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ABSTRACT 
In this paper we present an improved Multi-State 

Time Delay Neural Network (MS-TDNN) for speaker- 
independent, connected letter recognition which out- 
performs an HMM based system (SPHINX) and pre- 
vious MS-TDNNs [2], and explore new network archi- 
tectures with “internal speaker models”. Four differ- 
ent architectures characterized by an increasing num- 
ber of speaker-specific parameters are introduced. The 
speaker-specific parameters can be adjusted by “auto- 
matic speaker identification” or by speaker adaptation, 
allowing for “tuning-in” to a new speaker. Both meth- 
ods lead to significant improvements over the straight- 
forward speaker-independent architecture. Similar as 
described in [l], even unsupervised “tuning-in” (speech 
is unlabeled) works astonishingly well. 

1. INTRODUCTION 

The Multi-State Time Delay Neural Network 
(MS-TDNN) [2, 51 integrates the time-shift invariant 
architecture of a TDNN [7] and a nonlinear time align- 
ment procedure (DTW) into a high accuracy word-level 
classifier. Figure 1 shows an MS-TDNN in the process 
of recognizing the excerpted word ‘B’, represented by 
16 melscale FFT coefficients at a 10-msec frame rate. 
The first three layers constitute a standard TDNN, 
which uses sliding windows with time delayed connec- 
tions to compute a score for each phoneme (state) for 
every frame, these are the activations in the “Phoneme 
Layer”. In the “DTW Layer”, each word to be rec- 
ognized is modeled by a sequence of phonemes. The 
corresponding activations are simply copied from the 
Phoneme Layer into the word models of the DTW 
Layer, where an optimal alignment path is found for 
each word. The activations along these paths are then 
collected in the word output units. All units in the 
DTW and Word Layer are linear and have no biases. 
15 (25 to 100) hidden units per frame were used for 
speaker-dependent (-independent) experiments, the en- 
tire 26 letter network has approximately 5200 (8600 to 
34500) parameters. 

unity weight- T 

5 time delays, 

Word 

DTW 

Layer 

Layer 

Phoneme L. 

Hidden L. 

Input Layer 

Figure 1: The MS-TDNN recognizing the excerpted word 
‘By. Only the activations for the words ‘SIL’, ‘A’, ‘W, and ‘C’ 
are shown. 

Training starts with “bootstrapping”, during which 
only the front-end TDNN is used with fixed phoneme 
boundaries as targets. In a second phase, training is 
performed with word level targets. Phoneme bound- 
aries are freely aligned within given word boundaries in 
the DTW Layer. The error derivatives are backpropa- 
gated from the word units through the alignment path 
and the front-end TDNN. Choosing sensible objectives 
function is important; we are using “McClelland-Error” 
(similar to cross entropy) on the phoneme level and the 
“Classification Figure of Merit”[4] on the word level. 
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2. IMPROVED CONTINUOUS RESULTS 

speaker 
mjmt 
mdbs 
maem 
fcaw 

fee 
flgt 

our SPHINX[P] MS-TDNN[P] MS-TDNN 

96.0 97.5 98.5 
83.9 89.7 91.1 

94.6 
98.8 

- - 86.9 
- - 91.0 

- - 
- - 

1 88.7 I 90.4 I 90.8 I 92.0 I 

SPHINX[6] 
I + Senone 

Table 1: Word accuracy (in % on the test set) on speaker 
dependent and speaker independent connected letter tasks. 
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Our MS-TDNN achieved excellent performance on both 
speaker dependent and independent tasks. For speaker 
dependent testing, we used the CMU “Alph-Data”, 
with 1000 sentences (i. e. continuously spelled strings 
of letters in our context) from each of 3 male and 3 
female speakers. Speaker-independent performance 
was measured on the DARPA Resource Management 
Spell-mode data, consisting of a total of 1680 spelled 
words from 120 speakers. Table 1 indicates the usage 
of training and test sets. For the CMU Alph data, 
100 of the 600 training words were set aside for cross- 
validation. For the RM-spell data, one sentence from 
all 109 speakers and all sentences from 6 speakers were 
set aside for cross-validation. 

In addition to the base-line system as introduced 
above, several techniques aimed at improving contin- 
uous recognition were used, including free alignment 
across word boundaries, word duration modeling and 
error backpropagation on the sentence rather than the 
word level, as described in more detail in [5]. 

3. ARCHITECTURES FOR SPEAKER 
MODELING 

Selection of “Internal Speaker Models”. The idea 
of the architectures presented is to have submodules in 
a network, each of which is specialized on one particular 
speaker (or a group of speakers). In other words, the 
system contains “internal speaker models” (ISMS) for a 
set of prototype speakers. When an unknown speaker 
is presented, somehow one or a (normalized) mixture 
of appropriate submodule(s) has to be selected. This is 
done by “internal speaker model selection units” (ISM- 
SUS, one for each ISM), which influence the network as 
shown in figure 4 and explained below. We explored 
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Figure 2: Two methods to adjust the internal speaker mod- 
els, shown for the BIASED architecture: “Speaker Identifi- 
cation” (a), and “Tuning in” (b). 

two different mechanisms (figure 2): (a) An additional 
“speaker identification net” is trained to control the 
internal speaker models, i. e. the activations of the 
ISM-SUS are computed by this net each time before 
an utterance is recognized, and (b) a “tuning-in” pro- 
cess, in which a small set of speech samples from an 
unknown speaker is used to adapt the selection of the 
speaker-specific parameters for this speaker. “Tuning- 
in” is relatively straightforward for labeled samples, the 
“mixture parameters”, i. e. the activations of the ISM- 
SUS, are found via gradient descent (error is backprop- 
agated into the ISM-SUS, all other weights are frozen), 
where the objective function is to maximize the perfor- 
mance on the adaptation data. The so found mixture 
of ISM’S is then used for recognition on the entire rest 
of the test data. “Tuning-in” can also be applied in 
an unsupervised fashion [l], in which case “phantom 
targets” (derived from the actual net output) are used. 

Four Architectures containing an increasing num- 
ber of speaker-specific parameters, from no speaker- 
specific (POOLED) to only speaker-specific parame- 
ters (INDIVIDUAL), are shown in Figure 4. In the 
POOLED net, all 6 speakers are trained into the same 
single net with no speaker-specific parameters at  all. 
In the BIASED net, an additional layer with ISM-SUS 
is fully connected into the Hidden and Phoneme Layer, 
providing a speaker-specific bias for these layers. In the 
SHARED net, the time-delay connections between the 
Input and the Hidden Layer are speaker-specific and 
gated via multiplicative connections by the ISM-SU, 
i. e. the effective weights between these two layers are 
a normalized linear combination of the speaker-specific 
weights. The connections into the Phoneme Layer are 
shared by all speakers. In the INDIVIDUAL net, every 
speaker has its own specific TDNN, and the individual 
ISMS are combined at  the phoneme level, i. e. the ef- 
fective phoneme activations are a linear combination 
of the speaker-specific phoneme activations, similar to 
Hampshire’s[3] Meta-Pi architecture. 
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4. EXPERIMENTAL RESULTS 

Speakers 
POOLED 
BIASED 
SHARED 
INDIVID. 

4.1 CMU Alph Data 

Multi-Speaker. The 3 male and 3 female speakers 
listed in Table 1 were used to train and test the four dif- 
ferent architectures. The results (% correct, excerpted 
words, averaged over all 6 speakers) are summarized in 
table 2. In the “speaker known” column, speaker iden- 
tity is given and the corresponding ISMs are directly 
selected. In the “Speaker identified” case, the selec- 
tion of ISMs is determined automatically with an addi- 
tional network (figure 2a), which leads to a slight drop 
in performance, but is still a significant improvement 
over the POOLED architecture. For the speaker adap- 
tation (“tune-in” , figure 2b), 10 spelled words from the 
test set are used to determine the mixture parameters, 
which are then used to recognize the remaining test set. 
Obviously, introducing more speaker specific parame- 
ters helps, although the SHARED outperforms the IN- 
DIVIDUAL architecture in one case. 

khown identified supervised unsuper. 
81.3 n a  n/a n a  
n/a 79.5 83.2 82.2 
n/a 73.6 83.4 73.6 
n a  66.2 72.3 69.3 

Table 2: In the Multi-Speaker case, the networks are tested 
with new data from the the same 6 training speakers. 

New Speakers. 50 (250) sentences (words) from 
each of 5 female and 2 male speakers were available 
to test the system on new speakers, i. e. there are no 
ISMS for these speakers. The results, averaged over 
all 7 speakers, are shown in table 3. If a mixture 
of ISMs is automatically determined (“Speaker iden- 
tified”), the performance improves consistently with a 
decreasing number of speaker-specific parameters, but 
never reaches the POOLED model (81.3%). However, 
if speaker adaptation by “tuning-in” to a new speaker 
is applied, the POOLED model can be outperformed 
by the BIASED and SHARED architecture, even with 
unsupervised “tuning-in” for the BIASED architecture. 
To summarize, for new speakers automatic selection 
fails but “tuning-in” works. 

I New l~De&er ls~eaker Itune-1n Itune-ln 1 

Table 3: In the New Speaker case, the networks are tested 
with new data from new speakers. 

4.2 RM Spell-mode Data 

Since only 6 speakers were available for speaker- 
independent training of the CMU Alph Data, it is not 
unexpected that the new speakers perform relatively 
poor. To test the system on a real speaker-independent 
task, we performed experiments on the Resource Man- 
agement Spell-mode data, which contain speech of 85 
male and 35 female speakers. 

Gender Specific Nets. In a first experiment, we 
divided the 120 speakers into the two obvious groups 
of male and female speakers, and trained the four ar- 
chitectures with the corresponding ISMs, as shown in 
figure 3 for the SHARED architecture. Since the gen- 
der identification network classifies almost 100% cor- 
rect, the results (table 4) for known and automatically 
determined gender are basically the same. 

POOLED 
BIASED 
SHARED 

INDIVIDUAL 91.3 
Table 4: Word accuracy (continuous speech) on the RM 
spell test set for the four different architectures 

Phoneme Layei 
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Figure 3: Gender-specific and shared connections in the 
SHARED architecture. Only the front-end TDNN is shown. 

Speaker-Specific Phone Models. The RM spell 
database has many speakers (120) but little speech 
(15 spelled words) per speaker. To train one “internal 
speaker model” for each speaker is impractical, there- 
fore we clustered all 74 male training speakers into 6 
ISMs, using a k-means algorithm: a randomly selected 
speaker was tested on all 6 ISMs, assigned to the ISM 
on which he performed best, and then the system was 
retrained. This procedure was repeated until the per- 
formance started converging. While this method im- 
proved our results on the training data from 98.3% to 
99.2% (excerpted words), no gain in performance was 
achievable by tuning-in to the new speakers of the test 
set. However, a finer granularity of the ISM-mixing was 
helpful: So far, when the system tuned-in to one partic- 
ular ISM, it had to “accept” all its phonemes, i. e. there 



was no way to use (say) the vowels of one ISM and the 
consonants of another ISM. In a more flexible tuning-in 
scheme, an individual speaker-mixture can be selected 
for each phoneme independently, conceptionelly similar 
to the speaker-adaptive phoneme models in [?I. With 
this approach, the performance of the new speakers on 
the test set improved from 95.4% to 96.5% (excerpted 
words) with supervised tuning-in. The first 5 sequences 
of each speaker were used for tuning in, the remaining 
10 for testing. 
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no speaker- 
specific 
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speaker- 
specific 
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speaker- 
specific 
connections 
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speaker- 
specific 
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40 

Figure 4: Four net architectures with an increasing degree 
of speaker specific parameters, which are controlled by the 
“Internal Speaker Model Selection Units” (ISM-SU). 

. .. .. 

5. CONCLUSIONS AND FUTURE WORK 

We presented a state-of-the-art connectionist speech 
recognizer for connected letters, and explored several 
types of architectures for speaker-independent recogni- 
tion. Our experiments show that introducing speaker- 
specific parameters improve recognition performance. 
The degree of desired specialization depends on the 
amount of available data; in our case, the SHARED ar- 
chitecture seemed to be the best compromise between 
specific and shared parameters. In a multi-speaker en- 
vironment, the gating of the specialized parameters 
(ISMS) can be handled by a “Speaker-Identification 
Network” for which no additional adaptation data are 
required, but “tuning-in” on a small adaptation set is 
a more powerful method which in addition works well 
for new speakers. For the RM task, a finer “tuning-in 
granularity’’ (speaker-adaptive phoneme models) was 
necessary. In the future, we will try to include speaker- 
specific duration modeling into the adaptation process. 
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