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Abstract 
In this paper we show that neural networks for speech recognition 
can be constructed in a modular fashbn by expbiting the hidden 
structure of prevbusly trained phonetic subcategory networks. The 
performance of resulting larger phonetic nets was found to be as 
good as the performance of the subcomponent nets by themselves. 
This approach avoids the excessive learning times that would ba 
necessary to train larger networks and allows for incremental 
learning. Large time-delay neural networks constructed 
incrementally by applying these modular training techniques 
achieved a rewgnition performance of 96.0% for ail consonants and 
94.7% for all phonemes. 

1. Introductlon 
Recently we have demonstrated that connectionist architectures 
capable of capturing some critical aspects of the dynamic nature of 
speech, can achieve superior recognition performance for daficuit but 
small phonemic discrimination tasks such as discrimination of the 
voiced consonants B,D and G 11.21. Encouraged by these results 
we wanted to explore the vestion, how we might expand on these 
models to make them useful for the design of speech recognition 
systems. A problem that emerges as we attempt to apply neural 
network models to the full speech recognition problem is the problem 
of scaling. Simply extending neural networks to ever larger 
structures and retraining them as one monolithic net quickly exceeds 
the capabilities of the fastest and largest supercomputers. The 
search complexity of finding a gwd  solutions in a huge space of 
possible network configurations also soon assumes unmanageable 
proportions. Moreover, having to decide on all possible classes for 
recognition ahead of time as well as collecting sufficient data to train 
such a large monolithic network is impractical to say the least. In an 
effort to extend our models from mai l  recognition tasks to large 
scale speech recognition systems, we must therefore explore 
modularity and incremental learning as design strategies to break up 
a large learning task into smaller subtasks. Breaking up a large task 
into subtasks to be tackled by individual black boxes interconnected 
in ad hoc arrangements, on the other hand, would mean to abandon 
one of the most anractiie aspects of connectionism: the ability to 
perform complex constraint satistaction in a massively parallel and 
interconnected fashion, in view of an overall optimal performance 
goal. In this paper we demonstrate based on a set of experiments 
aimed at phoneme recognition that it is indeed possible to consttuct 
large neural networks incrementally by exploiting the hidden 
structure of smaller pretrained subcomponent networks. 

2. Small Phonemlc Classes by Time-Delay Neural 

In our previous work. we have proposed a Time-Delay Neural 
Network architecture (as shown on the left of Fig.1 for B,D,G) as an 
approach to phoneme discrimination that achieves very high 
recognition scores 11, 21. Its mltilayer architecture, its shim- 
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invariance and the time delayed connectins of its units all 
contributed to its performance by allowing the net to develop 
complex, non-linear decislon surfaces and insensitivity to 
misalignments and by incorporating contextual information into 
decision making (see [l, 21 for detailed analysis and discussion). It 
is trained by the back-propagation pmcedure[3] using shared 
weighls for different time shifted positions of the net [ l ,  21. In spirit it 
has simi!arities to other models recently proposed [4,5]. This 
network. however, had only been trained for the voiced stops 6,D.G 
and we began our extensions by training similar networks for the 
other phonemic classes in our database. 

Ail phoneme tokens in our experiments were extracted using 
phonetic handlabels from a large vocabulary database of 5240 
common Japanese words. Each word in the database was spoken 
in isolation by one male native Japanese speaker. All utterances 
were recorded in a sound pmoi booth and digitized at a 12 kHz 
sampling rate. The database was then split into a training set and a 
testing set of 2620 utterances each. A 150 msec range around a 
phoneme boundary was excised for each phoneme token and 16 
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Figure 1. The TDNN architecture: 
BDG-net (left), BDGPTK-net (right) 

me1 scale finerbank coefficients computed every 10 msec [1,2]. The 
preprocessed training and testing data was then used to train or to 
evaluate our TDNNs' performance for various phoneme classes. For 
each class, TDNNs with an architecture similar to the BDG-net in 
Fig.1 were trained. A total of seven nets aimed at the major coarse 
phonetic classes in Japanese were trained. including voiced stops B. 
D, G. voiceless stops P.T.K, the nasals M, N and syllabic nasals, 

112 
CH2673-2/89/0000-0112 51.00 0 1989 IEEE 



fricatives S, SH, H and Z. affricates CH, TS, l i i i ds  and glides R. W, 
Y and tinally the set of vowels A, I, U, E and 0. Each of these nets 
was given between two and five phonemes to dktinguish and the 
pertinent input data was presented tor learning. Note, that each net 
was trained only within each respective coarse class and has no 
notion of phonemes from other classes yet. Evaluation of each net 
on test data within each of these subcategorfes revealed that an 
average rate 01 98.8% can be achieved (see 161 tor a more detailed 
tabulation of results). 

3. Scaling TDNNs to Larger Phonemic Classes 
We have seen that TDNNs achieve superior recognition pefforrnance 

diHksll but small recognitlon tasks. To train these networks 
substantial computational resources were needed. This raises the 
question of how our networks could be extended to encompass a// 
phonemes or handle speech recognition in general. To shed likht on 
this question of scaling, we consider first the problem of extending 
our networks fmm the task of voiced stop consonant recognitbn 
(hence the BDG-task) to the task of distinguishing among a// stop 
consonants (the BDGPTK-task). 

For a network aimed at the discrimination of the voiced stops (a 
BDG-net), appximately 6000 connections had to be trained over 
about 800 training tokens. An identical net (also with approximately 
6000 connections') can achieve discriminatbn among the voiceless 
stops ("P", "T" and "K). To extend our networks to the recognition of 
a// stops, i.e.. the voiced and the unvoiced stops (B,D,G,P,T.K), a 
larger net is required. We have trained such a network for 
experimental pulposes. To allow tor the necessary number of 
features to develop we have given this net 20 units in the first hidden 
layer, 6 units in hidden layer 2 and 6 output units. On the right ot 
Fig.1 we show this net in actual operation with a "G" presented at its 
input. Eventually a high performance network was obtained that 
achieves 98.3% correct recognition over a 1613-token BDGPTK-test 
database, M it took inordinate a w n t s  of learning to arrive at the 
trained net (18 days on a 4 processor Alliantl). Although going from 
voiced stops to all stops is only a rncdest increase in task size, about 
18,000 connections had to be trained. To make maners worse, not 
only the number ot connections should be increased with task size, 
but in general the amount of training data required for good 
generalization of a larger net has to be increased as well. Naturally, 
there are practical limits to the size 01 a training database, and more 
training data translates into even more learning time. Learning is 
further complicated by the increased complexity 01 the higher 
dimensional weightspace in large nets as well as the limited 
precision of our simulators. Despite progress towards taster learning 
algorithms [7, 81, it is clear that we cannot hope tor one single 
monolithic network to be trained within reasonable time as we 
increase sue to handle larger and larger tasks. Moreover, requiring 
that all classes be considered and samples 01 each class be 
presented during training, is undesirable for practical reasons as we 
contemplate the design of large neural systems. Alternative ways to 
modulady construct and incrementally train such large neural 
systems must therefore be explored. 

3.1. Experiments with Modularity 
Four experiments were performed to explore methodologies for 
constmcting phonetic neural nets from smaller conponent subnets. 
As a task we used again stop consonant recognition (BDGPTK) 
although other tasks have recently been explored with similar 
success (BDG and MNsN) [9]. As in the previous section we used a 

'Nota, that heae are mnnenions over which a back-pmpaga6on pass is pertmed 
dunw ead~ ileratim. Sinat many of hem share the -8 weuha, only a amsll 
hacSon (about 5m) of m m  are actually free paameten. 

large database of 5240 common Japanese words spoken in isolation 
from which the testing an training tokens for the voiced slops (the 
BDG-set) and for the voiceless stops (the PTK-set) was extracted. 

Two separate TDNNs have been trained. On testing data the BDG- 
net used here performed 98.3% correct tor the BDG-set and the 
P T K - ~ ~ I  achieved 98.7% correct recognition for the PTK-set. As a 
first naive attempt we have now simply run a speech token from 
either set (Le., B,D,G,P,T or K) through both a BDG-net and a PTK- 
net and selected the class with the highest activatbnfmm either net 
as the recognition result. As m i ~ h l  have been expected (the 
component nets had only been trained for their respective classes), 
poor recognition pefformance (Bo.5%) resulted from the 6 class 
experiment. This is partilly due to the inhibitory property of the 
TDNN that we have observed elsewhere [l]. To combine the two 
networks more effectively, therefore, portions of the net had to be 
retrained. 

We stat? by assuming that the first hidden layer in either net already 
contains all the lower level acoustic phonetic features we need for 
proper identification 01 the stops and treeze the connections from the 
input layer (the speech data) to the first hidden layel's 8 units in the 
BDG-net and the 8 units in the PTK-net. Back-propagatbn learning 
is then performed only on the connections behveen these 16 (= 2 X 
8) units in haden layer 1 and hidden layer 2 and between hidden 
layer 2 and the combined BDGPTK-net's output. This network is 
shown in Fig.2 with a "G" token presented as input. Only the higher 
layer connections had to be retrained (for about one day) in this case 
and the resulting network achleved a recognition perfonance of 
98.1% over the testing data. Combination of the two subnets has 
therefore yiekled a good net although a slight performance 
degradation compared to the subnets was observed. This 
degradation coukl be explained by the increased complexity of the 
task, but also by the inabiliiy 01 this net to develop lower level 
acoustic-phonetic features in hidden layer 1. Such features may in 
tact be needed for discrimination beween the two stop classes, in 
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I BDGPTK-net trained from hidden units 
from a BDG- and a PTK-net. 

addition to the within-class features. 

In a third experiment, we therefore first train a separate TDNN to 
perform the voicedlunvoiced (V/UV) distinction between the BDG- 
and the PTK-task. The network has a very similar structure as the 
BDG-net. except that only four hWen units were used in hidden 
layer 1 and two in hidden layer 2 and at the output. This WUV-net 
achieved better than 99% voicedhnvoiced classification on the test 
data and its hidden units developed in the process are now used as 
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additional features for the BDGPTK-task. The connections from the 
input to the first hidden layer of the BDG-, the PTK- and the V/UV 
nets are frozen and only the connections that combine the 20 units in 
hidden layer 1 to the higher layers are retrained. Training of the 
V/UV-net and subsequent combination training took between one 
and two days. The resulting net was evaluated as More  on our 
testing database end achieved a recognition score of 98.4% correct. 

In the previous experiment, gocd results could be obtained by adding 
units that we believedto be the useful class distinctive features that 
were missing in cur second experiment. In a fourth experiment, we 
have now examined an approach that allows for the network to be 
free to discover any additional feafures that mi~ht be useful to merge 
the two conponent networks. In stead of previously training a class 
distinctive network. we now add four units to hidden layer 1. whose 
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Flgure 3. Combination of a BDG-net and a PTK-net 
using 4 additional units in hidden layer 1 

as free "Connectionist Glue". 

connections to the input are tree to barn any missing discriminatory 
features to supplement the 16 frozen BDG and PTK features. We 
call these units the "connedbnist gluff that we apply to merge two 
distinct nelworks into a new combined net. This network Is shown in 
Fig.3. The hidden units of hidden layer 1 from the BDG-net are 
shown on the left and those from the PTK-net on the right. The 
connections from the moving input window to these units have been 
trained individually on BDG- and PTK-data, respectively. and -as 
before- remain flxed during combination learning. In the middle on 
hidden layer 1 we show the 4 free "Glue" units. Combination 
learning now searches for an optimal combination of the existing 
BDG- and PTK-features and also supplements these by learning 
additional interclass discriminatory features. Combination retraining 
with "glue" required a two day training tun. Performance evaluation 
of this network over the BDGPTK test database yielded a recognition 
rate of 98.4%. 

In addition to the techniques described so far, it may be useful to free 
all connections In a large modularly COnStNCted network for an 
additional small amount of fine tuning. This has been &ne for the 
BDGPTK-net shown in Fig.3 yielding some additional performance 
improvements. Each iteration of the full network is indeed very sbw, 
but convergence is reached after only few addiionai tuning 
iterations. The resutiing network finally achieved (over testing data) 
a recognition score of 98.6%. 

3.2. Steps for the Design of Urge Scale Neural Nets 
Table 3-1 summdzes the major results from cur experiments. In 
the first row it shows the recognition performance of the two initial 
TDNNs trained individually to perform the BDG- and the PTK-tasks. 
respeclively. Underneath. we show the results from the varlous 
expertmews described in the -us section. The results indicate, 

P T T w  Individual TDNNi 98.3 S 98.7 91 

Ratr.m W,thVNV.".,tr 

Rstrunwith Glue 

All-Net Fmr Tuiung 

Table 3-1 : From BDG to BDGPTK; 
Modular Scaling Methods. 

that larger TDNNs can indeed be trained lncremntally, without 
requiring excessive a m n t s  of training and without loss in 
performance. The total incremental training time was between one 
third and one hati of a full monolithically trained net and the resulting 
networks appear to perform slightly better. Even more astonishingly. 
they appear to achieve performam as high as the subcomponent 
BDG- and PTK-nets alone. As a strategy for the efficient 
consttudin of larger networks we have found the following concepts 
to be extremely effective: modular,imremental kaming, dass 
distincthe leamiw, cwnecrionist glue, partial and selective leaming 
and all-net fine tuning. 

4. Recogni t ion of all Consonants and all Phonemes 
The incremental learning techniques explored so far can now be 
applied to the design of networks capable of recognizing all 
consonant and all phonemes. 

4.1. Network Architecturn 
Our consonant TDNN (shown in Fig.4.1) was constructed modularly 
from networks aimed at the consonant subcategories, i.e., the BDG-, 
PTKk,hZ,N.sN-, SShHZ-, TSCh- and the RWY-tasks. Each Of these 
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nets had been trained before to discriminate between the 
consonants withh'r each class. Hidden layers 1 and 2 were then 
extracted from these nets. i.e. their weights copied and frozen in a 
new combined consonant TDNN. In addition. an interclass 
discrimination net was trained that distinguishes between the. 
consonant subdasses and thus hopfully provides mlssing featural 
information for interclass discrimination much like the V/W network 
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descrbed in the previous section. me structure of this network was 
very similar to other subcategory TDNNs. except that we have 
allowed for 20 units in hidden layer 1 and 6 hidden units (one for 
each coarse consonant dass) in hidden layer 2. The weights leading 
into hidden layers 1 and 2 were then also copied from this interclass 
discriminaton net into the consonant network and frozen. Three 
connedions were then established to each of the 18 consonant 
output categories (B.D,G.P,T.K,M.N,sN.S, Sh,H.Z,Ch,Ts,R,W and 
Y): one to connect an output unit with the appropriate inferclass 
discrimination unit in hidden layer 2, one with the appropriate 
intradass discrimination unit from hidden layer 2 Of the 
corresponding subcategory net and one with the always activated 
threshold unit (not shown in Fg.4.1) The overall network architecture 
is shown in Fe.4.1 for the case of an incoming test token (e.g., a 
“G“). For simplidty. Flg.4.1 shows only the hidden layers from the 
BDG-,PTK.SShHZ- and the interdas discrimination nets. At the 
output, only the two connections leading to the correctly aCtNated 
 output unit are shown. Units and connections pertaining to the 
other subcategories as well as connections leading to the 17 other 
output units are omitted for clarity in Fig.4.1. All free weights were 
initialized with Small random weigMs and then trained. 

Another network (not shown here) was also trained that combines 
the consonant net described above wlh a’vowel discrimination 
network. me vowel network by itself achieves a recognition 
performance of 98.6% correct on vowel testing data. It was 
combined with the consonantal subcategory networks and the 
consonant interclass discrimination net in a joint hidden layer 3. 
The activations of each of the 23 hidden units in this layer were then 
integrated over time to activate one of the 23 Japanese phonemes. 
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in the network to allow for small additional adjustments in the interest 
of bener overall performam. After completion of all-nel fine tuning, 
the performance of the network then improved to 96.0% correct. To 
put these recognition results into pen;pedive, we have compared 
these results with several other competing recognitbn techniques 
and found that our incrementally trained net compares favorably 161. 
The incrementally trained all-phoneme network, finally, achieved a 
recognition m r e  of 94.7%. 

5. Concluslon 
The serious problems associated with scaling smaller phonemic 
subcomponent networks to larger phonemic tasks are overcome by 
careful modular design. Modular design Is achieved by several 
impollanl strategies: sekftlve and incremental learning of 
subcomponent tasks, eW&i?ation of prevbUSry learned hMen 
sfrucfure, the application of wnnectionisf glue or dass dlsfiinctlve 
features to allow for separate networks to “ g W  together, prffa/ 
training of potions of a larger net and finally, all-ne? lsne fudng for 
making small additional adjustments in a large net. Our findings 
suggest. that judicious application of a number of connectionist 
desgn techniques could lead to the successful design of hah 
performance large Scale connectionist speech recognition systems. 
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