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ABSTRACT 

In this paper we show how recognition performance in 
automated speech perception can be significantly 
improved by additional Lipreading, so called "Speech- 
reading". We show this on an extension of an existing 
state-of-the-art speech recognition system, a modular MS- 
TDNN. The acoustic and visual speech data is preclassi- 
fied in two separate front-end phoneme TDNNs and com- 
bined to acoustic-visual hypotheses for the Dynamic Time 
Warping algorithm. This is shown on a connected word 
recognition problem, the notoriously difficult letter spell- 
ing task. With speechreading we could reduce the error 
rate up to half of the error rate of the pure acoustic recog- 
ni ti on. 

1. INTRODUCTION 
Automated speech perception systems still perform 
poorly, when it comes to real world applications. Most 
approaches are very sensitive to background noise or fail 
totally when more than one speaker talks simultaneously 
(cocktail party effect), as it often happens in offices, cock- 
pits, outdoors and other real world environments. 

Humans deal with this distortions in considering addi- 
tional sources. Very often misclassified acoustic signals 
can be corrected with the use of higher level context infor- 
mation. In recognition systems this is partly covered by 
language models or grammars. Psychological studies have 
shown [31, that on the lower level additional information 
contributes to human hearing as well. Besides the acoustic 
signal from both ears, visual information, mostly lipmove- 
ments, are subconsciously involved in the recognition pro- 
cess. This source is even more important for hearing 
impaired people, but also contributes significantly for nor- 
mal hearing recognition. 

We investigate this phenomena on the letter spelling 
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task. No grammars or other higher level information are 
employed. If visual information is missing as well, even 
humans perform poorly. Just remember how hard i t  is to 
recognize spelled names at the telephone. 

The spelling task is seen as a connected word recogni- 
tion problem. As words we take the highly ambiguous 26 
German letters. A test person in front of a microphone and 
video camera is spelling names and random letter 
sequences in German. We did not care about high quality 
recordings, we even degraded the acoustic signal with arti- 
ficial noise to simulate some real world conditions. 

As speech recognition system we present an extension 
of an existing Multi-State Time Delay Neural Network 
architecture (MS-TD") [6] for handling both modalities, 
acoustic and visual sensor input. It is shown how recogni- 
tion performance with integrated acoustic and visual infor- 
mation achieves significant improvements over acoustic 
input only. 

2. BIMODAL ACQUISITION AND PRE- 
PROCESSING 

Our recording setup consists of a conventional NTSC 
camera and microphone. The video images are grabbed in 
real-time (30 fullframedsec) into our workstation and arc 
saved as 256x256 pixel images with 8bit grey-level infor- 
mation per pixel. This squared region covers the full face 
of the speaker. In parallel the acoustic data is sampled at a 
16KHz rate and 12bit resolution. Also timestamps were 
saved, because the correct synchronization between audio 
and video signals is critical for later processing. 

For acoustic preprocessing we follow the established 
approach to apply FFT on the Hamming windowed speech 
data in order to get 16 Melscale Fourier coefficients at a 10 
msec frame rate. For visual preprocessing there is still the 
active discussion, how much preprocessing heuristics is 
appropriate before some connectionist classification 
schemes are applied to the data. We follow the idea to 
allow only transformations with fairly low information 
reduction. In other preprocessing algorithms like edge 
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detection, some “hard decisions” are made, which may 
hide useful information for the later learning scheme. In 
fact it has been reported [lo] that such edge detectors are 
learned automatically in cases were it is necessary. 

We apply two alternative preprocessing techniques: 
Histogram normalized grey-value coding, or 2 dimen- 
sional Fourier transformation. In both cases we just con- 
sider an area of interest (AOI) centered around the lips, 
and low pass filter these AOIs. The AOIs were initially 
segmented by hand, but an automatic procedure is now 
also available [ll]. 

Grey-Value coding: We found that a 24x16 pixel reso- 
lution is enough to recognize lip shapes and movements 
(Figure 1). Each of these A01 pixels is the average grey- 
value of a small  square in the original image (low pass fil- 
ter). The grey-levels are rescaled in such a way that the 
darkesthrightest 5% in the histogram are coded with -1.O/ 
1 .O. The remaining 90% are scaled linear between -1.0 and 
1 .o. 

2D-FFT: The A01 is rescaled to a 64x64 pixel image 
so that the 2 dimensional FFT results also with 64x64 
coefficients. We just consider the log magnitudes of the 
first 13x13 FFT coefficients and rescale them to [-1.0, 1.01. 
(After multiplying the complex FFT space with a 13x13 
window and applying the inverse FFT, we could still rec- 
ognize in the resulting low passed original image the dis- 
tinct lip shapes and movements.) The motivation for 
considering the FFT is, that this coding is spatial shift 
invariant. It makes the recognition more stable against 
inaccurate A01 positioning. 
, 

Figure 1: Typical AOIs 

3. SYSTEM ARCHITECTURE 
As recognition system we use a modular MS-TDNN [6]. 
Figure 2 shows the architecture. The preprocessed acous- 
tic and visual data are fed into two f r o n t a d  ” N s  1141, 
respectively. Each TDNN consists of an input layer, one 
hidden layer and the phone-state layer. Backpropagation 
was applied to train the networks in a bootstrapping phase, 
to fit phoneme targets. 

Above the two phone-state layers, the Dynamic T i e  
Warping algorithm [8] is applied (in the DTW layer) to 
find the optimal path of phone-hypotheses for the word 
models (German alphabet). In the letter layer the activa- 

tions of the phone-state units along the optimal paths are 
accumulated. The highest score of the letter units repre- 
sents the recognized letter. In a second phase the networks 
are trained to fit letter targets. The error derivatives are 
backpropagated from the letter units through the best path 
in the DTW layer down to the front-end TDNNs, ensuring 
that the network is optimized for the actual evaluation 
task, which is letter and not phoneme recognition. As 
before, the acoustic and visual subnets are trained individ- 

In the final “combined mode” of the recognizer, a com- 
bined phone-state layer is included between the front-end 
TDNNs and the DTW layer. The activation of each com- 
bined phone-state unit is the weighted sum of the regard- 
ing acoustic phone-state unit and visual phone-state unit. 
We call these weights “entropy-weights”, because their 
values are proportional to the relative entropy between all 
acoustic phone-state activations and all visual phone-state 
activations. Hypotheses with higher uncertainty (higher 
entropy) are weighted lower than hypotheses with lower 
uncertainty. 

& Y e  

DT“ Layer 

PhooemeNisem- 
slate Layer 

Hidden Layer 

Input Layer 
(FFT or AOIs) 

Figure 2: Neural Network Architecture 

4. PHONEMES & VISEMES 
For the acoustic classification we use a set of 65 phoneme- 
states (phoneme-to-phoneme transition states included). 
They represent a reasonable choice of smallest acoustic 
distinguishable units in German speech, and the ”N 
architecture is very well suited to be trained as a classifier 
for them. 

For visual features this will be different. Distinct 
sounds are generated by distinct vocal tract positions, and 
voicedunvoiced excitations. External features of the vocal 
tract like the lips, part of the tongue and teeth, contribute 
only in part to the sound generation. I.e. /b/ and /p/ are 
generated by similar lip-movements, and cannot be distin- 
guished with pure visual information. Training a TDNN to 
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classify /b/ and /p/ based only on visual information would 
lead to recognition rates not better than guessing, or the 
net perhaps would get sensitive for features which are 
uncorelated to the produced speech. This leads to the 
design of a smaller set of visual distinguishable units in 
speech, so called “visemes”. We investigate a new set of 
42 visemes and a 1-to-n mapping from the viseme set to 
the phoneme set. The mapping is necessary for the com- 
bined layer, in order to calculate the combined acoustic 
and visual hyphotheses for the DTW layer. For example 
the hypotheses for /b/ and /p/ are built out of the same 
viseme /b-or-p/ but the different phonemes /b/ and /p/ 
respectly. 

mcblnoisy 

5. SIMULATION RESULTS 
Our database consists of 114 and 350 letter sequences 
spelled by two male speakers. They consist of names and 
random sequences. The first data set was split into 75 
training and 39 test sequences (speaker msm). The second 
data set was split into 200 training and 150 test sequences 
(speaker mcb). 

Best results were achieved with 15 hidden units in the 
acoustic subnet and 7 hidden units in the visual subnet. 
Obviously visual speech data contains less information 
than acoustic data. Therefore better generalization was 
achieved with as little as 7 hidden units. 

Backpropagation was applied with a learning rate of 
0.05 and momentum of 0.5. We applied different error 
functions to compute the error derivatives. For bootstrap- 
ping the McClelland error measure was applied, and for 
the global training on letter targets the Classification Fig- 
ure of Merit [16] was applied. 

59.0% 46.9% 69.6% 

Table 1 summarizes the recognition performance 
results on the sentence level. Errors are misclassified 
words, insertion, and deletion errors. For speaker “msm”, 
we get an error reduction on clean data from 11.2% 
(acoustic only) down to 6.8% with additional visual data. 
With noise added to the acoustic data, the error rate was 
52.8%, and could be reduced down to 24.4% with lipread- 

ing, which means an error reduction to less than half of the 
pure acoustic recognition. For speaker “mcb”, we could 
not get the same error reduction. Obviously the pronuncia- 
tion of speaker “mcb” was better, but doing that, he was 
not moving his lips so much. 

It also should be noted that in the pure visual recogni- 
tion a lot of the errors are caused by insertion and deletion 
errors. When we presented the letters with known bound- 
aries, we came to visual recognition rates of up to 50.2%. 
The results of table 1 were achieved with histogram-nor- 
malized grey-value images. Experiments with 2D-FFT 
images are still in progress. In our initial 2D-FFT simula- 
tions we come to visual recognition errors, which are on 
average about 8% higher than the grey-level coding recog- 
nition errors. 

We also took a closer look to the dynamic behavior of 
the entropy-weights. Figure 3 shows the weights from the 
acoustic and visual TDNN to the combined layer over time 
during the letter sequence M-I-E was spoken. The upper 
dots represent the acoustic weight A and the lower dots the 
visual weight V, where 
A= 0.5+ (entropy( Vi ual-TDNN) -entmpy(Aco ust ic-TD N N ) ) n  K 

and 
V=I. 0-A. 

Big white dots represent weights close to 1.0 and big 
black dots weights close to 0.0. K is the maximum entropy 
difference in the training set. At the end of the /m/-pho- 

/ae/ I /m/ I I 
I , ^  I 

I lie/ 
A 
V 

Figure 3: Entropy-Weights 

neme when the lips are closed, V is higher than A. Obvi- 
ously there the visual hypotheses are more certain than the 
acoustic ones. During the he/-phoneme the acoustic 
hypotheses are more certain than the visual ones, which 
also makes sense. 

6. RELATED WORK 
The interest in automated speechreading (or lipreading) is 
growing recently. As a nonconnectionistic approach the 
work of Petajan et al. [9] should be mentioned. Yuhas et al. 
[151 did use a neural network for vowel recognition, work- 
ing on static images. Stork et al. [13] used a conventional 
TDNN (without DTW) for speechreading. They limited 
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the task to recognize 10 isolated letters and used artilicial 
markers on the lips. No visual feature extraction was inte- 
grated into their model. 

Also of interest are some psychological studies about 
human speechreading and their approach to describe the 
human performance. This measurements could also be 
applied to the performance analysis of automated 
speechreading systems. Dodd and Campbell [3], and 
Demorest and Bemstein [2] did some valuable work in this 
area. 

7. CONCLUSION AND FUTURE WORK 
LVe have shown how a state-of-the-art speech recognition 
system can be improved by considering additional visual 
information for the recognition process. This is true for 
optimal recording conditions but even more for non-opti- 
mal recording conditions as they usually exist in real 
world applications. Experiments were performed on the 
connected letter recognition task, but similar results can be 
expected for continuous speech recognition as well. 

Work is in progress to integrate not only the time inde- 
pendent weight sharing but also position independent 
weight sharing for the visual TDNN, in order to locate and 
track the lips. We are also on the way to largely increase 
our database in order to achieve better recognition rates 
and to train speaker independently. Investigations of dif- 
ferent approaches are still in progress in order to combine 
visual and acoustic features and to apply different prepro- 
cessing to the visual data. 
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