
PARSEC: 
A STRUCTURED CONNECTIONIST PARSING SYSTEM 

FOR SPOKEN LANGUAGE 
Ajay N. Jain Alex Waibel David S. Touretzky 

School of Computer Science, Camegie Mellon University, Pittsburgh, PA 15213-3890 USA 

ABSTRACT 
We present PARSEC-a system for generating connectionist 
parsing networks from example parses. PARSEC is not based on 
formal grammar systems and has been geared towards spoken 
lanpage tasks. PARSEC networks exhibit three strengths impor- 
tant for application to speech processing: 1) they leam to parse, 
and generalize well compared to hand-coded grammars; 2) they 
tolerate several types of noise; 3) they can learn to use multi- 
modal input. We present the PARSEC architecture, its training 
algorithms, and performance analyses along several dimensions 
that demonstrate PARSEC’s features. We compare PARSEC’s 
performance to that of traditional grammar-based parsing sys- 
tems. 

1. INTRODUCTION 
While a great deal of research has been done developing parsers 
for natural language, adequate solutions for some of the particular 
problems involved in spoken language have not been found. 
Among the unsolved problems are the difficulty in constructing 
task-specific grammars, lack of tolerance to noisy input, and 
inability to effectively utilize non-symbolic information. 

This paper describes PARSEC-a system for generating con- 
nectionist parsing networks from example parses. PARSEC net- 
works exhibit three strengths: 

They automatically leam to parse. and generalize well com- 
pared to hand-coded grammars. 
They tolerate several types of noise without any explicit 
noise modeling. 
They can learn to use multi-modal input such as pitch in 
conjunction with syntax and semantics. 

The PARSEC network architecture relies on a variation of 
supervised back-propagation learning. The architecture differs 
from some other connectionist approaches in that it is highly 
structured, both at the macroscopic level of modules, and at the 
microscopic level of connections. Structure is exploited to 
enhance system performance.’ 

Conference registration dialogs formed the primary develop- 
ment testbed for PARSEC. A separate speech recognition effort in 
conference registration provided data for evaluating noise-toler- 
ance and also provided an application for PARSEC in speech-to- 
speech translation (Waibel er al. 1991). 

1. PARSEC is a generalization of a previous connectionist pars- 
ing architecture (Jain and Waibel1990). For a detailed exposition 
of PARSEC, please refer to Jain’s PhD thesis (in preparation). 
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Fig. 1. PARSEC’s high-level architecture. 

PARSEC differs from early connectionist work in parsing (e.g. 
Fanty 1985; Selman 1985) in its emphasis on learning. It differs 
from recent connectionist approaches (e.g. Elman 1990; Miikku- 
lainen 1990) in its emphasis on performance issues such as gener- 
alization and noise tolerance in real tasks. 

We present the PARSEC architecture, its training algorithms, 
and performance analyses that demonstrate PARSEC’s features. 

2. PARSEC ARCHITECTURE 
The PARSEC architecture is modular and hierarchical. Figure 1 
shows the high-level architecture. PARSEC can learn to parse 
complex English sentences including multiple clauses, passive 
constructions, center-embedded conslructions, etc. 

The input to PARSEC is presented sequentially, one word at a 
time. PARSEC produces a case-based representation of a parse as 
the input sentence develops. The parse for the sentence, “I will 
send you a form immediately.” is: 

([statement] 
([clause] 

([agent] 1) 
([action] will send) 
([recipient] you) 
([patient] a form) 
([time] immediately))) 

Input words are represented as binary feature patterns (primarily 
syntactic with some semantic fearures). These feature representa- 
tions are unlearned. 
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ule or environment) 

OUTPUT: 
(labels for input) of the input) 

Fig. 2. Basic structure of a PARSEC module. 

Each module of PARSEC can perform either a transformation 
or a labeling of its input. The output function of each module is 
represented across localist connectionist units. The actual trans- 
formations are made using nonconnectionist subroutines? Figure 
2 shows the basic structure of a PARSEC module. The bold ovals 
contain units that learn via back-propagation. 

2.1. Preprocessing Module 
This module marks alphanumeric sequences, which are replaced 
by a single special marker word. This prevents long alphanumeric 
strings from overwhelming the length constraint on phrases. Note 
that this is not always a trivial task since words such as “a” and 
“one” are lexically ambiguous. 

INPm 
“It costs three hundred twenty one dollars.” 
OUTPUT: 
“It costs ALPHANUM dollars.” 

2.2. Phrase Module 
The Phrase module processes the evolving output of the Prep 
module into phrme blocks. Phrase blocks are non-recursive con- 
tiguous pieces of a sentence. They correspond to simple noun 
phrases and verb  group^.^ Phrase blocks are represented as 
grouped sets of units in the network. Phrase blocks are denoted by 
brackets in the following: 

INPUT: 
“I will send you a new form in the moming.” 
OUTPUT: 
“[I] [will send] [you] [a new form] [in the morning].” 

2.3. Clause Mapping Module 
The Clause module uses the output of the Phrase module as input 
and assigns the clausal structure. The result is an unambiguous 
bracketing of the phrase blocks that is used to transform the 
phrase block representation into representations for each clause: 

2. These transformations could be carried out by connectionist 
networks, but at a substantial computational cost for training and 
a risk of undergeneralization. 
3. Abney has described a similar linguistic unit called a chunk 
(Abney 1991). 

INPUT: 
“[I] [would like] [to register] [for the conference].” 
OUTPUT: 
“{ [would like]} {[to register] [for the conference]] .” 

2.4. Role Labeling Module 
The Roles module associates case-role labels with each phrase 
block in each clause. It also denotes attachment structure for prep- 
ositional phrases (“MOD-1’’ indicates that the current phrase 
block modifies the previous one): 

INPUT: 
“ { m e  titles] [of papers] [are printed] [in the forms]]” 
OUTPUT: 
“ ( m e  titles] [of papers] [are printed] [in the forms])” 

PATIENT MOD-1 ACTION LOCATION 

2.5. Interclause and Mood Modules 
The. Interclause and Mood modules are similar to the Roles mod- 
ule. They both assign labels to constituents. except they operate at 
higher levels. The Interclause module indicates, for example, sub- 
ordinate and relative clause relationships. The Mood module indi- 
cates the overall sentence mood (declarative or interrogative in 
the networks discussed here). 

2.6. Generating a PARSEC Network 
There are four steps in generating a PARSEC network: 

1. Create an example parse file. 
2. Define a lexicon. 
3. Train the six modules. 
4. Assemble the full network. 
Of these, only the first two steps require substantial human 

effort, and this effort is small relative to that required for writing a 
grammar by hand. Training and assembly are automatic. 

3. GENERALIZATION 
Generalization in large connectionist networks is a critical issue. 
This is especially the case when training data is limited. For the 
experiments we report here, the training data was limited to 
twelve conference registration dialogs containing approximately 
240 sentences with a vocabulary of about 400 words. Despite the 
small corpus, a large number of English constructs are covered 
(including passives, conditional constructions, center-embedded 
relative clauses, etc.. . . ). 

We obtained a set of 117 disjoint sentences to test coverage 
from a group of people different from those that developed the 12 
dialogs. These sentences used the same vocabulary as the 12 dia- 
logs. 

3.1. Early PARSEC Versions 
Straightforward training of a PARSEC network resulted in poor 

generalization performance, with only 16% of the test sentences 
being parsed correctly. One of the primary sources for error was 
positional sensitivity acquired during training of the three trans- 
formational modules. In the Phrase module, for example, each of 
the phrase boundary detector units was supposed to learn to indi- 
cate a boundary between words in specific positions. 
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Each of the units of the Phrase module is performing essen- 
tially the same job. but the network doesn’t “know’* this and can- 
not leam this from a small sample set. By slaving the connections 
together across positions, the network is forced to be position 
insensitive (similar to TDN”s as in Waibel er al. 1989). After 
modifying PARSEC to use slaved and localized connectivity in 
the lower three modules, generalization performance increased to 
27%. In the new network, the primary source of error was in the 
Roles module. 

Part of the problem could be ascribed to the representation of 
phrase blocks. They were represented across rows of units that 
each define a word. In the phrase block “the big dog,” “dog” 
would have appeared in row 3. This changes to row 2 if the phrase 
block is just “the dog.” A network had to learn to respond to the 
heads of phrase blocks even though they moved around. An aug- 
mented phrase block representation in which the last word of the 
phrase block was copied to position 0 solved this problem. With 
the augmented phrase block representation coupled with the pre- 
vious improvements, PARSEC achieved 44% coverage. 

3.2. PARSEC: Final Version 
The final version of PARSEC uses all of the previous enhance- 
ments plus a technique c d e d  Programmed Constructive burn- 
ing (PCL). In PCL, hidden units are added to a network one at a 
time as they are needed. Also, there is a specific series of hidden 
unit types for each module of a PARSEC network. The hidden 
unit types progress from beiig highly local in input connectivity 
to being more broad. This forces the networks to learn general 
predicates before specializing and using possibly unreliable infor- 
mation. 

The final version of PARSEC was used to generate another 
parsing network! Its performance was 67% (78% including near- 
misses that are easily fixed with post-processing). Table 1 summa- 
rizes these results. 

3.3. Comparison to Hand-Coded Grammars 
We compared PARSEC’s performance to that of three indepen- 
dently constructed grammars. Two of the grammars were com- 
missioned as part of a contest where the first prize ($700) went to 
the grammar-writer with best coverage of the test set and the sec- 
ond prize ($300) went to the other grammar writer! The third 
grammar was independently constructed as part of the JANUS 
system (described later). The contest grammars achieved 25% and 
38% coverage, and the other grammar achieved just 5% coverage 
of the test set (see Table 1). All of the hand-coded grammars pro- 
duced NIL parses for the majority of test sentences. In the table, 
numbers in parentheses include near-misses. 

PARSEC’s performance is substantially better than even the 
best of the hand-coded grammars. PARSEC has a systematic 
advantage in that it is trained to attempt to parse partial input in 
addition to complete sentences. Also, PARSEC’s constructive 
learning approach coupled with weight slaving forces the net- 
works to become dominated by local constraints wherever possi- 
ble, and distant variations in input structure do not adversely 
affect them. 

4. This final parsing network was not trained all the way to com- 
pletion. Training to completion hurts generalization performance. 
S. The contest participants had 8 weeks to complete their gram- 
mars, and they both spent over 60 hours doing so. The grammar 
writers work in Machine Translation and Computational Linguis- 
tics and were quite experienced. 

Coverage Noise Ungram. 
PARSEC V4 67% (78%) 77% 6 6% 
Grammar 1 38% (39%) - 34% 
Grammar 2 25% (26%) - 3 8% 
Grammar 3 5% (5%) 70% 2% 

Tab. 1. PARSEC’s comparative performance. See text 
for explanations of column labels. 

4. NOlSE ’I‘OLEKANCE 
The second area of performance analysis for PARSEC was noise 
tolerance. Previously. we reported on preliminary comparisons 
between PARSEC and a rule-based parser in the JANUS speech- 
to-speech translation system (Waibel et al. 1991). We have com- 
pleted more extensive evaluations that corroborate our early 
observations. In addition, we have evaluated PARSEC on syn- 
thetic ungrammatical sentences and are in the process of perform- 
ing some experiments on spontaneous speech using the ATIS task. 

4.1. Noise in Speech-to-Speech lkanslation 
In the JANUS system, speech recognition is provided by an 
LPNN (Tebelskis et al. 1991), parsing can be done by a PARSEC 
network or an LR parser, translation is accomplished by process- 
ing the interlingual output of the parser using a standard language 
generation module, and speech generation is provided by off-the- 
shelf devices. The system can be run using a single (often noisy) 
hypothesis from the LPNN or a ranked list of hypotheses. 

When run in single-hypothesis mode, JANUS using PARSEC 
correctly translates 77% of the input utterances, and JANUS using 
the LR parser (Grammar 3 in the table) achieves 70%. The PAR- 
SEC network is able to parse a number of incorrect recognitions 
well enough that a successful translation results. However, when 
run in multi-hypothesis mode, the LR parser achieves 86% com- 
pared to PARSEC’s 80%. The LR parser utilizes a very tight 
grammar and is able to robustly reject hypotheses that deviate 
from expectations. This allows the LR parser to “choose” the cor- 
rect hypothesis more often than PARSEC. PARSEC tends to 
accept noisy utterances that produce incorrect translations. Of 
course, given that the PARSEC network’s coverage is so much 
higher than that of the grammar used by the LR parser, this result 
is not surprising. 

4.2. Synthetic Ungrammaticality 
Using the same set of grammars for comparison. we tested the 

parsers on ungrammatical input from the CR task. These sen- 
tences were corrupted versions of a subset of sentences used for 
truining. Training sentences were used to decouple the effects of 
noise from coverage. Table 1 shows the results. They essentially 
mirror those of the coverage tests. PARSEC is substantially less 
sensitive to such effects as subject/verb disagreement, missing 
determiners, and other non-catastrophic irregularities. 

Some researchers have augmented grammar-based systems to 
be more tolerant of noise (e.g. Saito and Tomita 1988). However, 
the PARSEC network in the test reported here was trained only on 
grammatical input and still produced a degree of noise tolerance 
for free. In the same way that one can explicitly build noise toler- 
ance into a grammar-based system. one can train a PARSEC net- 
work on input that includes specific types of noise. One would 
expect that the result would be some noise tolerance beyond what 
was explicitly trained. 
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Fig. 3. Smoothed pitch contours. 

43. Spontaneous Speech 
We have begun experiments using DARPA’s ATIS task as a data 
source. In these experiments, PARSEC is trained on transcribed 
sentences that include noise-both ungrammaticality and sponta- 
neous speech phenomena. Our work is in progress, but the early 
results are encouraging. 

5. MULTI-MODAL INPUT 
A somewhat elusive goal of spoken language processing has been 
to utilize information from the speech signal beyond just word 
sequences in higher-level processing. It is well known that 
humans use prosodic cues extensively in conversation. Consider 
the following utterances: 
’ ‘,kay.” . “okayy 
The first is a conknation, and the second is a request for con- 

firmation. They cannot be distinguished based on word sequence, 
but their intonation contours contain the necessary information 
(see Figure 3). 
In a grammar-based system, it is difficult to incorporate real- 

valued vector input in a useful way. In a PARSEC network the 
vector is just another set of input units. We augmented the Mood 
module of a PARSEC network to contain an additional set of units 
that contained pitch information. The pitch contours were 
smoothed output from the OGI Neural Network Pitch Tracker 
(Cole et al. 1991). PARSEC added another hidden unit to utilize 
the new information. 

The trained PARSEC network was tolerant of speaker varia- 
tion, gender variation, utterance variation (length and content), 
and a combination of these factors. Although not explicitly 
trained to do so, the network was able to correctly process sen- 
tences that were grammatical questions but had been pronounced 
with the declining pitch of a typical statement. 

Within the JANUS system, the augmented PARSEC network 
brings new functionality. Intonation affects translation in JANUS 
when using the augmented PARSEC network 

‘This is the umference office.” translates to 
“Kaigi jimukyoku desu.” 
“This is the conference office?” translates to 
“Kaigi jhukyoku desuka?” 

This required no changes in the other modules of the JANUS 
system. It should be possible to use other types of information 
from the speech signal to aid in robust parsing (e.g. energy pat- 
terns to diambiguate clausal structure). 

6. CONCLUSION 
In this paper, we have presented PARSEC. It is a system for gen- 
erating connectionist parsing networks from training examples. In 
experiments using a conference registration conversational task, 
we showed that PARSEC: 

Learns and generalizes well compared to hand-coded gram- 
mars. 
Tolerates noise: recognition errors and ungrammaticality. 
Successfully learns to combine intonational information 
with syntactic/semantic information. 

In work in progress on the PiZlS corpus, we are experimenting 
with training PARSEC networks on noisy input including sponta- 
neous speech effects. We plan to continue our work with PARSEC 
by extending it to new languages, larger English tasks, and speech 
tasks that involve tighter coupling between speech recognition 
and parsing. There are numerous issues in NLP that will be 
addressed in the context of these research directions. 
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