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Abstract
Spectral envelopes, using (warped or perceptual) linear predic-
tion or minimum variance distortionless response for the un-
derlying linear parametric model, are widely used in speech
recognition systems where the frequency resolution, namely the
model order (MO), of the spectrum is kept constant. Modeling
different types of phonemes such as vowels or fricatives with the
same frequency resolution might not lead to the best possible
performance. This could be due to the fact that important parts
of various phonemes lie in different frequency regions, that the
fundamental frequency varies for different speakers or because
of a high variance in the signal to noise ratio. To address this
problem we propose to vary the MO frame by frame according
to a control factor. In our case, the control factor could be ei-
ther a relation of autocorrelation coefficients or the spectral en-
tropy. Experimental results on the Translanguage English Data-
base show an improvement by 2.4% relative in word error rate
compared to the fixed MO and 4.2% relative to the traditional
Mel-frequency cepstral coefficients.

1. Introduction
The selection of the model order (MO) is an important, but of-
ten difficult, aspect of using all-pole models for a particular ap-
plication. Intuitively, the optimal MO depends on the length
of data over which the MO will be applied. On the one hand,
larger MOs can capture the dynamics of a richer class of sig-
nals. On the other hand, larger MOs also require proportionally
larger data sets for the parameters to be robustly estimated. In
the case of speech recognition, the MO is commonly fixed over
all speakers, phoneme types and signal to noise ratio (SNR). To
chose the MO for best recognition performance, different MOs
have to be tried out on a development set. Due to high variance
in the spectral representation for different speakers, phoneme
types or SNR, a fixed order should not lead to the best possible
spectral estimation, and therefore recognition performance. To
improve the quality of the spectral estimate we have proposed
and investigated the use of spectral estimation techniques where
the MO, on a frame by frame basis, is steered by a control fac-
tor. This factor has to be carefully chosen to counteract against
the aforementioned unwanted variations; e.g., we could try to
reduce the MO of frames with a low SNR to smooth the influ-
ence of the noise or where the spectrum is relatively flat like in
a fricative.

2. Theoretical Considerations
In this chapter we briefly describe the warped & scaled min-
imum variance distortionless response (MVDR) spectral esti-
mation technique, review previous work on speaker dependent
MO selection and frame based techniques on ’resolution’ se-
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n before we introduce our proposal on spectral envelope
tion with frame based MO selection.

eview of the Warped & Scaled Minimum Variance
rtionless Response Spectral Envelope

R spectral estimation was previously proposed by Murthi
ao [1, 2] as a spectral envelope technique, and applied
ech recognition by Dharanipragada and Rao [3]. More-
e have extended this approach by warping the frequency
ith the bilinear transformation prior to MVDR spectral
tion [4, 5], therefore dubbed warped-MVDR, to ensure
ore parameters in the spectral model are allocated to the
s opposed to the high, frequency regions of the spectrum,
y mimicking the frequency resolution of the human audi-
ystem.
or a fast computation of the warped-MVDR spectrum we
xtended Musicus’ [6] algorithm to calculate the MVDR
um of order N from the linear prediction coefficients
a
(N)
0···N of order N as follows:

Computation of the warped-LPC ã
For our experiments we used an algorithm by Matsumoto
et al. [7] to calculate the warped-LP coefficients, but any
other algorithm should work similarly well.

Correlation of the warped-LPC

µ̃k =

��
�

�N−k
i=0 (N + 1 − k − 2i)ã

(N)
i ã

∗(N)
i+k

: k = 0, · · · , N
µ̃∗
−k : k = −N, · · · ,−1

Computation of the warped-MVDR spectrum

Swarped−MVDR(ω) =
ε�N

k=−N µ̃ke−jωk
(1)

ε: inverse of the prediction error variance.

that the spectrum (1) is in the warped frequency domain.
, it is necessary to replace the Mel-filterbank in the front

f an automatic speech recognizer with a filterbank of uni-
y half overlapping triangular filters.
ectral peaks have been shown to be particular robust to

ve noise in the logarithmic domain [8], since

log(a + b) ≈ log(max{a, b}).

fore, we match the warped-MVDR envelope to the highest
al peak of the Fourier spectrum to get the warped&scaled-

envelope resulting in features which are less distorted by
ve noise [9].



2.2. Previous Work on Speaker Dependent Model Order

In previous work [10] we have introduced and investigated a
maximum-likelihood (ML) based MO selection technique for
spectral envelopes to apply speaker dependent adaptation in
the feature-space similar to vocal tract length normalization
(VTLN). In order to choose the optimal MO, a spectral envelope
must be estimated that provides features leading to the best pos-
sible match to the speaker-independent acoustic models of the
recognizer.

For a sequence of different MOs m · · ·n we can write the
cepstral features as the matrix C = (cm, cm+1, .., cn)T . Let λl

denote a set of given hidden Markov models trained on a broad
variety of speakers with a fixed MO l. The optimal MO m̂ for
the given speaker is then obtained by maximising the likelihood
of the adaptation data C given the corresponding word string
W from a previous recognition run:

m̂ = argmax
m

P (C|λl, W )

2.3. Previous Work on Frame Dependent ’Resolution’

In the work by Nakatoh et al. [11] it was proposed to adjust
the warping parameter α of the warped-LPC followed by com-
pensation of pre-emphasis and compensation for the frequency
warping. This approach leaves untouched the overall frequency
resolution of the envelope as the number of LPCs stay constant,
but emphasizes the resolution of lower (α > Mel) or higher
(α < Mel) frequencies as more parameters are used to describe
the lower frequencies and fewer to describe the higher ones; or
vice versa.

To control the frequency resolution frame by frame, in-
dexed by i, a division of the first R[1] by the zero R[0] order
autocorrelation coefficient was used:

βi =
Ri[1]

Ri[0]
≤ 1 (2)

In the work by Tyagi and Bourland [12] it was proposed to
perform ’multi-scale Fourier transform analysis’ by differently
sized windowing functions. To select the best window size, the
window with the lowest spectral entropy criteria

Hi = −
L−1�

k=0

Pi(k) · ln(Pi(k))

was used where P in the equation above stands for the normal-
ized power spectrum:

Pi(k) =
|Xi(k)|2

�L−1
j |Xi(k)|2 (3)

2.4. Frame Dependent Model Order

In this work we will concentrate on modifying the MO of the
spectral envelope in contrast to the warp factor as done by Naka-
toh et al. or the window size as done by Tyagi and Bourland
to control the frequency resolution. Using the MO instead of
the warp factor allows to control the overall frequency resolu-
tion without modifying the window size as the number of LPCs
varies.

For the control factor several functions could be used such
as the formant structure, phoneme type or the SNR. Here only
two control factors should be investigated to not overstress the
experimental part of this paper, concentrating on the feasibility
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le control factors could follow in future work.

he first approach for the control factor follows Nakatoh
by using a relation of the autocorrelation coefficient (2).
rmore, to compensate for the high variation of the coef-

ts we use simple smoothing and the absolute of the input
cients:

βsmooth,i =
1

4
βi−1 +

1

2
βi +

1

4
βi+1 (4)

the given smoothed control factor βsmooth,i we can now
obtain the MO N as

Ni = max {Nmax · βsmooth,i , Nmin}
Nmax is the maximum value of N and Nmin represents
allest value (we have used a value of 20) to prevent the
pe calculation is using a MO which is too small to give a
able approximation. Nmax is set to keep the mean of N
r to the value of the fixed MO (in our experiment 60).
he second approach for the control factor uses the spec-
tropy calculated on the normalized (3) warped-MVDR
pe with MO 60 instead of the Fourier transformation as
y Tyagi and Bourland, leading to a smoother estimate and
ore resulting in a more reliable entropy value. N is then
ed by smoothing the entropy value, as in (4),and a lower
old Nmin as before:

Ni = max {Nmultiply · (O − Hsmooth,i) , Nmin}
ffset O and the multiplication factor Nmultiply is chosen
t N has a mean value similar to the fixed MO value and a
ce of a fourth of the fixed MO value.

igure 1 presents spectrograms of warped-MVDR en-
es one with a fixed MO, set to 60, and two with a variable

omparing the MOs resulted by the different control fac-
amely functions based on the quotient of the first by the
utocorrelation coefficient or the spectral entropy, we see
e two criteria are very different from each other. While
tocorrelation coefficient based approach has a smooth na-
e spectral entropy is rough. The first has a high MO for

of the frames and reduces the MO where more energy is
t in high frequency regions than in low frequency regions.
tter reduces the MO of the regions where noise or silence
ent as the spectral contour is flat for these frames.

3. Speech Recognition Experiments
eech recognition experiments described below were con-
with the Janus Recognition Toolkit (JRTk), which is de-

ed and maintained by the Interactive Systems Laboratories
sites: Universität Karlsruhe (TH), Germany and Carnegie
n University, USA.
ur recognition experiments were conducted on the
language English Database (TED) corpus [13] which
ts several kind of problems to cope with: Speakers are
non-native, have a strong accent or are not even fluent,
neous speech phenomena occur quite frequently and the
ings were made with a lapel microphone, hence the sig-
ten contains noise. As relatively little supervised data is
ble for acoustic training, the acoustic models were trained

Broadcast News corpus [14] (104 hours of speech) and
d on 31 speakers (8 hours) out of the 39 transcribed

ers from the TED corpus using Maximum likelihood linear
sion (MLLR). Our test set contained the final 8 speakers.
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Figure 1: Spectrograms of warped-MVDR envelopes including a fixed and frame by frame model order. The spectrum on the top uses
a fixed model order, set to 60. The model order of the center spectrum is based on the quotient of the first by the zero autocorrelation
coefficient. The model order of the spectrum on the bottom is based on the spectral entropy.



Our baseline model consisted of 4.139 codebooks with 32
Gaussians each. The 13 static normalized cepstral coefficients
were obtained every 10 ms through a discrete cosine transform
from different spectral representations using a 16 ms Hamming
window to split the speech data sampled at 16 kHz. Thereafter,
VTLN was applied before the linear discriminant analysis re-
duced the current features plus 3 left and right adjacent features
to a final feature length of 40. To adapt the means and covari-
ances of the speaker-independent model for every speaker in the
test set MLLR was used. As feature space adaptation gave only
a small improvement in word error rate (WER) we decided to
not use it in our system.

The language model (LM) consisted of an interpolation of
a 3-gram LM based on the talks by the TED adaptation speakers
(60k words), a 3-gram LM based on proceedings from confer-
ences such as ICSLP, Eurospeech and ICASSP (17M words)
and a class-based 5-gram LM based on broadcast news and the
aforementioned conference proceedings (160M words). The
overall perplexity was 133 with an out of vocabulary rate of
0.3% for a vocabulary size of 25,000 words, including multi-
words and pronounciation variants the dictionary contained
40,000 entries.

Comparing the proposed MO selection, both of mean value
60, with the fixed MO 60, reported in Table 1, we can see 2.4%
relative error reduction for the autocorrelation approach. Com-
paring to the traditional Fourier transformation (Mel-frequency
cepstral coefficients) the relative error reduction is 4.2%. Both
control factors lead to a gain over the fixed MO, but the autocor-
relation coefficient based approach is significantly better than
the spectral entropy. Also, the autocorrelation coefficient based
approach performs better than the speaker dependent MO, as
they are different in nature they might be combined to good
effect. For the sake of completeness others feature are also pre-
sented in the table, but should not be further discussed here.

WER RER
Power Spectrum 38.4% --

39.7% -3.4%
38.9% -1.3%
38.7% -0.8%

MVDR 38.6% -0.5%
Warped-MVDR 38.1% 0.8%
Warped&Scaled-MVDR

fixed 37.7% 1.8%
ML per speaker 37.0% 3.6%
autocorrelation 36.8% 4.2%
spectral entropy 37.5% 2.3%

LP
Perceptual-LP
Warped-LP

Table 1: Word error rates (WER)s and relative error reductions
(RER)s for eight speakers comparing different spectral repre-
sentations.

4. Conclusions
We have demonstrated the possibility to improve the accuracy
of a speech recognition system by modifying the MO frame by
frame according to two different control factors on the Translan-
guage English Database. As both control factors are differ-
ent in nature and both are leading to an improvement we can
conclude that neither of them leads to the best possible perfor-
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. Therefore, in future investigations other control factors
o be considered. As the free values of the used control
s have been set a priori a further improvement in the per-
nce of the presented control factors could be expected by
the free parameters on a development set. Furthermore,
ld be investigated if the frame based MO – and warp fac-
ection could be combined to good effects.
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