
Correction of Disfluencies in Spontaneous Speech using a Noisy-Channel
Approach

Matthias Honal, Tanja Schultz

Interactive Systems Laboratories
University of Karlsruhe Germany, Carnegie Mellon University USA

honal@ira.uka.de, tanja@cs.cmu.edu

Abstract

In this paper we present a system which automatically cor-
rects disfluencies such as repairs and restarts typically occur-
ring in spontaneously spoken speech. The system is based on
a noisy-channel model and its development requires no linguis-
tic knowledge, but only annotated texts. Therefore, it has large
potential for rapid deployment and the adaptation to new target
languages. The experiments were conducted on spontaneously
spoken dialogs from the English VERBMOBIL corpus where a
recall of 77.2% and a precision of 90.2% was obtained. To
demonstrate the feasibility of rapid adaptation additional exper-
iments on the spontaneous Mandarin Chinese CallHome corpus
were performed achieving 49.4% recall and 76.8% precision.

1. Introduction
Spontaneous spoken speech usually contains disfluencies such
as filler words, repairs or restarts of whole sentences which do
not contribute to the meaning of the spoken utterance. Disflu-
encies cause sentences to be ill-formed, longer, and thus harder
to process for natural language understanding (NLU) compo-
nents applied for example in summarization systems or speech-
to-speech translation engines. The aim of this work was to de-
velop a disfluency correction component that removes disfluen-
cies from the given input text to ease the subsequent NLU task.

1.1. Disfluencies

For the description of the disfluencies structure we follow [4].
As figure 1 shows, a disfluency consists of four essential com-
ponents, the reparandum, the interruption point (IP), the inter-
regnum, and the repair. The reparandum contains the words
which will we edited (i.e. repeated, corrected or abandoned
completely). The offset of the reparandum is marked by the IP
which is the point, where the speaker interrupts the utterance in
order to repair it. The interregnum can consist of a short silence,
of an editing term indicating that the reparandum will be edited,
or it can even be empty at all. The editing finally takes place in
the repair. This pattern can be used to describe both, complex
disfluencies such as repairs and restarts of sentences and sim-
pler disfluencies, like filler words. In the latter case reparandum
and repair are simply assumed to be empty.

The correction of disfluencies involves the removal of all
parts of the disfluency which do not belong to the utterance orig-
inally intended by the speaker. Given the structure presented
above, it is easy to see that a disfluency can be corrected by
simply deleting the reparandum and the interregnum. Hence
the corrected version of the sentence in figure 1 is: “We need
three tickets to Boston.”

We need two tickets
︸ ︷︷ ︸

reparandum

,

IP
︷︸︸︷

| no,
︸︷︷︸

interregnum

three tickets
︸ ︷︷ ︸

repair

to Boston.

Figure 1: Typical structure of disfluencies

1.2. Related Work

A number of systems for automatic disfluency correction have
been presented in the past. Rule based approaches are proposed
by Hindle [3] and Bear et al. [1]. In [3] the focus is to apply
editing and restart correction rules to disfluencies, which are
identified in a text by hand labeled interruption points. In [1]
disfluencies are detected using pattern matching and syntactic
knowledge. Correction is then done by applying several correc-
tion patterns. Using pattern matching a recall of 44% and a pre-
cision of 48% on the ATIS corpus is reported. Heeman proposes
a system that applies statistical models for disfluency correction
[2]. This system uses a Part-of-Speech (POS) based language
model which predicts not only words and their corresponding
POS-categories, but also marks reparandum onsets, interrup-
tion points and filler words using decision trees asking questions
about words, POS-tags, and silences. On the corpus ”Trains” a
recall of 65.9% and a precision of 74.3% is reported for repair
correction. Zechner introduces disfluency dependent treatments
[7]. Filler words and editing terms are detected by a rule based
POS-tagger, the reparanda of repairs are detected by a pattern
matching component, and for the detection of the reparanda of
false starts he uses shallow syntactic knowledge and decision
trees applying questions about words, POS-tags and syntactic
entities. On the English CallHome and CallFriend corpora the
system achieves a recall of 51.9% and a precision of 59.4%.1

Spilker et al. [5] propose a different statistical approach for
disfluency correction by using acoustic cues to identify poten-
tial interruption points. The extend of repair and reparandum is
determined by using statistical machine translation methods to
translate one into the other. Using this approach they obtain a
recall of 64% and a precision of 84% on the German pendant of
the VERBMOBIL corpus.

1.3. Approach

The system presented here is based on a noisy-channel approach
which is adopted from statistical machine translation (SMT).
Following the SMT terminology we define the disfluent text to

1These results are not reported in [7], but achieved by evaluating his
engine in our lab.

be the source language which has to be translated into the tar-
get language, namely the fluent text free of any disfluencies.
As shown in section 1.1 disfluencies are corrected by deletions,
hence translation here simply means the deletion of disfluent
words. Like in SMT we search for the most likely target lan-
guage sentence given a sentence in a source language. This
search takes all possible hypotheses for target sentences into
account which can be generated from the source sentence by
deletions. In order to assign probabilities to these hypotheses,
a number of models for different properties of disfluencies are
used as described below.

Our approach has several advantages for the development
of the correction system: (1) Portability: no linguistic knowl-
edge is needed (e.g. knowledge about the grammar for pars-
ing or POS-tagging of the language in question), rather a text
containing annotated disfluencies is sufficient to train the sys-
tem. As a result our system can easily be adapted to various
languages. (2) Granularity: rather than matching rules, statisti-
cal models are used instead to make decisions about deletions
which allow for case-to-case decisions depending on a number
of features. (3) Flexibility: our approach allows to easily incor-
porate new models that make use of disfluency properties yet to
be investigated.

2. Data
All experiments are conducted on spontaneously spoken dialogs
in two languages, American English and Mandarin Chinese.
The English data (EVM) consists of the transcriptions of 127
dialogs from the VERBMOBIL corpus which consist of spon-
taneous spoken clean speech between two partners scheduling
appointments and doing travel arrangements in a face-to-face
scenario. The Mandarin data (MCC) consists of 100 transcribed
fragments of telephone conversations (80 from the training set,
20 from the evaluation test set) between two native speakers of
Mandarin Chinese. Since Chinese text is written without spaces
the transcriptions were automatically segmented into the most
likely sequence of words.

EVM MCC

Dialogs 127 100
Sentences 16583 24275

Words 118356 202099
Vocabulary 2290 7503

Table 1: Statistics from the EVM and the MCC corpus

As shown in table 1 the vocabulary of the MCC corpus is
more than three times larger than the vocabulary of the EVM
corpus while the MCC corpus itself is not even two times larger
than the EVM corpus. This suggests that disfluency correction
for the MCC corpus is more difficult than for the EVM corpus
due to the data sparseness.

3. Disfluencies
As already mentioned the complexity of disfluencies ranges
from simple types like filler words to very complex types of dis-
fluencies which involve editing or abandoning of whole phrases.
In this work we distinguish the following types of disfluencies:

• False Start (FS): A sentence is aborted before completion
and a new sentence is started. Example: I have - I am free
the twenty third.

• Repetition/Correction (REP): A phrase is repeated twice
or corrected by deleting, substituting or inserting words.
This disfluency type can be characterized by word cor-
respondences between reparandum and repair. Example:
We need two tickets, no, three tickets to Boston.

• Editing Term (ET): Editing terms occur in the interreg-
num of FSs or REPs and indicate that the reparandum
will be edited (or abandoned completely). “No” in the
sentence above is a disfluency of that type.

• Filler word (FP): Filler words (sometimes referred to
as filled pauses or discourse markers) are those words
which have no semantic content but provide some dis-
course functions like helping the speaker to start or to
keep his turn. Example: Alright, well, this is a good
idea.

• Interjection (IN): Interjections are defined as non-
lexicalized sounds which indicate affirmation or nega-
tion like “mhm”, “uh-uh” etc. In our data they are basi-
cally used as back-channeling, and as a result have been
removed.

In case of the EVM corpus we used all disfluency types
defined above, however in case of the MCC corpus only disflu-
encies of the types FS, REP and FP are annotated in the tran-
scriptions. Table 2 shows the frequencies of disfluency types
and tokens for both corpora.

FS REP FP ET IN Total

EVM 1209 2303 7024 155 336 11027
MCC 9603 241 11745 - - 21589

Table 2: Types of disfluencies in the EVM and the MCC corpus

In order to detect disfluencies in the text our system uses
various disfluency properties. One example is the length of the
deletion region of a disfluency, i.e. the number of words which
have to be deleted for correction. Table 3 shows the distribution
of disfluencies over the length of their deletion region for the
EVM corpus, the distribution for the MCC corpus is very simi-
lar. As can be seen the one-word deletion regions are clearly
dominant. This behavior corresponds with our intuition that
filler words mostly consist of one word that is deleted for cor-
rection. However, surprisingly it is not only true for filler words
but also for repetitions/corrections and false starts.

Furthermore, we investigated the position of disfluencies in
a sentence and observed that disfluencies are much more likely
to occur at the beginning of a sentence than in the middle. Ad-
ditionally, word fragments (i.e. words which are aborted prema-
turely) which occur at the end of the reparandum of a disfluency
can be helpful for disfluency detection. In the EVM corpus we
found that 753 out of 914 fragments occur at the end of the
reparandum of a disfluency. Therefore, we conclude that frag-
ments are helpful for identifying disfluencies but do not account
for all of them.

4. Noisy-channel Approach
The noisy-channel approach is a basic concept of SMT [6].
When adapting it to the problem of disfluency correction, the
underlying idea is that “clean” i.e. fluent speech gets passed
through a noisy channel. The channel adds noise to the clean
speech and thus creates “noisy”, i.e. disfluent speech as out-
put. Given a “noisy” string N the goal is to recover the “clean”

Length of DR 1 2 3 4 5 7 8-11
Number of DFs 8402 1747 443 193 111 73 58

Table 3: Disfluencies (DFs) grouped by the length of their dele-
tion regions (DR) for the EVM corpus

string Ĉ such that P (Ĉ|N) becomes maximal. Using Bayes
Rule, this problem can be expressed as follows:

Ĉ = arg max
C

P (C|N) = arg max
C

P (N |C) · P (C), (1)

where the probability P (C) denotes the language model
probability for the fluent string; P (N |C) is the probability that
the noisy channel generates N as output given C as input. In
terms of SMT the latter probability is referred to as the trans-
lation model. In SMT alignments are used to establish corre-
spondences between the positions of the source and the target
sentences. In our approach we also make use of alignments but
they differ from SMT in the way that disfluency correction only
requires deletions of words rather than deletions, insertions and
reorderings. Assuming that each target sentence is generated
from left to right, the alignment aj defines whether the word nj

in the source sentence is deleted or appended to the target sen-
tence. Let J be the length and nj the words of the source sen-
tence N , I the length and ci the words of the target sentence C

and m the number of deletions (of contiguous word sequences)
which are made during generation of the target sentence. Then
we can introduce an alignment aj for each word nj and rewrite
P (N |C) as follows:

P (N |C) = P (J |I) · P (m|J, C) ·
∑

aJ
1

P (nJ
1 , a

J
1 |c

I
1, I, J, m)

(2)
The probability P (nJ

1 , aJ
1 |c

I
1, I, J, m) can be decomposed

into a product of probabilities over all source words nj . In our
system we use five different models which contribute to these
probabilities. They are combined by a weighted sum. Each
model assigns a translation probability to a word and is named
according to the features it uses: (M1) The length of the deletion
region of a disfluency, (M2) the position of a disfluency, (M3)
the length of the deletion region of a disfluency with a frag-
ment at the end of the reparandum, (M4) the context of a poten-
tially disfluent word, (M5) the information about the deletions
of the last two words preceeding a potentially disfluent word.
The models (M1), (M2) and (M3) reflect important properties
for disfluency identification as outlined in section 3. Models
(M4) and (M5) take into account that the local context is often
helpful to determine the deletion region of a disfluency.

The probability distributions for the models encoding the
features enumerated above are obtained from the training data
using relative frequencies. In order to perform an efficient
search, we do not store the actual hypotheses, but only se-
quences of 0 and 1. Each sequence represents uniquely a hy-
pothesis, when we define that the number at position j has to be
0, iff the word nj is deleted in this hypothesis and 1 otherwise.
A straight forward representation of our search space would be
a binary search tree as we consider all 2J possible hypotheses
for a source sentence of length J . However, as the number of
leafs of this tree grows exponentially with J , we defined merge
criteria for 0-1-sequences in order to construct a lattice which
can be searched efficiently with a dynamic programming ap-
proach. According to these criteria two partial sequences of

Figure 2: Hits (grey bars) and false positives (white bars) for
different language model weights for the EVM corpus; The er-
ror bars indicate the deviation among the test sets

equal length can be merged, iff the number of performed dele-
tions (i.e. contiguous 0-subsequences) is equal and either the
length of the current deletion (i.e. the current 0-subsequence) is
equal or there is no deletion at the current position. Each edge
of the lattice is assigned a translation probability. The language
model probability for a hypothesis is calculated over all those
words, which are not deleted in this hypothesis.

5. Experimental Results
All experiments are conducted on the EVM and on the MCC
corpus. The EVM corpus was split into 10 disjoint test sets of
10% corpus size, the corresponding 90% remainder of the cor-
pus were used for training. The presented results on EVM are
averaged over the 10 test sets. For the MCC corpus we used the
predefined splitting into a training, development, and evaluation
set. The results on the MCC are reported on the evaluation test
set.

As described above, different weights can be assigned to the
language model probability and the five models composing the
translation probability. The major goal of the following exper-
iments was to optimize the weighting parameters and to inves-
tigate the impact of these free parameters on the overall system
performance. The implementation of an automatic optimization
algorithm is left for future work.

5.1. Language Model Weight

Firstly, we investigated the influence of the language model
weight parameter. Figure 2 illustrates the changes of hits (com-
plete corrections of disfluencies) and false positives (deletions
of only non-disfluent words) for the EVM corpus. While the
number of hits is increasing up to a language model weight of
0.4 and then slightly decreasing, the number of false positives is
growing rapidly with larger language model weight. This could
be a result of the fact that a high language model weight causes
the system to delete events which were not seen during training.
Good results are obtained for a language model weight of 0.2.
Here the number of hits is comparatively high and the number
of false positives is still low. For the MCC corpus we observed
similar trends. However the best language model weight turned
out to be 0.1 in the case of MCC. The lower language model
weight might be a consequence of the larger vocabulary and re-
sulting data sparseness with an even larger number of unseen
events.

Figure 3: Hits (grey bars) and false positives (white bars) for
different context model weights (language model weight set to
0.2) for the EVM corpus; The error bars indicate the deviation
among the test sets

5.2. Context Model Weight

The most remarkable effect on the overall performance gain
results from the context model (M4). This model considers
the context of a potentially disfluent word. The positive effect
of the context model can be easily explained for filler words,
since it allows to discriminate between the deletion of the word
“well” in the context “Well done!” and “Alright, well, this is
a good idea.”. We also found it to be helpful for short repeti-
tions/corrections, such as “the the” or “he she”. Figure 3 illus-
trates the impact of the context model weight. In these experi-
ments we set the language model weight to 0.2. With increasing
context model weight the number of hits improves only slightly,
but the number of false positives decreases significantly. For the
EVM corpus a weight of 10 gave the best results, for the MCC
corpus the best weight turned out to be 5.

Model Hits False Positives

(M1) -7.9 -5.9
(M2) +10.1 +21.2
(M3) +2.6 +8.8
(M4) +174.1 -90.3
(M5) +15.9 +264.6

Table 4: Contribution of all the five models to the baseline
system (for the EVM corpus with language model weight set
to 0.2); The model numbers correspond to the enumeration in
section 4

The effect of all the five models is summarized in table 4. It
shows that the impact is a slight increase of the number of hits
at the cost of a slight increase of the number of false positives or
a slight decrease of both figures for the models (M1), (M2), and
(M3). The numbers for (M4) refer to the comparison of weight
0 to 1. Model (M5) causes a huge number of false positives and
is therefore disregarded for the best system.

5.3. Best System

Table 5 shows the final results for the best parameter combina-
tions for the EVM and the MCC corpus. The total number of
disfluencies in the test sets are given in parentheses. The results
confirm our assumption that disfluency correction on the MCC
corpus is much more difficult than on the EVM corpus.

Our system was first developed for English using the EVM
corpus and then ported for the MCC corpus. Almost no effort
is needed for the adaptation to Mandarin Chinese. The same
algorithms and the same statistical models can be used. Only
the weighting parameters for the models are different for the
MCC corpus. We adjusted them empirically using the experi-
ence from our work with the EVM corpus.

Hits False Positives Recall Precision

EVM 853.3 (1102.7) 92.4 77.2% 90.2%
MCC 1486 (3008) 448 49.4% 78.8%

Table 5: Hits, false positives, recall and precision for the best
parameter combinations for the EVM and the MCC corpus (to-
tal number of disfluencies in the test sets in parentheses)

6. Conclusions
In this paper we proposed a statistical approach for disfluency
correction using a noisy-channel approach. The resulting sys-
tem performs well for disfluency corrections achieving up to
77.2% recall and 90.2% precision. Our approach allows for
rapid adaptation to new languages which has been demonstrated
on the portation from English to Mandarin Chinese. The noisy-
channel approach does not require any linguistic knowledge, is
easy to train and very flexible. It allows to incorporate addi-
tional models, and supports a high granularity since it allows for
case-to-case decisions. In the next steps we will investigate the
impact of using automatically transcribed input data rather than
manual transcriptions. Furthermore we will study the effect of
acoustic features such as the duration of pauses and words or
intonational boundaries. Finally, an algorithm will be imple-
mented that optimizes the model weight parameters.

7. References
[1] Bear, J., Dowding, J. and Shriberg, E., “Integrating Mul-

tiple Knowledge Sources for Detection and Correction of
Repairs in Human-Computer Dialog”, Proc. of the 30th

Annual Meeting of the ACL, 1992

[2] Heeman, P. A., “Speech Repairs, Intonational Boundaries
and Discourse Markers: Modeling Speakers’ Utterances
in Spoken Dialog”, PhD-Thesis, University of Rochester,
1997

[3] Hindle, D., “Deterministic Parsing of Syntactic Non-
fluencies”, Proc. of the 21th Annual ACL Meeting, 1983

[4] Shriberg, E., “Preliminaries to a Theory of Speech Disflu-
encies”, PhD-Thesis, University of California at Berkeley,
1994

[5] Spilker, J., Klarner, M., Görz, G., “Processing Self-
Corrections in a Speech-to-Speech System”, Verbmobil:
Foundations of Speech-to-Speech Translation, Springer
Verlag Berlin, 2000

[6] Wang, Y., Waibel, A., “Decoding Algorithm in Statistical
Machine Translation”, Proc. of the 35th Annual Meeting
of the ACL, 1997

[7] Zechner, K., “Automatic Summarization of Spoken Dia-
logues in Unrestricted Domains”, PhD-Thesis, Carnegie
Mellon University, 2001

