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ABSTRACT with such Linked Predictive Neural Networks (LPNN’s) indi- 
cate that good large vocabulary recognition performance can 
be achieved in a vocabulary independent fashion. This paper 
describes the basic LpNN system and several extensions, and 
evaluates the system’s performance. 

We present a large vocabulary isolated word recognition sys- 
tem based on Linked Predictive Neural Networks (LPNN’s). 
In this system, neural networks are employed as predictors of 
speech frames, enabling a pool of such networks to serve as 
phoneme models. Higher level algorithms are used to organize 
these networks, linking them into sequences corresponding to 
the phonetic spellings of words, and to train and evaluate the 
networks for word recognition. By virtue of linking phonemic 
networks, the LPNN is vocabulary independent and can be ap- 
plied to large vocabulary recognition. We obtained recognition 
rates of 94% for a 234-word Japanese vocabulary of acoustically 
similar words and 90% for a larger vocabulary of 924 words. 

I. INTRODUCTION 

Neural networks have attracted considerable interest in recent 
years due to their potential usefulness for speech processing. 
In speech recognition, neural networks have been successfully 
used for high-performance phoneme recognition [11,8,7] and for 
small vocabulary recognition [2,9]. Large vocabulary recog- 
nition, however, requires sequential control of subword units 
(e.g., phonemes); hence a logical and common line of current 
research is to employ a neural network as a phonetic classifier 
whose decision is fed into a more conventional alignment pro- 
cedure (e.g., Dynamic Programming or Viterbi Alignment) for 
sequential control [3,4,8]. In addition to learning discrete clas- 
sifications, however, neural networks can also learn non-linear 
mappings between real valued inputs and outputs. This can be 
exploited in speech for various signal mapping and coding ap- 
plications, including noise suppression [lo] and non-linear pre- 
dictive coding [l]. The use of neural networks as non-linear 
signal predictors in speech recognition has recently been shown 
successfully by Is0 [SI and Levin [6]; but both of these models 
have so far been limited to small vocabulary recognition tasks 
(i.e., digits). In this paper, we present an extension of the sig- 
nal prediction based approach that - by virtue of using subword 
units - is applicable to large vocabulary recognition. By jointly 
optimizing time alignment and connection weights and by link- 
ing the weights (as in [ 111) of network predictors corresponding 
to the same phoneme symbols, training and recognition can be 
performed without the need for segmentation. Our experiments 

II. LINKED PREDICTIVE NEURAL NETWORKS 

An LPNN network performs phoneme recognition not by clas- 
sification, but by signal prediction. The idea is illustrated in 
Figure 1. A network, shown as a triangle, takes K contiguous 
frames of speech (we normally use K=2), passes these through 
a hidden layer of units, and attempts to predict the next frame 
of the speech signal. The predicted frame is then compared to 
the actual frame. If the error is small, the network is consid- 
ered to be a good model for that segment of the speech signal. 
If one could teach the network to make accurate predictions 
only during segments corresponding to the phoneme “a” (for 
instance) and poor predictions elsewhere, then one would have 
an effective “a” phoneme recognizer, by virtue of its contrast 
with other phoneme models. The LPNN satisfies this condition, 
as explained below, so that we obtain a collection of phoneme 
recognizers, with one model per phoneme. 
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Figure 1: Modeling a phoneme by signal prediction. 
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Figure 2: The forward pass during training. 

To accomodate the sometimes complex temporal structure of 
phonemes, each phoneme is actually modelled by a sequence 
of 3 networks, corresponding to the beginning, middle, and end 
of the phoneme. For example, the phoneme “b” is modeled by 
the sequence of networks: bl ,  b2, b3. The sequentiality of the 
networks is enforced by the LPNN’s implementation. 

A word is represented by a logically constrained sequence 
of models corresponding to the phonetic spelling of the word. 
This sequence is called the “linkage pattern” for the word. For 
example, the word “aba” (with phonetic spelling “a-b-a”) is rep- 
resented by the network linkage pattem: a l ,  a2, a3, bl ,  b2, b3, 
al ,  a2, a3, as illustrated on the left side of Figure 2. Multiple 
occurrences of networks (such as a l ,  a2, and a3) are linked to- 
gether, as there is only one canonical model for each phoneme. 
These links enable the LPNN to model phonemes from varying 
contexts and to recognize words that were not present in the 
training vocabulary. 

Ha. Training the LPNN 
Training the LPNN on a word proceeds in three steps: a forward 
pass, an alignment step, and a backward pass. The purpose of 
the alignment step is to identify an optimal alignment between 
the forward pass predictions and the speech signal; this align- 
ment is then used to force specialization in the phoneme models 
during the backward pass. We now describe the training algo- 
rithm in detail. 

The first step is the forward pass, illustrated in Figure 2. For 
each frame of input speech at time t, we feed frame(t-1) and 
frame(t-2) in parallel into all the networks which are linked into 
this word, for example the networks al ,  a2, a3, bl,  b2, and b3 for 
the word “aba”. Each network makes a prediction of frame(t), 
and its Euclidean distance from the actual frame(t) is computed. 
These scalar errors are routed through the linkage pattem and 
stored in column(t) of a prediction error matrix. This is repeated 
for each frame until the entire matrix has been computed. 

The second step finds the optimal alignment between the 
speech signal and the phoneme models. This is accomplished 
by applying a standard dynamic programming (DP) algorithm to 
the prediction error matrix. The DP algorithm finds a monoton- 
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Figure 3: The backward pass during training. 

ically advancing diagonal path through the word’s error matrix, 
such that this path has the lowest possible cumulative error. 
The constraint of monotonicity ensures the proper sequencing 
of networks, corresponding to the progression of phonemes in 
the word. Figure 3 shows some typical alignments (the jagged 
diagonal lines in either of the prediction error matrices shown). 

The final step of training is the backward pass, illustrated in 
the bottom half of Figure 3. In this step, we back-propagate 
error at each point along the alignment path. In other words, for 
each frame we propagate error backwards into a single network, 
namely the one which best predicted that frame according to 
the alignment; its backpropagated error is simply the difference 
between this network’s prediction and the actual frame. A series 
of frames may backpropagate error into the same network, as 
shown. Error is accumulated in the networks until the last frame 
of the word, at which time all the weights are updated. 

This completes the training for a single word. The same 
algorithm is repeated for all the words in the training set. 

The LPNN’s training algorithm is remarkably synergistic. The 
alignment-controlled backpropagation causes each network to 
specialize on a different section of speech; consequently we ob- 
tain a full repertoire of individual phoneme models. This indi- 
viduation in tum improves the accuracy of future alignments, in 
a self-correcting cycle. To bootstrap the LPNN on the first itera- 
tion (when weights have random values), it has proven useful to 
force an initial alignment based on average phoneme durations. 
However, the LPNN quickly outgrows the need for such hints: 
on subsequent iterations the LPNN itself segments speech on the 
basis of the increasingly accurate alignments. Furthermore, as 
illustrated in Figure 3, the same phoneme models are shared by 
all words, so a network such as a1 learns to predict an “a” sound 
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in any context. The system can thus generalize to contexts and 
words it has not seen before. 

IIb. Testing LPNN Performance 
Testing is performed by “matching” an unidentified speech sig- 
nal against each word in the vocabulary. This process involves 
taking the linkage pattem for each word, tentatively assuming 
that it corresponds to the speech signal, and performing training 
steps 1 and 2 with it (i.e., a forward pass and alignment with 
the speech signal). If a linkage pattem does not correspond 
to the speech signal, its optimal alignment score will be very 
poor (high cumulative error). Thus, the vocabulary word with 
the lowest alignment score is identified as the best recognition 
match. If desired, next-best matches can be determined just by 
comparing scores. 

IIc. Extensions to the System 
The basic LPNN architecture is elegant and achieves good per- 
formance. We quickly found, however, that its performance can 
be improved by two simple extensions. These two extensions 
were used for all the experiments reported in this paper. 

The first extension was the use of duration constraints. We 
applied two types of duration constraints during recognition: 1) 
hard constraints, where any candidate word whose average du- 
ration differed by more than 20% from the given sample was re- 
jected; and 2) soft constraints, where the optimal alignment score 
of a candidate word was penalized for discrepancies between the 
alignment-determined durations of its constituent phonemes and 
the known average duration of those same phonemes. 

The second extension was a simple heuristic to sharpen word 
boundaries. For convenience, we include a “silence” phoneme 
in all our phoneme sets; this phoneme is linked in at the begin- 
ning and end of each isolated word, representing the background 
silence. Word boundaries were sharpened by artificially penal- 
izing the prediction error for this “silence” phoneme whenever 
the signal exceeded the background noise level. 

Besides these “standard” extensions to the system, we also 
explored several others variations, including altemate networks, 
expanded phoneme sets, variable numbers of networks per 
phoneme, discriminatory learning, and power information. The 
first two of these will be discussed in detail in the next section. 

III. RECOGNITION EXPERIMENTS 
The experiments reported here have been carried out on a 

Japanese isolated word database recorded by one male native 
Japanese speaker (MAU). All utterances were recorded in a 
soundproof booth and digitized at a 12 lcHz sampling rate. A 
Hamming window and an FFT were applied to the input data to 
produce 16 melscale spectral coefficients every 10 msec. From 
this database, two sets of isolated word samples were extracted 
for experimentation. 

The first set contained almost 300 samples representing 234 
unique vocabulary words, all limited to the seven phonemes 
a,i,u,o,k,s,sh (plus an eighth phoneme for silence). This set was 
divided into a training set of 229 words and a testing ,set of 
70 words; the testing set included 50 homophones of training 

samples, and 20 completely unique words. Using homophones 
in the testing set allowed us to test generalization to new samples 
of known words, while the unique words allowed us to test 
generalization to novel words (i.e., vocabulary independence). 

A second, larger subset of the Japanese database was selected 
for further experimentation. This set contained 1078 samples 
representing 924 unique vocabulary words, all limited to the 
13 phonemes a,i,u,e,o,k,r,s,t,kk,sh,ts,tt (plus a 14th phoneme for 
silence). As before, the utterances were divided into a training 
set of 900 words and a testing set of 178 words; the testing 
set included 118 homophones of training samples, and 60 novel 
words. 

Our initial experiments on the 234 word vocabulary used a 
three-network model for each of the eight phonemes. After 
training for 200 iterations, recognition performance was perfect 
for the 20 novel words, and 45/50 (90%) correct for the ho- 
mophones in the testing set. The fact that novel words were 
recognized better than new samples of familiar words is due 
to the fact that most homophones are short confusable words 
(e.g., “kau” vs. “kao”, or “kooshi” vs. “koshi”). By way of 
comparison, the recognition rate was 95% for the training set. 

IIIa. Variations 
One successful variation on the standard LPNN architecture 
was to allow a limited number of “altemate” models for each 
phoneme. Since phonemes have different characteristics in dif- 
ferent contexts, the LPNN’s phoneme modeling accuracy can be 
improved if an independent sequence of networks is allocated 
for each type of context to be modeled. Rather than assigning 
an explicit context for each altemate model, however, we let the 
system itself decide which altemate to use in a given context, 
by trying each altemate and linking in whichever one yields the 
lowest alignment score. When errors are backpropagated, the 
“winning” altemate is reinforced with backpropagated error in 
that context, while competing altemates remain unchanged. 

We evaluated networks with as many as three altemate mod- 
els per phoneme. As we expected, the altemates successfully 
distributed themselves over different contexts. For example, the 
three “k” altemates became specialized for the context of an ini- 
tial “ki”, other initial “Ys, and intemal “k”s, respectively. We 
found that the addition of more altemates consistently improves 
performance on training data, as a result of crisper intemal rep- 
resentations, but generalization to the test set eventually deteri- 
orates as the amount of training data per altemate diminishes. 
The use of two altemates was generally found to be the best 
compromise in the experiments reported here. 

Significant improvements were also obtained by expanding 
the set of phoneme models to explicitly represent consonants 
that in Japanese are only distinguishable by the duration of their 
stop closure (e.g., “k” versus “kk”). However, allocating new 
phoneme models to represent diphthongs (e.g., “au”) did not 
improve results, presumably due to insufficient training data. 

Table 1 shows the recognition performance of our two best 
LPN”s, for the 234 and 924 word vocabularies, respectively. 
Both of these LPN”s used all of the above optimizations. Their 
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Vocab Toler- Testing Set 
size ance Homophones 1 Novel words 

47/50 (94%) 19/20 (95%) 228/229 (99%) 

50/50 (100%) 20/20 (100%) 229/229 (100%) 
105/118 (89%) 55/60 (92%) 855/900 (95%) 
116/118 (98%) 58/60 (97%) 886/900 (98%) 
117/118 (99%) 60/60 (100%) 891/900 (99%) 

Training Set 

Table 1: Word recognition performance. 

performance is shown for a range of “tolerances”, where a tol- 
erance of K means a word is considered correctly recognized if 
it appears among the best K candidates. 

For the 234 word vocabulary, we achieved an overall recog- 
nition rate of 94% on test data using an exact match criterion, or 
99% or 100% recognition within the top two or three candidates, 
respectively. For the 924 word vocabulary, our best results so 
far on the test data are 90% using an exact match criterion, or 
97.7% or 99.4% recognition within the top two or three candi- 
dates, respectively. Among all the errors made for the 924 word 
vocabulary (training and testing sets), approximately 15% were 
due to duration problems, such as confusing “sei” and “seii”; 
another 12% were due to confusing “t” with “k”, as in “tariru” 
versus “kariru”; and another 11% were due to missing or inserted 
“r” phonemes, such as “sureru” versus “sueru”. On the basis of 
the systematicity of these errors, we believe that recognition can 
be further improved by using better duration constraints, and by 
the better use of techniques such as discriminatory learning and 
power information. 

IV. CONCLUSION 

We have presented a large vocabulary recognition system 
based on neural networks used as predictors. By virtue of us- 
ing a phonemic representation, the system is applicable to large 
vocabularies and can recognize words outside its training vocab- 
ulary. Recognition performance on test data was 94% and 90% 
for a 234 and a 924 word vocabulary, respectively. Remain- 
ing errors consisted of highly confusable words and recognition 
within the top two or three candidates was near perfect. 

Our experience with the LPNN so far suggests that good 
recognition performance can be achieved for large vocabularies 
using predictive neural networks. The predictive networks pre- 
sented here appear to be particularly well suited to tasks where 
strong sequential top-down constraints (e.g., phonetic spellings) 
are available. By contrast, fine phonetic distinctions and confu- 
sions between similar sounding words appear to be more easily 
resolved in bottom-up classification based models[8]. Future 
research should attempt to address these conflicting limitations. 
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