters, or otherwise changing conflicts, recognition and translation systems
might suddenly be needed for a new language with only very little time for
development.

Given the vast number of languages that need to be addressed, it becomes
clear that for the technology of automatic speech recognition the traditional
way of creating such systems does not scale to its application to the complete
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set of languages. Though many of the techniques utilized for automatic speech
recognition systems are language independent (see Chapter 3) they at least
require the collection of large amount of language specific resources, such as
transcribed audio recordings and large text collections. This collection as well
as other design decisions also often require the help of an expert in the language
addressed. As we have seen in Section 2.1 many languages have too small of a
population, as that this procedure would be feasible.

The challenge to technology, including automatic speech recognition, is to be
able to address all languages in the world at affordable costs and in a timely
manner. To achieve this, new methods and paradigms need to be developed.

2.5 Conclusion

Roughly 7,000 languages exist in the world, many with only comparatively few
speakers. However, this high diversity in languages is the base of our cultural
diversity and of great value to mankind, instead of being a burden. Languages
are currently vanishing at an alarming rate. Estimates predict that up to 90%
of today’s languages will be extinct within a few generations. The main reasons
for that is a frequent shift of speakers of minority languages to more dominant
languages. Political institutions, such as the European Union, have recognized
the value of a multilingual world and multilingual societies, and are putting up
measures and programs to preserve the multitude of languages in the world.

Modern technology, including automatic speech recognition, can play a role in
solving this challenge of upkeeping all languages in the world. However, new
methods and paradigms need to be developed to address all languages in the
world at affordable costs and in a timely manner.



Chapter 3

Basic Concepts of Automatic
Speech Recognition

In this chapter we describe the fundamentals of automatic speech recognition
(ASR) on which the experiments, that we performed to port speech recognition
systems to new languages, build. This chapter is only intendend as a brief
introduction and overview, in order to declare the terminology that we will use
in the later chapters.

Automatic speech recognition, as we use the term in this work, is the recovery
of the word sequence uttered by a person in an audio recording. The audio
recording is produced with the help of a microphone and then digitized in order
to be processed by a computer. In this book we focus on large vocabulary
continuous speech recognition (LVCSR), that is the recognition of continuous
utterances with a comparatively high number of different words, e.g. several
tens of thousands. Current state of the art LVCSR systems make use of several
techniques from the machine learning world which we will briefly describe below.
In order to be able to recognize human speech, it is also necessary to have a at
least cursory understanding of the human speech production process and human
language.
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3.1 Human Speech Production

We give here only a short introduction into the topic which covers briefly the
fundamentals necessary for understanding the experiments in this book. A more
detailed coverage of the topic is widely available in literature and can for example
be found in [Can05, Ass99, CY95].

Humans produce speech by pressing air from the lungs through the mouth and
nasal cavity and out of the mouth and/or nostrils. This egressive air stream
coming from the lungs is modified by various articulators on its way, in order
to produce the desired sounds.

The sound emitted leads to a change in air pressure over time, a sound wave,
which then can be either pickep up by the human ear of the listener or which
can be measured by a microphone.

The main articulators involved in creating this sound wave, as given by [HAH01],
are depicted in Figure 3.1:

Lungs: produce the airstream passing through the articulatory apparatus and
emanating from mouth and nostrils.

Vocal cords: are located in the larynx. By holding them close, they can be
brought into oscillation and modulate the airstream from the lungs. The
part of speech in which the vocal cords vibrate are called voiced. If the
cords rest, the speech is called unvoiced.

Velum: can be open or closed and thus either allow or forbid the passage of
air into the naval cavity and further out of the nostrils.

Hard palate: a hard surface at the roof of the inside mouth. The tongue can
be put against it in order to inhibit the passage of air.

Tongue: can be used to either constrict the passage of air or to allow different
kinds of resonation inside the mouth cavity.

Teeth: like the hard palate another immobile place against which the tongue
can be placed

Lips: can be used to temporarily or for a longer time shut off the emission of
air through the mouth. By rounding or keeping them flat they can also
modulate the emanating air stream.

The modifications to the egressive airstream by the articulators above are usu-
ally a combination of the potential vibration of the vocal cords and a resonance
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Figure 3.1: The articulatory apparatus [from [HAH01]]

in the remaining vocal tract depending on its current shape. The activity of
the vocal organs in making a speech sound is called articulation. The necessary
air stream is mostly produced by the lungs and in some languages only these
so called pulmonic sounds exist. However, in many languages at least one of
two additional mechanisms for producing the necessary air stream exists. First,
by closing the glottis, air that is trapped between the glottis and an additional
constriction in the vocal tract can be used to produce an airflow that either
flows out of the vocal tract or into it. By compressing the air it is forced to flow
outwards creating a sound that is called an ejective. Expanding the trapped air
leads to an inward air stream when the forward closure is released. This results
in an implosive sound. Second, when the back of the tongue against the soft
palate is used instead of the glottis to create a little room of trapped air, one
gets sounds that are commonly known as clicks.

During the speech process the articulators are in constant motion and are chang-
ing repeatedly between a relative open and a relative closed configuration.
Sounds which are produced by a rather open configuration are called vowels
while sounds that are produced by a closed configuration are called consonants.

Vowels are mainly characterized by the position of the tongue in the mouth
cavity and whether the lips are rounded or not. The most distinctive point of
the tongue in the case of vowels is the horizontal and vertical position of its
highest point, called the dorsum linguae. Vowels are allways voiced.
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3.2 ASR as Pattern Recognition Problem

The goal of automatic speech recognition is to convert the sound wave of human
speech to the sequence of words spoken by the producer of the sound wave. For
this purpose the sound wave is usually recorded using a microphone and then
digitized with the use of electronic equipment. This recording process results
in a digital representation of the wave form of the sound wave over time. The
wave form is then transformed further by a preprocessing unit of the speech
recognition system into a sequence of feature vectors.

Automatic speech recognition, as it is treated by state of the art LVCSR systems,
is essentially a pattern recognition problem. The pattern to be classified is the
sequence of feature vectors. The class that the feature vector is supposed to be
assigned to is the correct word sequence that belongs to the pattern, selected
from the set of all possible word sequence.

The act of finding this class is often either called decoding, because if decodes
the feature vectors sequence into a word sequence, or search because it searches
for the correct word sequences among all possible word sequences.

Human speech is highly variable. Recordings of the sound wave of the same
sequence of words will always look different. Variations can occur for a wide
variety of reasons: different speakers, different speaking rates, different acoustic
environments, different microphones, different emotional states of the speaker,
different speaking styles, etc. But even if the same speaker utters the same
word sequence under exactly the same circumstance, the sound waves will look
different. For that reason speech recognition systems use statistical methods for
recognizing speech [Jel97].

It is the task of the decoder to find the sequence of words W that yields the
highest probability P (W |X) given the observed sequence of feature vectors X
and the internal model of the recognition system.

With the use of the Bayes rule the calculation of this probability can be further
decomposed into what is known as the fundamental equation of speech recogni-
tion.

P (W |X) =
p(X|W ) ∗ P (W )

p(X)
(3.1)

p(X) is the prior probability to observe the sequence of feature vectors X.
p(X|W ) is the probability that, given the sequence of words W , the feature
vectors X are observed. This part of the equation is commonly called the
acoustic model. P (W ) is the prior probability of observing W independently of
the feature vector X and is usually called the language model.
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Figure 3.2: System overview of a statistical speech recognition system

Thus the decoder now tries to find:

Ŵ = argmax
W

P (W |X)

= argmax
W

p(X|W ) ∗ P (W )
p(X)

= argmax
W

p(X|W ) ∗ P (W ) (3.2)

Usually the search space is limited by a dictionary that defines the set of allowed
words of which W can be composed. Figure 3.2 gives a schematic overview of
the resulting speech recognition system.

3.2.1 Preprocessing

Goal of the preprocessing unit is to transform the recording of the speech signal
into a series of feature vectors which are suitable for performing speech recog-
nition. After the digitization of the signal—for ASR purposes a resolution of
16bit and a sampling frequency of 16kHz is common—the relevant information
in the signal is emphasized while useless information is discarded.

A typical preprocessing used in LVCSR might look like this: The signal is
processed by a short-time fourier analysis executed on overlapping windows
of 16-20ms length, and a window shift of 10ms. Often Hamming or Hanning
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windows are used for this. From the fourier analysis only the power spectrum is
used. The power spectrum is then scaled by a Mel-Filterbank and transformed
into the cepstral domain by a cosine transform. Several consecutive vectors are
then concatenated to a higher dimensional vector whose dimension is reduced
again by a linear discriminant analysis transformation.

Additional methods for normalization such as vocal tract length normalization
(VTLN) [ZW97] or feature space constraint maximum likelihood linear regression
(cMLLR) [Gal97] can be applied.

Since the acoustic front-end is mostly independent of the language addressed,
it is not of interest in this work. A more detailed discussion on the topic of
pre-processing audio recordings for speech recognition can be found in [HAH01,
RS78].

3.2.2 Acoustic Models based on HMMs

Current state-of-the art systems for automatic speech recognition [LGA+07,
SAB+07, SFKW07, WSK07] utilize Hidden Markov Models (HMMs) [Rab89]
for their acoustic models. An HMM models a sequence of states as a two-fold
stochastic process in which only the output from the states are observable but
not the states that emit them. So, an HMM models a process which runs through
a sequence of states Q = q1, q2, . . . , qt, qt+1, . . . , qT When entering a state, that
state emits a symbol with a probability that is dependent on the current state.
The proability to enter a state at time t + 1 only depends on the state at time
t. An HMM is formally defined as a quintuple consisting of:

1. The output alphabet V . V can either contain M discrete elements, V =
{v1, . . . vM}, or can be a continuous space, leading to either discrete or
continuous HMMs. In LVCSR V is usually an n-dimensional space of real
numbers Rn. Here n is the dimension of the feature vectors that are the
result of the pre-processing.

2. A set S of N states S = {S1, . . . , Sn}. In ASR these will be the atomic
models for human speech. The models used in LVCSR will be explained
in more detail below.

3. A state transition probability A = {aij}, with aij = P (qt+1 = Sj |qt =
Si), 1 ≤ i, j ≤ N . This is the probability of making a transition from Si

to Sj in a discrete time step.

4. An emission probability distribution b for every state i: bi(k) = P (vk at t|qt =
Si), 1 ≤ i ≤ N, 1 ≤ k ≤ M . This is the probability that when in
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state j the symbol vk is emitted. In the case of a continuous HMM the
emission probability distribution becomes a probability density function:
bi(v) = p(v at t|qt = Si), v ∈ V

5. Initial state distribution π = {πi} with πi = P (q1 = Si). This is the
probability of being in state πi at the beginning of the process.

The set of states S and the transition probability A define the topology of the
HMM. When transitions are allowed from every state into every state we get an
ergodic HMM, and aij > 0 ∀aij ∈ A. If the number of permissible transitions is
limited, as it is the case for many HMMs, some of the transition probabilities
become 0: ∃aij ∈ A : aij = 0.

In LVCSR mainly continuous HMMs are being used. For the emission prob-
ability distributions mainly Gaussian Mixture Models (GMMs) are used. A
GMM is a linear combination of several Gaussian densities N . For the case
that every state has its own GMM with w Gaussian densities we get bi(v) =∑W

j=1 wijN (v, Σij , µij) =
∑W

j=1 wj
1

(2π)
N
2 |Σ|

1
2

exp(− 1
2 (v−µ)T Σ−1(v−µ)). Some-

times the states in an HMM do not have a complete GMM of their own. Rather
a global pool of Gaussian densities N1, . . .NL exists that is shared by all states.
Only the weights wi are specific to the state. This kind of HMM is called
semi-continuous HMM and b becomes: bi(v) =

∑W
j=1 wijN (v, Σj , µj).

3.2.2.1 From a Word Sequence to the HMM

In order to model P (X|W ) using HMMs the word sequence W needs to be
transformed into a sequence of HMM states. To do so, the word sequence is
first transformed into single words which are connected from left-to-right in a
linear way. Words are then decomposed into phoneme sequences which are also
connected from left-to-right in a linear way. The mapping from a word to its
phoneme sequence is performed with the help of a pronunciation dictionary that
lists the phoneme sequences of all words.

Phonemes are further subdivided into smaller units. This subdivision is reason-
able in order to account for the fact that the articulators are in constant motion
during the pronunciation of a phoneme. Thus the speech signal of a phoneme
changes accordingly over time. In state-of-the art systems phonemes are usually
sub-divided into three states, a begin, a middle, and an end state.

Figure 3.3 shows this process of transforming a word sequence into an HMM.
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Figure 3.3: Constructing an HMM from a word sequence

3.2.2.2 From Context Independent to Context Dependent Models

As we already described in 3.2.2 the emission proabilities of the states in these
HMMs are usually modelled by Gaussian Mixture model. For continuous HMMs
every state—so in our case every subphoneme—receives its own mixture model.
In the case that the HMMs are constructed from the words as described in the
previous section, subphonemes are modelled independently of their context. Ev-
ery state belonging to the same sub-grapheme uses the same Gaussian mixture
model independently of the context that it occurs in.

This way of modeling speech is inaccurate. In reality the acoustic manifestation
of a phoneme is highly dependent on the context in which it is spoken. This is
due to the inertia and physiological constraints of the articulators. Depending on
the phoneme sequence spoken, the articulatory targets of the different phonemes
are only reached to varying degrees. Features are either less well articulated,
changed, or sometimes even omitted.

In LVCSR this phenomena is modelled by the introduction of context depen-
dent phone models, called polyphones. A polyphone is a phoneme in a specific
context. So different phonemes or subphonemes are modelled by separate states
depending on the context in which they occur. LVCSR usually considers context
of either one or two phonemes to the left and the right of the phoneme that is
being modeled. Polyphones for the former case are called triphones, those for
the latter case quinphones.

The size of a typical phoneme set used in LVCSR is in the range of 50 different
phonemes. If using triphones this would lead to a total of 125,000 possible
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triphones. In order to robustly estimate the parameters of a Gaussian mixture
model for a triphone, one needs to observe roughly one hundred, better several
hundreds, of samples of that triphone. So it becomes clear that under normal
circumstances it is impossible to collect sufficient amounts of training data to
train a model that consists purely of polyphones.

Therefore, the models of the polyphones are usually tied in LVCSR [YW93].
For our recognizers we use a top-down clustering approach. For all sets of
polyphones that have the same center phoneme a separate classification and
regression tree is grown. The tree gets as an input a polyphone whose model
we are looking for. The leaves of the tree correspond to the final models of a
polyphone. In the nodes of the tree questions are asked about the context of
the polyphone. The questions are linguistically motivated and ask about the
phonetic properties of the phonemes in the polyphone context, e.g. whether a
phoneme is voiced or not. Since separate trees are grown for polyphones with
different center phonemes, only polyphones with the same center phoneme will
potentially share the same model. For growing the tree we us a entropy gain
as distance measure between two clusters [Lee88]. The clustering process is
stopped when a minimum number of training samples per model or a maximum
total number of models is reached.

3.2.2.3 Parameter Estimation

The parameters of an HMM in LVCSR are usually trained on large amounts of
speech recordings—tens to thousands of hours of speech—that are transcribed
at the word level. The topology and the parameters of an HMM cannot be
simultaneously optimized [Rab89]. Instead, the topology of the HMM is prede-
fined by the designer of an ASR systems, usually as described in the previous
paragraph, and the parameters for the transition probabilities as well as the
emission probabilities are estimated from the training data.

For estimating these parameters most commonly the Expectation Maximization
(EM) algorithm is used [Dem70]. EM is performed with the help of the Baum-
Welch algorithm which uses the forward-backward algorithm [BPSW70, Jel90].
The Baum Welch algorithm collects sufficient statistics on the training data and
then modifies the parameters of the Gaussian mixture models and the transition
probabilities using the Baum-Welch update rules in such a way that the prob-
ability of the models on the training data is maximized. The EM algorithm is
an iterative approach. It can be shown that the algorithm converges towards a
local maximum with every iteration. If the parameters estimated do not change
after an iteration, a local maximum has been reached.
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In addition to the EM algorithm further discriminative training methods ex-
ist, that try to maximize the posterior probability. These methods, such as
the Maximum Mutual Information (MMI) training or Minimum Phone Error
(MPE) training are normally applied after EM training [Pov04, Sch00a].

3.2.3 Language Model

In LVCSR systems the probabilities for the language model P (W ) in equation
(3.1) are normally modelled with the help of statistical n-gram language mod-
els. These models are based on the decomposition of P (W ) into a product of
probabilities of smaller word sequences [Jel90]:

P (W ) =
n∏

i=1

P (wi|w1, . . . , wi−1) (3.3)

w1, . . . , wi−1 is usually called the history of word wi. This decomposition is
useful for ASR applications since it refelects that the problem of finding the
correct word sequence is linear in time, and provides good intermediate results
and quality estimates for a partially decoded word sequence.

The probabilities P (wi|w1, . . . , wi−1) are estimated by occurrence counts in large
collections of texts. However, even for comparatively small numbers of i the
number of possible word histories becomes very large, and it is not possible
to collect sufficient amounts of text data in order to get reliable estimates for
all possible combinations of words and word histories. Therefore, the word
histories are clustered into equivalence classes. N-gram language models form
these clusters by limiting the length of the history to k words:

P (W ) =
n∏

i=1

P (wi|w1, . . . , wi−1) ≈
n∏

i=1

P (wi|wi−k, . . . , wi−1) (3.4)

Language models that use k = 1 are called bigram language models, those that
use k = 2 trigram, etc. Modern systems use trigram to 5-gram models for their
language models, depending on the task and available training data.

Even for trigrams it frequently happens that not a all combinations of a word
and all possible histories are observed in training. These combinations would
thus be assigned a probability of 0 and would be impossible to recognize. This
is undesirable, since an ASR system should also be able to recognize word se-
quences which have not been seen during training. To circumvent this problem,
a back-off technique is used which falls back to shorter word histories, in order
to estimate the probability of a word and its context which have not been seen
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in training. In order to avoid numerical problems with this scheme, the back-off
probabilities are estimated differently than for the full ngrams [KN95].

3.3 The JANUS Recognition Toolkit

The experiments for this research project were performed with the JANUS
Recognition Toolkit (JRTk). The JRTk has been developed by the Interac-
tive Systems Labs at Universität Karlsruhe (TH) and Carnegie Mellon Univer-
sity [FGH+97]. It is part of the JANUS speech-to-speech translation system
[LWL+97].

The JRTk provides a flexible Tcl/Tk script based environment which enables
researchers to build state-of-the-art speech recognizers and allows them to de-
velop, implement, and evaluate new methods. It implements an object oriented
approach that unlike other toolkits is not a set of libraries and precompiled
modules but a programmable shell with transparent, yet efficient objects.

We used version 5 of the JRTK which features the IBIS decoder [SMFW01].
The IBIS decoder is a one-pass decoder that is based on a re-entrant single
pronunciation prefix tree and makes use of the concept of linguistic context
polymorphism. It is therefore able to incorporate full linguistic knowledge at
an early stage. It is possible to decode in one pass, using the same engine in
combination with a statistical n-gram language model as well as context-free
grammars. It is also possible to use the decoder to rescore lattices in a very
efficient way. This results in a speed up compared to the decoder in previous
versions of the JRTk which needed three passes to incorporate full linguistic
knowledge.
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Chapter 4

Graphemic Acoustic Models

4.1 The Role of Pronunciation Dictionaries

As described in Chapter 3 the acoustic models of current state-of-the-art speech
recognition system usually use phonemes or sub-phonemic units as states in
their HMMs. In order to build an HMM given the written representation of
a word or word sequence, a pronunciation dictionary is used which maps the
orthography of a word to its corresponding phoneme sequence. This makes the
pronunciation dictionary a central component of an automatic speech recogni-
tion system. Often the mapping between a word and its phoneme sequence is
not unique. For that case it is possible to add several alternative pronunciation
variants for a word to the dictionary.

Several methods exist in order to create a pronunciation dictionary. The most
common methods currently used are [ADL06]:

• manually defining the mapping for every word

• manually defining a set of rules that generates this mapping, and possible
manual post editing to compensate for deficiencies in the rules

• using machine learning techniques to automatically learn the mapping
from a set of manually annotated training material, either in a batch or
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incremental mode; again manual post-editing may be used to compensate
for deficiencies in the rules learned

All these methods require an expert in the target language either for defining
the rules, annotating the training material, or doing the post editing and error
correction of dictionary entries. Often manual and automatic generation meth-
ods are combined, in order to generate an effective dictionary building process
[SMT04]. In order to learn the pronunciations in a semi-automatic way, an iter-
ative approach can be used, to first label the 200-500 most frequent words, then
learn letter-to-sound rules on them, and then predict the pronunciation of new
chunks of 100 or so words. After every chunk the newly produced pronunciations
need to be manually checked and corrected. Using the extended dictionary, the
letter-to-sound rules are learned again and the process is iterated with the next
chunk of new words. Once a sufficient accuracy in predicting the pronunication
of new words is reached, the learning is terminated and the letter-to-sound rules
are kept fix and used for processing the remaining words [Bla06].

Considering that dictionaries of modern large vocabulary ASR systems can con-
tain tenth of thousands to up to several houndreds of thousands words, it be-
comes clear that dictionary creation can become a very time consuming process.
Also, the large amount of manual labor of a dedicated expert is very costly in
terms of money. In order to facilitate the dictionary creation process, some tools
try to simplify the process of manually checking the dictionary by the expert in
a language in such a way, that the expert does not need to be a trained pho-
netician, but that an interested native speaker of the language can perform this
task under the supervision of a technology expert [SBB+07, DB04b, DB04a].
But, when pressed for time and faced with a less prevalent language it can be
quite difficult for the creators of an ASR system to even find an available expert
in the target language, even if any interested native speaker can take that role.

Thus, eliminating the need for a pronunciation dictionary can greatly simplify
and reduce the cost of the creation of an ASR system for a new language, as
well as speed up the creation process.

4.2 Acoustic Modelling for Graphmes vs. Phonemes

One way to eliminate the need for a pronunciation dictionary or to make its
creation a trivial task, is to substitute the phonemes as modeling units for the
HMM. An alternative to modeling phonemes is to directly model the graphemes
of the words to be recognized. A grapheme is defined as the fundamental unit in
written language [Wikb]. E.g. the letter of the English alphabet are considered
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graphemes, or the characters of the Chinese script. The term grapheme is
modelled after the terms phoneme or morpheme which refer to significant units
of sound and meaning respectively. However, [DB96] points out that writing and
language bear so many fundamental differences that the usual meaning of the
suffix -eme does not apply in the term grapheme. Many attributes of phonemes
do not find any parallel in graphemes and vice versa.

When using graphemes or subgraphemes as modeling units instead of phonemes
the creation of the HMM from the written representation of the word becomes
a trivial task, eliminating the need for a pronunciation dictionary as mapping
function in order to find the correct HMM state sequence.

4.2.1 Requirements for Modeling Units in ASR

While using graphemes as units after which to construct the HMM correspond-
ing to a word eliminates the costly creation of a pronunciation dictionary, it
raises the question of the suitability of graphemes as models for the HMM, espe-
cially considering the remarks on the fundamental differences between graphemes
and phonemes. In order to judge the suitability of graphemes as modeling units,
we first take a look at the reasons for using phonemes as modeling units in ASR.
The use of phonemes is generally motivated by two reasons:

The first reason is that phonemes are closely related to the acoustic manifes-
tations of the part of speech that they represent. Human speech is generally
described as a sequence of phonemes by phoneticians and linguists. Though
phonemes can consists of several allophones, their pronunciation, that is the
acoustic manifestation as measured by the microphone, is in general very similar.
Therefore, it is assumed that one model per phoneme for recognition purposes
is capable of learning the acoustic pattern that it produces and to discrimi-
nate it against the acoustic pattern of the other phonemes in that language.
Where that is not the case, pronunciation variants can be used to cover sev-
eral different phone variants for a phoneme. Variations in the pronunciation of
phonemes, which are introduced by such effects as coarticulation, are treated
by using context-dependent models. They model a phoneme that occurs in a
specific context.

The second reason, why phonemes are used as modeling units, is the fact that
their number per language is rather limited as compared to the number of words
or even syllables per language. In order to be able to robustly estimate the
parameters of the models, it is necessary to collect sufficient amounts of training
examples per model, preferably from several different speakers. For example,
for words in large vocabulary speech recognition it is often not feasible to collect
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sufficient numbers of training examples in order to use them as modeling units.
Using the set of phonemes of a language, however, it is possible to compose
all words in that language from them. At the same time, they are occurring
so frequently that by collecting a reasonable amount of acoustic training data,
enough training examples per phoneme are observed in order to train a model
for them.

In order to apply the modeling techniques that have been used for phonemes in
speech recognition so far to graphemes, graphemes need to fulfill the same two
properties as phonemes. They need to bear a sufficiently close relation to their
pronunciation and which should to a certain degree be consistent per grapheme.
Further, the number of graphemes per language needs to be limited to a number
that is small enough so that it is possible to collect sufficient amounts of training
data per grapheme for robust model parameter estimation.

As we will see, this is not the case for all writing systems in the world, but for a
large number of them. For these languages substituting phonemes by graphemes
as modeling units is a suitable approach.

4.2.2 Writing Systems of the World

In [DB96] Daniels defines a writing systems as “a system of more or less per-
manent marks used to represent an utterance in such a way that it can be
recovered more or less exactly without the intervention of the utterer”. In that
way a writing system preserves speech over time and distance. The basic units
of a writing system are called graphemes. The collection of all graphemes of a
language is called its script. Graphemes refer to minimally significant elements.
In that way they are similar to phonemes. Different classifications of writing
systems exist in literature. Writing systems are generally classified with respect
to the concepts which their graphemes represent.

4.2.2.1 Typology of Writing Systems

In literature a wide variety of typologies of writing systems have been proposed.
Often, writing systems are classified as either logographic, syllabic, or alpha-
betic. Dating from 1883 when it was probably first laid out by Isaac Taylor, it
has been and still is the most popular one [DB96]. However it leads to problems
when applied to certain languages leading to unlikely suggestions about their
script. Thus many alternative typologies have been proposed. One typology
that can be often found is presented by Crystal in [Cry87]. He divides writing
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systems into those which have a clear relationship between the symbols in the
script and the phones in the language, and those were this not the case. As
an example for the latter Crystal lists writing systems using pictograms. How-
ever when following the definition from Daniels, pictograms are not considered
a writing system, but rather a forerunner to writing systems, because writing
is bound up with language by that definition. Pictography cannot capture ab-
stract notions, many verbs, grammatical inflections, particles, and names. In
order to be able to do this, a script must represent the sounds of a language.

Since in this work we are dealing with the science of automatic speech recog-
nition, only writing systems are of interest to us that allow the recording of
the sounds of a language. We thus follow the typology of writing systems by
Daniels, rathern than by Crystal.

According to Daniels a writing systems can be of one of the following six types:

• Logosyllabary: Characters represent individual words or a particular syl-
lable.

• Syllabary: Characters represent particular syllables.

• Abjad or Consonantory: Characters denote consonants. The name abjad
is derived from the first letters of the most common example, the Arabic
script.

• Alphabet: Characters denote vowels or consonants.

• Abugida: Each character denotes a consonant accompanied by a specific
vowel. Other vowels are represented by a consistent modification of the
consonant symbol. The word abugida is Ethiopic from the first four con-
sonants and the first four vowels of its script.

• Featural: The shapes of the characters correlate with distinctive features
of the segment of the language that they represent.

Chinese is a prominent example of a language with a logosyllabary writing
system. The Japanese hiragana and katakana are examples of syllabary scripts.
Arabic has already been cited as a prominent abjad, also the Hebrew script falls
into this category. The European languages mostly use alphabets, often based
on the Latin alphabet. The Indic script, used for many languages in South and
Southeast Asia is an abugida. Korean is a language that uses a featural writing
system.
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4.2.2.2 Distribution of Writing Systems

As we will discuss below, not every type of writing system is equally suited
for grapheme based ASR. Therefore, it is interesting to get an overview of the
distribution of the different types of writing systems in the world. Omniglot
[Omn] lists 3 currently used abjads, 20 alphabets, 28 abugidas, 19 syllabaries,
and 2 logosyllabaries. In the Omniglot classification the featural Korean script
is classified as an alphabet. Table 4.1 shows the writing systems as listed by
Omniglot, the native name of the script written in its own characters, as well
as the languages known to use that script.

Table 4.1: Writing systems of the worlds and the languages that
use them as listed by Omniglot[Omn]

Logosyllabaries

Chinese (Zhngwn) Modern Standard Chi-
nese, Cantonese, Japanese
(kanji), Korean (hanja),
Vietnamese(ch-nm)

Syllabaries

Cherokee (Tsalagi) Cherokee
Cree (Nhiyaw) Cree
Hiragana (Japanese) Japanese
Inuktitut Inuktitut
Katakana (Japanese) Japanese
Mende Mende
Naskapi (Innu Aimun) Naskapi
Ndjuk Ndjuk
Ojibwe (Anishinaabe) Ojibwe
Yi (Lolo) Yi

Abjads

Syriac Syriac
Hebrew Hebrew, Judeo-Arabic,

Ladino, Yiddish
Arabic Arabic, Azeri, Baluchi,

Bosnian, Dari, Hausa,
Kabyle, Kashmiri, Kazakh,
Kurdish, Kyrghyz, Malay,
Morisco, Pashto, Per-
sian/Farsi, Punjabi, Sindhi,
Siraiki, Tatar, Urdu, Uyghur
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Table 4.1: (continued)

Alphabets

Armenian Armenian
Bassa (Vah) Bassa
Cyrillic see Table 4.3
Fraser Lisu
Georgian (Mkhedruli) Georgian, Laz, Svan
Greek Greek
Kayah Li Kayah Li
Korean (hangl) Korean
Latin/Roman Latin/Roman see Table 4.2
Manchu Manchu
Mongolian Mongolian
N’Ko Malinke, Bambara, Dyula
Ol Cemet’/Ol Chiki (Santali) Santali
Oirat Clear Script Kalmyk
Pollard Miao A-Hmao
Tai Dam Tai Dam
Thaana Dhivehi (Maldivian)
Tifinagh Kabyle, Tamazight

Abugidas

Bengali Bengali, Assamese
Buhid Buhid
Burmese/Myanmar Burmese/Myanmar
Cham Cham
Dehong Dai Dehong Dai
Devangar Hindi, Marathi, Nepali, Pali,

Sanskrit, Sindhi
Ge’ez (Ethiopic) Amharic, Ge’ez, Tigrinya
Gujart Gujart, Kachchi
Gurmukhi (Punjabi) Panjabi
Hanuno Hanuno
Hmong Hmong
Kannada Kannada
Khmer Khmer
Lanna Northern Thai (Kam

Mu’ang), Tai Lue, Khn
Lao Lao
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Table 4.1: (continued)

Lepcha (Rng-Rng) Lepcha (Rng-Rng)
Limbu Limbu
Malayalam Malayalam
Manipuri Manipuri
New Tai Lue Lue
Oriya Oriya
Sinhala Sinhala, also for Pali and

Sanskrit in Sri Lanka
Sorang Sompeng Sora
Tamil Tamil
Telugu Telugu
Thai Thai
Tibetan Tibetan, Dzongkha

(Bhutanese)
Varang Kshiti Ho

Figure 4.1 illustrates the geographic distribution of the different writing systems
in the world. With regard to geographic distribution alphabets clearly domi-
nate. Most parts of North and South America, Europe, the parts of Asia that
belonged to the former Soviet Union, and the Southern half of Africa use some
form of alphabet mostly Latin/Roman or Cyrillic based. Arabic dominates large
parts of Northern Africa. Large parts of Asia use logosyllabaries, syllabaries,
and abugidas. For graphemes their relation to their pronunciation is not that
well defined. Depending on the language in question the relationship between
graphemes and corresponding phonemes can vary widely. Some languages show
a very close relationship of their graphemes to the corresponding pronunciation.
For other languages their is a very complex correspondence of the written form
and the pronunciation. In Chinese, for example, the mapping of the characters
to the pronunciation require extensive knowledge of the context of the charac-
ters and the resulting semantic meaning of the word sequence to be spoken.
Chinese is also an example for a semanto-phonetic writing system, called that
way because graphemes are used to transport pronunciation and meaning. This
results in a very large number of graphemes for these languages. In Chinese,
for example, there are over 20,000 different characters with 10,000 in use today.
When using graphemes as modeling units for these kind of languages, the same
problem arise as when using words or syllables as modeling units, that is the
problem of finding sufficient amounts of training examples for estimating the
model’s parameters. In this case the use of graphemes as modeling units is an
inappropriate and infeasible approach.
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Figure 4.1: Geographic distribution of writing systems [Wika]

Many writing systems in the world, however, make use of alphabets with a
limited set of graphemes.In our tables we listed 18 writing systems that are
alphabets. These 18 alphabets are used by 292 languages in the world.
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Languages using the Roman/Latin alphabet

Abenaki, Afaan Oromo, Afar, Afrikaans, Ainu, Akan, Alabama, Albanian, Aleut,
Alsatian, Apache, Aragonese, Aranese, Arapaho, Aromanian, Arrernte, Asturian,
Aymara, Azeri, Bambara, Basque, Belarusian, Bemba, Bikol, Bislama, Breton, Bu-
rushaski, Catalan, Cayuga, Cebuano, Chamorro, Chavacano, Chechen, Cheyenne,
Cimbrian, Chichewa, Chickasaw, Choctaw, Comanche, Cornish, Corsican, Cape
Verdean Creole, Croatian, Czech, Danish, Dawan, Delaware, Dholuo, Dinka, Drehu,
Duala, Dutch, English, Esperanto, Estonian, Ewe, Ewondo, Faroese, Fijian, Fil-
ipino, Finnish, Folkspraak, French, Frisian, Friulian, Ga, Gagauz, Galician, Ganda,
Genoese, German, Gooniyandi, Greenlandic, Guadeloupean Creole, Guarani, Gu-
gadja/Kukatja, Gwichin, Haida, Haitian Creole, Hn, Hausa, Hawaiian, Herero, Hili-
gaynon, Hixkaryana, Hopi, Hotck, Hungarian, Icelandic, Ido, Igbo, Ilocano, In-
donesian, Interglossa, Interlingua, Iupiaq, Irish, Italian, Jamaican Creole, Jrriais,
Kabyle, Kaingang, Kala Lagaw Ya, Kapampangan, Karakalpak, Karelian, Kashu-
bian, Kinyarwanda, Kiribati, Kirundi, Klallam, Klamath, Kurdish, Kwakiutl, Lin-
gala, Latin, Latvian, Lingua Franca Nova, Lithuanian, Livonian, Lojban, Lom-
bard, Low Saxon, Luxembourgish, Maasai, Makhuwa, Malagasy, Malay, Maltese,
Manx, Mori, Marshallese, Meriam Mir, Mi’kmaq, Mirandese, Mohawk, Montag-
nais, Murrinh-Patha, Nagamese, Nahuatl, Nama, Naskapi, Navajo, Naxi, Neapolitan,
Ngiyambaa, Noongar, Norwegian, Novial, Occidental, Occitan, Okinawan, O’odham,
Old Norse, Ossetian, Papiamento, Piedmontese, Pirah, Pitjantjatjara, Polish, Por-
tuguese, Potawatomi, Quechua, Rarotongan, Rotokas, Romanian, Romansh, Romany,
Rotuman, Saami/Sami, Saanich, Samoan, Sango, Sardinian, Scots, Scottish Gaelic,
Shavante, Shawnee, Shona, Sicilian, Silesian, Sioux, Slovak, Slovene, Slovio, Somali,
Sorbian, Southern Sotho, Spanish, Swahili, Swedish, Tagalog, Tahitian, Tatar, Tai-
wanese, Tetum, Tlingit, Tok Pisin, Tongan, Turkish, Turkmen, Tuvaluan, Tuvan,
Twi, Uyghur, Venetian, Vietnamese, Volapk, Vro, Walloon, Warlpiri, Waray-Waray,
Wayuu, Welsh, Wik-Mungkan, Wiradjuri, Wolof, Xhosa, Yapese, Yindjibarndi, Yol-
ngu, Yoruba, Zhuang, Zulu

Table 4.2: Languages using the Latin Alphabet

Languages using the Cyrillic alphabet

Abaza, Abkhaz, Adyghe, Avar, Azeri, Balkar, Bashkir, Belarusian, Bulgarian, Buryat,
Chechen, Chukchi, Chuvash, Crimean Tatar, Dargwa, Dungan, Erzya, Even, Evenki,
Gagauz, Ingush, Kabardian, Kalmyk, Karakalpak, Kazakh, Khanty, Kildin Sami,
Komi, Koryak, Kumyk, Kurdish, Kyrghyz, Lak, Lezgi, Lingua Franca Nova, Mace-
donian, Mansi, Mari, Moksha, Moldovan, Mongolian, Nanai, Nenets, Nivkh, Old
Church Slavonic, Ossetian, Russian, Ruthenian, Serbian, Slovio, Tabassaran, Tajik,
Tatar, Tsez, Turkmen, Tuvan, Ubykh, Udmurt, Ukrainian, Uyghur, Uzbek, Votic,
Yakut, Yukaghir, Yupik

Table 4.3: Languages using the Cyrillic Alphabet
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4.2.3 Suitability of Graphemes as Modeling Units

A good indication for the suitability of graphemes as modeling units is when
they fulfill the same two properties that we listed as motivation for the use
of phonemes in Subsection 4.2.1. Here, the requirement that the number of
graphemes per language is small enough so that it is possible to collect sufficient
amounts of training data per grapheme for robust model parameter estimation is
easier to check for a writing system than the first property, the relation between
grapheme and acoustic manifestation of the corresponding sound.

Logosyllabary writing systems are normally not suited as modeling units in ASR
systems because they usually contain an extensively large number of graphemes.
Due to the fact that graphemes mostly represent whole words, their number per
language is too large to collect sufficient training material per model. For exam-
ple for Chinese there is no theoretical upper limit to the number of characters.
In newspapers approximately 3,000 characters are sufficient for reading. For
Chinese literature or technical documents approximately 6,000 characters are
necessary.

Alphabets and abjads on the other hands are well formed in that respect
for grapheme based ASR. The graphemes in abjads and alphabets represent
normally vowels and consonants of their language and thus the number of
graphemes in these writing systems is in the range of the number of phonemes of
the corresponding language. Therefore, for these writing systems it is possible
to collect a sufficient number of training sampels per model.

With respect to the correspondence between the graphemes in abjads and alpha-
bets and their acoustic manifestation as measured by the microphone a general
judgment is not possible, but dependent on the language in question. Since ab-
jads only write consonants but not vowels this is clearly a disadvantage. Vowels
need to modelled implicitely in the consonants’ models. Thus the models must
be able to discriminate not only the acoustics of the different consonants. In-
stead, each model must learn the acoustics of all vowels that can come with the
consonant in question. Also, all combinations of a consonant and the vowels
that can theoretically come with it must be observed during acoustic model
training. Therefore, more training material must be collected than if vowels
would be written explicitely as in alphabets. Thus alphabets have an advantage
over abjads in that regard.

Alphabets and abjads also show a common difficulty with regard to the relation
between their graphemes and their pronunciation. Though per definition the
graphemes in alphabets represent the vowels and consonants and abjads only
the consonants of their language, this clear relation was usually only given at the
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time of their creation. However, as language evolves over time, it often happend
that the pronunciation of a language evolved differently from its writing system.
The pronunciation and writing of English, for example, have evolved in such
a way that, today, they show a very complicated relationship between them.
So, it is very difficult to predict the pronunciation of a word from its spelling
and vice versa. Other languages show a very strict mapping from graphemes
to phonemes, using so called phonemic alphabets. Finnish, Russian, Serbo-
Croation or Spanish are good examples for such alphabets.

Abugidas are very similar to alphabets and abjads, as they also denote con-
sonants and vowels by modifying the graphemes for consonants, e.g. by using
diacritics or by modifying the shape of the consonant grapheme. Here the advan-
tage over abjads is, that different vowels are marked differently. When they are
marked with diacritics it is possible to treat the diacritics as separate modeling
units for the ASR system, so that the abugida then shows the same proper-
ties with respect to use in an ASR system as alphabets do. In the case where
the shape of the grapheme is modified abugidas suffer from one of the prob-
lems that abjads have, that is to collect sufficient amounts of training material
per (modified) grapheme in order to capture all permissible consonant-vowel
combinations.

Syllabaries generally show a very good relationship between their graphemes
and their pronunciation, since they directly represent syllables. The number
of syllables in a language can be rather large and the syllable structure rather
complex. So, depending on the language, the number of graphemes can be sig-
nificantly larger than in an alphabet. For example, for English with its very
complex syllable structure and ample syllables, using a syllabary would be very
cumbersome. This is one of the reason why in ASR phonemes have become the
preferred modeling units and not syllables. So, syllabaries also show the prob-
lem that collecting sufficient training material for all possibly syllables might be
difficult. However, often syllabaries are used for writing languages with com-
paratively few syllables, so that grapheme based ASR is also feasible for them.

Fortunately the writing systems for many languages in the world, Omniglot lists
292, make use of alphabets as writing systems, so that for them the grapheme
based approach is promissing. Abjads seem less suitable for ASR but they are
currently only in use for 27 languages. For syllabaries, grapheme based ASR
might be feasible, depending on the language. Currently ominglot only lists
7 languages that still use syllabaries. Abugidas, that seem more suitable for
grapheme based ASR than syllabaries, make up a large portion of the writing
systems in the world. Omniglot lists their use for 28 languages. The real number,
however, must be higher, as Omniglot does not list all Indic scripts.
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4.3 Related Work

Past research has demonstrated for several languages that the use of graphemes
as modeling units, instead of phonemes, can be a suitable approach to ASR.

In [STNE+93] Schukat-Talamzzini et al. demonstrated the use of graphemes as
modeling units for German on a train scheduling task. They utilized context-
dependent models and used a back-off scheme for models that were not seen
during training.

Schillo et al. [SFK00] also experimented with German grapheme based models,
targeting an isolated word recognition task of German city names. They used
context-independent grapheme models and trigrapheme models for their exper-
iments. A back-off scheme was not necessary, since only trigraphemes that were
seen during training, were used during recognition.

Kanthak and Ney [KN02] experimented with context-dependent grapheme based
acoustic models on Dutch, Italian, German, and English. In contrast to previous
work they used context-dependent models with decision tree based HMM state-
tying as described in Chapter 3. Decision trees for HMM state-tying require
a set of questions to ask about the context of the models, traditionally about
the phonetic properties of the context. The properties of the phonetic context
are used because of their influence on the pronunciation of the phoneme that is
modelled in this context. In the case of graphemes is not clear what properties of
the context of a grapheme that is to be modelled context-dependently do really
influence its pronunciation. Especially it is not clear how to derive such prop-
erties from the graphemes without any knowledge about the relation between
the graphemes and their pronunciation. Therefore, [KN02] compared the use
of manually derived phonetic questions for graphemes to automatically gener-
ated ones and detected a slight increase in word error rate for the automatically
generated questions.

In [KN03] Kanthak and Ney expanded their work to multilingual grapheme
based models, showing improvements for German with the multilingual acoustic
models. They commented that the decision tree used for HMM state tying, also
captures in part the grapheme to phoneme relation of a language.

At the same time Killer et al. [KSS03] experimented with context-dependent,
grapheme based models for the languages English, German, and Spanish on a
large vocabulary dictation task. They also examined different types of questions
in the decision tree for the HMM state-tying, and found that simply asking for
the identities of the graphemes in the context of the polygraphemes works better
than phonetically motivated or automatically derived questions.
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Charoenpornsawat et al. [CHS06] demonstrated the use of grapheme based
acoustic models for Thai grapheme based ASR. In order to get a maximum of
performance they applied a text normalization scheme to the Thai graphemes
that makes use of detailed knowledge of the grapheme-to-phoneme relation in
Thai.

Sung et.al. examined the behavior of grapheme based ASR system when large
amounts of training data are available [SHBS09]. They worked on the GOOG-
411 task, which uses ASR and web search to help people call businesses. They
found that for English with increasing amounts of training data the gap between
a phoneme based recognizer and a grapheme based one closes. In that way
they wanted to show that the pronunciation modeling knowledge that is usually
encoded in the pronunciation dictionary can be learned by the acoustic model.
They found the grapheme system especially beneficial because it allowed for
easy addition of the many out of vocabulary words that they encountered on
their task, such as proper names of businesses and people.

4.4 Monolingual Grapheme Based Recognizers

As basis for our further work we trained monolingual grapheme based recog-
nizers in the five languages English (EN), German (GE), Russian (RU), Span-
ish (SP), and Thai (TH). For these experiments we assumed as given as little
knowledge as possible about the target language and its relation between the
graphemes and pronunciation of the words. For example, unlike as in [CHS06]
we did not perform any preprocessing on the graphemes of the words in the
vocabulary of our recognizers; though this technique is known to boost the
performance of grapheme based recognition systems by improving, i.e. homog-
enizing and simplifying, the relation between the written representation of the
words and their pronunciations. However, the necessary knowledge about the
languages’ writing systems in order to define these kind of pre-processing rules
we do not want to take as given.

In selecting the five languages we cover three Latin based alphabets—English,
German, and Spanish—, one Cyrillic based—Russian—, and one Abugida—
Thai. As discussed above, these languages therefore cover the most promissing
kinds of writing systems for use in grapheme based ASR systems.
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4.4.1 Corpus and Task

We conducted our experiments on a selection of languages from the Global-
Phone [Sch02] corpus. GlobalPhone is an ongoing data collection effort that
now provides transcribed speech data in 18 languages. The corpus has been
designed for research in multilingual speech recognition, rapid deployment of
speech processing systems in new languages, language and speaker identifica-
tion tasks, monolingual speech recognition in a large variety of languages, as
well as comparisons across major languages based on text and speech data. To
achieve this, data collection in all languages covered is done in an uniform way
under equal acoustic conditions. The corpus contains read speech by native
speakers collected with close talking microphones. The texts read are newspa-
per articles covering national politics, international politics, and economics. In
that way it is modeled after the Wall Street Journal 0 (WSJ0) corpus. The
audio was recorded with head-mounted, close-talking microphones using a sam-
pling frequency of 16kHz and a resolution of 16bit. Since English is not part
of GlobalPhone, the WSJ0 corpus, which matches the other data, was used for
the experiments on English.

For every language three data sets are available: one for acoustic model training
(train), one for development work (dev), such as finding the correct language
model weight, and one for evaluation (eval). All three sets are speaker disjunct.
For our experiments in Chapter 5, German and Thai will receive the role of
previously unseen languages to which we will port ASR systems. For these
experiments we then only assume a small adaptation (adapt) set of roughly
fifteen minutes as given for these two languages.

Table 4.4 shows the size of the individual data sets for the five languages in
terms of length in time, number of utterances, and number of speakers.

4.4.2 Preprocessing

The 16kHz, 16 bit audio data was preprocessed by calculating 30 log-mel scaled
cepstral coefficients, liftering to 13 coefficients, and concatenation of 6 neigh-
boring feature vectors. The resulting 91 dimensional vector was reduced to 32
dimensions with the use of linear discriminant analysis (LDA) [HUN92]. The
mean of the cepstral coefficients was subtracted and their variance normalized
on a per utterance basis. During decoding incremental feature space constrained
MLLR (cMLLR) [Gal97] and incremental cepstral mean subtraction and vari-
ance normalization on a per utterance basis were performed.
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Table 4.4: Size of the data sets for the different languages in hours, number of
utterances, and number of speakers

EN GE RU SP TH

train hours 15.0 16.0 17.0 17.6 24.5
#utt 7,137 9,259 8.170 5,426 12,260
#spkrs 83 65 84 82 80

dev hours 0.4 0.4 1.3 2.1 1.3
#utt 144 199 898 680 613
#spkrs 10 6 6 10 4

eval hours 0.4 0.4 1.6 1.7 1.1
#utt 152 250 1,029 564 568
#spkrs 10 6 6 8 4

adapt hours — 0.25 — — 0.25
#utt — 101 — — 140
#spkrs — 1 — — 1

4.4.3 Acoustic Model Training

Based on the setup from [KSS03] and [MSS04] the systems were trained from
scratch. For every language we used the graphemes of that language as base for
our modelling units. Table 4.5 shows that number of graphemes per language
that we have used. For every grapheme an HMM with three states was trained,
as it is the case for the phoneme based acoustic models.

Initial alignments between the training samples and the HMM states were ob-
tained by uniformly distributing the training samples of an utterances over the
states of the HMM of that utterance. From this initial alignments models were
initialized with the use of k-means. The resulting models were used to obtain a
first forced alignment of the training data.

In a next step, context-independent (CI) models were trained. Starting from
the first forced alignments several training cycles were performed. Thereby,
each training cycle is composed of the following steps:

1. Estimation of LDA transformation matrix

2. Initialization of parameters using the K-Means algorithm

3. Six iterations of label training along the forced alignments
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4. Four iterations of EM training starting from the parameters resulting from
the label training

5. Calculation of new forced alignments using the newly trained weights

From the resulting CI systems, context-dependent (CD) systems were created
by a divisive clustering of trigraphemes with the help of a decision tree. The
best partition of the set of trigraphemes in each node of the decision tree is
determined by the entropy gain criterion. Since it is computationally not feasible
to consider all possible partitions in a node during the tree growing process, the
set of possible partitions to be searched is given by a set of binary questions that
can be applied to the trigraphemes in every node of the cluster tree. [KSS03]
found that just asking for the identity of the grapheme in the left or right
context of the trigrapheme gives better results than automatic ways of finding
good questions. These kind of questions are called singleton questions. The
use of phonetically motivated questions is not permissible in our case, since we
assume that no phonetic knowledge about the target language and its grapheme-
to-phoneme relation is available. We therefore used the singelton questions for
growing the trigrapheme decision tree, since they give a good performance and
do not require any knowledge about the relationship between the writing system
and the pronunciation of the corresponding language.

Starting from the forced alignments of the CI systems, the CD models were
trained by two iterations of the same training cycle as the CI systems.

In the Thai script, words are normally not separated by white space. For the
experiments in this work we therefore worked with automatically segmented
data that was provided by [SCB+05].

Table 4.5: Number of graphemes that are modelled per language
EN GE RU SP TH

#graphemes 26 29 33 35 69

4.4.4 Language Models

As language models we used statistical trigram models that were trained on in-
domain data for the corresponding language, mainly newspaper articles, mostly
collected from the web or coming from respective distributions from newspaper
publishers on CDs or DVDs.
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For English we used the official 64K trigram language model t95+60k1 with
8,814,128 trigrams and 7,454,368 back-off bigrams as it was provided for the
official Wallstreet Journal evaluation. This language model was built on a text
corpus of more than 300 million words [Rog97].

The German language model was trained on 40 million words of texts coming
from the View4You project [Kem99]. The texts include data from the website
of the Bayrischer Rundfunk 5 radio station, texts from the Frankfurter All-
gemeine Zeitung, and transcriptions of broadcasts of the German news show
”Tagesschau“.

For Russian the trigram language model was trained on 19 million words of
newspaper texts collected from the online editions of six newspapers. The arti-
cles are from the period of 1997 to 2004.

The Spanish language model was trained on 62 million words of the Spanish
Language News Corpus produced by the Linguistic Data Consortium (LDC).

The trigram language model that was used for Thai was created with the help
of the SRI Language Model Toolkit [Sto02] and is an interpolation of a trigram
model trained on 3.3 million words of newspaper texts and a trigram model
trained on the transcriptions of the training data, amounting to 12 thousand
words [Stü08a]. The interpolation weight was chosen by minimizing the per-
plexity of the language model on the development set.

Table 4.6 summarizes the sizes and perplexities of the language moels for the
different languages.

Table 4.6: Size of the corpora for language modeling in number of words, size of
the language models in number of ngrams, and perplexity on the development
and evaluation set for the different languages

EN GE RU SP TH

# words 300 mio. 40 mio. 19 mio. 62 mio 3.3 mio

# 3-grams 6.507.987 1.679.444 4.548.890 14.117.393 360.845
# 2-grams 3.662.939 714.103 1.365.851 2.726.540 454.524
# unigrams 9.222 24.152 24.968 23.074 7.546
PPL on dev 160 424 1243 227 111
PPL on eval 117 443 1098 219 111
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4.4.5 Results

4.4.5.1 Grapheme Based Systems

We tested the resulting models on the development and evaluation sets of their
respective language. The development set was used as a cross-validation set
in order to determine the optimal language model weight and word penalty.
Figure 4.2 shows the word error rates of the context-independent models on
their respective language, while Figure 4.3 shows the error rates of the context-
dependent models.

For the context-independent models the word error rates on the evaluation set
range from 28.7% for Thai to 55.8% for Russian. The word error rates for
the context-dependent models are in the range of 14.0% for Thai to 39.3% for
Russian.

The reason for the generally high WER for Russian is due to the very high
perplexity of the language model that results from the highly inflective nature
of Russian and its very loose word order [SS04].

When comparing the relative difference in performance between the context-
independent and context-dependent models for the individual languages one can
observe some differences between the languages. Figure 4.4 shows the relative
reductions in WER for the five different languages. The WER for English and
German is reduced the most when going from context-independent to context-
dependent acoustic modeling. This reflects the fact that the pronunciation of a
grapheme in these two alphabets is highly influenced by its graphemic context.
Russian on the other side shows by most the least reduction in WER. The
reason for that lies in the fact that the relation between the Russian graphemes
and their phonemes, pronunciation respectively, is quite straight forward. Only
very few exceptions and rules in Russian exist that alter the pronunciation of
a grapheme depending on its letter context. Thai and Spanish lie somewhat
in the middle between English and German on the one side and Russian on
the other side, indicating that the relation between their graphemes and their
pronunciation lies somewhat in between.

In general, the gain from context-dependent modeling in the grapheme based
cases turns out to be higher than when using phonemes. This is in line with
our comments on the suitability of graphemes as modeling units in Subsection
4.2.3 that already commented on the more complex relation between graphemes
and their acoustic manifestation than for phonemes. However, the decision tree
and the singleton questions used for the context-dependent models seem to be
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able to a certain degree to implicitly learn the rules for the relation between the
graphemes and pronunciation from the training data. The rules that were pre-
viously contained in the listing in the pronunciation dictionary are now encoded
in the cluster tree and the Gaussian mixture models.

For our experiments in Chapter 6 we also trained speech recognition systems on
the same languages that use phonemes as modelling unit instead of graphemes.
These systems use the same training data and the same training procedure as
the grapheme systems that we described in this section.

Figure 4.5 compares the performance of the grapheme based systems with that
of the phoneme based systems on the evaluation sets of the respective languages.
As one can see, except for Spanish, the phoneme based systems perform better
than the grapheme based systems. For English and Thai the drop in perfor-
mance is the largest. For English the reason in the large drops lies within the
fact, that though English uses an alphabet script, the pronunciation of English
has developed over time away from its written form. Therefore today’s English
shows a rather complex graphem-to-phoneme relation which makes grapheme
based speech recognition harder. Thai uses an abugida as a script. It therefore
is more difficult to build grapheme based recognition systems for it, since it con-
tains more graphemes than languages with an alphabetic script. Also, Thai has
some complex rules that map its writing to the pronunciation. Certain conso-
nants are either pronunced differently or are reversed in their order, depending
on the graphemic context. Spanish on the other hand is very well suited for
grapheme based ASR. Here, the grapheme based system even outperforms the
phoneme based system, showing that Spanish has a very simple correspondence
between its writing and its pronunciation.

Though the grapheme based systems often perform worse than the phoneme
based systems the drop is small enough, so that the performance of the result-
ing recognition systems is still good enough for real-world application. The real
benefit in grapheme based systems now lies within the fact that they do not
require any pronunciation dictionary. So, when creating a speech recognition
system for a new language, the process becomes much simpler and faster, be-
cause the time and cost intensive creation of the pronunication dicitionary is
not necessary any more.

In the following section we will improve the performance of the grapheme based
systems by considering the fact, that the knowledge that is encoded in the pro-
nunciation dictionary of a phoneme based system, now needs to be automatically
learned by the acoustic model of the recognition system.
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Figure 4.2: WER of the CI monolingual grapheme based ASR systems on their
training language

4.5 Flexible Decision Trees for Grapheme Based
ASR

As we have seen in the previous section the cluster tree used for tying the poly-
graphemes for context-dependent modeling plays an important role in the per-
formance of grapheme-based ASR systems, since it implicitly learns the relation
between the graphemes and their pronunciation, i.e. the acoustic manifestation
as measured by the microphone, which for phoneme based systems is contained
in the pronunciation dictionary.

Traditionally, as described in Chapter 3, the decision trees in phoneme based
speech recognition systems consists of several sub-trees—one tree for every pos-
sible center-phone for all polyphones. In that way it is not possible to share
parameters between polyphones with different center-phones. Since phonemes
show a close relationship to their pronunciation, this is sensible, since it can be
expected that the pronunciations of polyphones with different centerphones are



60 Graphemic Acoustic Models

 0

 10

 20

 30

 40

 50

dev eval

EN GE RU SP TH EN GE RU SP TH

15.6

17.3

13.5
14.7

35.7

39.3

22.9

14.1
13.4

14.0

Figure 4.3: WER of the CD monolingual graphemebased ASR systems on their
training language

so different from each other that no sharing of parameters is desirable. This
kind of manual intervention of keeping the models with differing center-phones
separate is necessary, because the entropy gain criterion used in growing the
polyphone decision is not optimal with respect to word error rate.

A similar role plays the use of phonetically motivated questions when growing
the decision tree. Its main purpose is to limit the search space for finding the
best partition of a node according to the entropy-gain criterion in the decision
tree in order to reduce the run-time of the clustering algorithm. At the same
time it also limits the set of possible partitions to a sensible set, and thus again
it avoids finding unsuitable trees that are optimal in term of entropy-gain but
not word error rate.

For grapheme based acoustic models the case is different. Here two effects,
especially in read and planned speech, are much more prominent than it is the
case when using phonemes instead:
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Figure 4.4: Relative Reduction in WER when going from context-independent
to context-dependent grapheme based models

a) The same grapheme might be pronounced in different ways depending on
its graphemic context.

b) Different graphemes might be pronounced the same way depending on the
graphemic context.

The traditional clustering procedure is able to deal with the first effect, but not
with the second effect. A modified tree clustering is needed in order to be able
to capture the ramifications of the second effect.

4.5.1 Flexible Cluster Trees

Similar effects as described above are encountered when recognizing casual
speech. In sloppy speech people do not differentiate phonemes as much as they
do in read speech. Different phonemes might be pronounced very similar.
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Figure 4.5: Comparison of the WER of the grapheme based ASR systems and
the phoneme based systems on the evaluation set of the respective language

[YS03] presented a new tree clustering approach that lifted the limitations im-
posed by the growing of separate decision trees for different phonemes with the
aim to address these effects in spontaneous speech. In contrast to the traditional
decision tree based state tying, the enhanced tree clustering allows flexible pa-
rameter sharing across phonemes. With the enhanced tree clustering one single
decision tree is constructed for all the sub-states of all phonemes. The cluster-
ing procedure starts with all polyphones at the root. The decision tree can ask
questions regarding the identity and phonetic properties of the center phoneme.

This procedure is also suited to address the problem of different graphemes
being pronounced similarly depending on the context, since it allows the sharing
of parameters across poly-graphemes with different center-grapheme [Mim04,
MSS04, SS04].

When performing this flexible tree clustering approach some design choices have
to be made, and some parameter settings have to be modified from the tra-
ditional approach in addition to the different clustering set-up. For the tradi-
tional clustering, a semi-continuous model for all polygraphemes is being trained
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whereas all the polygraphemes with the same center-grapheme share the same
codebook. Or in other words the semi-continuous grapheme models contain one
codebook for every sub-tree to be grown during the clustering process.

Since in the extreme case, the flexible cluster tree contains only one tree that is
being grown, it only contains one codebook that is trained on the training data
from all the polygraphemes. It thus needs to capture a much wider acoustic
variety, but is trained with much more training data. Therefore, the number
of Gaussian components in the Gaussian mixture model of the codebook needs
to be raised in order to train a good model for calculating the entropy gain
criterion.

Also, our experiments in [Mim04] and [MSS04] have shown that it is sub-optimal
to only grow one big tree for all sub-grapheme models. Instead it is better to
keep the models for the begin, middle, and end states of a grapheme separate.
Also, sometimes it can be beneficial to introduce another separation criterion,
in order to keep specific models apart for which one expects no benefit from the
sharing of parameters. For phonemes a separation into vowels and consonants is
sensible, since vowels and consonants are distinguish themselves notably in their
articulation. For graphemes this separation also seems reasonable. Especially in
the case of alphabets, where graphemes either represent vowels or consonants,
this separation is easily done. In the case of abugidas or syllabaries this kind
of separation is not that easily achieved, and impossible for abjads, since only
consonants are written in them.

Figure 4.6 shows the concept of a flexible tree for the sub-tree of the middle
states of the grapheme HMM models. In this case the sub-tree again consists of
two sub-trees for consonants and vowels. In comparison, the traditional way of
clustering separate trees for phonemes is depicted in Figure 4.7.

4.5.2 Experiments

In our experiments with flexible cluster trees on the monolingual grapheme based
ASR systems we always grew separate trees for the begin, middle, and end states
of the grapheme HMMs. However, we examined two separate set-ups—one with
one common tree for all polygraphemes, the other one with separate trees for
vowels and consonants as depicted in Figure 4.6

In order to find the optimal number of Gaussian components for the semi-
continuous model used for calculating the entropy gain, we empirically tested
a range of number of Gaussians on the development sets and then applied the
resulting number of parameters to the evaluation sets.
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Figure 4.6: Flexible cluster tree for the middle states of the grapheme HMM
models with two separate sub-trees for vowels and consonants

4.5.2.1 Optimizing the Codebook Size

Training the ASR systems required the training of a semi-continuous system
with one model per polygrapheme and either one codebook per begin, middle,
and end states of the grapheme HMMs—a total of three codebooks—, or with
one codebook per begin, middle, and end state and separated according to
whether the center-grapheme of the polygrapheme is a vowel or consonant—
thus a total of six codebooks. Since neither silence nor noises are modeled
context-dependently in our system, data assigned to them were not of relevance
for the training and clustering.

After training the semi-continuous models for every polygrapheme, the poly-
graphemes belonging to every codebook were clustered to a maximum of 3,000
models using the divisive clustering approach described in Chapter 3.

The context-dependent models obtained this way were trained with two iter-
ations of the training procedure described in Section 4.4.3 starting from the
forced alignments obtained from the context-independent models. Therefore,
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Figure 4.7: Traditional cluster tree with separate trees for the begin, middle,
and end states of the grapheme HMMs and separate trees for polygraphemes
with different center-graphemes

the models obtained that way can be directly compared to the models of the
monolingual recognizers with the traditional cluster tree from Section 4.4.5.1.

As discussed above, the number of Gaussian components in the Gaussian mix-
ture models of the codebooks needs to be enlarged in order to compensate for the
increase in training material and the fact that the codebooks are now assigned
to a much wider variety of polygraphemes. The resulting context-dependent
models then again used 32 Gaussian components per mixture.

Table 4.7 shows the word error rates of for different codebook sizes on the English
development set for both cases,growing only one tree for all polygraphemes
(Single Tree) in which all polygraphemes share one codebook and keeping the
models for polygraphemes separate according to whether the center-grapheme
is a vowel or consonant (V&C Tree).

When compared against the WER of 15.6% that the models with the tradi-
tional tree from Section 4.4.5.1 achieve, the single tree models were not able
to outperform the baseline. However, the models with separate trees for vow-
els and consonants show improvements over the baseline. As Table 4.7 shows,
the best performance on the English development set was reached with 1,536
Gaussian components for the semi-continuous models used for clustering the
polygraphemes and yielded a word error rate of 14.5%. This is a relative reduc-
tion in word error rate of 7.1% over the traditional tree.

4.5.3 Flexible Cluster Trees for All Languages

Using the experiences collected with the flexible cluster tree on the English de-
velopment, we also trained flexible cluster trees for the other four languages.
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Table 4.7: WERs for different codebook sizes for the semi-continuous models
used for clustering for English

#Gaussians Single Tree V&C Tree

32 16.3 15.7
256 15.8 15.0
512 16.9 15.0
768 18.4 15.5
1024 16.1 15.2
1280 16.4 15.2
1536 16.4 14.5
1792 16.1 15.6
2048 17.0 15.4
2304 16.0 15.2

This time we only grew separate trees for vowels and consonants as center-
graphemes of the polygraphemes. Table 4.8 shows the word error rates of the
resulting trees for different codebook sizes used during clustering for all lan-
guages on the development set of their respective language. As we can see for
English, German, and Russian using such a flexible cluster tree lead to improve-
ments over the regular tree, while for Spanish and Thai no improvements could
be achieved.

Figure 4.8 shows the performance of the traditional tree versus the V&C tree on
all five languages on the evaluation set using the tree with the best performance
on the respective development sets. Table 4.9 shows the relative reduction in
WER on the evaluation set of the respective language when using the flexible
tree that was best on its development set. For four of the five languages we can
see large gains in performance when applying the flexible cluster tree. We can
see that the biggest relative gain could be achieved for German with a reduction
in WER of 6.1% relative. Here the flexible cluster trees seems to capture the
implicit variations in pronouncing the German alphabet the best. For Spanish
we can see a slight reduction in word error rate on the development set, but on
the evaluation set the performance stays the same. So, the flexible cluster tree
does not give any benefits in this case, but also does not hurt the performance.

The results confirm our assumption that the cluster tree for the context-dependent
models is of high importance in grapheme based ASR. By using a flexible tree
it is possible to learn the knowledge normally encoded in the pronunciation
dictionary automatically on the training data.
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Table 4.8: WERs for different codebook sizes for the semi-continuous models
used for clustering V&C Trees for all languages

#Gaussians EN GE RU SP TH

regular tree 15.6 13.5 35.7 22.9 12.7

32 15.7 13.1 35.2 23.2 12.4
256 15.0 13.2 35.3 23.3 12.8
512 15.0 13.1 35.3 23.1 12.3
768 15.5 13.1 35.2 22.8 12.5
1024 15.2 13.1 35.2 23.1 12.7
1280 15.2 12.9 35.5 23.1 12.4
1536 14.5 13.2 35.4 23.0 12.4
1792 15.6 13.2 35.0 23.2 12.4
2048 15.4 13.0 35.1 23.0 12.8
2304 15.2 13.2 34.7 22.7 12.6

Table 4.9: Relative Reduction WER when using a flexible V&C tree instead of
the regular one on the development sets of the respective language

#Gaussians EN GE RU SP TH

rel. reduction in WER 2.3 6.1 2.3 0.0 2.9
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Chapter 5

Multilingual and Crosslingual
Graphemic Modelling

The experiments in the previous chapter were aimed at simplifying the creation
of an ASR system in a new language by eliminating the need for a phoneme based
pronunciation dictionary which is costly to create. By substituting graphemes
for phonemes as modeling units the creation of the pronunciation dictionary
became a trivial task. As discussed and shown in the previous chapter this
approach is feasible for a wide variety and the majority of languages in the
world.

However, the training of the grapheme based ASR systems still requires large
amounts of transcribed audio data for training their acoustic models, just as it
is needed for phoneme based ASR systems. The task of transcribing a novel
language demands the use of native-speakers or at least very fluent-speakers
of the language involved. Furthermore, the data that needs to be collected,
has to be spoken by a wide variety of native speakers as well. For languages
with a large group of speakers, audio resources might be readily available, e.g.
in the form of radio and TV broadcasts, publications on the Internet, or in
archives that include audio recordings. But for less resourced languages with
only few speakers or little economic strengths this is not the case. Here, the
audio recordings that can be transcribed and then be used for training, first
need to be recorded. Since in practice it is impossible to find a sufficient number
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of speakers of the language that are willing to donate their speech for system
development at the site at which the ASR system is being trained, this means
that collection has to be done in a field expedition style of action in the countries
and regions in which the language is spoken. Recent research has worked on
using technology in order to help bridging the gap between language technology
experts and native speakers of under-ressourced languages. The project Speech
Processing — Interactive Creation and Evaluation (SPICE) provides interactive
tools that enable native speakers, untrained in language technology, to develop
speech processing models. The users can collect and upload audio files, and
in an interactive fashion compose and rapidly boot-strap the components for
speech recognition and speech synthesis systems[SBB+07].

Thus, collecting and annotating acoustic training data for acoustic model train-
ing in the traditional way for all languages in the world, especially for the
under-resourced and less prevalent ones, is an impossible task for which the
necessary resources cannot be allocated.

One way to circumvent this problem is the attempt to train language indepen-
dent acoustic models on the available training data from multiple languages
and to either directly apply them to a new language or to port them to a new
language using methods that require only little data in the target language
[WKAM94, Köh98, SW98c].

5.1 Related Work

Work in porting acoustic models to new languages is closely related with the
field of multilingual speech recognition. In 5.2 we will describe in more detail the
view of multilingual speech recognition that we adopt in this work by following
[SW01].

In multilingual speech recognition, which is also called language independent
ASR, acoustic models are trained by sharing the training data from many lan-
guages to train one unified set of models. Different approaches to finding such
a unified model set exist. [Sch00b] classifies the approaches into:

Heuristic combinations: Either phonetic or articulatory classification schemes
[DA92, CDG+97, WRN+98, WBNS97] or reference schemes such as IPA
[Köh98, Köh99, SW98a] and Sampa [AAB+96, AAB+97, USN98] are used
for finding common models.

Data-drive model combination: Different criteria are used to identify phonemes
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in different languages that can share the same model: confusion matri-
ces [ADB93, PD94, BI99], combinations of different distance measures
[BGM97, MPF99], likelihood distances [AD97, Köh99], and a-posteriori
distances [CAGADL97]

Hierarchical Combination of heuristics and data-driven methods: First,
the phonemes are grouped into classes by a heuristic, then a data-driven
clustering is performed[Köh99, Köh96, WBNS97, CDG+97, WRN+98,
SW98c, SW98b].

[Sch00b] gives a comprehensive overview over the different combination methods
and ways to find a common model set.

Once a common phoneme set has been found it is usually trained on a num-
ber of languages. In Section 5.2 we describe the methods ML-Mix and ML-
Tag [SW01, SW98a] which we have used for our experiments. The resulting
language-independent acoustic models are then able to recognize speech from
all the training languages. ML-Mix can also be applied to new languages not
seen during training. When it is applied to a new language the models have to
be mapped to the phonemes in the target language. This task can be achieved
the same way that the common model set for the training languages was found.
If phonemes in the target language exist that are not covered by the multilingual
model, they have to be mapped to the closest covered phoneme.

In this chapter we examine the case where either no or only very little tran-
scribed acoustic training material is available in the target language. Other
works deal with the case that plenty, but untranscribed audio material in either
the target language or target domain is available. If already an initial model
exists, which is then refined on untranscribed training material, the terms unsu-
pervised training [ZSCB98, KW99, Ram05, GN08] and unsupervised adaptation
are used [WPG96]. Training and adaptation is performed by first using the
existing model to recognize the untranscribed training or adaptation data, and
then to train on that data by taking the automatic transcription as reference
transcription. Different methods were introduced by the before-mentioned pub-
lications in order to carefully select suitable portions of the training material.
This selection is necessary, since the automatic transcriptions contain errors and
thus might taint the models when trained on them. [Ram05] found that, when
already a good, initial model exists, i.e. trained on 200h of transcribed speech,
a multifold of untranscribed data is necessary in order to see significant gains
in performance.

Also, research has begun to address the case in which only untranscribed audio
data in a new language is available [PG08]. This work is however still at its
beginning and only exploratory experiments have been conducted so far.
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Also, some research has addressed the scenario in which acoustic models that
are based on phonemes are ported to grapheme based models. [Z̆KD+05, Z̆K06]
used a Slovenian phoneme model and a linear combination of phonemes in that
model to initialize grapheme models for Slovenian. After initialization regular
training was performed on large amounts of available data.

5.2 Multilingual and Language Independent Acous-
tic Modeling

When using the term multilingual Automatic Speech Recognition (ML-ASR) we
follow [SW01] which defines multilingual recognition systems as systems that
are capable of simultaneously recognizing languages which have been presented
during training. These multilingual models are often not just a simple com-
bination of the language dependent models of several monolingual recognizers
but try to capture synergetic effects by sharing models for several languages so
that the combination of models is smaller in size than the sum of the individual
models and so that the single models receive more training data than in their
original languages.

The acoustic model obtained from this kind of multilingual models can be used
for porting ASR systems to new languages. Here the hope is that, if sufficient
training material from a wide variety of languages is seen during training, the
acoustic manifestation of a new language is already covered by the multilingual
model so that no new acoustic model needs to be trained. In the optimal case
the multilingual acoustic model would turn into a language independent model
that can recognize any language in the world. This goal has of course not been
reached yet, and it can be doubted that it will ever be achieved with the same
level of performance as specialized and highly optimized monolingual models.

However, even if the multilingual language model does not cover the new lan-
guage completely, and the acoustics learned by the multilingual model distin-
guishes itself from the acoustics of a new language, one can still use it as a
starting point for the fast training of an acoustic model for that new language,
especially if only a very limited amount of training data in the target language
is available [Sch00b].

For our experiments in multilingual modeling we used two techniques from
[SW01]: ML-Mix and ML-Tag. For our experiments in cross-lingual acoustic
modeling we only used the technique ML-Mix.
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Figure 5.1: Language mixed acoustic modeling vs. language dependent, from
[SW01]

5.2.1 ML-Mix

In the method ML-Mix, models—in our case either sub-phonemes or sub-graphemes—
that are common to one language share the same model and are treated as iden-
tical in the rest of the system, e.g. in the cluster tree for the context-dependent
models. All information about which language a model originally belonged to,
is discarded in the system. Instead, models common to several languages share
all training data from that languages.

Figure 5.1 illustrates this concept for the languages Chinese, English, German,
and Japanese and the model of the middle state of the phoneme /M/. For the
monolingual case depicted on the right side of the figure, every language has
its own model for that HMM state of /M/. Only training material from the
language that that model belongs to is used to train it. The left side shows
the multilingual case. Here the training material from all languages is used to
train one single model that can be used for all the languages that the training
material comes from.

5.2.2 ML-Tag

While ML-Mix discards all information on which language the training data
belongs to that is used to estimate the multilingual model, ML-Tag preserves
some language information. While in ML-Tag for codebooks, that is the Gaus-
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sian components of a GMM model, the same sharing of the parameters and
training material takes place as for ML-Mix, the mixture weights are trained
language dependently. So, every model in every language gets its own model.
But models in every language that refer to the same phoneme share the same
set of Gaussian densities.

For context-dependent models, the polyphone clustering tree is additionally al-
lowed to ask for the identity of the language to which the polyphone belongs
that it models. Therefore, if the entropy gain decision criteria deems it appro-
priate, the codebooks of the polyphone models can be separated by language as
well, if they are too dissimilar.

5.3 Multilingual Grapheme Based Speech Recog-
nition Using ML-Mix and ML-Tag

Multilingual models are based on the fact, that phonemes in different languages
are pronounced the same, or at least very similar. For graphemes this assump-
tion clearly does not hold. Different graphemes in different languages can be
pronounced very differently. However, especially in the case of consonants, they
can also be very similar. However, we can expect that a multilingual model
based on graphemes will not perform as well as a multilingual model based on
phonemes. But in the case, where we cannot use phonemes as modelling units,
due to a lack of pronunications dictionaries, the question remains whether mul-
tilingual grapheme models can still be utilized to recognize several languages
with only one acoustic model, and whether it is possible to use them as a base
for creating an acoustic model in a new language.

The use of Gaussian mixture models as emission probabilities of the HMM states
should make it possible for one model to learn the different acoustic manifesta-
tions of the graphemes in the different languages. Further, the use of context-
dependent models should also make it possible for the context-dependent, mul-
tilingual models to learn the different pronunciations of the graphemes in the
different languages.

We now trained two multilingual models, one using ML-Mix and one using ML-
Tag. The ML-Mix model will be later used to apply it to a new language, making
use of the fact that the identity of the training languages is of no relevance to
the models. The ML-Tag model is not suited for application to a new language,
since it uses language dependent models which cannot be applied to a new
language.
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In our experimental set up we assume that the languages English, Russian, and
Spanish are well known languages for which large amounts of training material
are available. German and Thai receive the role of languages for which we want
to create new acoustic models and for which only a small adaptation set of
transcribed data is available.

For creating the ML-Mix model, we first trained a context-independent ML-
Mix recognizer (ML3-Mix-CI ) on the languages that we assume as given. Then
a polygrapheme decision tree with three thousand models was clustered and
trained on these languages (ML3-Mix-CD). The same was also done for th ML-
Tag model, first training an context-independent model (ML3-Tag-CI ) and then
clustering a context-dependent model (ML3-Tag-CD).

Just as it was done in [SW01] for phonemes, we allow the sharing of training
data and the creation of a global model set, in our case based on the identity of
the grapheme, not the identity of the phoneme, in different languages.

Since Russian uses Cyrillic script instead of a Latin based one, as the other
two languages involved in the ML-Mix model do, the Cyrillic graphemes were
mapped to a romanized representation in order to allow data sharing with the
other languages. Table 5.1 shows this mapping. Since the ASR systems for
the other three languages use lowercase representations for their graphemes,
all Russian graphemes that are composed of more than one letter or contain
an uppercase letter are only common to Russian but not the other languages,
while the other Russian graphemes are shared with the other languages. Since
Russian belongs to the pool of languages that we assume to be well known and
well studied this extra knowledge of a suitable romanization is permissible.

Figure 5.2 gives the word error rates of the resulting context-independent mod-
els on the dev and eval sets of the individual languages that were used for
training, Figure 5.3 the results for the context-dependent models. One can see
from the results that for the languages English and Russian there is a clearly
visible performance degradation compared to the monolingual recognizers. The
degradation for English is larger than for Russian which is to be expected, since
English has a more complex grapheme-to-phoneme relation than Russian. Also,
Russian contains many graphemes that are not common to the other two lan-
guages, so that their models are not broadened by the training material comming
from the other languages. One needs to consider that the multilingual model
uses a total of three thousand models for recognizing all languages while the
monolingual recognizers uses three thousand models per language, that is a to-
tal of nine thousand models. So, as a contrastive experiment, we also clustered
an ML3-Mix model with nine thousand models. The resulting WERs of these
models are depicted in Figure 5.4. As we can see, the performance improves for
all languages, but still lacks behind the monolingual models. As to be expected
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Table 5.1: The Cyrillic graphemes and their romanized form
Graphemes Romanized Graphemes Romanized

a a r r
b b s s
v w t t
g g u u
d d f f
e ye h h
ë yo c tS
¼ jscH q scH
z z x sch
i i w schTsch
$i j Ä Q
k k y i2
l l ~ ˜
m m ® e
n n » yu
o o Â ya
p p

from the fact that language information is preserved in the model, the perfor-
mance of the ML3-Tag models on their training languages is better than that
of the ML3-Mix models. Figure 5.5 shows the word error rates of the context-
independent ML3-Tag model on its training languages, while Figure 5.6 shows
the performance of the context-dependent models with three thousand models.
Just as for the ML3-Mix model we also trained a context-dependent ML3-Tag
model with nine thousand models. The results of this system are plotted in
Figure 5.7.

As we can see the performance of the ML3-Tag models is in general higher
than that of the ML3-Mix model. Also, the context-dependent model with
nine thousand models outperforms that with three thousand models. Table 5.2
summarizes the results and compares the different multilingual models against
the performance of the monolingual recognizers on the three languages.
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Figure 5.4: WER of the CD ML3-Mix graphemebased ASR systems on their
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Table 5.2: WERs of the different multilingual models in comparison to the
monolingual models

System EN RU SP
dev eval dev eval dev eval

CI
monolingual 54.2% 53.5% 51.9% 55.8% 44.3% 31.4%
ML-Mix 74.2% 70.8% 61.5% 66.2% 55.5% 41.5%
ML-Tag 64.0% 62.8% 58.3% 61.9% 49.2% 35.8%

CD
monolingual 15.6% 17.3% 35.7% 39.3% 22.9% 14.1%
ML-Mix 3000 21.8% 24.1% 39.5% 41.4% 25.3% 16.3%
ML-Mix 9000 18.4% 20.9% 37.9% 39.9% 24.2% 15.8%
ML-Tag 3000 19.1% 19.2% 37.1% 40.3% 25.4% 16.2%
ML-Tag 9000 16.7% 18.5% 36.3% 38.9% 24.6% 15.2%
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5.4 Porting from a Grapheme Based ML-Mix
Model

When applying multilingual grapheme based ASR systems across languages
one of the problems is that, unlike with phonemes, the overlap between the
graphemes of the multilingual system and the target language can vary greatly—
from a large overlap to no overlap at all. In the former case the multilingual
models can be applied to the target language based on the grapheme identity.
In the latter case this is not possible. For this case we experimented with data
driven mapping methods that only require a minimal amount of training data
in the target language.

Starting from the multilingual model trained on the languages English, Russian,
and Spanish from the previous section we examined two basic porting scenarios.
For the first scenario we investigated porting the multilingual model to German
whose graphemes have a very large overlap with the multilingual model. For
this scenario we worked with grapheme identity based mapping of the models as
well as with data driven methods. In the second scenario we investigated porting
our multilingual model to Thai whose graphemes do not have any overlap at all.
Here, only a data driven mapping can be used to map the multilingual models
to Thai.

5.4.1 Influence of the Multilingual LDA Transformation

In [SW00] it was shown for phoneme based models that an LDA matrix that
has been trained on many languages performs either equally well or only slightly
worse than an LDA matrix exclusively trained on data from the test language.
In order to verify this result for grapheme based models the monolingual ASR
systems for the languages in the training set of the ML3-Mix models—English,
Russian, Spanish—as well as the systems for the languages to which we want
to port to—German and Thai—were retrained, this time using the LDA matrix
from the ML3-Mix models. The re-training was always performed on the full
training set.

Figure 5.8 compares the performance of the CI monolingual models with the
monolingual LDA of the respective language vs. the performance of the models
trained with the multilingual LDA. Figure 5.9 does the same for the context-
dependent models. In general, the same behavior for the grapheme based sys-
tems as for the phoneme based systems in [SW00]—that is no or only a slight
degradation—can be observed. In many cases, e.g. for the Spanish, Russian,
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and German context-dependent models on the evaluation set, the multilingual
LDA transform actually slightly outperforms the monolingual LDA transform.

We can also see that when using the LDA matrix trained on English, Russian,
and Spanish for the German ASR system, the recognition performance improves
slightly, while for Thai it stays essentially the same. This means that the multi-
lingual LDA matrix is suited for porting grapheme based ASR systems to new
languages. We can expect that the transformation learned on languages other
than the one tested on does not introduce any degradation in performance over
a purlely monolingual LDA transform trained on large amounts of data in the
test language.
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Figure 5.8: WER of the CI monolingual graphemebased ASR systems with
monolingual LDA vs. multilingual LDA
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Figure 5.9: WER of the CD monolingual graphemebased ASR systems with
monolingual LDA vs. multilingual LDA

5.4.2 Grapheme Identity Driven Cross Language Transfer
of ML-Mix to German

The graphemes of the combined alphabets of the three languages that were used
to train the ML3-Mix model in the previous subsection—the Russian alphabet
in its romanized form—cover almost all graphemes in the German alphabet.
Thus it is easy to apply the ML3-Mix model directly to German, by mapping
the graphemes from the ML3-Mix models to their identic, German counterpart.
Only the four German graphemes ä, ö, ü, and ß are not covered by the graphemes
in the ML3-Mix model. For them, a manual mapping to the graphemes of the
ML3-Mix model has to be found. We decided to map these four graphemes to
their canonic grapheme sequence when using only the English alphabet—‘ae’,
‘oe’, ‘ue’, and ‘ss’.

Using this mapping we recognized the German test data with the ML3-Mix
model. Since we can expect the pronunciation of different graphemes to be
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quite different among the various languages that use them, one can expect that
the ML3-Mix model only fit poorly to the German data and thus give a very
low performance for this approach.

Figure 5.10 compares the performance of the ML3-Mix model on the German
test data with the performance of the monolingual German recognizer that has
been trained on the German training data. Indeed the performance suffers dras-
tically when using the multilingual model that has not seen any German training
data. When porting the context-independent ML3-Mix models to German with
the identity driven approach, the WER increases by 136% relative on the dev
set and 131% on the eval set. For the context-dependent models the WER rises
even more by 485% relative on the dev set and 437% relative on the eval set.
The, in comparison to the context-independent models, almost four times higher
loss in performance for the context-dependent models, suggests that, besides the
mismatch in pronunciation of the same graphemes in different languages, one
of the major sources for the WER increase is the multilingual polygrapheme
decision tree that only seems to poorly fit the German test data.

Also, one should keep in mind that this approach can only be applied for porting
the ML3-Mix models to German but not to Thai, since the ML3-Mix languages
and Thai do not have a single grapheme in common. Here, an extensive, manual
mapping would be necessary which we assume as not feasible for our scenario,
since it requires extensive phonetic and linguistic knowledge in the languages
in the ML3-Mix model and for Thai. We therefore examined two data-driven
approaches in Section 5.6 that can be applied without any phonetic or linguistic
knowledge.

5.4.3 EM Adaptation

As we have seen in the previous subsection, directly applying the ML3-Mix
models to German only gives unsatisfactory results. Some sort of adaptation
of the ML3-Mix models on as little adaptation data as possible is necessary in
order to improve the performance of the cross-language transfer.

For our experiments we assumed as given a small amount of available German
adaptation data and refined the ML3-Mix model with it. Since this adaptation
data should be as easy as possible to collect it only contains few material in terms
of length, but also only from one single speaker. Normally, training data should
contain as many speakers as possible in order to train speaker independent
recognition systems. But collecting—even small amounts of—data from many
speakers is rather costly and should be avoided for our purposes.
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Figure 5.10: WER of the CD monolingual German graphemebased ASR systems
on German in comparison with the ML3-Mix models and the EM adapted ML3-
Mix models

In order to adapt the ML3-Mix models with the available fifteen minutes of
German data we applied two iterations of EM training to the ML3-Mix-CI model
and one iteration of EM training to the ML3-Mix-CD model. The resulting word
error rates on the German development and evaluation set are shown in Figure
5.10 in comparison to the monolingual models and the unadapted ML3-Mix
models. One can see that on the evaluation set the EM adaptation reduces the
WERs of the models significantly by 23.8% relative for the context-independent
models and 39.4% relative for the context-dependent models compared to the
unadapted models.

Even though EM adaptation on the context-dependent models gives higher gains
than for the context-independent models, the relative loss in performance mea-
sured against the monolingual models is still higher for the context-dependent
models—226%—than for the context-independent models—76% relative. This
again indicates that the ML3-Mix cluster tree is only ill fitted for the German
data and needs to be adapted in addition to the emission probabilities of the
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HMM state which were improved by the EM training.

5.4.4 Influence of the Polypgrapheme Decision Tree on
Porting Performance

As described above the unbalanced loss in performance between context-independent
and context-dependent ML3-Mix models—regardless whether EM adapted or
not—hints at an inappropriateness of the ML3-Mix model cluster tree for the
German data.

In order to exactly determine the influence of the polygrapheme decision tree
on the porting performance, we retrained the monolingual, context-dependent
ASR systems, this time using the multilingual LDA matrix and the multilingual
polygrapheme decision tree from the ML3-Mix system. Should the German
recognizer show a large drop in performance over the recognizer using a cluster
tree trained on monolingual data, this can this time only be due to the cluster
tree, and not e.g. due to the smaller amount of training material, since the
cluster tree is the only component that has been exchanged compared to the
systems from Section 5.4.1.

Figure 5.11 compares the word error rates of the resulting systems against the
systems that use their monolingual tree. Table 5.3 shows the relative increase in
word error rate for the systems with the ML3-Mix tree. For English, Russian,
and Spanish there is only a moderate relative increase in WER on the develop-
ment set—between 5.8% for English and 8.6% for Spanish. On the evaluation set
the increase for these three language is likewise moderate. Only Spanish sticks
somewhat out with its somewhat higher relative increase of 15.6%. However, for
German the increase is much higher than for the other languages. With 35.6%
on the development set and 26.6% on the evaluation set it is roughly double
that of the other three languages.

This disproportionally high increase is solely due to the multilingual poly-
grapheme decision tree which was trained on English, Russian, and Spanish
and which only poorly fits the German data. Thus, adapting the ML3-Mix
cluster tree to German using the available German adaptation data bears a sig-
nificant potential for improving the performance when applying the ML3-Mix
models to the German data.
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Figure 5.11: WER of the grapheme based ASR systems when using their mono-
lingual cluster trees vs. the ML3-Mix cluster tree

5.5 Adapting the Polygrapheme Decision Tree

As seen in the previous section, the polygrapheme decision tree of the ML3-Mix
recognizer only poorly fits the German data. This can be accounted to three
basic problems:

• Polygraphemes frequently occurring in German might not be modeled
detailed enough in the ML3-Mix tree in order to give good performance,
because they are not observed often enough in the training data of the
ML3-Mix models.

• Models in the ML3-Mix tree might exist that are too detailed for the
German data, because they occur frequently in the ML3-Mix training
data but not in the German data thus giving only a poor performance.

• The partition of the polygraphemes in the decision tree is not suited for
Germans. Polygraphemes whose pronunciation is contradictory and not
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Table 5.3: Relative increase in WER when using the ML3-Mix tree instead of
the monolingual tree

Language EN RU SP GE

dev 5.8% 6.2% 8.6% 35.6%
eval 1.1% 6.5% 15.6% 26.6%

suited to be modelled by a common probability distribution are joined in
one model.

In Subsection 5.4.3 we used the 15 minutes of available German adaptation data
to adapt the GMMs of the output probabilities of the HMM states. We now
used the same adaptation data to also adapt the polygrapheme decision tree.
For this we first apply the technique Polyphone Decision Tree Specialization
(PDTS) [Sch00b] with some modifications and then improved it by combining
it with a decision tree pruning scheme [Wol99].

5.5.1 PDTS

In order to improve the porting performance, we adapted the multilingual poly-
grapheme decision tree using the 15 minutes of German data. [Sch00b] intro-
duced Polyhone Decision Tree Specialization (PDTS) as an approach for adapt-
ing a multilingual polyphone tree to new languages. PDTS uses the fact that
some of the leafs in the multilingual decision tree are not specialized enough for
the new language. To do this, the following steps are performed:

• Contexts that are not seen in the target language, are completely removed
from the tree.

• The clustering procedure is restarted on the adaptation material in the
new language, leading to new, finer grained models that fit the target
language better.

[Sch00b] does not describe the way, the new found models are being trained.
[WS03] reports on using MAP to train the models, but also gives no further
details on the training procedure for the new models.

For our experiments using PDTS we followed our own approach to initialize the
newly clustered models [Stü08b] before applying the EM training for adaptation
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to German. This approach consists of two parts. In the first part we trained
the models in the newly clustered tree on English, Russian, and Spanish using
the LDA Matrix from the ML3-Mix models using the following procedure:

• Random samples from the English, Russian, and Spanish data were ex-
tracted using the existing forced alignments.

• The models were initialized using k-means.

• The standard training procedure as for the ML3-Mix model was per-
formed.

The second part consists of initializing the models only on the German adapta-
tion data by:

• Obtaining forced alignments on the German adaptation data using the
EM adapted ML3-Mix model from Section 5.4.3

• Extracting random samples from the German adaptation data

• Performing k-means in order to initialize the codebooks of the newly found
models

It can now happen that a model in the specialized decision tree, that has been
trained on the English, Russian, and Spanish data and was refined on German,
has not seen enough training data from English, Spanish, and Russian because
its context was not observed often enough. Therefore models that saw fewer
training material on English, Russian, and Spanish than on German were sub-
stituted with the models that were estimated by the k-means algorithm on the
German adaptation data.

After this substitution, the models in the refined tree are initialized and we
applied again one iteration of EM training on the German adaptation data as
in Section 5.4.3.

When applying this procedure, the resulting system achieves a word error rate
of 46.9% on the German dev data. Over the baseline without PDTS this is an
improvement of 1.3% relative. As we will see in the next subsection, applying
our modified version of PDTS, improves the WER even further.
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5.5.2 Modified PDTS

In order to improve the performance of the PDTS we first applied a pruning
scheme to the decision tree before applying PDTS. The pruning scheme removes
leaves in the decision tree that are underrepresented in the German adaptation
data, similar to the procedure described in [Wol99]. In the PDTS as described
so far, only leaves are removed from the tree that were not observed at all in
the German adaptation data. We now loosened that constraint by removing
leaves that have been see fewer times than a certain threshold. In that way it
is possible to trim sub-trees that are too specialized for German back to a level
that has a grade of detail that is appropriate for German. Depending on the
amount of adaptation data available it can also make sense to trim back the tree
even further, leading to intermediate models that are coarser and more general
than actually necessary. But then the following restart of the cluster procedure
has the possibility to refine these coarser models again leading to a partition
of the polygraphemes that is different from the one in the original ML3-Mix
tree and that is more suitable for the distribution of polygraphemes in German
speech and their relation to their underlying pronunciation.

In order to perform the pruning of under-represented models in the ML3-Mix
tree, we needed an estimate for the frequency with which the sub-polygraphemes
covered by the models occur. One possibility is to calculate forced alignments on
the adaptation data and then do a framewise count of the occurrences. However,
we opted for a different procedure that only uses the text data of the adaptation
data without a frame wise assignment of the HMM states to the adaptation
data. The motivation behind that is the fact that we do not want to rely on the
rather bad forced alignment of the adaptation data that can be expected even
from the EM adapted ML3-Mix models. But it is the best model that could
be used for obtaining the forced alignments. The second reason is that the tree
pruning scheme that is solely based on text material, can even be performed if
no acoustic adaptation data were available.

So, we counted the occurrences of polygraphemes in the transcriptions of the
adaptation material and determined the leave in the decision tree to which each
polygrapheme belongs. In that way one gets a rough estimate on how much
training data a model in the decision tree receives. The pruning was done in an
iterative way:

• Determine the leave in the tree with the lowest count in the adaptation
material

• Cut its trunk from the tree

• Distribute the polygraphemes that it covered over the remaining tree
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Table 5.4: WER of naive adaptation, PDTS, and modified PDTS with varying
pruning thresholds on GE dev and eval

Method Threshold dev eval

— — 47.5 47.9

PDTS — 46.9 —

mod. PDTS 5 47.1 —
10 47.5 —
15 47.2 –
20 46.1 —
25 45.9 —
30 45.8 46.2
35 46.9 —
40 48.3 —
45 47.9 —
50 47.8 —

• Iterate until the leave with the lowest mincount reaches a predetermined
threshold

We determined the optimal count threshold empirically by trying out a series
of thresholds on the German development set.

Pruning the ML3-Mix tree was followed by applying PDTS to it, as described
in the previous section, and the new tree and its models were trained as before.

The results of the complete, modified PDTS for different pruning thresholds
are shown in Table 5.4. They are compared against the case of the traditional
PDTS and no PDTS. As the table shows, the best performance is reached with
the modified PDTS, using a pruning threshold of 30. With this set-up the
WER drops to 45.8% on the development set. On the evaluation set this leads
to a WER of 46.2%, a relative reduction of 3.5% compared to the case of no
adaptation of the decision tree.

5.5.3 Influence of Adaptation Data Size

In order to see whether and how the proposed method scales to larger adapta-
tion set sizes, we repeated the experiments with more adaptation data. So, in
addition to the fifteen minutes of adaptation data, we also ported the context-
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Table 5.5: WER on the German dev and eval sets, when porting the ML3-Mix
models using identity-driven cross-language transfer and modified PDTS

Adaptation data dev eval

15 min 45.8 46.2
30 min 30.2 34.6
60 min 28.0 30.9
90 min 25.1 25.3
90 min + mod.PDTS 21.7 23.6

dependent ML3-Mix models using thirty, sixty, and ninety minutes of adaptation
data.

For the case of ninety minutes of adaptation data we also used the modified
polyphone decision tree specialization in order to adapt the context-dependent
models. The resulting word error rates are depicted in Table 5.5.

As one can see, with additional training data the word error rates start to drop
further, reaching 21.7% on the development set and 23.6% on the evaluation set
when using 90 minutes of adaptation data and modified PDTS.

5.6 Data Driven Model Mapping for Cross-Language
Transfer

While for phonemes the assumption that the same phonemes in different lan-
guages have a very similar acoustic manifestation is a reasonable one, for gra-
phemes this assumption clearly does not hold for all cases. The performance of
the ML3-Mix models suffers from the mismatch of the pronunciation of the same
grapheme in different languages. By training the models for the graphemes on
the data from all languages, it is to a certain degree possible for the models to
learn the different pronunciations of the graphemes in the different languages.
However, as seen above, when applying the models to a new language, the ML3-
Mix models often only poorly fit the new language.

Parts of the relation between the graphemes of a language and their pronunci-
ation is captured in the rules learned by the polygrapheme-cluster tree. In the
previous section we have shown that adapting the tree using modified PDTS
can compensate for some of the mismatch that occurs when the cluster tree
is learned on languages different from the target language. However, modi-
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fied PDTS can only compensate for mismatches that occur from the graphemic
context of the polygrapheme models. It cannot compensate for mismatches
that originate from the fact that the center grapheme of a polygrapheme has
a different pronunciation in the target language than learned from the training
languages. Here, the underlying problem originates from the grapheme identity
based mapping that we apply for the mapping of the ML3-Mix models to the
new language.

Another problem arises if there is not a sufficient overlap between the graphemes
in the ML-Mix model and the target language. In that case a grapheme identity
driven mapping cannot be applied to the ML-Mix model to the new language.
For example, it is not possible to apply our ML3-Mix model to the Thai data
based on the grapheme identities, since Thai uses a completely different script
than the ML3-Mix model. For the Cyrillic graphemes in the Russian recognizer
we used a romanization. That is permissible, since in our setup Russian takes
the role of a well studied language. However, Thai in our experiments takes
the role of a new, previously unseen language, about which only very little
knowledge is available. Thus, it is not permissible to assume a romanization of
the Thai script as given. Here, a different way than grapheme identity based
mapping for applying the ML-3Mix model to Thai has to be found.

Therefore, we have examined the use of two kinds of data driven mappings
between the multilingual models and the models in the target language. We
work under the assumption that permutations between the pronunciations of
the graphemes in different languages can happen, which can be detected in an
automatic way. Since we intended to perform the detection of theses permu-
tations in a data-driven way we utilized the adaptation data assumed to be
available in the target language.

The first method, based on model distances, utilizes auxiliary Gaussian models
for the different graphemes in the multilingual recognizer and in the target
language. It relies on the existence of a forced alignment of the adaptation
data. For German as the target language, we can obtain such an alignment
from the identity-driven cross-language transfer. For Thai this is not possible.
Here we assume that we have a manual alignment given that identifies the start
and end times of the Thai graphemes in the audio signal. To simulate such an
alignment we use the forced alignment from the full monolingual Thai recognizer
trained in Section 4.4.

However, such a manual mapping is difficult to obtain, much more difficult than
for phonemes who have a closer relationship to the acoustic signal. Therefore,
in our second approach we do not assume such an alignment as given. Instead
we use the fact that we know the number of graphemes in the sentences of the
adaptation data and that we want to find a one-to-one mapping of the graphemes
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in the multilingual model and the Thai model. We then find the mapping of the
multilingual models to the Thai models with the help of a Viterbi path through
an HMM that offers all multilingual graphemes as alternatives.

5.6.1 Model Distance Based Mapping

The general procedure in this approach is to first train auxillary models in
the target language and for the ML-Mix recognizer, and then to establish a
mapping between the members of the two sets of auxiliary models using model
based distance measures. We then used the resulting mapping to apply the
ML3-Mix model to the target language and perform the same steps as for the
grapheme identity driven mapping, that is EM adaptation and modified PDTS.

The mapping between the target models and the multilingual models can happen
at two levels. First, one can try to establish a mapping between the graphemes
of the target language and the multilingual recognizer. From that the sub-
grapheme models of the ML3-Mix model can be mapped accordingly by taking
over the grapheme mapping for the sub-grapheme models. Second, one can try
to establish a data driven mapping directly between the subgrapheme models.
In the first case one needs to train an auxiliary model for every grapheme in
the target language, and one for every grapheme in the ML-Mix model. In the
second case the auxiliary model needs to be trained for every subgrapheme in
the ML-Mix model and the target language.

For the first case, that is a grapheme level mapping, we assume that it is rea-
sonable to obtain a manual segmentation of the small amount of adaptation
data in the target language. A manual segmentation of the adaptation data on
a sub-grapheme level is however not reasonable to assume. Therefore, in order
to be able to establish the data driven mapping on the subgrapheme level, one
needs to have a reasonably good, automatic alignment. For Thai this is not the
case, since up to here we have not been able to port the ML3-Mix model to
Thai. For German, however, we can use the alignment obtained from the EM
adapted system in Subsection 5.4.3.

When establishing a mapping on the subgrapheme level, it is only possible to
apply the context independent ML3-Mix models to the target language, since
the mapping of the sub-graphemic models does not give a rule for transferring
the grapheme decision tree for the context dependent ML3-Mix model. The
reason for that is the fact, that the singelton questions in the cluster tree ask
for the identity of the graphemes in the context of the polygrapheme, not for
the identity of the sub-graphemes. From the mapping of the sub-graphemes it is
not possible to obtain a unique mapping on the grapheme level, since different
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sub-grapheme models of the same grapheme can potentially be mapped to sub-
grapheme models that belong to different graphemes. Thus, it is not clear which
grapheme to choose as the target.

But when establishing a mapping at the grapheme level, it is easily possible to
apply the context dependent ML3-Mix model to the target language. Now the
identities of the graphemes in the singleton questions of the cluster tree can be
mapped to respective identities in the target language, thus allowing to transfer
the ML3-Mix-CD grapheme decision tree to the target language.

5.6.1.1 Auxiliary Models

In order to calculate the distances between either the grapheme or the sub-
grapheme models, we trained auxiliary models in the respective target language
and for the ML3-Mix models. In contrast to the GMMs of the full models
each model in the auxiliary model only has one Gaussian component per model.
There are two reasons for choosing only one Gaussian density instead of a full
grown GMM. First, the model resulting from that will be more robust given
the rather limited amount of training data in the target language. But since
we are not interested in recognition but only identifying models that seem sim-
ilar, the information from the single Gaussian component should be sufficient
for that task. Second, as we will see, most distance measures between Gaus-
sian distributions are only defined for single Gaussian distributions, but not for
Gaussian Mixture Models. The distance measures would then have to be ex-
tended to GMMs. It may however been doubted whether the known extensions
for GMMs are well suited for describing the similarity between models.

For the ML3-Mix model we trained one auxiliary model on the subgrapheme
level and one on the grapheme level. The necessary alignments of the training
data came from the forced alignments obtained with the best ML3-Mix model.

For German we trained an auxiliary model on the subgrapheme level and on
the grapheme level. For training the models on the grapheme level, the training
data alignment were supposed to be manual. We simulated this by taking the
forced alignment from the best monolingual German system from Section 4.4.
For training the auxiliary model on the subgrapheme level we used the forced
alignments obtained from the EM ML3-Mix adapted system from Subsection
5.4.3.

For the reasons mentioned above, for Thai we only trained an auxiliary model
on the grapheme level, again assuming manual alignments which we simulated
by using the forced alignments from the best Thai recognizer from Section 4.4.
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5.6.1.2 Distance Measures

Using the Gaussian auxiliary models we established a mapping between the
ML3-Mix models and the models of the target language by finding the closest
pairs in the two model sets using distance measures on the Gaussian of the
respective models. From literature several distance measures between Gaussians
are known. For our experiments we compared the performance of four different
distance measures: the Euclidean distance, the extended Mahalanobis distance,
the Kullback-Leibler distance, and the Bhattacharya distance.

Euclidean Distance Given two Gaussian distributions

Γ1(x) =
1√

(2π)d |Σ1|
exp−

1
2 (x−µ1)Σ1(x−µ1)

and

Γ2(x) =
1√

(2π)d |Σ2|
exp−

1
2 (x−µ2)Σ2(x−µ2)

where d is the dimension of the input vector x, µ1 and µ2 are the means of the
Gaussian distributions, and Σ1 and Σ2 their covariance matrices, one can take
the Euclidean distance between their two mean vectors µ1 and µ2 as distance
measure between Γ1 and Γ2:

deucl(Γ1, Γ2) =
√

(µ1 − µ2) (µ1 − µ2)
T (5.1)

This distance measure ignores the covariance matrices of the two distributions
and solely relies on the mean values of the distributions. It therefore makes sense
to apply this measure in situations where no or only little information about
the similarity of two distributions is expected to be contained in the covariance
matrices.

Extended Mahalanobis Distance The Mahalanobis distance can be used
to measure the distance of a vector x to a set of samples that are distributed
with a mean of µ and a covariance of Σ:

dMhn(x) =
√

(x− µ)T Σ−1(x− µ) (5.2)
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The Mahalanobis distance can be extended to a distance measure between two
distributions by combining the covariance matrices of the distributions:

dextMhn(Γ1, Γ2) =
√

(µ1 − µ2)T (Σ1 + Σ2)
−1 (µ1 − µ2) (5.3)

Compared to the Euclidean distance the Extended Mahalanobis distance has the
advantage that it also considers the covariance matrices of the distributions in
addition to the mean vectors. However, the covariances of both models involved
are first combined into one, thus not using the full distance information available
in the two covariance matrices.

Kullback-Leibler Distance The Kullback-Leibler divergence between two
probability functions P1 and P2 is defined as [Run07]:

dkl(P1, P2) =
∫

P1(x) log
P1(x)
P2(x)

(5.4)

The Kullback-Leibler divergence can bee seen as a dissimilarity measure between
two probability functions. However, it is not symmetric and does not obey the
triangle inequality and is thus not a true metric. In order to be able to use it as a
distance function, one can make it symmetric by averaging the Kullback-Leibler
divergence between P1 and P2 with the divergence between P2 and P1:

dkl−sym(Γ1, Γ2) = dkl(Γ1, Γ2) + dkl(Γ2, Γ1) (5.5)

For the case that P1 and P2 are Gauss distributions with diagonal covariance
matrices, the symmetric Kullback-Leibler divergence takes the following form:

dkl−sym(Γ1, Γ2)

=
1
2

d∑
i=1

σ2
1,i

σ2
2,i

+
σ2

2,i

σ2
1,i

− 2 +

(
1

σ2
1,i

+
1

σ2
2,i

)
(µ1,i − µ2,i)

2 (5.6)

where µ1, µ2 are mean values of Γ1 and Γ2, while σ1,i and σ2,i are the ith
element of the diagonal of covariance matrix Σ1 and Σ2, respectively.
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Bhattacharya Distance When working in a two class scenario often the
Bhattacharya distance is used [LT00]:

dbhatt(P1, P2) = − ln
(∫

x

√
P1(x)P2(x)

)
(5.7)

The Bhattacharya distance is symmetric but does not necessarily obey the tri-
angle equation. For the case that Gaussian distributions with diagonal matrices
are used it takes the form:

dbhatt(Γ1, Γ2) =
1
2

d∑
i=1

ln

 σ2
1,i + σ2

2,i

2
√

σ2
1,iσ

2
2,i

+
|µ1,i − µ2,i|2

2
(
σ2

1,i + σ2
2,i

) (5.8)

5.6.1.3 Subgrapheme Level Mapping

With the help of these distance measures the best matching, context indepen-
dent ML3-Mix subgrapheme models were found for the German sub-graphemes.
Using this mapping, the ML3-Mix-CI models were applied to the German data.

Table 5.6 shows the word error rates for the different distance measures and
compares them against the WER of the identity driven mapping approach from
Section 5.4.2. From the word error rates we can see that the Euclidean distance
and the extended Mahalanobis distance clearly lack behind the Bhattacharya
and the Kullback-Leibler distance. This indicates that the covariance matrix of
the models contains valuable information for finding a good mapping.

With a WER of 86.9% The Kullback-Leibler distance achieves the best perfor-
mance on the German development set. On the eval set this mapping achieves
a WER of 87.9%. Compared to the grapheme identity driven mapping this a
relative reduction in WER of 2.4%. When adapting the resulting models on
the German adaptation data using one iteration of EM training just as in Sec-
tion 5.4.3 the word error rate drops to 62.1% on the dev set and 64.7% on the
eval set. Compared to the case of the EM adapted grapheme identity mapped
models this constitutes a relative reduction in WER of 6.9%.
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Table 5.6: WER on the German test data for the different distance measures
when establishing a mapping on the subgrapheme level

on German dev eval

grapheme identity 89.2% 90.1%
Euclidean 88.8% —
Ext. Mahalanobis 89.3% —
Bhattacharya 87.1% —
Kullback-Leibler 86.9% 87.9%

grapheme identity + EM 65.8% 68.7%
Kullback-Leibler + EM 62.1% 64.7%

5.6.1.4 Grapheme Level Mapping

Using the distance measures above and the auxiliary models on the grapheme
level, we established the best mapping between the ML3-Mix graphemes and
the German graphemes, and the Thai graphemes respectively, again for the
four different distance measures. Thus, this time it is also possible to port the
ML3-Mix model to the Thai data, even though Thai has a completely different
alphabet from the languages used to train the ML3-Mix model. Furthermore,
since we are not mapping the models in the ML3-Mix model, but rather the
graphemes, it is also possible to apply the context dependent ML3-Mix model
to the German and Thai data.

Table 5.7 shows the resulting word error rates for the German system while
Table 5.8 shows the same numbers for the corresponding Thai system.

For German we can again see that the Euclidean distance and the extended
Mahalanobis distance lacks behind the Bhattacharya and the Kullback-Leibler
distance just as for the sub-grapheme level mapping.

Finding a grapheme mapping based on either the Bhattacharya distance or the
Kullback-Leibler distance performs best on the German development set. In the
context independent case it leads to a WER of 88.2% on the development set,
and a WER of 88.9% for the Bhattacharya distance, 88.7% for the Kullback-
Leibler distance respectively, on the evaluation set. Compared to the grapheme
identity based mapping this is a reduction in WER of 1.1% relative, far less
than when automatically mapping on a subgrapheme level.

Unlike in the case when mapping on the subgrapheme level, this time we can
also port the context dependent models. Again the Bhattacharya distance and
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the Kullback-Leibler distance perform best. They achieve a WER of 82.9%
on the development set, and 84.4% on the evaluation set. Compared to the
grapheme identity based mapping this means a loss in performance. Also, when
applying modified PDTS to the EM adapted Kullback Leibler distance based
mapping models, the WER is with 50.1% on the development set and 50.7% on
the evaluation set still significantly higher than when using a grapheme identity
based mapping in combination with PDTS. Therefore, even though we can only
transfer the context-independent ML3-Mix models to German for the grapheme
identity driven mapping at the subgrapheme level, it still performs better than
the grapheme level mapping including the transfer of the context-dependent
models. On Thai the Bhattacharya and the extended Mahanalobis Distance give

Table 5.7: WER on the German test data for the different distance measures
when establishing a mapping on the grapheme level

Context Independent Context Dependent
on German dev eval dev eval

grapheme identity 89.2% 90.1% 79.0% 79.0%
+ mod. PDTS — — 46.4% 46.4%

Euclidean 91.6% — 87.8% —
Ext. Mahalanobis 92.4% — 90.0% —
Bhattacharya 88.2% 88.9% 82.9% 84.4%
Kullback-Leibler 88.2% 88.7% 82.9% 84.4%

Bhattacharya + EM 69.7% 72.3% 53.4% 54.3%
Kullback-Leibler + EM 69.7% 72.3% 53.4% 54.3%
+ mod. PDTS — — 50.1% 50.7%

the worst results. This behavior is in contrast to the results seen on German,
where those two measures gave the best performance. Apparently when mapping
the ML3-Mix models to Thai the information contained in the covariance matrix
of the auxiliary models is misleading rather than helping.

So, for Thai, using the Extended Mahalanobis distance leads to the best results.
For the context independent models it achieves a WER of 84.7% on the devel-
opment set and 84.3% on the evaluation set. The context dependent models
perform worse than the context independent ones, yielding a performance of
88.4% on the development set and 88.7% on the evaluation set. After adapt-
ing the mapped, context-independent models using EM training, the error rate
drops significantly to 70.4% on the development set and 75.4% on the evalua-
tion set. Adapting the context dependent, mapped models using EM improves
the WER even further, bringing it down to 68.8% on the development set and
72.1% on the eval set. So, unlike prior to EM adaptation, the context-dependent
models now perform better than the context-independent ones. When applying
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modified PDTS to the context dependent models, the WER is further reduced
to 60.5% on the development set and 67.3% on the eval set.

Since a grapheme identity based mapping for the Thai graphemes is not pos-
sible this is the lowest error rate that could be achieved on Thai when porting
the ML3-Mix model to Thai and exploiting the available 15 minutes of Thai
adaptation data.

Table 5.8: WER on the Thai test data for the different distance measures when
establishing a mapping on the grapheme level

on Thai Context Independent Context Dependent
dev eval dev eval

Euclidean 86.6% — 89.2% —
Ext. Mahalanobis 84.7% 84.3% 88.4% 88.7%
Bhattacharya 89.1% — 91.6% —
Kullback-Leibler 89.6% — 92.0% —
Ext. Mahalanobis + EM 70.4% 75.4% 68.8% 72.1%
+ mod. PDTS — — 60.5% 67.3%

5.6.2 Maximum Likelihood Based Mapping

As mentioned before, the manual labeling at the grapheme level, that we assume
as given for the Thai adaptation data, is very difficult to obtain by human
annotators, because the relation between graphemes and the acoustic signal
might be very loose for certain languages, e.g. when clusters of graphemes are
pronounced as one sound, as for example the sequence of letters ‘th’ in English.

One common way to find a mapping in a data-driven way is the use of confu-
sion matrices, e.g. see [Z̆KD+05, Z̆K06]. For example, one could decode the
adaptation data using the multilingual model and then calculate a frame-wise
confusion matrix between the multilingual models and the Thai graphemes.
However, when doing this, one does not use all the available information. We
know that we want to have a one-to-one mapping of the graphemes, that is to
every Thai grapheme we want to find only one multilingual grapheme. When
only doing decoding with a grapheme recognizer, one has only limited control
over the number of graphemes produced for an utterance in the adaptation data,
though we exactly now the number of graphemes that we want to obtain.

We therefore did not use a phoneme decoder for finding the confusion matrix.
Instead, for every utterance of the adaptation data, we constructed an HMM
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consisting of as many graphemes in sequence as in the transcription of the adap-
tation data. For every grapheme position in the HMM we allowed as alternatives
all the graphemes in the multilingual models. At the beginning and end of the
HMM and inbetween words, as given by the transcript of the adaptation data,
we allowed the silence model as an optional state in the HMM. Figure 5.12
shows the structure of this HMM.

Using the HMM and the corresponding Thai audio recording we calculated the
most likely path through the HMM using the Viterbi algorithm. This path then
gives us directly the confusion with the Thai graphemes. By performing this
kind of HMM building and alignment for all utterances in the adaptation data,
we can built a confusion matrix.

With the mapping from the confusion matrix we then initialized the models of a
context-independent Thai grapheme based recognition system. Table 5.9 shows
the word error rates of the Thai recognizers initialized this way. Compared to
the word error rates that were obtained by applying the ML3-Mix models to
German using the grapheme identity driven approach, these word error rates
are higher. They are also worse than those when porting the ML3-Mix model to
Thai using the data-driven mapping described before. This was to be expected,
because for this approach we do not assume a labeling of the adaptation data
at the grapheme level as given.

Figure 5.12: Structure of the HMM used for finding the most likely sequence of
multilingual graphemes, given a Thai utterance

So, in the next step we start to adapt the initialized models using the adaptation
data. Some of the Thai graphemes only occur very seldomly in the adaptation
data. Even in the 90 minutes of adaptation data still two of the Thai graphemes
do not occur at all. We therefore decided to use the largest available amount
of adaptation data, i.e. the ninety minutes of Thai adaptation data. After



5.6 Data Driven Model Mapping for Cross-Language Transfer 103

Table 5.9: WER of the Thai recognizers initialized using the maximum likeli-
hood based mapping

adaptation data dev

15 min 94.0%
30 min 94.2%
60 min 93.9%
90 min 92.9%

adapting the context-independent, acoustic models on the data, we made the
step to context-dependent models.

Table 5.10 shows the resulting error rates. For the context-independent models
the Thai recognizer reaches a WER of 41.2% on the development set and 42.5%
on the evaluation set. The context-dependent models reach a word error rate of
34.5% on the development set and 35.5% on the evaluation set.

Due to the Thai writing system which is very different from the writing systems
in the multilingual model from which we ported, the performance lacks behind
that when applying the multilingual models to German. This due to the fact
that the knowledge from the multilingual model cannot be exploited as efficiently
in this case. We assume that one of the limiting factors is also the fact that the
writing systems in the multilingual model are all alphabets, while Thai uses an
abugida.

Table 5.10: WER of the context-independent and context-dependent Thai rec-
ognizers adapted on the ninety minutes of Thai adaptation data

adaptation data dev eval

CI 41.2% 42.5%
CD 34.5% 35.5%



104 Multilingual and Crosslingual Graphemic Modelling



Chapter 6

Crosslingual Acoustic Models
with Articulatory Features

While in previous chapters we described our work in using graphemes as models
for creating speech recognition systems and porting them to new languages,
this chapter describes our work in enhancing the state-of-the art in porting
traditional, phoneme based ASR systems. For that we make use of detectors
for articulatory features (AF), such as place and manner of articulation. These
detectors were shown in the past to give improvements in monolingual scenarios.
In this chapter we extend their use to porting ASR systems to new languages.

6.1 Articulatory Features

Current state-of-the-art ASR systems usually model speech with Hidden Markov
Models whose states correspond to phonemic or sub-phonemic units. Sometimes
this model is called ‘beads-on-a-string model’ [Ost99]. Phonemes are a short-
hand notation of articulatory positions, often the targets of the movement of
specific articulators, that are characteristic for the sound that a phoneme is sup-
posed to describe. The International Phonetic Association (IPA) has defined
a set of phonemes for practically all languages in the world: the International
Phonetic Alphabet also abbreviated as IPA [Ass99]. In that alphabet phonemes
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are separated into vowels and consonants. Vowels are described by the position
of the highest point of the dorsum linguae—the upperside of the tongue—and
whether the lips are rounded or not. Consonants are described as a combination
of voicing, place of articulation, and manner of articulation. Voicing describes
whether the vocal cords are vibrating during articulation or not. Sounds with
vibrating cords are called voiced sounds, all others unvoiced. The place of ar-
ticulation refers to the position of the greatest constriction in the vocal tract
during articulation. For example, a sound can be dental or alveolar, depending
on whether it is most constricted at the teeth or at the alveoli. The manner
of articulation refers to the extend or kind of constriction at the place of ar-
ticulation. For example, a sound for which the constriction is very narrow but
still allows the flow of air is called a fricative. If the flow of air is temporarily
cut-off and then suddenly released we call the sound a plosive. Figure 6.1 shows
the complete alphabet for consonants and vowels and all manners and places of
articulation classified by it.

The articulatory properties, as for example IPA uses them to label phonemes, is
what we call articulatory features in this work. We want to use this description
of sound for modeling in order to improve existing techniques for porting speech
recognition systems to new languages.

The use of phonemes as modeling units in ASR ignores the fact that the human
articulators are in constant motion. Transitions among them are asynchronous
and articulatory targets might be reached to differing degrees, e.g. depending on
the phonetic context. The use of sub-phoneme models and context dependent
phoneme models—polyphones—can compensate for this deficiency to a certain
degree. However, polyphones suffer from the problem of accumulating sufficient
training material in order to train robust models for all possible polyphones of a
language. Therefore, they are clustered into generic models that share training
data from multiple polyphones.

For these reasons, articulatory features seem to be better suited for modeling
speech than phonemes and have been studied lately for use in ASR systems.

6.2 Related Work

In the past several researchers have worked on articulatory features in order to
improve monolingual ASR systems. These works were mainly motivated by the
fact that today’s ASR systems still lack in performance compared to human
capabilities in recognizing speech. Especially when switching from recognizing
read or planned speech, which is very cleanly articulated, to spontaneous speech
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              THE INTERNATIONAL PHONETIC ALPHABET (revised to 2005)
CONSONANTS (PULMONIC)

´

A Å

i y È Ë ¨ u

Pe e! Ø o

E { ‰ ø O

a ”
å

I Y U

 Front                        Central                            Back

Close

Close-mid

Open-mid

Open
Where symbols appear in pairs, the one 
to the right represents a rounded vowel.

œ

ò

Bilabial Labiodental Dental Alveolar Post alveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive p  b t  d Ê  " c  Ô k  g q  G /
Nasal m µ n = # N –
Trill  r R
Tap or Flap     v |  «
Fricative F  B f   v T  D  s $$z S  Z ß  % ç  J x  V X  Â ©  ? h  H
Lateral
fricative Ò  L
Approximant & ®  ’ j ˜
Lateral
approximant l  ' ¥ K

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

SUPRASEGMENTALS

VOWELS

OTHER SYMBOLS

Clicks Voiced implosives Ejectives

> Bilabial ( Bilabial ’ Examples:

 Dental Î Dental/alveolar p’ Bilabial

! (Post)alveolar  Palatal t’ Dental/alveolar

¯ Palatoalveolar ƒ Velar k’ Velar

) Alveolar lateral Ï Uvular s’ Alveolar fricative

 " Primary stress
 Æ Secondary stress

ÆfoUn´"tIS´n
 … Long              e…
 Ú Half-long       eÚ

  * Extra-short     e*
 Minor (foot) group

! Major (intonation) group

 . Syllable break    ®i.œkt
   *  Linking (absence of a break)

          TONES AND WORD ACCENTS
       LEVEL CONTOUR

e$_or â Extra
high e

ˆ

or ä Rising

e! ê High e$ ë Falling

e@ î Mid e% ü High
rising

e~ ô Low e ï Low
rising

e— û Extra
low e&  ñ$ Rising-

falling

Õ Downstep ã Global rise

õ Upstep Ã Global fall

© 2005 IPA

 DIACRITICS     Diacritics may be placed above a symbol with a descender, e.g. N(
  9 Voiceless                n9    d9   ª Breathy voiced      bª  aª   1 Dental                     t$1 d1
  3 Voiced                 s3  t$3   0 Creaky voiced       b0  a0   ¡ Apical                     t$¡ d¡
 Ó Aspirated             tÓ dÓ   £ Linguolabial          t$£  $d£      4 Laminal                  t$4 d4
  7 More rounded     O7  W Labialized             tW dW   ) Nasalized                      e)
  ¶ Less rounded      O¶  + Palatalized            t+  d+  ˆ Nasal release                dˆ
  ™ Advanced           u™  , Velarized              t, $d,  ¬ Lateral release              d¬
  2 Retracted            e2  - Pharyngealized     t- $$d-  } No audible release        d}
$  $· Centralized         e·  ù Velarized or pharyngealized      :
  + Mid-centralized  e+   6 Raised                  e6        $( ®6    = voiced alveolar fricative)

  ` Syllabic              n`   § Lowered              e§       ( B§  = voiced bilabial approximant)

  8 Non-syllabic       e8   5 Advanced Tongue Root          e5
 ± Rhoticity             ´± a±   " Retracted Tongue Root           e.

/    Voiceless labial-velar fricative Ç Û Alveolo-palatal fricatives

w  $ Voiced labial-velar approximant   » Voiced alveolar lateral flap

Á     Voiced labial-palatal approximant Í Simultaneous  S  and   x
Ì Voiceless epiglottal fricative

$¿     $Voiced epiglottal fricative
Affricates and double articulations
can be represented by two symbols

$÷  $   Epiglottal plosive
 joined by a tie bar if necessary.

kp  ts

(

(

Figure 6.1: The International Phonetic Alphabet reproduced by permission of
the International Phonetic Association (Department of Theoretical and Applied
Linguistics, School of English, Aristotle University of Thessaloniki, Thessaloniki
54124, GREECE)
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a considerable drop in recognition performance can be observed with today’s
phoneme based models.

Deng [DS94] sees ‘residual’ variability in speech, that is difficult to explain
in terms of general properties, as the main obstacle in achieving a high word
recognition accuracy. He argues that today’s speech recognition systems make
use of statistical methods and automatic learning procedures in order to model
speech at a detailed level because of a lack of reliable speech knowledge. He
proposes to use constellations of overlapping articulatory features as speech
units that should be able to model these variations in speech incorporating all
necessary contextual information. At the same time the number of units is small
enough as not to demand too high an amount of training data.

In [Ost99] Ostendorf argues that pronunciation variability in spontaneous speech
is the main reason for this drop in performance. She claims that though it is pos-
sible to model pronunciation variants using a phonetic representation of words,
the success of this approach has been limited. Ostendorf therefore assumes that
pronunciation variants are only poorly described by means of phoneme substi-
tution, deletion, and insertion. She also thinks that the use of linguistically
motivated distinctive features could provide the necessary granularity to better
deal with pronunciation variants by using context dependent rules that describe
the value changes of features.

Kirchhoff [Kir98, Kir00, KFS00, Kir99] also acknowledges that it is easier to
model pronunciation variants with the help of articulatory features. She points
out that articulatory features exhibit a dual nature because they have a relation
to the speech signal as well as to higher-level linguistic units. Furthermore, since
a feature often is common to multiple phonemes, training data is better shared
for features than for phonemes. Also, for AF detection fewer classes have to be
distinguished (e.g. binary features). Therefore, statistical models can be trained
more robustly for articulatory features than for phonemes. Consequently fea-
ture recognition rates frequently outperform phoneme recognition rates. For
her, another reason for the poor performance of automatic speech recognition
systems on spontaneous speech is the increased occurrence of coarticulation ef-
fects as compared to planned or read speech. She makes the assumption that
coarticulation can be modelled more robustly in the production based domain
than in the acoustic one. She also assumes that articulatory features are more
robust towards cross speaker variation and signal distortions such as additive
noise. Kirchhoff worked with artificial neural networks (ANNs) for classification
of features and combined them in a hybrid HMM/ANN setup to obtain a recog-
nition system for a small vocabulary recognition task. She later extended that
work to a large vocabulary, continuous recognition task and showed improve-
ments when combining articulatory feature based and phoneme based HMM
recognition systems.
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Eide [Eid01] argues that the direct modeling of phonemes from the waveform
as it is usually done in the beads-on-a-string model disregards some of the phe-
nomena of conversational speech such as the relaxation of the requirements on
the production of certain distinctive features. She claims that variations in the
pronunciation may cause big phonemic differences while in terms of articulatory
features the difference may be considerably smaller because only few articula-
tory features actually change their value. Therefore she argues, that the task of
recovering a word sequence from a feature representation is more feasible than
from a phonemic representation. In her experiments she augments the feature
vector of a conventional HMM based recognition systems with the output from
the classificators for a subset of features that seemed to give the best discrimina-
tive capabilities. The feature vector was not just augmented by the likelihoods
of the corresponding features, but rather by a likelihood-ratio between models
for the presence and the absence of a feature.

Wester, Chang, and Greenberg [CGW01, WGC01] believe that corpora are op-
timally annotated at the articulatory-acoustic feature level. They are of the
opinion that the transformation from AF to phonetic segments does not trans-
port sufficient detail and richness common to the speech signal at the phonetic
level. In their work they trained multi-layer perceptrons (MLPs) as detectors
for features on a selection of training frames to boost classification performance.
Their immediate goal in that is to have a high classification accuracy for fea-
tures, but do not integrate them into a full ASR system. They also demonstrate
that articulatory features can be recognized across languages by applying feature
detectors trained on English to Dutch.

Livescu et.al. [LGB03] used Dynamic Bayesian Networks to model features
such as voicing, manner, and velum position. They factored all possible feature
states into a feasible number of clusters in order to counter the data sparseness
problem. They have shown improvements with some features over a phoneme
baseline on the Aurora task. In [LG04a] they applied their approach to pronun-
ciation modeling. In [LG04b] they incorporated an approach for inter-feature
asynchrony modeling.

In 2006, a research group at the Johns Hopkins summer workshop examined
several different aspects of using articulatory features in speech recognition
[LCHJ+07, LCHJ+06]. For them the most promising results were in using
AF models within the tandem framework [HES00, CKK+07]. Also, the hybrid
HMM/ANN approach, though lacking behind other models in terms of clas-
sification accuracy, is promising for multilingual approaches, since it requires
little training material. They also examined the use of articulatory features for
audio-visual speech recognition [HJLLS07].

In [MW02] Metze and Waibel have enhanced monolingual, phoneme based rec-
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ognizers with GMMs for articulatory feature in order to improve recognition
performance. To do so, [MW02] introduced binary detectors for the presence
and absence of a feature, e.g. whether a sound is voiced or not. Continuous fea-
tures, such as the horizontal dorsum position for vowels, are modeled by multiple
binary AF detectors for discrete positions, e.g for front, middle, and back. The
binary detectors are modeled by GMMs, one GMM for detecting the presence of
the feature, and one for detecting its absence. A flexible stream architecture is
used to integrate the articulatory feature detectors into the recognition process.

In [SSMW03, SMSW03] we have demonstrated that the detectors for features
as used in [MW02] can recognize features across languages. We have shown
that for a total of five languages (Chinese, German, English, Japanese, and
Spanish), multilingual feature detectors can be trained on multiple languages.
We integrated them with monolingual phoneme based recognizers in cross- and
multilingual ways showing that improvements for monolingual recognizers can
be achieved by integrating feature detectors from multiple languages.

In [Met07, Met05] Metze then finds the stream weights for the feature detectors
in a discriminative way and shows that it is possible to use the feature weights
for speaker adaptation in a monolingual setup.

6.3 Articulatory Feature Detectors

For our experiments we used the same detectors for articulatory features as
in [MW02, SSMW03, SMSW03, Stü04]. For every articulatory feature f two
GMMs were trained. One GMM calculates the probability P (xi|f), i.e. that
a sample xi belongs to a sound with that feature. The other GMM calculates
the probability P (xi|f̄); that is the probability, that the sample xi belongs to a
sound without that feature. Every GMM has 128 Gaussian components.

The labels for the training data were created with the help of forced alignments
obtained from the phoneme based ASR systems. Since we assume that an
articulatory feature is most stable in the middle of a phoneme, we trained the
feature GMMs only on the middle states of the phonemes using 4 iterations
of label training as in [MW02]. The preprocessing for the articulatory feature
detectors was the same as for the phoneme based recognizers from which the
forced alignments were obtained.

We evaluated the classification accuracy of the feature detectors on the devel-
opment data of the respective languages. Evaluation was performed with the
help of a naive Bayes classifier on a per frame basis. That is for every frame
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xi and for every AF f we evaluated the probability of the feature being present
P (xi|f) versus the probability of the feature being absent P (xi|f̄). We then
decide for the case with the higher probability:

P (f |xi)
?
> P (f̄ |xi) (6.1)

P (xi|f) ∗ P (f)
p(xi)

?
>

P (xi|f̄) ∗ P (f̄)
p(xi)

(6.2)

P (xi|f) ∗ P (f)
?
> P (xi|f̄) ∗ P (f̄) (6.3)

Similarly as in the fundamental formula of speech recognition (3.1), we can
decompose P (f |xi) and P (f̄ |xi) using the Bayes theorem and can then omit
the term P (xi). Comparing the results of this classifier we then determined for
every articulatory feature the frame-wise classification accuracy.

6.3.1 Multilingual Articulatory Features

In [SSMW03, SMSW03] we have shown that articulatory features can be reli-
ably recognized across several languages. So, for example, AF detectors trained
on English can be used to reliably detect the features of German speech. In
that work it was also shown that AF can be modeled in a multilingual way.
The share factor, that measures the overlap between different languages, was
also shown to be larger for AF than for phonemes. The higher the share factor
the more phonemes, features respectively, several languages have in come. So,
a high sharefactor for AF indicates that AF might be very suitable for multi-
lingual modeling and porting ASR systems to new languages. It was further
demonstrated that in a monolingual scenario, in which the phoneme models
were trained on the same language as the test set, performance can be im-
proved by multilingual and crosslingual AF detectors, when combining them
with phonemes based acoustic models.

6.3.2 Integrating AF Detectors into ASR

In order to integrate the AF detectors described above, Metze developed a
flexible, stream based set-up [MW02, Met05]. In this set-up depicted in Figure
6.3 the likelihoods from the articulatory feature detectors are combined with the
likelihoods from the phoneme models at the state level. The emission probability
of a state in the HMM is calculated as a linear combination of probabilities in
the log domain. This combination sums the likelihood from the corresponding
sub-phoneme model with the corresponding feature present and feature absent
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Figure 6.2: Average share factor for Chinese, German, English, Japanese, and
Spanish for GlobalPhone phonemes and articulatory features (from [Stü04])

models that belong to the phoneme that the state stands for. So, for example,
the likelihood of a voiced palatal phoneme, that has no other feature associated
with it, is calculated as the sum of the likelihood of the sub-phoneme model, the
likelihood of the voiced feature detector, the likelihood of the palatal detector,
and the likelihoods of all the absent detectors for all other AF.

6.4 Selecting Stream Weights

The combination of AF detectors and phoneme based models in the stream
based architecture described in Section 6.1 requires the selection of a suitable
set of stream weights The weights control the influence that the individual
detectors have on calculating the score and thus have a great impact on the
search for the best hypothesis. The task is to find an optimal set of weights
Λ = (λ1, λ2, . . . , λm) that minimizes the word error rate of the recognition sys-
tem.

For the past monolingual experiments we used two different approaches to se-
lect appropriate weights. The first approach is a simple heuristic based on the
classification accuracy of the feature detectors, the second approach implements
a discriminative training scheme which tries to select weights that minimize the
word error rate of the resulting recognizer.
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Distrib. 1 Distrib. N

Stream 0

Model Score

Present

Stream 2

Absent

Weight=0.7 Weight=0.2 Weight=0.1

Stream 1

Absent Present

Figure 6.3: Stream based architecture for integrating the articulatory feature
models (from [Met05])

6.4.1 Heuristic Weight Selection

The heuristic approach selects features based on their classification accuracy.
To do so, the weight, which the feature detectors shall receive, is preselected
as a fixed value—the same for all detectors added. In our case, a weight of
0.05 turned out to give good results. Then, feature detectors are successively
added in the order of their classification accuracy on the development set of
their training language. The weight of the phoneme HMM is chosen in such a
way that all weights sum up to 1.0. After every addition of a new detector the
WER of the resulting recognizers is measured on the development set. Usually
the error rate starts to drop when adding detectors and reaches a minimum
after adding a certain number of detectors. After that, the word error rate
starts to rise again. In this way, the best number of feature detectors to add is
determined.

6.4.2 Discriminative Model Combination

For a more refined training of the feature weights than the heuristic above, in the
past we implemented the iterative approach of the Discriminative Model Combi-
nation (DMC), developed by Peter Beyerlein [Bey98], which is called Minimum
Word Error Rate (MWE). MWE is based on the Generalized Probabilistic De-
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scent (GPD) [JCL95].

DMC can be used to integrate multiple acoustic models into one log-linear pos-
terior probability distribution, combining the different scores in a weighted sum
at the log likelihood level. This is just as it is done in the approach of in-
corporating the feature detectors into the speech recognition system that we
use.

So, given a hypothesis k, a weight vector Λ and the feature vector x the posterior
probability of a hypothesis given an acoustic observation and a weight vector
for combining the different streams is pΛ(k|x):

pΛ(k|x) = C(Λ, x)exp


M∑

j=1

λj log pj(k|x)

 (6.4)

In our special case, with the combination of a standard model stream and the
feature detector streams as described above, p0(k|x) is the posterior probability
of k as given by the standard models, while the p1, . . . , pM are the posterior
probabilities from the M feature detectors. This combination as a weighted
sum at the log likelihood level is exactly how the stream based approach for
integrating the feature streams works.

MWE implements a gradient descent on a numerically estimated and smoothed
word error rate function that is dependent on the weight vector Λ for the combi-
nation of the models. The smoothed approximation of the error function EMWE

that is used for MWE is:

EMWE(Λ) =
1∑N

n=1 Ln

N∑
n=1

∑
k 6=kn

L(k, kn)S(k, n, Λ) (6.5)

In this equation the kn (n = 1 . . . N) are the N given training references for the
discriminative training, while the k 6= kn are all other possible hypotheses. Ln

is the length of the nth training utterance, L(k, kn) the Levenshtein-distance.
S(k, n, Λ) is an indicator function that is used for smoothing the Levenshtein-
distance. In order to get a differentiable error function EMWE , S is set to be:

S(k, n, Λ) =
pΛ(k|xn)η∑
k′ pΛ(k′|xn)η

(6.6)

pΛ(k|xn) is the posterior probability of hypothesis k, given the set of weights Λ
and the internal model of the recognizer, for the feature vector xn of the nth
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training utterance. η determines the amount of smoothing that is done by S.
The higher η is the more accurately S describes the decision of the recognizer,
and thereby the real error function. However η should not be chosen to be too
large, in order to be able to numerically compute S. For our experiments we
used η = 3 and also approximated the posterior probabilities of the hypotheses
by their acoustic likelihood.

For the estimation of EMWE , equation 6.5 and 6.6 take into account all possible
hypotheses k. This is of course not feasible for the numerical computation of
EMWE . Therefore, the set of hypotheses is limited to the most likeliest ones.
In our experiments we used the hypotheses from an n-best list, where n was set
to 150. The n-best list was obtained by rescoring the word lattice that resulted
from the decoding process.

The derivative of EMWE is now:

∂EMW E(Λ)
∂λi

= ηPN
n=1 Ln

∑N
n=1

∑
k 6=kn

S(k, n, Λ)L̃(k, n, Λ) log pi(k|xn)
pi(kn|xn)

where

L̃(k, n, Λ) = L(k, kn)−
∑

k′ 6=kn
S(k′, n,Λ)L(k′, kn) (6.7)

With this partial derivative one can construct a gradient descent:

λ
(I+1)
j = λ

(I)
j − εη∑N

n=1 Ln

N∑
n=1

∑
k 6=kn

S(k, n, Λ(I))L̃(k, n, Λ(I)) log
pj(k|xn)
pj(kn|xn)

(6.8)

Here ε is the learning rate, and has to be chosen carefully in order to adjust the
change in the weights per iteration.

Also, in our research we approximated the posterior probabilities with the likeli-
hoods of the hypotheses that were returned by the decoder. Since in the case of
the likelihoods the classification rule stays the same as with the posterior proba-
bilities this does not change the update rules for the gradient descent. Also, for
the use of similar, discriminative training schemes, such as Maximum Mutual
Information (MMI), is has turned out that the use of a weak language model is
of advantage, in order to strengthen the influence of the acoustic model during
training [Pov04].
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6.5 Experiments

In order to test whether AF models can help when porting ASR systems to new
languages, we examined several different scenarios. In all scenarios German
takes the role of the new, previously unseen language, to which we want to port
ASR models. We ran experiments for porting monolingual, English phoneme
models enhanced by monolingual and multilingual articulatory feature detectors
and for porting multilingual phoneme models enhanced by monolingual and
multilingual articulatory feature detectors to German.

For the selection of suitable stream weights we compare the performance of the
heuristic described in 6.4.1 against the performance of weights determined by
the DMC as described in 6.4.2. Since for both approaches the features and
weights are determined on a development set, which is not necessarily available
in the target language, we also examined whether we can use the parameters
determined on a development set in a different language for porting the systems
to German.

6.5.1 Baseline Systems

As a baseline for our experiments serves the performance of monolingual phoneme
based speech recognition systems tested on their training language. The acous-
tic models of the recognizers are left-to-right continuous HMMs with three states
per phoneme. Training was done with the help of forced alignments obtained
from previous systems. For training the acoustic models, first the LDA matrix
was estimated, after that random samples for every model were extracted in
order to initialize the models with the help of the k-means algorithm. Then
these models were refined by six iterations of label training along the forced
alignments and four iterations of expectation maximization (EM) training. The
resulting models were used to obtain new forced alignments and the training pro-
cedure was iterated until a minimal word error rate (WER) on the development
set was reached. Context-independent (CI) as well as context-dependent (CD)
models were trained in this way. Table 6.1 shows the word error rates of the
context-independent and context-dependent models for every language on their
respective development and evaluation sets. The trigram language models used
for English, Russian, and Spanish were unchanged from previous experiments,
e.g. in [SW01].

We further trained a multilingual model using the technique ML-Mix on the
languages English, Russian, and Spanish. Table 6.2 shows the word error rates
of this model on the individual training languages. As expected we can see that
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Language EN GE RU SP
CI dev 19.5% 23.4% 51.8% 40.2%

eval 20.2% 28.1% 54.8% 28.7%
CD dev 9.0% 11.7% 33.9% 25.2%

eval 10.3% 13.0% 36.2% 17.2%

Table 6.1: WER of the monolingual phoneme based ASR systems on the dev
and eval sets of their respective language

the word error rates go up for the multilingual model in all cases. This is due
to the fact that sounds with the same IPA symbol are still pronounced slightly
differently in the various languages. Therefore, the models are broadened for
the different model classes and do not fit the individual languages as well as
when trained exclusively on one of them.

Language EN RU SP
CI dev 24.4% 56.5% 45.7%

eval 25.8% 59.6% 32.8%
CD dev 12.4% 38.8% 27.8%

eval 14.1% 40.7% 20.2%

Table 6.2: WER of the ML-Mix ASR system on the dev and eval sets of its
training languages

6.5.2 Articulatory Feature Detectors

Using forced alignments obtained from the phoneme based ASR systems we
trained models for the articulatory features as described in Section 6.1. We
also trained multilingual detectors, as described above and in [SSMW03], on
the languages English, German, and Spanish, just as for the phoneme based
ML-Mix recognizer.

6.5.3 Porting Across Languages

For our porting experiments we examined two principal scenarios. In the first
scenario we used an English recognizer which we applied to the German test
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data, in the second scenario we used an ML-Mix model trained on the languages
English, Russian, and Spanish which we applied to the German data.

6.5.3.1 Porting Monolingual Recognizers Across Languages

In order to apply the English recognizer to German, the German phonemes
in the German pronunciation dictionary that were not covered by the English
model, were manually mapped to their closest English phoneme. As shown in
Table 6.3, applying the English acoustic model in this way leads to a WER of
73.4% on the German development set, and 76.4% on the evaluation set.

Adding the English AF models to the phoneme based recognizer using the
heuristic described in 6.4.1 reduces the WER to 68.7.% on the German de-
velopment set. On the evaluation set the WER goes slightly up to 76.6%. This
increase in WER on the evaluation set is a phenomena which we have observed
before. It means that the weights found with the heuristic often do not general-
ize very well to unseen data. The optimal number of detectors was determined
on the German development set for this experiment.

When calculating the weights for the AF detectors using DMC as described in
6.4.2 the word error rate drops to 68.4% on the development set. A slightly
better reduction than with the heuristic. This time, the word error rate also
drops on the evaluation set. This time the DMC weights were optimized on
the English development set, not the German one, in order to apply as little
German data and knowledge as possible. So, DMC has generalized well from
the English development set to the German development and evaluation set.
In other words the weights found by the DMC also generalize very well across
languages, not only different test sets.

In the past, it was also shown to be beneficial to combine monolingual phoneme
models with feature detectors from different languages [SMSW03]. We therefore
also combined the English phonemes with the English, Russian, and Spanish
feature detectors. Since the number of feature detectors becomes large and it is
not clear whether the absolute classification error rates of the feature detectors
are comparable across languages, for this experiment we only used the DMC
for finding stream weights, but not the heuristic. Again, DMC was performed
on the English development set. Using the detectors from all languages, the
word error rate reaches 71.8% on the German development set and 75.3% on
the evaluation set. An improvement compared to the phoneme baseline but not
as good as if only using English feature detectors.

It is remarkable in the DMC experiments, that though the stream weights have
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been determined on the English development set, the weights that were found
generalize very well to German and still lead to good improvements. When
selecting weights for the AF detectors from all languages, however, this works
not quite as well, as when just using English AF detectors. Here the mismatch
between the English development set for weight optimization and a mixture of
AF detectors from many languages seems to be too high when also switching
the test language.

EN to GE dev eval
heuristic DMC heuristic DMC

Phon. 73.4% 76.4%
Phon. + EN AF 68.7% 68.4% 76.6% 73.0%
Phon. + all AF — 71.8% — 75.3%

Table 6.3: WER when applying the English recognizer to the German test data,
without and with Articulatory Feature models

6.5.3.2 Porting the Multilingual Recognizer to German

For the multilingual scenario we first applied the ML-Mix model to the German
test data without the use of AF detectors. This, like in the English case, serves
as our baseline. As Table 6.4 shows, this leads to a WER rate of 65.0% on
the German development set and 70.4% on the German evaluation set. As to
be expected from earlier work these WERs are lower than when using only the
English models. The multilingual models gain from the fact that the phoneme
models have seen more diverse training data and more of the German phonemes
are covered by the models from the ML-Mix model.

Next, we added the English models to the ML-Mix models as done before for
the English phoneme models. When adding them using the heuristic, the WER
drops slightly to 64.6% on the development set and 69.7% on the evaluation
set. So, this time the weights determined by the heuristic generalize from the
German development set to the English one. Applying DMC instead of the
heuristic gives no improvements however. Apparently in this case the weights
found by the DMC on the English development set do not generalize very well to
German. This might be due to the mismatch between the multilingual phoneme
model and the English only AF models.

When using the ML-Mix AF detectors instead of the English ones and adding
them using the heuristic, the WER on the development drops down to 64.4%.
On the evaluation set a WER of 69.6% is reached. The DMC, however, fails to
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find suitable feature weights in this case, assigning all feature streams a weight
of 0 and thus leading to no improvement.

When adding the monolingual feature detectors from all languages, as it was
done for English, the WER drops further down to 64.2% on the development
set and 69.5% on the evaluation set, a relative reduction in WER of 1.3%. This
time, the DMC was performed on the joint development sets of the ML-Mix
training languages, English, Russian, and Spanish. The use of the monolingual
AF detectors from all languages gave the best gain in performance. Again,
it is remarkable that the weights found on the English, Russian, and Spanish
development sets generalize very well to the German development and evaluation
set.

ML-Mix to GE dev eval
heuristic DMC heuristic DMC

Phon. 65.0% 70.4%
Phon. + EN AF 64.6% 65.0% 69.7% 70.3%
Phon. + ML AF 64.4% — 69.6% —
Phon. + all AF — 64.2% — 69.5%

Table 6.4: WER when applying the ML-Mix recognizer to the German test
data, with and without Articulatory Feature models

6.5.4 Porting the EM adapted Multilingual Recognizer to
German

Like done in in our experiments for porting grapheme based recognition systems
to new languages (see Chapter 5), we assume a small set of German adaptation
data of 15 minutes length as given, in order to further improve the porting
performance of the multilingual recognizer. In order to adapt the ML-Mix
recognizer we use two iterations of EM training on the context-independent
models and one iteration of EM training on the context-dependent models, just
as before.

This adaptation without the use of the AF detectors brings the WER of the
context-independent models down to 46.0% on the development set and 49.0%
on the evaluation set. The WER of the context-dependent models falls to 42.7%
on the development set and 44.8% on the evaluation set.

When now adding all monolingual AF detectors to the adapted, context-dependent
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models using DMC the WER drops further down to 42.1% on the development
set and reaches 44.4% on the evaluation set.

ML-Mix to German dev eval

Phonemes CI 46.0% 49.0%
Phonemes CD 42.7% 44.8%

Phonemes CD + all AF 42.1% 44.4%

Table 6.5: WER when applying the EM adapted ML-Mix recognizer to the
German test data, with and without Articulatory Feature models

6.5.5 DMC on the German Development Set

So far, when applying DMC, we have estimated the stream weights of the AF
detectors on the dev sets of the training languages of the ML-Mix model: En-
glish, Russian, and Spanish. We expect that the weights estimated in that way
are not optimal for German. In our last experiments we therefore estimated
the stream weights on the German development set. Table 6.6 shows that this
reduces the WER for the unadapted, context-dependent phonemes to 63.6% on
the development set and 69.4% on the evaluation set. This is a relative reduction
in WER of 2.2% on the dev set and 1.4% on the evaluation sets. Both reductions
are higher than when estimating the DMC weights on the development sets of
the training languages of the AF detectors.

For the adapted phoneme models the word error rate is reduced to 41.4% on the
development set and 44.2% on the evaluation set. Especially for the adapted
models in combination with all AF on the German development set the gains are
much higher than when finding the weights on the dev sets of the AF training
languages. These are the best word error rates that can be achieved with the
15 minutes of German adaptation data.

6.5.5.1 Scalability to More Adaptation Data

Just as we have done in the case of porting grapheme based systems to new
languages before, we also examined the gains, that can be achieved from more
adaptation data, for this scenario. For that we repeated the previous experiment
with the ninety minutes adaptation data set. The results are shown in Table 6.6.
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ML-Mix to German dev eval

phonemes 65.0% 70.4%
phonemes + all AF 63.6% 69.4%

adapt.phonemes 15min. 42.7% 44.8%
adapt.phonemes 15min. + all AF 41.4% 44.2%

adapt phonemes 90min. 24.6% 27.1%
adapt phonemes 90min. + all AF 24.0% 26.1%

Table 6.6: WER when applying the unadapted and EM adapted ML-Mix rec-
ognizer to the German test data, with and without Articulatory Feature models
using DMC weights estimated on the German development set

One can see that going from fifteen to ninety minutes of adaptation data reduces
the word error rate significantly. Without the articulatory feature detectors the
word error rates drops to 24.6% on the development set and 27.1% on the
evaluation set. Again, adding the articulatory feature detectors reduces the
word error rate further, to 24.0% on the development set and 26.1% on the
evaluation set.

6.6 Conclusion

In this work we examined the use of articulatory feature detectors in porting
the acoustic model of a speech recognition system to a new language. For this,
we combined monolingual and multilingual phoneme models with monolingual
and multilingual articulatory feature detectors in a stream based setup. In all
cases the word error rate could be lowered by the use of articulatory feature
detectors. In more badly matched conditions, such as when porting an English
recognizer to German, or unadapted ML-Mix models to German, the gains were
higher—up to 4.5% relative—than in better matched conditions, such as porting
an EM adapted ML-Mix model to German.

The stream weights that are necessary for our approach were either found with
the help of a heuristic or by applying DMC. The latter showed better general-
ization behavior than the heuristic. Also, the weights that were estimated with
the help of DMC on the languages other than the final test language generalized
well to the new, unseen language.



Chapter 7

Unwritten Languages:
Discovering Word Units

In the previous chapters we have examined scenarios in which we ported auto-
matic speech recognition systems to new languages for which a writing system
existed. For the case in which no pronunciation dictionary for the language in
question existed we resorted to using graphemes as modeling units instead of
phonemes.

In this chapter we will now examine the case that either no writing system
for the language in which we want to create an ASR system exists, or even if
one exists it is not commonly used. We will examine the case of creating an
ASR system for a speech-to-speech translation system between a widely spoken
language, lets say English, and a new, unknown language. We assume that
currently human interpreters translate between these two languages, and that
we can observe the human translator and the persons that he translates between.

To the best of our knowledge no concrete numbers of how many languages
in the world are without a writing system exist in literature. But linguists
estimate that the vast majority of languages is without a writing system [NR00].
Omniglot attributes their list of writing systems to only 685 languages [Omn].
So, if one wants to address all languages in the world, one has to prepare for
encountering many languages without a writing system.
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7.1 Scenario Description

In the scenario, that we want to examine in this chapter, we assume that we
can observe the action of a human interpreter translating between a well known
language, let us say English, and a new language for which we want to create
an ASR system. The resulting ASR system is not supposed to work as a stand-
alone transcription system for the new language. Rather, its output should be
suitable for translating from that language into the well known language.

When communication with speakers of a less resourced language, maybe even
one without a written representation, becomes necessary, it is often achieved
with the help of bilingual human interpreters, a very costly resource. For exam-
ple, English speaking doctors in a remote disaster area might communicate with
their patients with the help of a human translator. Our goal is to exploit the
translations of the human interpreter, in order to gather the material needed for
training ASR and translation systems. In our experiments we examine the fea-
sibility of automatically learning word units in the unknown language and their
pronunciation by aligning the English word sequences, that are being translated
by the human interpreter, with the phonetic output from the translator’s speech.
We assume that we have no knowledge about a potential writing system in the
target language nor about possible word units. Thus we are only able to work
with the phonetic representation of the interpreter’s speech.

It is now our intention to exploit the observable actions for automatically dis-
covering word units in the new language. The available knowledge sources in
this scenario are:

• The utterances of the speaker of the well known language that is being
translated. By referring to language as ’well-known’ we intend to say that
automatic language processing technologies such as well performing ASR
systems exist. We thus assume that we can automatically and reliably
recognize the speech from that speaker.

• The utterances from the speaker of the new languages. Since this language
is not known, we assume that we do not have any NLP technologies for that
language. In order to be able to exploit the data we assume that we can
only obtain a phonetic transcription of that language without any word
boundaries. That phonetic transcription can either be obtained manually,
e.g. by a phonetician, or it is conceivable that this transcriptions are
obtained automatically or semi-automatically by a language independent
phoneme recognizer.

• The speech from the human translator. Here, the utterances in the well-
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know language can be treated in the same manner as in the first bullet,
while the speech in the new language needs to be treated the same way as
described in the second bullet.

7.2 Related Work

In the past much work has been committed to discovering word units in an
unsegmented phoneme sequence. These algorithms work without supervision
and also do not take into account the parallel data that is available in our case.
[RP02], [DeM96], and [Bre96] proposed algorithms for word discovery from raw
data. [Gol01] and [CL05] describe unsupervised learning of morphology for
highly-inflected languages. Similar approaches can also be found in genomics
literature [Bre04].

7.2.1 Monolingual Word Discovery

Besacier et.al. combined several of the ideas and approaches presented in lit-
erature and proposed in [BZG06] to train speech translation systems on data
that contains English words on the one side and phonemes on the other side.
They conducted experiments on English words and Iraqi phonemes. In or-
der to achieve good translation performance [BZG06] first ran an unsupervised
word discovery algorithm on the Iraqi phonemes without considering the cor-
responding English word sequence and then trained the translation system on
the discovered word like units. The phoneme sequence, on which they ran the
word discovery algorithm, resulted from replacing the words in ASR output by
their phoneme sequence as given in the pronunciation dictionary of the ASR
system. As expected, translation performance dropped somewhat when using
the automatically found word units instead of the regular ones, but the drop in
performance was small enough, as to proof that the automatically found units
can be used instead of words in speech-translation systems.

The algorithm from [BZG06] combines the following ideas:

1. Use the predictability of phonemes: the basic idea here, first suggested
by [Har55], is that the number of distinct phonemes that are possible
successors of the preceding string reduces rapidly with the length of that
string unless a morph boundary is crossed. A slightly different way to
implement this same idea is to compute the mutual information (MI)
between all successive phonemes of an utterance, and to detect a morph
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boundary when MI reaches a local minimum which is, at the same time,
below a certain threshold.

2. Use word boundaries that are already available before (respectively after)
phone sequences commonly seen at the beginning (respectively the end)
of sentences.

3. Use word frequencies: after a first segmentation, discovered words with
high frequency counts are probably real words while words with low counts
may result from badly placed word boundaries

4. Use the strength of Viterbi decoding.

With these ideas, the iterative algorithm consists of four steps:

1. Initialization: perform a first word segmentation of the foreign training
corpus using the MI criterion only.

2. Vocabulary and segment language model training: build a vocabulary
of the 1,000 most frequent words found in the last segmented corpus; put
word boundary marks in the unsegmented corpus according to this 1,000
word vocabulary and train a n-gram LM from this data.

3. Decoding: for each unsegmented utterance, infer the most likely segmenta-
tion (location of segment boundaries) using the language model obtained
in step 2

4. Iterate: Go back to step 1 until a fixed number of iterations is reached.

7.3 Word Discovery from Parallel Data

In contrast to previous work, we now perform the word discovery by utilizing
the knowledge that can be gained from automatically aligning the English word
sequences with the foreign phoneme sequences. We feel that the English word
sequence which is known to correspond to the foreign phonemes should give
additional information that can be used for the word discovery.

The goal of our experiments is to automatically exploit all the data that is
generated in the human interpreter scenario described above. We assume that
one of the languages involved is a well known language that has been exam-
ined already for NLP, meaning that for example ASR systems for this language
exist. English is such a language that is often used in scenarios as described
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here. For the other language it is only assumed that an unsegmented phonetic
transcript of the words articulated by the translator is available. In a real-world
application scenario this transcript has to be obtained manually by a skilled
phonetician, or even better in an automatic way by a language independent
phoneme recognition system. The construction of such systems is an area of
research by itself (e.g. [Köh96], [SW01]). For the experiments in this thesis
we chose to work with a reference phoneme transcription of the target speech,
instead of automatic ones. In this way we want to exclude effects introduced
by errors in the phoneme recognition of the target language and concentrate on
the techniques for exploiting the parallel data.

7.3.1 Word Alignment

In order to segment the phoneme string of the target language into appro-
priate word units we propose to exploit the original English speech by estab-
lishing word-to-phoneme alignments between the individual English words and
chunks from the phoneme sequence. The science of establishing word-to-word
alignments for bilingual sentences has been well studied in the field of machine
translation (MT). The alignment between a given source string with J words
sJ
1 = s1, s2, ..., sJ and a target string with I words tI1 = t1, t2, ..., tI is defined as

a subset of the Cartesian product between the word positions of the two strings
[ON03], [BPPM93], and [Koe09]:

A ⊆ {(i, j) : j = 1, ...J ; i = 1, ..., I} (7.1)

Usually the alignments are constrained in such a way that each source word
is assigned exactly one target word; so for every word position j in the source
sentence a word position i = aj in the target sentence is assigned and we can
write the alignments as aJ

1 = a1, ..., aJ .

One solution to automatically finding such alignments between two sentences is
the use of statistical alignment models and statistical translation models from
statistical machine translation (SMT) [ON03]. One part of SMT tries to model
the translation probability P (sJ

1 |tI1) which describes the relationship between a
source language string sJ

1 and a target language string tI1. Now, given the align-
ment aJ

1 between sJ
1 and tI1, that maps the source word at position j to the target

word at position aj , a statistical alignment model is defined as P (sJ
1 , aJ

1 |tI1), and
P (sJ

1 |tI1) can be expressed as:

P (sJ
1 |tI1) =

∑
aJ
1

P (sJ
1 , aJ

1 |tI1) (7.2)

The statistical models in general depend on a set of parameters Θ: P (sJ
1 , aJ

1 |tI1) =
PΘ(sJ

1 , aJ
1 |tI1). The best parameters Θ̄ are found on a set S of parallel training
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sentences in such a way that they maximize the probability of the training set.
One way to do this is to use Expectation Maximization (EM) training which in
general will only find a local maximum for Θ̄. Given a sentence pair (sJ

1 , tI1) the
best alignment, that is the most probable alignment, between the two sentences
can be found with the help of the trained parameters:

āJ
1 = argmax

aj
1

PΘ̄(sJ
1 , aJ

1 |tI1) (7.3)

Different models, with different sets of parameters exist in literature, such as
HMM models [VNT96] and the IBM 1-5 models [BPPM93]. For our experiments
we use the IBM-4 model to generate the sentence alignments.

7.3.2 Alignment Error Rate

For assessing the quality of the found alignments between two sentences, [ON03]
defines the alignment error rate (AER). For calculating the AER a set of man-
ually annotated reference alignments is created. Due to the complexity and
ambiguity of creating a reference alignment, the alignments aj are labeled as
either belonging to sure (S) alignments or possible (P ) alignments, which are
used for ambiguous alignments. Every sure alignment is also considered to be
a possible alignment (S ⊆ P ). The quality of the alignment found is then
measured by appropriately defined precision and recall measures:

recall =
|A ∩ S|
|S|

, precision =
|A ∩ P |
|A|

(7.4)

Thus a recall error only occurs if a sure alignment has not been found, while a
precision error occurs if a found alignment is not even possible. The alignment
error rate (AER) is derived from the well known F-measure [van79]:

AER(S, P ; A) = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

(7.5)

7.4 Combination of the Approaches

In order to combine the two approaches from Section 7.2.1 and Section 7.3 we
took the most frequent words from the monolingual word discovery and replaced
the corresponding phoneme sequences in the training data. The reasoning be-
hind this approach is that the very frequently occurring words from the monolin-
gual word discovery algorithm likely correspond to real words. By substituting
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them in the phoneme sequences, it should be easier for the alignment process
to align the remaining phonemes in the training material to the English words.
It turned out that taken the frequent words after the initial mutual information
segmentation worked best for that purpose.

7.5 Data

Our experiments were conducted with the help of the English portion of the
Basic Travel Expression Corpus (BTEC) [KSTY03] and a Spanish translation
of it. BTEC consists of travel expressions taken from phrase books in order to
cover every potential subject in travel conversations. Our version of BTEC with
the corresponding Spanish translation of it consists of 155K parallel sentences.
The size of the English vocabulary is 12K while that of the Spanish one is 20K.

In our experiments English plays the role of the well-studied language while
Spanish takes the role of the under-resourced language about which little to
nothing is known. In reality Spanish is of course a well known language with
existing resources and systems. However, by pretending that it is unknown to us,
we can simulate our approaches on existing data and can easily evaluate them.
As mentioned above, for our exploratory experiments we use a perfect phoneme
transcription of the Spanish sentences which we obtained by transforming the
words in the Spanish corpus with the help of a dictionary that was generated by a
rule based system that was used in the past for generating Spanish pronunciation
dictionaries for ASR systems.

In preparation for the later experiments, sentence pairs from the training corpus
were removed that were longer than 50 words or phonemes respectively and that
exceeded a sentence length ration of 9-1. We then divided the corpus into three
sets: a training set containing 142,810 sentence pairs, a development set with
2,000 sentence pairs, and a test set with 2,000 sentences. The development set
is used for parameter tuning for the translation system, while the performance
of the resulting translation systems is measured on the test set. All three sets
are completely disjunct and do not contain any doublets.

7.6 Experiments

In order to evaluate the suitability of the word segmentations that we obtained
from the different approaches, we trained Spanish-to-English translation systems
on the respective corpora resulting from the segmentations. For training and
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testing we used the Moses toolkit [mos]. We performed the standard training
and decoding procedure as described on the Moses homepage.

In addition to the systems trained on the automatically found word units, we
also trained a translation system with the original Spanish, word based corpus.
The result serves as our gold standard, whose performance provides us with an
upper bound for the performance of the other systems. This standard system,
as one would train it, if a word segmentation were available, achieves a BLEU
score of 0.56 on our test set. Naturally, we expect the automatically found word
units to perform more or less worse than this gold standard.

The results of all approaches are summarized in Table 7.2 and are explained in
more detail in the following.

7.6.1 Monolingual Word Discovery

We applied the algorithm from [BZG06] as described in Section 7.2.1 to the
phonemes of the Spanish training data on a per sentence level. The initial
MI threshold was set to 1.0. Three iterations of language model training and
segmentation were performed. The language model from the last iteration was
then used to segment the Spanish development and test sets into word-like
units as well. It is important to note that in step 2 of the algorithm, a segment
boundary is made a priori more likely by using a bias factor in order to perform
a more aggressive segmentation. The reason for this is that a false detection
(put an incorrect word segment) may be not too critical for the training of the
phrase table, while a false rejection (do not segment multiple words) may freeze
some bad sequences before the MT training.

The translation system trained on this corpus reaches a BLEU score of 0.34
when translating from Spanish to English. This is a drastically higher drop
in performance from the gold standard than reported in [BZG06]. One of the
reasons for this can be the different corpus (Spanish-English BTEC instead of
Iraqi-English). Another reason could be the fact that we are not working with
the phoneme sequence produced by a word based speech recognition system,
but rather the phoneme sequence as given by the reference and a pronunciation
dictionary (i.e. the output from a speech recognition system with 0% word error
rate).
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7.6.1.1 Modifications to the Algorithm

We suspected that one of the problems with this approach could be that the
segmentation of the development and test set with the language model intro-
duces a lot of unknown words which were not seen in the training corpus. We
therefore modified the segmentation procedure of the corpus in the following
way:

From the word units found on the training data we extracted a dictionary
with occurrence counts for the words. Using this dictionary we substituted the
phonemes in the training, development, and test set by recursively substituting
the longest matching phoneme sequence.

When we now train a translation system on the resulting training corpora and
test it on the resulting test corpus, the BLEU score goes up by 5 points to 0.39.

7.6.2 Word Discovery from Parallel Data

7.6.2.1 Word-to-Phoneme Alignment

In the word to phoneme alignment we want to assign every English word a
sequence of Spanish phonemes. For finding the word alignments we used the
GIZA++ [ON00] toolkit and the Pharaoh training script [Koe04]. One result of
the GIZA++ training besides the learned translation models is a word alignment
for the sentences in the training set. Since the alignments have the restriction
that each source word is assigned exactly one target word, English is the target
language and Spanish the source language.

The quality of the resulting alignment can be measured with the help of the
alignment error rate described in Section 7.3.2. In order to have a baseline
number for the error rate of the alignments from the training, we also performed
the IBM-4 model training for the word based Spanish corpus, instead of the
phoneme based one.

Table 7.1 shows the precision, recall, and alignment error rate for the training
on the bilingual corpus using Spanish phonemes and the bilingual corpus using
Spanish words as a comparison. The alignment error rate for the alignment
between the English words and the Spanish phonemes is, as was to be expected,
higher than for the alignment with the Spanish words. This is due to the more
complex task of aligning words with phonemes, instead of words. However,
the numbers also show that the task is feasible and can be done with the ex-
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isting alignment techniques. In order to get an impression of the alignments

Table 7.1: Precision, recall, and AER for the alignments between English words
and Spanish phonemes, words respectively

Spanish phonemes Spanish words

precision 83.5% 88.8%
recall 66.9% 75.3%

AER 25.4% 18.1%

found by the training Figure 7.1 shows three sample alignments between the
English words (top) and the Spanish phonemes (middle). Below the Spanish
phonemes the figure shows the Spanish word transcription together with the
word to phoneme mapping as given by our dictionary. The alignment a) in this
figure is an example for a perfect alignment in a rather simple case, where the
number of English words matches the number of Spanish words. b) is an exam-
ple of a more complex alignment where the English word ‘please’ needs to be
aligned to two Spanish words. Again the alignment found is correct. c) Shows
an example of an even more complicated alignment. Here the alignment also
needs to do a word reordering, the words ‘hot’ and ‘milk’ need to be swapped.
And the English words ‘I’d’ and ‘like’ both need to be mapped to the Spanish
word ‘querria’. While the swap of ‘hot’ and ‘milk’ is done correctly, the align-
ment found for ‘I’d’ and ‘like’ is clearly wrong. Due to its constraints the IBM-4
model cannot find the correct alignment.

7.6.2.2 Dictionary Extraction

From the found alignments it is now easily possible to extract dictionary entries.
Every English word that is aligned to Spanish phonemes is a potential entry in
the Spanish dictionary, with the English word serving as a generic word id in
the Spanish dictionary. Different English words that were mapped to the same
phoneme sequence were not combined into one word, so that homophones were
generated. One special case, when extracting the words, needs to be considered.
It can happen that an English word is aligned to a phoneme sequence that is not
continuous in its phonemes’ positions, but that has got holes or reorderings in
its sequence. These sequences have to be split into its continuous subsequences,
each subsequence corresponding to one Spanish word. Each subsequence then
receives its own word identifier based on the English word to which it was
aligned.

In a second step the resulting dictionary is filtered. Pronunciation variants to
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i'd like hot                           milk               please

/k/ /e/ /r/ /i+/ /a/ /l/ /e+/ /tS/ /e/ /k/ /a/ /l/ /j/ /e+/ /n/ /t/ /e/ /p/ /o+/ /rf/ /f/ /a/ /V/ /o+/ /rf/

querría leche caliente por favor

ketchup please

/k/ /e/ /t/ /tS/ /u+/ /p/ /p/ /o+/ /rf/ /f/ /a/ /V/ /o+/ /rf/

ketchup por favor

that's fine 

/e/ /s/ /t/ /a+/ /b/ /j/ /e/ /n/

está bien

a)

b)

c)

Figure 7.1: Samples of alignments found by GIZA++

a word that occur less than 100 times in the training text are removed from
the dictionary. This step is taken in order to eliminate pronunciation variants
that were created due to erroneous word-to-phoneme alignments. The dictionary
constructed in this way contains 15K words. 3,172 words in the original Spanish
dictionary have an exact phonetic match in the dictionary constructed this way.

7.6.2.3 Evaluation

Using the extracted dictionary the phoneme sequences in the training, develop-
ment, and test set were replaced by the words in the dictionary. Replacement
was done by recursively replacing the longest matching phoneme sequence in a
sentence with the corresponding word from the dictionary. In case of multiple,
matching words the most frequent one was chosen.

We now performed the same training as before for the monolingual approach
on the newly found corpora. On the test corpus the translation system reaches
a BLEU score of 0.50. This is considerably higher than for the monolingual
approach. So, the additional information given by the parallel English sentences
could be exploited to find word units better suited for translation, now only
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lacking six BLEU points behind the gold standard.

7.6.3 Combination Results

When we combine the two approaches as described in Section 7.4, we can im-
prove on that performance by one BLEU point reaching a score of 0.51. The
number of words to take from the initial MI segmentation was empirically de-
termined on the development set and set to 40. When using the most frequent
words from the complete segmentation procedure, the gain from combination is
smaller, only about 0.5 BLEU points.

Table 7.2: Results in BLEU Score of the Spanish-to-English translation with
the different word discovery approaches

Word Segmentation Approach BLEU

Gold Standard 0.56

Monolingual 0.34
Monolingual modified 0.39
Parallel Data 0.50
Combination 0.51

7.6.4 Suitability for ASR

So far, the experiments have only examined the suitability of the automatically
found word units for machine translation purposes. However, we are interested
in a full speech translation system which also includes ASR. Whether the word
units are also suitable for ASR can be determined by looking at the language
model perplexities of the different approaches. In order to measure this we
trained 3-gram language models on the training sets that were segmented by
the different approaches and measured their perplexities on the respective de-
velopment and test sets.

Table 7.3 gives an overview over the perplexities of the language models esti-
mated with the different kinds of word units on the development and test set.
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Table 7.3: Language model perplexities for the Spanish dev and test set for the
two monolingual word discovery approaches, the word discovery from parallel
data, and the combination of the two approaches

Word Segmentation Approach dev test vocab size

Gold Standard 45.6 45.1 16,838

Monolingual 52.7 51.5 22,883
Monolingual modified 104.9 104.6 21,004
Parallel Data 47.6 47.2 11,713
Combination 53.1 51.6 11,872

7.6.5 End-to-End Evaluation

In order to test the suitability of the discovered word units for real speech
translation, we carried out a full end-to-end speech translation evaluation.

For this end-to-end evaluation we used a database of 1,000 Spanish BTEC sen-
tences read by 12 speakers. The database and the acoustic model for the Spanish
recognition system were taken from [PFS+05, PSF+05].

Using this system, the language models from Section 7.6.4, and the dictionaries
constructed in Sections 7.2.1 and 7.6.2.2 we recognized the 1,000 read BTEC
sentences. The vocabulary of the recognizer was derived from the training data,
by taking all words that occur in the training data of the translation system.
The word based system, that again is the gold standard for this experiment,
reaches a word error rate of 16.3%. When translating this ASR output into
English, the system reaches a BLEU score of 0.36.

Table 7.4 shows the BLEU scores when translating the ASR output correspond-
ing to the monolingual word discovery approach and the approach exploiting
the parallel data. As we can see, taking into account the parallel data as super-
vision improves the performance of the resulting speech translation system by
three BLEU points.

Table 7.4: BLEU score when translating the ASR output obtained with the
automatically discovered word units

Word Segmentation Approach BLEU

Gold Standard 0.36

Monolingual 0.26
Parallel Data 0.29
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7.7 Conclusion and Outlook

In this chapter we have examined the scenario of acquiring the data resources
necessary for training a speech-to-speech translation system by observing the
actions of a human interpreter. We have focused on discovering word like units
in a previously unknown language for which we only have a phonetic transcript,
but no word segmentation. We have introduced an approach to segmenting the
phoneme sequence in the foreign language into words that makes use of all the
available knowledge sources, including the parallel English sentences. The word
discovery approach also produces a pronunciation dictionary which is necessary
for the creation of a speech recognition system.

We conducted the first true end-to-end evaluation reported in literature by mea-
suring the translation performance on the output of ASR systems that use the
automatically found word units.

We have compared our new approach with the latest existing approach in liter-
ature that only works on the monolingual, foreign data. Our approach signif-
icantly outperforms this approach, showing that we can effectively exploit the
parallel data.

When deploying such a system in real life, one would typically first try to learn
short and simple sentences, or even only single words, mostly nouns. Similar to
the way that a person would try to learn and discover a language when faced with
it for the first time without a teacher at hand. In order to show the potential
for this procedure in combination with our technique we conducted an oracle
experiment. We assumed that we were able to learn all the nouns in the new
languages, e.g. by pointing and recording the speech from the native speakers.
We thus substituted all nouns in the unsegmented phoneme string of the target
language by the correct word and then repeated our word discovery algorithm.
When evaluating this approach on the perfect phoneme sequence of the test
data, as in Section 7.6.2.3 the BLEU score improved from 0.50 to 0.53. Thus,
learning a language in the right order will greatly improve the performance of
the systems created in this way.
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Conclusion

The languages of the world show a high diversity. Roughly 4,000–7,000 lan-
guages exist in the world, many of which are only spoken by comparatively few
speakers. At the same time many languages are threatened by extinction. Of-
ten speakers switch from their native language to a new language which seems
to offer them better opportunities in a world in which information flows freely
around the globe. At the same time, linguists argue that the upkeeping of a
high linguistic diversity in the world is essential to a sound environment and
the foundation of the many cultures in the world. By developing natural lan-
guage processing systems, including automatic speech recognition systems, for
all languages in the world, we believe that technology can help to stop this
trend.

However, in order to be able to handle the high number of languages in the world,
techniques have to be devised in order to develop natural language processing
systems in a fast and affordable way.

In this thesis we have presented our work in providing and refining techniques
for porting speech recognition systems to new languages. For the case that no
dictionary in the target language is available or can be created, we have shown
that the use of graphemes as modeling units is a suitable alternative. Their
use eliminates the need for a pronunciation dictionary which is expensive and
time-intensive to create.
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We transferred work in porting phoneme based acoustic models to porting
grapheme based models. Since for graphemes the overlap of models between
the different languages might either be low or even no overlap might exist, we
applied two data driven mapping techniques for porting grapheme based models
to new languages.

In order to improve the performance when porting phoneme based acoustic
models to new languages we incorporated articulatory feature detectors into
the porting process, showing improvements over the case that no articulatory
features are used.

Finally, we examined the scenario that the target language does not have any
writing system. For this case we showed how by data-driven means, word units
in the new language can be detected. By conduction a full end-to-end evaluation,
we showed that these generically found word units are suitable for the use in a
speech translation system.

8.1 Graphemes as Modeling Units

The pronunciation dictionary of a phoneme based ASR system, is time and labor
intensive in its creation. The process usually requires either intensive manually
labor of an expert or large amounts of training material or both.

The use of graphemes instead of phonemes as modeling units eliminates the
need for such a pronunciation dictionary. In this work we have demonstrated
that this approach is a feasible solution for many languages in the world. Due
to the often complex relation between graphemes and phonemes, the model
cluster tree of a grapheme based ASR system is of heightened importance. We
accounted for this importance by replacing our traditional cluster tree with a
flexible version. Using the flexible tree we could show improvements in word
error rate for all languages examined.

8.2 Porting Grapheme based ASR to New Lan-
guages

Past research has addressed the problem of porting phoneme based acoustic
models to new languages. Techniques for creating a common phoneme set for
all languages were examined and language independent acoustic models were
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trained. For phoneme based models, finding a common model set is very simple
and can be easily done by existing reference schemes such as IPA. Also, the
application of such a model to a new language is very uncomplicated due to the
language independent notation introduced by such reference schemes.

For grapheme based models the challenges are higher. Unlike phonemes, graphemes
are pronounced very differently across languages. Also, many languages use dif-
ferent writing systems, so that no overlap or only a very little one exists between
the languages.

In this thesis we transferred the method ML-Mix for creating and porting
language-independent acoustic models to new languages to the case that models
are based on graphemes. For the case that only little or no overlap between the
graphemes of the multilingual model and those of the target language exists, we
examined the use of two data-driven mapping methods for finding appropriate
correspondences between the multilingual model and the target language.

Since the cluster tree for the context-dependent models is of heightened impor-
tance in grapheme based ASR, we used the technique of polyphone decision tree
specialization to adapt the tree to the target language. We enhanced the spe-
cialization procedure by combining it with a pruning scheme which is applied
prior to specialization. For the case that graphemes are used as modeling units
we could show gains over the pure form of specialization.

8.3 Porting with the Help of Articulatory Fea-
tures

In the past, models of articulatory features were successfully integrated into
monolingual, phoneme based speech recognition systems. They improved the
recognition performance, especially for conversational speech. Past research
demonstrated also that articulatory features can be modelled in a multilingual
way and can be recognized across languages.

In our work we used models for articulatory features to port speech recognition
systems to a new language. We showed improvements when porting monolingual
and multilingual ASR systems to a new language supported by articulatory
features.

The architecture that we used for integrating the AF models into our recognition
systems requires the selection of suitable stream weights. We were able to
show that the weights learned by a discriminative method on a known language
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successfully generalize to the new target language. Thus, the use of AF does not
necessarily require additional training data in the target language for selecting
the stream weights.

8.4 Discovering Word Units in New Languages

Many languages in the world do not have a writing system. For this case we
examined the scenario that the ASR system for theses languages is part of a
speech-translation system. We have shown that word-like units can be auto-
matically discovered in the unsegmented phoneme string of the new language
by exploiting the bilingual data available for training the translation system.

In our experiments we conducted the first true end-to-end evaluation in litera-
ture, by using the automatically generated word units for real speech recognition
followed by machine translation performed on the ASR output.

We compared our word discovery algorithm against the most recent, mono-
lingual word discovery algorithm known from literature. We found that the
exploitation of the additional information in the form of parallel data, leads to
automatically generated word units that are better suited for automatic speech
recognition and translation.

8.5 Outlook

In order to be able to provide automatic speech recognition systems for all
languages in the world, we have presented in this thesis techniques which speed
up and facilitate the process of porting existing ASR systems to new languages
and which reduce the labor in this, e.g. by eliminating the need for a carefully
constructed pronunciation dictionary.

But, especially when only very little adaptation data in the target language is
available, current methods of porting ASR systems to new languages do not
yet produce systems that are equal in quality to systems that have been stud-
ied thoroughly, in part over decades. But even though the systems resulting
from our methods still lack in performance when compared to the well stud-
ied languages, they can serve as good initial systems for either unsupervised
or semi-supervised learning. In statistical ASR the performance of systems is
closely linked to the available amount of training material. For the major lan-
guages in the world time and money were invested over the past in order to
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produce these resources. For the majority of the languages in the world, the
less-resourced ones, these resources will never be available.

In order to still produce systems that are of use in real-life applications, the
old paradigm of first collecting sufficient amounts of training material, and then
estimating the parameters of the models on them, has to be abandoned. Instead
speech recognition systems will have to learn autonomously, when observing
real-life interactions. In Chapter 7 we have already hinted at how these future
systems might look like.

The techniques presented in this paper are suitable for incorporation into a
framework of observing human interaction and learning from them in an unsu-
pervised way. Automatic speech recognition and machine translation can form
self-enhancing parts that can gain from each other [PFS+05, PSF+05, PSF06,
PSF+07, PW08]. These systems then refine themselves during the interactions
that are taking place anyway, and their training thus will not incur high addi-
tional costs.

When developing this notion further by not imposing any limits anymore on the
type of media that the observing systems use for learning, these systems will
turn into learning omnivores that improve their models from whatever piece of
information will present itself to them during their deployment in real-life.
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